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Abstract

The notion of equality between two observables will play gniamportant roles
in foundations of quantum theory. However, the standartaodistic interpreta-
tion based on the conventional Born formula does not givetbbability of equal-
ity between two arbitrary observables, since the Born fdargives the probability
distribution only for a commuting family of observables. this paper, quantum
set theory developed by Takeuti and the present author @ tosgystematically
extend the standard probabilistic interpretation of quamtheory to define the
probability of equality between two arbitrary observalbitean arbitrary state. We
apply this new interpretation to quantum measurement yheaad establish a log-
ical basis for the difference between simultaneous meh8ityaand simultaneous
determinateness.
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1 Introduction

Set theory provides foundations of mathematics; all théeratatical notions like num-
bers, functions, relations, and structures are defineddratiomatic set theory, ZFC
(Zermelo-Fraenkel set theory with the axiom of choice), alhthe mathematical the-
orems are required to be provable in ZFC. Quantum set thamttuted by Takeuti

[32] and developed by the present author [24], naturallgmrads the logical basis of set

*An extended abstract of this paper was presented in the 1lléational Workshop on Quantum
Physics and Logic (QPL 2014), Kyoto University, June 4-6, 20idtappeared as Ref. [27].
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theory from classical logic to quantum logic to explore neatiatics based on quantum
logic.

Despite remarkable success in axiomatic foundations ofitgna mechanics [35,
[12], the quantum logic approach to quantum foundations btlseen considered pow-
erful enough to solve interpretational problems|[29, 9]. wdwer, this weakness is
considered to be mainly due to the fact that the conventistualy of quantum logic
has been limited to propositional logic. Since quantum Isebity extends the under-
lying logic from propositional logic to predicate logic, dprovides set theoretical
constructions of mathematical objects such as numberstifuns, relations, and struc-
tures based on quantum logic, we can expect that quantutmeset/twill provide much
more systematic interpretation of quantum theory than dmgentional quantum logic
approach. This paper represents the first step towarddisbtal systematic interpre-
tation of quantum theory based on quantum set theory, anadaligtfocusses on the
most fundamental notion in mathematics, namely, equality.

The notion of equality between quantum observables wily preany important
roles in foundations of quantum theory, in particular, ia theory of measurement and
disturbancel[22, 23]. However, the standard probabilistierpretation based on the
conventional Born formula does not give the probability gtiality between two ar-
bitrary observables, since the Born formula gives the grdibadistribution only for
a commuting family of observablées [36]. In this paper, quanset theory is used to
systematically extend the probabilistic interpretatidrgoantum theory to define the
probability of equality between two arbitrary observabiean arbitrary state based on
the fact that real numbers defined in quantum set theorylgx@otesponds to quantum
observables[32, 24]. Itis shown that every observatior@@sition on a quantum sys-
tem corresponds to a statement in quantum set theory witbetine projection-valued
truth value and the same probability in any state. In padicequality between real
numbers in quantum set theory naturally provides a stgpestient notion of equality
between quantum mechanical observables. It has been prxadpted that we cannot
speak of the values of quantum observables without assuaitigden variable the-
ory, which are severely constrained by Kochen-Specker gpgo theorems [14, 29].
However, quantum set theory enables us to do so without asgumdden variables
but alternatively with the consistent use of quantum logve. apply this new interpre-
tation to quantum measurement theory, and establish adldggsis for the difference
between simultaneous measurability and simultaneousdigi@gteness.

Section 2 provides preliminaries on complete orthomodaldices, commutators
of their subsets, quantum logic on Hilbert spaces, and theerseV(?) of quantum
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set theory over a logic? on a Hilbert space’””. We give a characterization of the
commutator of a subset of a complete orthomodular lattroproving Takeuti's char-
acterization, and give a factorization of the double conantf a subset of a complete
orthomodular lattice into the maximal Boolean factor andoenplete orthomodular
lattice without non-trivial Boolean factor. Section 3 imdiuces a one-to-one corre-
spondence obtained in Refs. [32] 24] between the R&fs in V(2) and self-adjoint
operators affiliated with the von Neumann algebwa= 2" generated by2, deter-
mines commutators and equality Ri<), and gives the embedding of intervalsin
into V(2). Section 4 formulates the standard probabilistic integgien of quantum
theory and also shows that the set of observational praposifor a quantum sys-
tem can be embedded in a set of statements in quantum sey thigbout changing
projection-valued truth value assignment. Section 5 eld¢he standard interpretation
by introducing simultaneous determinateness, i.e., -sl@pendent commutativity of
observables. We give several characterizations of simedtas determinateness for fi-
nite number of quantum observables affiliated with an abjtvon Neumann algebra
in a given state, extending some previous resllts [23] omlsameous determinate-
ness for two observables. Section 6 extends the standargiatation by introducing
guantum equality, i.e., state-dependent equality for tvbitrary observables. We give
several characterizations of quantum equality for two plzg#es affiliated with an ar-
bitrary von Neumann algebra in a given state, extending gmeeous results [23] on
simultaneous determinateness for two observables. &ectiand 8 provide applica-
tions to quantum measurement theory. We discuss a statdept formulation of
measurement of observables and simultaneous measwyadild establish a logical
basis for the difference between simultaneous meastsahitd simultaneous deter-
minateness. The conclusion is given in Section 9.

Whereas we will discuss the completely general case wh#iie an arbitrary von
Neumann algebra, some results for the case wherédim< o and.# = B(.7)
have been previously reported in Ref.[[25]. In this spe@ak; we can avoid the use of
guantum set theory to introduce simultaneous determieateand quantum equality
into the language of observational propositions, sincaudaneous determinateness
and quantum equality can be expressed, respectively, bgnadignal propositions
constructed by atomic formulas of the foxh= x with an observablX and a real
numberx. However, to prove a transfer theorem ensuring that all thestal tau-
tologies have the truth value 1, mentioned without proof @. 5], Theorem 3, it is
necessary, even in this special case, to develop quantutheset and to define the
embedding of the language of observational propositiciestive language of quantum
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set theory. The required machinery will be, for the first tifudly constructed in this

paper including the case with observables with continu@estsum, though the full

power of this machinery will be revealed when applied to reathtical theorems be-
yond tautologies after we have enriched the language ofradisenal propositions, in

the future research, with more sophisticated relationsamctions than equality.

2 Quantum set theory

2.1 Quantum logic

A complete orthomodular latticiss a complete lattice? with an orthocomplementa-
tion, a unary operation. on .2 satisfying

(C1) if P < QthenQ" < PL,
(C2) PLL =P,
(C3) PvP- =1andPAPL =0, where 0= A2 and 1= \/ 2,

that satisfies therthomodular law
(OM) if P< QthenPV (PL ANQ)=Q.

In this paper, any complete orthomodular lattice is calléagéc. A non-empty subset
of alogic2 is called asubalgebraff it is closed undern\, v, and_L. A subalgebraz of
2 is said to becompletéff it has the supremum and the infimum i of an arbitrary
subset ofe/. For any subsety of 2, the subalgebra generated by is denoted
by lNoo?. We refer the reader to Kalmbach [13] for a standard text emoonodular
lattices.
We say thaP andQ in a logic.2 commutein symbolsP | Q, iff P= (PAQ) V (PA

Q™h). All the relationsP |} Q, QL P, P+ Q, P, Q*, andP | Q' are equivalent. The
distributive law does not hold in general, but the followiageful propositions hold

(Ref. [13], pp. 24-25).

Proposition 2.1. If P1,P ) Q, then the sublattice generated by P, Q is distributive.

Proposition 2.2. If P, , Q for all a, then Vo Pa ! Q, Ao Pa L Q, QA (VgPa) =
Va(Q/\POI)n and Qv (/\a PG) = /\a(QVPO!)'

From Propositiofi2]1, a logi€ is a Boolean algebra if and only i | Q for all
P,Q e 2 (Ref. [13, pp. 24-25]).
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For any subset? C 2, we denote byw' the commutanbf <7 in 2 (Ref. [13],
p. 23),i.e.,

o' ={Pe2|PlQforall Qe «}.

Then,<7' is a complete subalgebra gf. A sublogicof 2 is a subset? of 2 satisfying
o/ = o/". For any subsety C 2, the smallest logic including? is <7 called the
sublogic generated by/. Then, itis easy to see that a subséts a Boolean sublogic,
or equivalently a distributive sublogic, if and onlydf = 7" C o7,

2.2 Commutators

Let 2 be a logic. Marsden [15] has introduced the commutator (Ep@) of two
elementd andQ of 2 by

com(P,Q) = (PAQ)V (PAQ") V(P AQ)V (P*AQY). (1)
Bruns and Kalmbach [4] have generalized this notion to fisitlesets of2 by
comZ)= \/ /A PP (@)

a:.7—{id, L} PeF

for all # € 2,4(2), where Z,(2) stands for the set of finite subsets &f and
{id, L} stands for the set consisting of the identity operation id #re orthocom-
plementationl.. Generalizing this notion to arbitrary subsetsof 2, Takeuti [32]
defined coni«?) by

com.«/) = \/T(Qf), (3)
T(«/) = {Eco' |PAELPAEforallP,Pe o}, (4)

of any & € #(2), where #(2) stands for the power set a?, and showed that
com(.«/) € T (/). Subsequently, Pulmannova [28] showed:

Theorem 2.3. For any subset? of a logic 2, we have
(i) com(«/) = N{com(F) | ¥ € P ()},
(i) com() = A{com(P,Q) | P.Q € o(«)}.

Here, we reformulate Takeuti’s definition in a more convahferm. Letw C 2.
Note thater" is the sublogic generated by, and.«”' Nn.o7" is the center of7", i.e.,
the set of elements of/" commuting with all elements of/*'. Denote byl (.7) the
sublogic generated by, i.e., L(«/) = /", and byZ(.«/) the center ol (%), i.e.,
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Z(o/) = o/' Na/". A subcommutatoof o7 is anyE € Z(.«) such thaP, AE L P, AE
for all P, P, € o7. Denote byS(.«/) the set of subcommutators of, i.e.,

S(«/)={EeZ(/)|PLAEL P AE forall P, P, € <7}, (5)

By the relationZ(.«7) C .«7*, we immediately obtain the relatioffS(.«7) < com(.«7).
We shall show that the equality actually holds.

Lemma 2.4. Let.o/ be any subset of a logi€. For any R,P; € o7 and E€ 7', we
have RAE . PR AE ifand only if RAE L Py.

Proof. LetE € /' andP;, P, € «7. We havgPL AE) A (R, AE)* = (PLAE) AP, and
hence

[(PLAE)A (PAE)V[(PLAE)A (P AE)Y] = [(PLAE) APV [(PLAE) APS].
It follows thatP, AE L B AE ifand only if PLAE | P. O

For anyP,Q € 2, theinterval [P, Q] is the set of alX € 2 such that < X < Q.
Foranys/ C 2 andP,Q € <7, we write[P,Q| ., = [P, Q] N <.

Theorem 2.5. For any subsety of a logic.2, the following relations hold.

() () ={E€Z(#)|[0,E]s CZ()}.
(i) V(&) is the maximum subcommutatoraf, i.e.,\/ () € S().

(i) S(«) =[0,V(A)L(e)-
(iv) com(«/) =\ S().

Proof. (i) Itis easy to see tha AE | P, for everyP,, P> € 7 if and only if [0,E]N.er C
7', and hence the assertion follows from Lemima 2.4. (i) PeP> € «7. We have
PLAE | P; for everyE € S(«7) from Lemmd 2.4, an@ A\ S(«7) | P, from Proposition
[2.2. SinceS(«/) C Z(<7), we have\/ S(«7) € Z(<7). Thus,\/S(«/) € S(«/), and the
assertion follows. (iii) IfP € [0,V ()] () thenP = P AV S(«7) commutes with
every element ok (<). Thus, we havg0,\ S( )| () = [0,V S()]z(r). Now, let

P € [0,VS()]zs)- Then,PLl PandPi) P,AVS(«), and henceP , PAR A

\/ S(«7) andPy , P, AP. Thus, we hav® € S(.«), and the assertion follows. (iv) Since
com(.%) € Z(.7) for every finite subse# of <7, we have coni«?) € Z(</), and hence
we have corie?) € Z(</). Thus, relation (iv) follows. W

The following proposition will be useful in later discuss®
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Theorem 2.6. Let.Z be a maximal Boolean sublogic of a logitand.es a subset of2
including %, i.e.,# C o/ C 2. Then, we haveom(«/) € # and|0,com(«/)] ., C .

Proof. Since coniw?) € Z(«/) C %' = %, we have cori?) € 4. LetP c «.
Then, P Acom(.e) | Q for all Q € 4, so thatP A com(.) € #' = %, and hence
[0,com(.)]s € 2. O

The following theorem clarifies the significance of commaoitsit

Theorem 2.7. Let.« be a subset of a logi€?. Then, I(.<7) is isomorphic to the direct
product of the complete Boolean algetigacom(.«7)] () and the complete orthomod-
ular lattice [0,com(.<7)*], (. Without non-trivial Boolean factor.

Proof. It follows from VS) € Z(«/) that L(&) = [0,VS(¥)]|(w) X
[O,VS(%)L]L(M). Then, [0,V S(«)] () is @ complete Boolean algebra, since
[0,VS()]L(r) € Z(/). It follows easily from the maximality ofy §(</) that
[O,VS(%)L]L(%) has no non-trivial Boolean factor. Thus, the assertiorofedl from
the relation\/ S(.«7') = com(.«7). ]

We refer the reader to Pulmannoval[28] and Chevélier [5fddher results about
commutators in orthomodular lattices.

2.3 Logicon Hilbert spaces

Let 2# be a Hilbert space. For any sub&t .»#, we denote byG" the orthogonal
complement ofs. Then,S'* is the closed linear span & Let ¢ (.#) be the set of
all closed linear subspaces .i#’. With the set inclusion ordering, the sg{.77) is

a complete lattice. The operatidh— M~ is an orthocomplementation on the lattice
€ (), with which %' (.7) is a logic.

Denote by#(.7#) the algebra of bounded linear operators#hand 2(77) the
set of projections oZ’. We define theoperator orderingon #(.7) by A < B iff
(Y,AP) < (¢,ByY) for all Yy € 5. For anyA € B(), denote byZ(A) € € ()
the closure of the range & i.e., Z(A) = (A%)*+. For anyM € % (#), denote by
P (M) € 2() the projection operator ofZ ontoM. Then,Z (M) = M for all
M e € () and % (P) = P for all P € 2(s¢), and we havé® < Q if and only if
Z(P) C 2(Q) for all P,Q € 2(5¢), so that2(s#) with the operator ordering is also
a logic isomorphic to6'(#2°). Any sublogic of 2(.7) will be called alogic on 7.
The lattice operations are characterizedFoy Q = weak-limy_,.,(PQ)", Pt =1—P
forall PQe 2(57).
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Let o7 C B(). We denote by’ thecommutant of7 in Z(.¢). A self-adjoint
subalgebraz of #(7¢) is called avon Neumann algebran o7 iff .#" = .# . For
any self-adjoint subset” C #(#), «/” is the von Neumann algebra generated by
/. \We denote byZ(.#) the set of projections in a von Neumann algeb#a For
anyP,Q € 2(), we haveP | Q iff [P,Q] = 0, where[P,Q] = PQ— QP. For any
subsete C 2(#), we denote by' thecommutandf . in 2(.#). For any subset
o C (), the smallest logic including/ is the logice7" called thdogic generated
by.«7. Then, asubse®? C 2(.%7) is alogic ons7 if and only if 2 = &2 (.#) for some
von Neumann algebra7 on o7 (Ref. [24], Proposition 2.1).

We define themplication and thelogical equivalenceon 2 by P — Q = P+ v
(PAQ) andP < Q= (P — Q) A(Q— P). We have the following characterization of
commutators in logics on Hilbert spaces (Ref./[24], The@@h, 2.6).

Theorem 2.8. Let 2 be a logic ons# and letsZ C 2. Then, we have the following
relations.

(i) com(«) = 2{Y e 7 | [ABJYy=0forall A,Bec 7"}
(i) com(/) = 2{Y € | [P,P]Psyp = Ofor all P, P, Ps € o7 }.

2.4 Quantum set theory over logic on Hilbert spaces

We denote by the universe of the Zermelo-Fraenkel set theory with theraxof
choice (ZFC). LetZ(€) be the first-order language with equality without constant
symbols augmented by a binary relation symbgabounded quantifier symboi& € v,
Jx € y (in addition to unbounded quantifier symbaig, Ix. For any clasdJ, the
language?(€,U) is the one obtained by adding a name for each elemdut of

Let 2 be alogic on77. For each ordinadr, let

Vo(,g) = {u| u:dom(u) — 2 and(3B < a)dom(u) QVEQ)}. (6)
The 2-valued universe \#2) is defined by

V@ = J v, (7
acOn
where On is the class of all ordinals. For everg V(2), the rank ofu, denoted by
rank(u), is defined as the leagtsuch that ¢ Vo(jf)l. It is easy to see that if ¢ dom(v)
then ranku) < rank(v).
For anyu,v e V(2), the 2-valued truth values of atomic formulas= v andu € v
are assigned by the following rules recursive in rank.
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() [u=V]2 = Avedomu (U) = [U € V] 2) A Avedomu)(V(V) = [V € U 2).
(i) [ue V]2 = Vvedomy)(VV) A [u=V]2).
To each statememp of . (e,V(?)) we assign the2-valued truth valud{g] » by
the following rules.

(i) [~¢]2=[o]3-

iv) [N @]2 =[] ][@]e
V) [V @le=I[a]oV[e]e
Vi) [o— @llo = [e]l2 — [¢] 2

[
[
[
[ [ [
(Vi) o< @] =[o]2 ¢ [@]2.
[
[
[
[

(vii) [[(vx€ u) @(X)] 2 = Avedomu) (U(U) = [@(U)]].2).
(i) [(x € u) P(X)] 2 = Vedomu) (U(U) A[@(U)] 2).
() [(v) @(X)] .2 = Ayey2) [@(U)] 2-

xi) [(3) 0(X¥)] .2 =V ey(2 [@(W)] 2.

We say that a statemegtof . (e,V(?)) holdsin V(2 iff [¢] o = 1. A formula
in .Z(€) is called aAp-formulaiff it has no unbounded quantifietéx or 3x. The
following theorem holds [24].

Theorem 2.9 (Ao-Absoluteness Principle)For anyAp-formula@(xs, . .., X,) of £ (€)
and u,...,u, € V(2 we have

[o(ug,...;un)l2 = [@(us, .., Un) [ ()

Henceforth, for any\o-formula@(x, . ..,X,) anduy, ..., uy € V(2) we abbreviate
[@(us,...,un)] = [@(us,...,un)] 2, which is the commom2-valued truth value in all
V(2 such thauy, ...,u, € V(2.

The universé/ can be embedded ¥(2) by the following operation/ : v — V
defined by the=-recursion: for eaclw € V, V= {U| u € v} x {1}. Then we have the
following [24].

Theorem 210 (Ao-Elementary Equivalence Principle) For any Ap-
formula @(x1,....xn) of Z(e) and uw,...,un € V, we have (V,€) &
@(uy,...,un) if and only if [¢@(ly, ..., 0n)]] = 1.

Foru e V(?), we define thesupportof u, denoted by ku), by transfinite recursion
on the rank olu by the relation

tw= J £xU{u(x)|xedomu)}. (8)

xedom(u)
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For o7 C V() we write £(«/) = Uyey () and forug,...,u, € V2 we write
E(ug,...,un) =E£({ug,...,un}). Let.er C V(2. Thecommutator ofe7, denoted by
com(«/), is defined by

com(.«) = comt()). 9)

For anyus, ...,u, € V(&) we write confuy,...,uUy) =com({ug,...,un}). For bounded
theorems, the following transfer principle holds![24].

Theorem 2.11 (ZFC Transfer Principle) For any Ag-formula @(xq, .. .,Xn) of Z(€)
and w,...,up € V(2 if (xg,...,X) is provable in ZFC, then we have

com(Ug,...,Un) < [@(ug,...,un)].

3 Real numbersin quantum set theory

Let Q be the set of rational numbersVh We define the set of rational numbers in the
modelV(?) to beQ. We define a real number in the model by a Dedekind cut of the
rational numbers. More precisely, we identify a real numbigh the upper segment
of a Dedekind cut assuming that the lower segment has no entl gerefore, the
formal definition of the predicatR(x), “x is a real number,” is expressed by

RX) = WexyeQAIeQyex)AdyeQy¢gx)
AVY € Q(y € X< Vze Q(y < z— z€ X)). (10)
The symbol “:=" is used to define a new formula, here and hezeafVe defineR()

to be the interpretation of the setof real numbers iV (<) as follows.

R = {ue V)| dom(u) = dom(Q) and[[R(u)]] = 1}. (11)
The seR » of real numbers iv(2) is defined by

Ry =R™® x {1}. (12)

Then, for anyu,v € R(<), the following relations hold iV () [24].

() [(VueRo)u=u] =1,

(i) [(VYu,veRgu=v—-v=u]=1.

(i) [(Muvywe Rg)Ju=vAV=w—u=w]=1.
(iv) [(WeRg)(YXYyEV)X=YAXEV—YEV].
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(V) [(Vu,ve Rg)(VXeu)xeuAnu=v—XxeV|.

From the above, the equality is an equivalence relation &éetweal numbers (2.
For anyus, . ..,un € R, we have

[Uug = Uz A~ AUn-1 = Un] < com(ug,...,Un), (13)

and hence commutativity follows from equality ®i<) [24].

Let .# be a von Neumann algebra on a Hilbert spageand let2 = 2 (.#). A
closed operatoA (densely defined) o7 is said to beaffiliatedwith .7, in symbols
An ., iff U*AU = Afor any unitary operatdd € .#’. LetAbe a self-adjoint operator
(densely defined) ox”” and letA = [, A dEA(A) be its spectral decomposition, where
{EA(A)}\cr is the resolution of identity belonging # (Ref. [36], p. 119). It is well-
known thatAn .# if and only if EA(A) € 2 for everyA € R. Denote by.Z sathe set
of self-adjoint operators affiliated witl# . Two self-adjoint operator& andB are said
to commutein symbolsA| B, iff EA(A) L EB(A’) for every pairA, A’ of reals.

For anyu € R(®) andA € R, we defineE(A) by

E'A)= A u(). (14)
A<reQ
Then, it can be shown thdE"(A)},cr is a resolution of identity in2 and hence
by the spectral theorem there is a self-adjoint openatpr#Z uniquely satisfyingi=
JrAdEY(A). On the other hand, l6éin .# be a self-adjoint operator. We defifec

A={(F.EA(r)) |r € Q}. (15)

Then, donfA) = dom(Q) andA(F) = EA(r) for all r € Q. Itis easy to see tha@ e R(?)

and we haveg(f'=u for all u e R?) and(Af= Afor all Ac .Zsa Therefore, the
correspondence betwe®i?) and.Zsais a one-to-one correspondence. We call the
above correspondence thakeuti correspondencélow, we have the following [24].

Theorem 3.1. Let 2 be alogic ons7. The relations

(i) EAA)= A u(7)forallA €Q,

A<reQ
(ii) u(f)=EA(r)forallr € Q,

forallu=Ae R® and A= (i € .Zsa sets up a one-to-one correspondence between
R(2) and 7 sa



12 Masanao Ozawa

For anyr € R, we shall writer’= (r1)7 wherer1 is the scalar operator ot’. Then,
we have donf) = dom(Q) andrf) = [ < {], so that we have ) = {0,1}. Denote
by #(R") the o-filed of Borel subsets oR" andB(R") the space of bounded Borel
functions onR". A spectral measurfl0] onR" in .# is a mappinde of #(R") into
P (M) satisfyingy | E(4j) = 1 for any disjoint sequenc@;} in Z(R") such that
UjAj =R". Let X be a self-adjoint operator affiliated witk. For anyf € B(R), the
bounded self-adjoint operatd(X) € .# is defined byf (X) = [ f(A)dEX(A). The
spectral measure of ¥ a spectral measut® onR in .7 defined byEX (A) = xa(X)
for anyA € #(R). Then, we hav&*X (1) = EX((—,A]).

Proposition 3.2. Letre R, sit € R, and Xn .#sa We have the following relations.

() [Fes =[s<f]=E%t)
(i) [8<f]=[8<i]=E*).
(iiiy [X <] =EX(t) = EX((—,t])
(iv) [t< >~<]] = 1-EX(t) = EX((t,)).
(V) [8< X <f=EX(t) —EX(s) = EX((s 1))
(Vi) [X =] =EX(t) = Vicrreq EX (r) = EX({t}).

Proof. Relations (i), (ii), and (iii) follows from[[24, Propositio5.11]. We have
com(,X) = 1, so that (iv) follows from the ZFC Transfer Principle (Them[Z.11).
Relation (v) follows from (iii) and (iv). We have

[R=1] = AX®)—[Felln ANTD) > [FeX]

reQ reQ
= AEXn)TVER () A A\ EH () VEX(r)

reQ reQ
= A EX0'A A EX(D)

r<t,reQ t<reQ
= [1- V EYMIAEY)

r<treQ
= B0~V B0
r<t,reQ

= EX({t}).

Thus, relation (vi) follows. O
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4 Standard probabilistic inter pretation of quantum theory

Let Sbe a quantum system described by a von Neumann alggboa a Hilbert space
2. According to the standard formulation of quantum thedng dbservableof S
are defined as self-adjoint operators affiliated wih the statesof S are represented
by density operators og?’, and avector statey is identified with the statey)(y|.

We denote by (.#') the set of observables, by’ (.77) the space of density opera-
tors. ObservableXy, ..., X, € O(.#) are said to benutually commutingf X; L X, for

all j,k=1,....n. If Xg,...,Xy € O(.#) are bounded, this condition is equivalent to
[Xj,X] =0forall j,k=1,...,n. The standard probabilistic interpretation of quantum

ally commuting observables, ..., X, € O (#) in p € .7 (5¢) by theBorn statistical
formula

P (30, %) = THEX (xa) - EX* (k). (16)

To clarify the logical structure presupposed in the stath@aobabilistic interpreta-
tion, we defineobservational propositionfor S by the following rules.

(R1) ForanyX € 0(.#) andx € R, the expressioiX <, X is an observational propo-
sition.

(R2) If ¢ andq, are observational propositionsg, andg, A ¢ are also observational
propositions.

Thus, every observational proposition is built up from fato” observational proposi-
tions X <, x by adding finite number of connectivesandA. We denote by%,(.#)
the set of observational propositions. We introduce thaeotiveV by definition.

(D1) ¢V @ = (@A ~@).

For each observational propositign we assign its projection-valued truth value
[¢]lo € 2(5) by the following rulesl[2].

(T1) [X <oXJo=EX(x).
(T2) [0 = [¢l5-
(T3) (@A @]o = [@]oA [¢]o-

From (D1), (T2) and (T3), we have

(D2) [@V @flo = [@]oV [¢]o-
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We define theprobability Pr{ ¢||p} of an observational propositiop in a statep
by
(P1) Pollp} =Tr([¢]op]-

We say thatin observational propositiop holds in a state iff Pr{¢||p} = 1.
The standard interpretation of quantum theory restrictenlational propositions
to be standard defined as follows.

(W1) An observational proposition including atomic formsK; <g X1, ..., Xy <o X iS
calledstandardiff X, ..., X, are mutually commuting.

All the standard observational propositions includingyogiven mutually com-
muting observableX;, ..., X, comprise a complete Boolean algebra under the logical
order< defined byp < ¢ iff [[¢]lo < [¢]o and obey inference rules in classical logic.
Suppose thaXy, ..., X, € O(#) are mutually commuting. Let;,...,xy € R. Then,

X1 <o X1 A -+ A Xy <o Xn IS @ standard observational proposition. We have

X1 <o Xt A+ AXn <o XnJlo = EXt(X0) A--- AEX (Xn) = EX4(Xq) - - -EX"(Xn). (17)
Hence, we reproduce the Born statistical formula as
PHX1 <o XL A+ AXa <oXnllp} = TIEX (x0) -+ EX (%) ). (18)

From the above, our definition of the truth values of obséowall propositions are
consistent with the standard probabilistic interpretabbquantum theory.
From Proposition 3]2 and (T1), we conclude

[X <% = [X<oX]o (19)

forall X € 0(.#) andx € R. To every observational propositignthe corresponding
statemenip in .Z(e,R(?)) is given by the following rules for anX € ¢(.#) and
X € R, and observational propositiogs @y, .

QL) X <gx:=X <%

(Q2) ~¢:=—¢.

(Q3) AA@ =@ AR

Then, it is easy to see that the relation

(] = [[@lo (20)
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holds for any observational propositign Thus, all the observational propositions are
embedded in the set of statementsdtic, R(?)) with the same projection-valued truth
value.

We denote by S{X) the spectrum of an observablec & (.#), i.e., the set of
all A € R such thatX — A1 has a bounded inverse operator.#fi. An observable
X e O0(#) is calledfinite iff Sp(X) is a finite set, andhfinite otherwise. Denote by
Ow(A) is the set of finite observables &(.# ).

LetX € O, (). Then, SPX) coincides with the set of eigenvaluesXfLet

o0(X) = [ -Vy|/2,1}. 21
(X)= min  {k-yl/2.1) 1)

For anyx € R, we define the observational propositXnr=, x by

X =p X:=X—0(X) < X <o X+ 0(X). (22)
Then, it is easy to see that we have

[X =oXo=E*({x}) (23)

forall xe R.

In Ref. [25] we have introduced observational propositifmrsthe case where
dim(¢) < o and.# = %() by rules (R'1), (R'2) of well-formed formulas and
rules (T'1)—(T'3) for projection-valued truth value assigent as follows.

(R'1) For anyX € 0(#A(s)) andx € R, the expressiolX =y X is an observational
proposition.

(R’2) If ¢ andg, are observational propositionsg andg, A ¢, are also observational
propositions.

(T1) [X=¢ Ao =EX(x).

(T'2) [~¢ly = [¢]y-

(T3) [ @lo =[@]o Ale]o-

Denote by%y (#(7¢)) the set of observational propositions constructed by I(iR&S
and (R’2). In this language, for any observables ¢'(#(.)) and any real number
X € R, we can introduce the observational propositior y xin £y (#A()) by

X<y Xi= \V X =g Xj, (24)
Xj €SP(X)N(—00 ]
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where the observational proposititf) ¢; is defined byV; ¢, = @ V-V ¢ for any
finite sequence of observational propositigns .., @. Then, we have

[[X <o X]]o’ =EX (X) (25)

Now, we can conclude that if dif#?’) < o, the language%,(#(¢)) and
Zy(#A()) are equivalent in the sense that there is a one-to-one pomdsnced
of Zy (#(A)) onto Zo(#(A)) such thaf®(¢) o = [@llos P(X =0 X) = (X =0 X),
and d(X <y x) = (X <o x) for all ¢ € Ly (AB(H)), X € O(AB(H)), andx € R.
Thus, in what follows for the case where dig#’) < c we shall identify the language
Zy(#B(H)) introduce in Ref.[[25] with the languag&,(#(77)); in this case we
havel' (B(H)) = Ow(B(H)).

5 Simultaneous deter minateness

In this section, we shall examine basic properties of thernatator con(1>~(1, .. .,Xn)
for observablesXy,..., X, € O(#). Let Xy,..., X, € O(#). We denoted by
{X1,...,%,}" the von Neumann algebra generated by project®figA) for all j =
1,...,nand A € R, and denote byZ’(Xy,...,X,) the center of{Xy,...,X}", i.e.,
F (X1, %) = {Xq,..., X} N{Xg,..., %n}. Thecyclic subspac& (Xi,...,X%n;p)
of 27 generated by, ..., Xy, andp is defined by

C (X, % p) = {Xa,.... %} 'Tan(p),

whereran stands for the closure of the range. TH&€(Xy, ..., X; p) is the least invari-
ant subspace undékKs, ..., X,}” containingp. Denote byC(X,...,Xn; p) the projec-
tion of 2 onto%'(Xq,...,%n; p). Then,C(Xy,...,Xn; p) is the smallest projectioR in
{X1,..., %X} such thaPp = p.

Under the Takeuti correspondence, the commutator of obkks are character-
ized as follows.

Theorem 5.1. Forany X,...,X, € O(.#), the following relations hold.

(i) com(Xy,..., %) = 2{we # | [AB|Yy=0forall A,Bec {Xy,...,%X}"}.
(i) com(Xy,...,Xn) = P{W e | [EXi(r1),EX(r2)]|EX (r3)y =0
forallri,ro,r3eQand jk I =1,....n}.
(i) com(Xy,..., %) = max{E € 2(Z(Xq,...,%)) | X;E L XE
forall j,k=1,...,n}.
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Proof. Let.«/ =L (Xy,...,%,). Then, confXy,...,X,) = com(). We have
L(%,....%) = {EX(r}) |r; eQandj =1,...,n} U{0,1},

and hencel (Xy,...,%)" = {X1,...,%,}". Thus, relations (i) and (i) follow from
Theorem 2.8 (i) and (ii), respectively. From Theoren 2.5 aeeh

comXy,...,. %) = max{EcZ(«)|P.AELP,AEforall PP € o}
= ma{Ec Z(Z(X1,..., %)) | XEb XE forall j.k=1,...,n},

from which relation (iii) follows. O

We say that observables§, ..., X, € 0(.#) aresimultaneously determinata a
statep iff Tr[com(Xy,. .., Xn)p] = 1.

A probability measurqu on Z(R") is called ajoint probability distribution of
X1,...,. %0 € O(A) in p € () iff for any polynomial p(f1(X1),..., fa(Xn)) of
observabled:(Xy),..., fa(Xn), wherefy, ..., fy € B(R), we have

Trlp(a()s o T Xe)P) = [+ [ P, foln)) dH .. 0). (26)

A joint probability distribution ofXy, ..., X, in p is unique, if any. Since simultane-
ous determinateness is considered to be a state-deperadiemt of commutativity, it
is expected that simultaneous determinateness is equivaléhe state-dependent ex-
istence of the joint probability distribution. This is inetshown below together with
other useful characterizations of this notion.

Theorem 5.2. For any observablesX...,X, € () and a statep € ./ (), the
following conditions are all equivalent.

(i) X1,...,X%, are simultaneously determinategn i.e., Trjcom(Xy, ..., %n)p] = 1
(i) com(Xg,...,X,)p =p.

(i) C(Xg,...,%n;p) < comXy,...,%n).

(iv) [A,Bjp=0forallA,Be {Xg,...,Xn}".
(V) There exists a joint probability distribution of X. ., X, in p.

(Vi) XjC(X,.., XnP) & XC (X1, ..., %n;p) forall j,k=1,....n.

(vii) There exists a spectral measure E.i#i on R" satisfying

E(A1 X - xA)p =EX (M) A---AEX (An)p (27)

forall Ag,...,An € B(R).
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(viii) There exists a probability measureon R" satisfying
U(Dg X - X D) = TI[EX (A7) A -+ AE® (An) ] (28)
for anyAy,..., Ay € A(R).

Proof. Let Z = {X1,..., X} andC = C(Xy, ..., Xn; P),

(i)=(ii): The assertion follows from the relatigfP,/p — \/ﬁ||as = 1-Tr[Pp] for
any projectiorP, where|| - - - ||4s is the Hilbert-Schmidt norm.

(i) =-(ii)): Since con{)N(l,...,f(n) e A, (iii) follows from (ii) by minimality of
C(X1,- ., %n; P)-

(iii) = (iv): It follows from (iii) that ran(p) C ran(com(Xy, ..., %)) so that (iv) fol-
lows from Theorem 511 (i).

(iv)=-(v): It follows from assumption (iv) and Proposition 2.2 ieRR[11] that the
GNS representatiof?’, 11,Q) of % induced byp is abelian (i.e.;1(#) is abelian)
and normal. Le =1,...,n. Let f; be a bounded Borel function dd. By normality
of 11, there is a self-adjoint operatax X;) affiliated with r(%) such thaE™) (A) =
m(EXi (A)) for all A € #(R), and hence we have

n(f(Xj)) = f(m(Xj)).
Thus, the relation
U(Dy X -+ X Dy) = (QE™D (A7) - E™) (A)Q),

whereAy, ..., A, € Z(R), defines a probability measupeon #(R") satisfying

//R P(fi(xa), ..., fa(Xn))dp(xe,. ... %0) = (Q, (P (fL(X1), ..., fn(Xn))) Q)

for any polynomialp (f1(X1),..., fa(Xn)) of f1(X1),..., fn(Xn). Thus, assertion (iv)
follows from the relation
TrAp] = (Q, T(A)Q)

for anyA € % satisfied by the GNS representatio#’, 11, Q).
(V)=-(i): Suppose that there exists a joint probability disttibo p of Xy, --- X, in
p. Then, for anyj,k,| =1,...,nandrq,r,r3 € Q, we have

T [EXI(r2), E*2(r2) | EX (13)|2p) = 0

and we haveE™i(r1),E*2(r,)]EX (r3)p = 0. From Theorem 511 (ii), it follows that
com(Xy,...,Xn)pW = py for all ¢ € . Thus, we have cofiXy,...,X,)p = p and
henceXy, ..., X, are simultaneously determinate in a state
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(iii) =(vi): Let G = com(Xy,...,Xy) andC = C(Xy,...,Xn; p). From Theorem 5|1
(iii), we haveX;G | XG for all j,k=1,...,n. SinceX;G/ C for all j, assertion (vi)
follows from (iii).

(vi)=-(vii): Obvious.

(viiy)=-(ii): Let u be a probability measure oR" satisfying [28). Letj, k| €
{1,...,n}. By taking an appropriate marginal measureuothere exists a probabil-
ity measureu’ on R3 such that

W (A1 x D x Az) = Tr[EX (A1) AE™<(82) AEX (B3) ]

for all Ap,A2,Az € B(R). LetAg,Ar, A3 € B(R) and
P = EN(A3)—EX(A5) ANEX (A3) —EX(AF) AE(82) NEX (A3)
—EXi (A1) AEX (D) NEX (D3),

whereA° stands for the complement a&fe %(R). Then, by the additivity of4’ we
have

Tr[Pp] = W' (R x R x Ag) — 4/ (R x AG x Ag) — H(A] x Ap x Ag) — (A x DAy x Ag) = 0.

Since Tf{(P,/p)"(P\/p)] = Tr[Pp], we haveP,/p = 0, so thaE*i (A1)E*(Az)Pp =0,
and henc&i (A1)EX(A2)EX (Az)p = EXi (A1) AEX (D) AEX (Ag)p. By symmetry
we also haveE*«(Ay)EXi (A1)EX (A3)p = EXi (A1) AEX(A2) AEX (A3)p. Thus, we
have[EXi (A1), EX(A)]EX (A3)py = O for all g € 7. Sincel, Ay, A3 were arbitrary,
it follows from Theoreni 51 that rdp) C ran(com(Xy, ..., X)), and (ii) follows. O

The equivalence between (i) and (v) in the above theorem veasgqusly reported
in Theorem 2 of Ref[[25] for the case whewt = % () with 7# < . The equiva-
lence of (ii), (vii), and (viii) was given in Theorem 5.1 of RE23] for the casen = 2.

Note that for any Xi,...,X, € O(#) there exists a propositionp in
Zo(#) such that[@]lo = com(Xy,...,%X,), since coniXy,...,X,) € Op(#) and
[com(Xy, ..., %n) =0 1]o = com(Xy,...,%X,). However, it is not in general possible
to construct suckp from atomic propositions of the ford§; <, A for j =1,...,nwith
A € R. In what follows, we shall show that this is possible for #natbservables.

For any finite observables, ..., X, € 0, (.#) we define the observational propo-

sition comy(Xy, ..., Xy) by

Comp(Xy,. .., Xn) 1= \/ X1 =0 X1 A+ AXn =0 Xn. (29)
X1E€SP(X1),..., Xn€ESP(Xn)

Then, we have the following theorem.



20 Masanao Ozawa

Theorem 5.3. For any finite observables;X .., Xy € O(#), we have

[comy(X1, ..., Xn)]o = com(Xy,. .., Xn). (30)

Proof. Let Xy,...,Xn € Ou(H). Letxgl) << xgnj) € R be the ascending sequence
of eigenvalues oK. Then, we have

L(Ka,o %) = {EN (0 | x=x", .4 = 1,....nyufoy.

SinceL (Xy,...,Xn) is a finite set, it is easy to see that the relations

[eomy(Xa.. .. Xn)lo = com({EX({x}) [x=x",...x"; j=1,...,n})
= com(L(X,...,%n))
= comXy,..., %)
hold. O

The observational proposition c@fiXi,...,X,) was previously introduced in
Ref. [25] for the case whereZ = #(.7) and din{.7¢) < . The following theo-
rem is a straightforward generalization of Theorem 1 in [25].

Theorem 5.4. Finite observables X. .., Xy € O(.#') are simultaneously determinate
in a vector statap if and only if the statep is a superposition of common eigenvectors

of Xg,...,X.

6 Quantum equality

In this section, we shall examine basic properties of thealued equality relation
[X = Y] defined through/(?) for any two observableX,Y € ¢ (.#), where 2 =
P (). From Theorem 6.3 of Ref. [24], we have the following chagdettions.

Theorem 6.1. Forany XY € 0(.#), the following relations hold.
(i) [X=Y]=2{wew |EX)y=E"(ryforallr € Q}.
(i) [X=Y]=2{pecx|f(X)p=1fY)pforal fcB(R)}.

(i) [X=Y]=2{yex|(EXL)Y.E'(NY) =0
foranyA,I' € Z(R) withANT = 0}.

Y
Y

We introduce a new atomic observational propositior-, Y in %,(.#) for all
X,Y € O0(.#) by the following additional rules for formation of obseratal propo-
sitions and for projection-valued truth values:
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(R3) ForanyX,Y € 0(.#), the expressioX =, Y is an observational proposition.
(T4) [X=oY]o=[X=Y].

We extend the correspondence between observational hiopssand formulas in
Z(e,V(@) by the following rule for anyX,Y € (.%).

(Q4) X =p Y =X =Y.

Then, from (T4) it is easy to see that the relation

(o] = [¢lo (31)

holds for any observational propositign We denote by%,(.# ,=) the set of ob-
servational propositions constructed by rules (R1), (RRB). Then, the language
Zo(# ,=) is embedded in the set of statementsdtic, R(?)) by rules (Q1), (Q2),
(Q3), (Q4) with the same projection-valued truth value besyT1), (T2), (T3), (T4).
In general, the equality relation W) is not an equivalence relation V{2 [32].
From Theorem 6.3 of Refl [24], however, we conclude that tBatalued equality
between two observables is indeedavalued equivalence relation as follows.

Theorem 6.2. For any observables X,Z € ¢'(.#'), the following relations hold.

() [X=o0X]o=1.
(i) [X=0Y]o=1[Y =0 X]o.
(ii)) [X=0YJoA[[Y =0Z]o < [X=0Z]o.

We say that observableé andY areequal in a statep, in symbolsX =, Y, iff
PH{X =0 Y||p} = 1, or equivalently iff[X =, Y]Jop = p. In general, we say that ob-
servablesX andY are equal in a statep with probability Pr{X =, Y||p}. On the
other hand, we have explored another relation called quamperfect correlation in
Ref. [23] as follows. Two observablésandY are calledoerfectly correlatedn a state
p iff Tr[EX(A)EY (I')p] = O for any disjoint Borel setA, I € Z(R). Itis noted that the
quantity TEEX(A)EY(I)p] = 0 for A,T € #(R) is called theweak joint distribution
of X andY in p, and known to be experimentally accessible by weak measirem
and post-selection [26]. We shall show that the above twaticels are equivalent to-
gether with other equivalent conditions to conclude thatrélationX =, Y and the
probability P{X =, Y||p} are experimentally accessible.

Theorem 6.3. For any observables X € & (.#) andp € . (), the following con-
ditions are all equivalent.
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(i) X=pY,ie. [X=0Y]op=p.
(i) X and Y are perfectly correlated ip, i.e., T[EX(A)EY(I)p] =0forall AT €
P(R) withANT = 0.
(i) Xy =Yy forall ¢ € ¥(X,p).
(iv) (Y, EX(Q0)y) = (Y, EY(D)y) forall Y € €(X,p).
(v) EX(A)p=EY(A)pforall Ac Z(R).
(vi) f(X)C(X;p)= f(Y)C(X;p)forall f € B(R).
(vii) C(X;p) =C(Y;p) and XGX;p) =YC(X;p).
(viii) There exists a joint probability distributiom) ™" (x,y) of X,Y inp that satisfies

Y ({(xy) eR? | x=y}) = 1. (32)

Proof. The assertions follow from Theorem 6.1 above and Theore&sTheorem
3.4, Theorem 4.3, and Theorem 5.3 in Ref.|[23]. O

The equivalence between (i) and (viii) was previously régain Theorem 4 in
Ref. [25] for the case wherg” < o0 and.Z = B ().

Let ¢(Xy,...,Xn) be an observational proposition that is constructed bysr{iRd.),
(R2), (R3) and includes symbols for observables only from Itt Xy,...,X,, i.e.,
(X4, ...,X%n) includes only atomic observational propositions of therfof; <, x; or
Xj = X, wherej,k=1,...,n andx; is the symbol for an arbitrary real number. In
this case@(Xy,...,X,) is said to be an observational propositiondy(Xi,...,Xn).
Then, (Xy,...,Xn) is said to becontextually well-formedh a statep iff Xi,..., X,
are simultaneously determinategn The following theorem answers the question as
to in what statep the probability assignment satisfies rules for calculuslagsical
probability, and shows that for well-formed observatiopedpositionsg(X, ..., Xn)
the projection-valued truth value assignment satisfieddzooinference rules.

Theorem 6.4. Let(Xy,...,X,) be an observational proposition i&, (X, ..., Xn). If
@(Xq,...,X%n) is a tautology in classical logic, then we have

com(Xy, ..., %) < [0(X4, ..., %n)]o.

Moreover, if@(Xy, ..., X,) is contextually well-formed in a stapg theng(Xy, ..., Xn)
holds inp.

Proof. Suppose that an observational propositipa: @(Xy,...,X,) is a tautology in
classical logic. Letp be the corresponding formula it (e,V(9)). Then, it is easy
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to see that there is a formula(us,...,Un,V1,..., Vi) in X(V(Q)) provable in ZFC
satisfying@ (X, ..., Xn, f1, .. .,Fm) = @ with some real numbens,...,rm. Then, by
the ZFC Transfer Principle (Theorém 2.11), we have ém .., %) < [¢]. Thus, the
assertion follows from relatiof (81). O

The above theorem was previously announced as Theorem F.ifi2Bgfor the
case where#’ < oo and.Z = %A(s¢), the proof of which needs quantum set theory
and the embedding of the language of observational praposiinto the language of
guantum set theory developed in this paper.

Note that for anyX,Y € & (.#') there exists a propositiop in %, (.# ) such that
[@]lo = [[X =Y]. Infact, we havdX = Y]] € O (.#) and[[[X = Y] =0 1] = [X = Y].
However, it is not in general possible to construct sgpdhom atomic propositions of
the formXj <o A for j = 1,...,nwith A € R. In what follows, we shall show that this
is possible for finite observables.

For any finite observables,Y, we define the observational proposit¥nr=Y by

X=Y:i= \/ X=oXAY=ox. (33)
xeSp(X)

Then, we have the following.

Theorem 6.5. For any finite observables X € 0 (5¢), we have
[X=oY]o=[X=Y]. (34)
Proof. Let y € Z([[X =Y]lo). Then, for anyk € Sp(X), we have

EX({(xh)w = EX({x) nE"((x}))y = E"((x})y,

and for anyx ¢ Sp(X), we haveEX({x})¢y = 0 = EY({x}). Thus, ¢ € Z([X =
Y1) follows from Theoreni 1 (i). Conversely, suppages Z([X = Y]). Then, for
all x € R, we haveEX ({x}) = EY({x})¢ so that we hav&*X({x}) AEY ({x})y =
EX({x})@. Thus, we havéX = Y]y = . Therefore, the assertion follows. [

As shown in Ref.[[25] for the finite dimensional case, stagpahdent equality be-
tween finite observables are generally characterizednmstef eigenvectors as follows.

Theorem 6.6. Finite observables X and Y are equal in a vector statéd and only
if the statey is a superposition of common eigenvectors of X and Y with @aymm
eigenvalues.
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7 Measurements of observables

In this and next sections, we shall discuss measurements dorantum system de-
scribed by a von Neumann algebvé on a Hilbert space?’.

A probability operator-valued measure (POVidy a von Neumann algebra on
R" is a mappind1: #(R") — .# satisfying the following conditions.

(M1) M(A) > 0 for all A € B(R").

(M2) 3;MN(4j) = 1 for any disjoint sequence of Borel séig,A;,... € Z(R") such
thatR" = {J; Aj.

A measuring procesor . is defined to be a quadruple?’, o,U, M) consisting of a
Hilbert space’”, a state (density operatas)on.’#", a unitary operatdd on 7 ® %,
and an observabl on .7 satisfying

Try[UTX@EMQA)Y (AR 0)] e .2 (35)

for everyX € .# andA € #(R), where Tr, stands for the partial trace o™ [20,/16].
A measuring procedd (x) = (.#", 0,U, M) with output variablex describes a mea-
surement carried out by an interaction, called mieasuring interactionfrom time 0O
to time At between the measured syst&waescribed by# and theprobe systemP
described by#(.#") that is prepared in the state at time 0. The outcome of this
measurement is obtained by measuring the obsertptalled themeter observable
in the probe at timét. The unitary operatdd describes the time evolution &+ P
from time 0 toAt. We shall writeM(0) = 1® M, M(At) = UT™M(0)U, X(0) = X ®1,
and X (At) = UTX(0)U for any observabl& € ¢(.#). We can use the probabilistic
interpretation for the syste®+ P. Theoutput distributiorPr{x € A||p}, the probabil-
ity distribution of the output variabbe of this measurement on input statec .7 (¢,
is naturally defined as

Pr{x € Al[p} = P{M(at) € Alp® o} = TIEM@ (A)p® o].
ThePOVM of the measuring procebs(x) is defined by
N(A) = Tr [EM®(A) (1 @ 0)).

Then,N(A) € . for all A € A(R) by Eq. [35) and1: Z(R) — .# is a POVM for
A/ onR satisfying

(M3) Prix € 4]|p} = TrM(&)p].
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Conversely, from a general result in Réf.[20] it can be gaskn that for every POVM
M for .# onR, there is a measuring procdgsx) = (¢, 0,U,M) for .# satisfying
(P3). In fact, for any fixegbg € .7 () the relation.# (A)*X = Tr[Xpo|M(A) for all
X € .# andA € #(R) defines a completely positive instrument f&(.77) on R, and
by Theorem 5.1 in Ref[ [20] there exists a measuring probkss = (¢ ,0,U,M)
for () such that TiXpo]M(A) = Trx [UT(X @ EM(A)U (1® 0)] for all X € .#
andA € Z(R). Then, it is easy to see thit(x) is a measuring process fo# and
satisfies (P3). For further accounts of the universalityhaf tlass of measurement
models described by measuring processes we refer the ealdef. [20] for quantum
systems with finite degrees of freedom and to Ref. [16] foséhwith infinite degrees
of freedom.

LetAe O(.#)andp € . (). A measuring procesd (x) = (.#,0,U,M) for
 with the POVMI is said tomeasure An p if A(0) =pz0 M(At), andweakly mea-
sure Ain p iff Tr [[T(A)EA(T)p] = Tr[EA(ANT)p] for anyA, T € #(R). A measuring
procesdM (x) is said tosatisfy the Born statistical formul@BSF) forA in p iff it sat-
isfies P{x € A|p} = Tr[EA(A)p] for all x € R. The following theorem characterizes
measurements of an observable in a given state [23].

Theorem 7.1. Let M(x) = (#,0,U,M) be a measuring process foZ with the
POVMI(A). For any observable & &/(.#') and any state € ./ (.%), the following
conditions are all equivalent.

(i) M(x) measures A ip.
(i) M(x) weakly measures A in.
(i) M(x) satisfies the BSF for A in any vector stgtec ¢’ (A, p).

In the conventional approach, a measuring prod&és) = (.7, 0,U, M) with the
POVM I is considered to be a measurement of an obsenabfe N = EA [20],
since in this case the probability distribution Afpredicted by the Born formula is
reproduced by the probability distribution Idfin any state. However, in this approach
it is not clear whether a measurement of an observalaletually reproduces the value
of the observabl@ just before the measurement. The following theorem, wiscmi
immediate consequence of Theorem| 7.1, ensures that thigégd the case (cf. the
remark after Theorem 8.2 in Ref. [23]).

Theorem 7.2. Let M(x) = (.#,0,U,M) be a measuring process forZ with the
POVMI1. ThenM (x) measures & ¢(.# ) in anyp € .7 () if and only if M = EA
for all x € R.
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8 Simultaneous measur ability

For any measuring procedd (x) = (#,0,U,M) for .# and a real-valued Borel
function f, the measuring procedd (f(x)) with output variablef (x) is defined by
M(f(x)) = (#,0,U,f(M)). Observabled\, B are said to bsimultaneously measur-
ablein a statep € .7 (.77) by M (x) iff there are Borel function$, g such thaiv (f(x))
andM (g(x)) measuréA andB in p, respectively. Observablés B are said to besi-
multaneously measurabie p iff there is a measuring procebs(x) such thatA andB
are simultaneously measurabledrby M (X).

Simultaneous measurability and simultaneous determieateare not equivalent
notions under the state-dependent formulation, as thewally theorem clarifies; the
case where diffy?’) < o was previously reported in Ref. [25], Theorem10.

Theorem 8.1. (i) Two observables B € &/(.#') are simultaneously determinate in
a statep € .7 (¢) if and only if there exists a POVM for .# on R? satisfying

MNAxR) = EAA) on%(AB,p)forall AcR, (36)
NRxI) = EBT) on%(AB,p)foralll eR. (37)

(i) Two observables B € & (.#') are simultaneously measurable in a states
() if and only if there exists a POVM for .# on R? satisfying

MNAxR) = EAA) on%(Ap)forall AcR, (38)
NRxI) = EBT) on%(B,p)foralll eR. (39)

(iii) Two observables B € 0(.#) are simultaneously measurable in a states
() if they are simultaneously determinategn

Proof. Let ¥ = %' (A,B,p) andC =C(A,B;p).

() (only if part): LetG = com(A, B). Then,G € .# andAG| BG. Let be the joint
spectral measure &G andBG, i.e.,l(A x ') = EAS(A)EBCS(I) for all A,T € #4(R).
Then, N is a POVM for.# on R?. Suppose that andB are simultaneously deter-
minate in a stat@. Then, rarip) C ran(com(A B)). By the minimality ofC(A,B, p)
among(A, B)-invariant subspaces, we ha@e< G and AG,BG| C. Thus, we have
M(A x R)C = EAS(A)C = EAS(A)C = EA(A)C and similarlyM(R x I')C = EB(I")C
forall A, € #(R). Thus,N satisfies Eqs[(36) and (37).

(i) (if part): Let N be a POVM for.# on R? satisfying [36) and{37). Ldl’ be a
positive operator valued measure @(.7#) on R? defined by’ (A x ') = CMN(A x
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MCforallA,T € Z(R). Letl” be a POVM for% (%) onR? obtained by restrictingl’
to . LetA,T € #4(R). By the definition ofC, we haveEA(A)C = CEA(A) = CEA(A)C
andEA(A)C is a projection. SimilarlyEB(M)C = CEB(I") = CEB(I')C andEB(I")C
is a projection. Thus, we hava@” (A x R) = CM(A x R)C = EA(A)C, and similarly
MN”(RxT)=CMN(RxTI)C=EB()C. SinceA andl" were arbitrary, the marginals of
MN” are projection-valued. By a well-know theorem (e.g., R&f. Theorem 3.2.1), the
marginals commute arid” is the product of their marginals. Thus, we ha&@/ BC,
and hence by Theorem 5 2&,andB are simultaneously determinate.

(i) (only if part): Suppose thah, B € &(.#') are simultaneously measurableairE
(). Then, we have a measuring procéséx) = (#,0,U,M) for .# and real-
valued Borel functiond, g such thatM (f (x)) measure#\in p andM (g(x)) measures
Bin p. LetMg be the POVM oM (x). Let 1 be a POVM orR? such thafl(Ax ) =
Mo(f~1(A)Ng=Y(IN)). Then, itis easy to see thAtsatisfies Eqs[(38) and (39).

(ii) (if part) Let I be a POVM for.# on R? satisfying Eqs.[(38) an@ (89). Then, by
the remark after condition (M3) in Sectidh 7 there exists asneing process! (x) =
(¢ ,0,U,M) for .# and real-valued Borel functions g such that

NAxT) =Tr, UT1EM@QEM MU o). (40)
Then, we have
NAxR)=Try [UT1oE ™ (A)U (I 0)], (41)

so that from Eq.[{38) we hawd (f(x)) measured\ in p. Similarly, we can show that
M (g(x)) measure8in p.
Assertion (iii) follows from (i) and (ii). O

Discussions on physical significance of the state-deperidenulation of simulta-
neous measurability have been given in Refl [25] for thediditnensional case. Fur-
ther discussions on the state-dependent formulation afitggameasurement theory
will appear elsewhere.

9 Conclusion

Quantum set theory originated from the method of forcingoisticed by Cohen [6, 7]
for the independence proof of the continuum hypothesis amd fjuantum logic in-
troduced by Birkhoff and von Neumarin [3] for logical axiomation of quantum me-
chanics. After Cohen’s work, Scott and Solovay![30] refoleed the forcing method
by Boolean-valued models of set theory [1], which have bexancentral method in
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the field of axiomatic set theory. In 1978 Takeuti|[31] stdrBoolean-valued anal-
ysis, which provides systematic applications of logicatartheorems for Boolean-
valued models tmot metamathematical problems mainly in analysis. Among others,
Boolean-valued analysis made a great successes in opaigebtras([34, 33, 18] and
especially in solving a long-standing open problem in thiacstire theory of type |
algebras applying the forcing method for cardinal collagql7,[19] 21].

As a successor of those attempts, quantum set theory, aeseythased on the
Birkhoff-von Neumann quantum logic, was introduced by Tak§?2], who estab-
lished the one-to-one correspondence between reals inddelrfguantum reals) and
guantum observables. Quantum set theory was recentlyajmatby the present au-
thor [24, 27] to obtain the transfer principle to determinugtum truth values of theo-
rems of the ZFC set theory, and to clarify the operationalmrepof equality between
guantum reals, which extends the probabilistic interpi@teof quantum theory,

To formulate the standard probabilistic interpretatiommoéntum theory, we have
introduced the language of observational propositions wiles (R1) and (R2) for
well-formed formulas constructed from atomic formulas loé form X <, X, rules
(T1), (T2), and (T3) for projection-valued truth value ggsnent, and rule (P1) for
probability assignment. Then, the standard probabilistierpretation gives the sta-
tistical predictions for standard observational proposg formulated by (W1), which
concern only a commuting family of observables. The Bortigtteal formula is natu-
rally derived in this way. We have extended the standardpné¢ation by introducing
the notion of simultaneous determinateness and atomiafi@sf the formX =Y for
equality. To extended observational propositions fornmedugh rules (R1),.., (R4),
the projection-valued truth values are assigned by rulg (T1 (T4), and the probabili-
ties are assigned by rule (P1). Then, we can naturally extenstandard interpretation
to a general and state-dependent interpretation for osemal propositions includ-
ing the relations of simultaneous determinateness andigqu@uantum set theory
ensures that any contextually well-formed formula progablZFC has the probability
assigned to be 1. This extends the classical inference fantgm theoretical pre-
dictions from commuting observables to simultaneouslgeinate observables. We
apply this new interpretation to construct a theory of measient of observables in
the state-dependent approach, to which the standard iietatijpn cannot apply. We
have reported only basic formulations here, but furtheetigument in this approach
will be reported elsewhere.
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