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Abstract 

 
During 17

th
 century a scientific controversy existed on the derivation of Snell‟s laws of reflection and 

refraction. Descartes gave a derivation of the laws, independent of the minimality of travel time of a ray 

of light between two given points. Fermat and Leibniz gave a derivation of the laws, based on the 

minimality of travel time of a ray of light between two given points. Leibniz‟s calculus method became 
the standard method of derivation of the two laws. We demonstrate in this article that Snell‟s law of 

reflection follows from simple results of geometry. We do not use the concept of motion or the time of 

travel in our demonstration. That is, time plays no role in our demonstration. 
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Introduction 

 

A bitter scientific battle raged between two groups one led by Descartes and his followers – the 

Cartesians – and the other led by Fermat, during the 17
th
 century

1-3
. Neither side won, but the battle came 

to an end with time as the warriors left the field with passage of time. The issue around which the fight 
took place was law of refraction of light. Descartes published the law of constancy of the ratio of sines of 

angles of incidence and of refraction in 1637, though it was discovered by Willebrord Snell as early as 

1621 but remained unpublished. Descartes based his result on the motion of a tennis ball hit towards the 
surface of separation of the two media. This model required the speed of light be greater in the denser 

medium and lower in the rarer medium. Fermat rejected Descartes‟ result as it was counter intuitive to 

think of such a speed relation. 
 

Fermat developed a method for the study of maxima and minima
4,5

. He applied it to the problem of 

refraction of light. He assumed the speed of light is greater in the rarer medium and lower in the denser 

medium and derived the law of refraction assuming that light chooses the path of least time between any 
two points. His result also gave the sine law but the value of the constant of the ratio of speeds had the 

inverse value to that of Descartes‟. Descartes rejected the result and severely criticized it stating that it 

was obtained by pure luck and not hard work 
1-3

. Fermat did not concentrate on reflection of light; he 
thought his least time principle explains reflection. 

 

Leibniz took a conciliatory approach and assumed light had greater speed in a denser medium than in a 
rarer medium and that light travelled along a path of maximum „ease‟. Ease being defined as the product 

of speed and the resistance of the medium of travel
1-3

. With these assumptions he derived the laws of 

reflection and reflection using his method of calculus
6
. He also arrived at the least time principle for the 

path of a ray of light between any two points. Leibniz‟s calculus method became the standard method of 
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proof ever since. We demonstrate in this article that Snell‟s law of reflection is a consequence of 

fundamental results of geometry. Time and motion play no role in our demonstration.  
 

Statement of the problem of Snell’s law of reflection 
 
We may pose the problem of Snell‟s law of reflection as follows. 

 

Given the end points of the path of a reflected ray of light and the surface of reflection, find the point of 
incidence on the surface of reflection. 

 

We show that the given data uniquely fixes the point of incidence on the surface of reflection that satisfies 

the equal angles law of reflection – the Snell‟s law of reflection. That proves the law of reflection. 
 

Let F, G be the given end points of the path of ray of light in a vertical plane and AB be the horizontal 

plane of reflection (see Fig. 1). 
 

 
 

Fig. 1 Figure shows the end points F, G of the path of a ray of light reflected on the surface AB 

 

Construction 

 

Draw the line joining F, G. Let it intersect the plane AB at P‟ (see Fig. 2).  
 

 
 
 

Fig. 2 Line through F, G intersects the plane AB at P‟. H is the midpoint of FG. K is the midpoint 

of PP‟. 
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Let P‟ divide the line segment GF externally in the ratio, k > 1. For k< 1 similat arguments hold. 
 

 
 

Let P be the harmonic conjugate
7
 of P‟. Then P and P‟ divide the line segment GF in the same ratio 

internally and externally, respectively, 
 

 
 

Draw a circle with PP‟ as diameter. This is the Apollonius circle decided by the ratio, k. According to the 

definition of Apollonius circle, every point Q on this circle (see Fig. 3) is such that 
 

 
 

Draw the circle with FG as diameter. This circle (green) is decided by the end points of the path of the ray 

of light. According to the principles of geometry, it intersects the Apollonius circle (red) orthogonally. 
 

Join Q, F and Q, G. Draw the angle bisectors of the angle FQP. These bisectors form the orthogonal 

chords QP and QP‟ of the Apollonius circle (Fig. 3). 
 

 

 

 
 

  

 

Fig. 3 Q is an arbitrary point on Apollonius circle. Bisectors of the angle FQG form the 

orthogonal chords of the Apollonius circle. 

 
Since Q is an arbitrary point on this result applies to every point on the circle. Therefore it also applies to 

the point of intersection C of the Apollonius circle and the plane of reflection AB (Fig. 4). Join F, C and 

G, C. Draw the angle bisectors of the angle FCG. The orthogonal chords of the Apollonius circle CP and 
CP‟ fall along these bisectors. Therefore, if a ray of light from F is incident on the plane surface AB at 

point C it is reflected along CG, making equal angles with the normal CP. 
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 Fig. 4 Orthogonal chords CP, CP‟ bisect the angle FCG. angle FCP is equal to angle PCG 

 

 
We call the attention of the reader to note that it is the orthogonal chords of the circle that act as the 

surface and the normal for the reflection. It is not the tangent and the radial line that act as the surface and 

the normal for the reflection, as is the case in conventional treatments. 

 

Is the path of reflection the minimal distance/time path? 

 
To see if the path of the reflected ray FCG corresponds to the minimal distance /time path, we construct 

the equilateral triangle with FG as side; we also construct its circum circle FMG (Fig. 5). According to 

Ptolemy‟s theorem the sum of the distances of any point on the minor arc FG, such as N, to the points F, 

G is a minimum. That is (FN + NG) is a minimum. 
 

 

 
 

Fig. 5 Figure shows the equilateral triangle with FG as side and its circumcircle FMG. The circle 

FMG does not pass through since angle FCG is an arbitrary angle. 
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However, since C does not lie on the circumcircle (FC + CG) is not a minimum.  

 

Minimality of the distance of the path is not a criterion for reflection of a light ray following Snell‟s law 

of reflection. 
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