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Recent work by Stout and colleagues indicates that the

neural correlates of language and Early Stone Age tool-

making overlap significantly. The aim of this paper is

to add computational detail to their findings. I use an

error minimisation model to outline where the infor-

mation processing overlap between toolmaking and

language lies. I argue that the Early Stone Age signals

the emergence of complex structured representations. I

then highlight a feature of my account: It allows us to

understand the early evolution of syntax in terms of an

increase in the number and complexity of models in a

cognitive system, rather than the development of new

types of processing.
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1 | INTRODUCTION

There is renewed interest in developing an old hypothesis regarding the evolution of language.1

This hypothesis begins with the observation that there are important similarities between the
production of speech and the production of stone tools. In particular, both are hierarchically
organised, goal-oriented tasks that require fine-grained motor-control regulated by top-down

1As Stout and Chaminade note (2012, p. 75), historical proponents include both Darwin (2004/1871) and
Engels (2003/1876).
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processing. Consequently—so the idea goes—selective pressure for one behavioural phenotype
may have aided the development of the neural substrates required to produce the other, and
vice versa. This observation has produced a range of co-evolutionary hypotheses regarding the
emergence of language and toolmaking, and of communication and skilled behaviour more
broadly.2

Recent neuroimaging work by Stout and colleagues lends weight to tool-language co-evolu-
tionary hypotheses.3 This work indicates that the areas of the brain used to produce language
and those used to produce the tool industries of the Early Stone Age overlap significantly. My
goal in this article is to add computational detail to Stout and colleagues' account by integrating
their results with the predictive processing framework. According to proponents of predictive
processing, the brain uses hierarchical generative models to produce predictions of its future
sensory states, and updates those models based on any difference between predictions and
actual sensory states. Over the long-term, this results in more accurate predictions. Cognitive
systems are thus characterised in terms of their ability to minimise prediction error (Clark, 2016;
Hohwy, 2013). Adding this computational detail to tool-language co-evolutionary accounts is
important. As Stout and Chaminade note, any behaviour can be analysed using a hierarchically
structured sequence of units; consequently, “a special evolutionary relationship between tool-
making and language predicts more particular overlap in information processing demands
and/or neuroanatomical substrates between these two behaviours.” (Stout & Chaminade, 2012,
p. 76). In other words, if co-evolutionary hypotheses are to be convincing, the similarities
between toolmaking and language must extend beyond the mere fact that they can be modelled
using hierarchies. Ideally, there would be similarities between: (i) the areas of the brain the two
behaviours co-opt; and (ii) the information processing required to produce them. Stout and col-
leagues' work has focused on (i); in this article I focus on (ii).

Predictive processing has features that make it well-suited to this task.4 At a minimum, pro-
ponents of the theory claim to account for perception and action using prediction error
minimisation. Predictive processing thus offers an account of the sensorimotor skills that unite
toolmaking and language production using mechanisms that operate according to a common
computational principle. In addition, the notion that cognition is hierarchical is at the core of
the theory. This suggests the possibility of linking the structure of cognition with the hierarchi-
cal structure we find in action sequences and language.5 However, as we shall see, this requires
clarifying precisely what it means to describe a system as “hierarchical” across these three
domains.

I have two main goals in this article. The first is to use a prediction error minimisation
model to identify where the information processing overlap between toolmaking and language
production might lie. The second is to situate the resulting account within the literature on
language evolution, and highlight some of its features.

Achieving the first of these goals requires getting clear about what it means to say that there
is an information processing overlap between toolmaking and language production. I previously
noted that both are hierarchically organised, goal-oriented tasks that require fine-grained motor

2See, for instance, Reynolds (1976, 1993), Montagu (1976), Isaac (1976), Greenfield (1991), Kimura (1993), Planer (2017),
and Planer and Sterelny (2021).
3My focus here will be Stout et al. (2008), but see also Stout and Chaminade (2012), and Stout et al. (2021).
4Indeed, Stout and Chaminade themselves note that predictive processing might be used to account for evidence that
the inferior parietal cortex is a supramodal processing region (Stout & Chaminade, 2012, p. 78).
5Put together, these two features make predictive processing a tantalising fit with Stout's (2021) perceptual motor
hypothesis (thanks to an anonymous reviewer for this point).
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control regulated by top-down processing. As such, any account of the cognitive capacities
underwriting the two behaviours must explain these features. This challenge can be made more
precise in the following way. It is typically thought that both complex intentional action and
language display nested part-whole structure. Consider the action of brushing your teeth. When
you reach out and apply pressure to the tap, these actions are nested within—or are a constitu-
ent of—the broader goal of wetting the end of your toothbrush. Likewise, both applying pres-
sure to the tap and wetting the end of your toothbrush are nested within the broader goal of
brushing your teeth.6 This observation suggests that we can represent nested part-whole struc-
ture. More specifically, the thought is that the representations controlling such action must
themselves be structured such that lower-level motor commands are nested within—or are a
constituent of—higher-level goal representations. It follows that complex intentional action
requires representations with nested part-whole structure; and, as we shall see, producing the
tools of the Early Stone Age required complex intentional action.

Sentences also display nested part–whole structure. For instance, consider the sentence,
“The woman brushed her teeth vigorously”. “The” is a constituent of “The woman”, insofar as
the article is nested within the broader noun phrase. Likewise, the noun phrase “The woman”
is nested within the broader sentence. And again, explaining this feature of language plausibly
requires positing representations with nested part-whole structure.7 The upshot is this: If we
treat the production of language as a complex intentional action, then we can understand the
information processing overlap between toolmaking and language as an attempt to explain the
nested part–whole structure of the representations required for complex intentional action.8 Of
course, there are significant differences between action and syntax. The claim is not that the
toolmakers of the Early Stone Age had full-blown syntactical capacities. Rather, the claim is
that one feature of the capacities underwriting the nested part–whole structure found in
toolmaking—namely, structured representations—might plausibly have been co-opted and
evolved to produce the nested part–whole structure found in syntax.

The above considerations highlight an important terminological point. In the predictive
processing literature, the layered sequence of models thought to be embodied in the brain are
described as “hierarchical”. In the linguistics literature, the ability to combine meaningful units
into strings of meaningful units (or, the ability to combine words into sentences) is described as
“hierarchical”. These are very different. In many cases, context will be sufficient to determine
which meaning is in use. However, in some cases the meaning will need to be specified. I will
hence distinguish stratified hierarchies from tree-like hierarchies. “Stratified hierarchies” corre-
sponds to the way “hierarchies” is used in the predictive processing context; that is, to refer to a
series of levels within a cognitive system. “Tree-like hierarchies” refers to the branching struc-
tures used by generative linguists to model syntactic properties and cognitive scientists to model
action; for instance, Stout (2011), and Fitch (2014). Finally, I will use “structured representa-
tions” to refer to representations with nested part–whole structure, which plausibly underwrite
our toolmaking and syntactical abilities. I am particularly concerned with the way lower-level
sensorimotor representations are influenced, or modulated, by higher-level goal representa-
tions. The former are nested within, and hence constituents of, the latter. For instance, the

6See Pulvermüller (2014) for a hierarchical action schema based on the tooth-brushing example; see Moro (2014) for
further discussion on the apparent similarities between syntax and action (thanks to an anonymous reviewer for
pointing out these references).
7For instance, those outlined in the generative grammars produced by linguists in the Chomskyan tradition.
8Importantly, there are some who dispute the claim that language is composed of nested part–whole relations—for
instance, Frank et al. (2012), or Christiansen and Chater (2016). I will look in more detail at these issues in Section 4.
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representation that controls the action of applying pressure to the tap and wetting my tooth-
brush is a constituent of the goal representation of brushing my teeth, because the latter modu-
lates the former. As a result, these are “structured” representations. Motivating this claim,
using the resources of predictive processing, will be my task in Section 3.

In addressing my second goal, I outline some features of the error minimisation account
that distinguish it from others in the literature. A key dispute concerns whether language
evolved suddenly (saltationism) or whether it evolved slowly via incremental stages (gradual-
ism). An important issue in this dispute concerns the evolution of structured representations.
On some accounts, structured representations are treated as a necessary condition for language
production. Consequently, explaining the evolution of language requires positing an evolution-
ary transition from cognitive systems without structured representations to cognitive systems
with structured representations. This transition might be sudden (Berwick & Chomsky, 2016)
or gradual (Planer & Sterelny, 2021). Typically, this is achieved by positing an associated transi-
tion from sequential information processing to tree-like hierarchical information processing.
Others emphasise evolutionary continuity, and want to avoid a commitment to transitions;
either between non-structured and structured representations or between sequential and tree-
like hierarchical processing. They thus deny that structured representations are required for
language production (Frank et al., 2012). The error minimisation account occupies a unique
place within this dialectic, because the transition between non-structured representations and
structured representations can occur without positing a transition between sequential and tree-
like hierarchical processing. The reason for this is that the former transition is made possible
solely by increasing the number and sophistication of layered models in a cognitive system,
which nonetheless remains governed by the principle of error minimisation. I argue that this
feature makes the account an attractive choice for those attempting to produce gradualist
explanations of language evolution.

In sum, I aim to motivate two claims. First, the error minimisation approach demonstrates
that producing the tools of the Early Stone Age required sophisticated structured representa-
tions. Second, the error minimisation approach can account for the evolution of structured
representations without needing to posit a corresponding transition in types of processing.

I proceed as follows. Section 2 outlines the results of Stout and colleagues' neuroimaging
work on Early Stone Age toolmaking. Section 3 provides an overview of predictive processing
and outlines a minimal model for understanding the information processing overlap between
toolmaking and language. Section 4 situates this account in the literature and highlights its
advantages. Section 5 concludes.

2 | STOUT AND COLLEAGUES ON THE NEUROANATOMY
OF TOOLMAKING

Despite the long history of tool-language co-evolutionary hypotheses, attempts to confirm neu-
ral overlap between toolmaking and language production are a relatively recent addition to the
literature.9 In their 2008 study, Stout et al. took three right-handed, expert Early Stone Age tool-
makers and used fluorodeoxyglucose positron emission tomography to identify the areas of the
brain recruited by three separate tasks: (i) a control task, which involved striking cobbles

9See, for instance, Higuchi et al. (2009), Putt et al. (2017), Putt (2019), Stout and Chaminade (2007), Stout et al. (2008),
Stout (2011), Stout and Chaminade (2012), and Stout et al. (2021).

4 PAIN



together without attempting to produce tools; (ii) Oldowan toolmaking and (iii) Late Acheulean
toolmaking (Stout et al., 2008).10 In this section I provide a summary of the results and implica-
tions of this work, as well as a more general overview of Early Stone Age toolmaking and its
cognitive demands.

2.1 | Oldowan and Late Acheulean toolmaking

The Early Stone Age runs from roughly 3.3 million years ago (mya) to around 300 thousand
years ago (kya). It is typified by three stone tool industries: the Lomekwian, the Oldowan and
the Acheulean. The Lomekwian is the earliest known industry, is associated with
Australopithecus, and predates the first Homo fossils by around 500,000 years. The Oldowan
spans 2.6–1.7 mya, and is associated with late Australopithecus and early Homo variants (partic-
ularly Homo habilis). The Acheulean spans 1.7 mya–300 kya, and is associated with Homo
erectus and Homo heidelbergensis. Toolmaking processes across the three industries become
more complex and refined over time. In particular, a distinction between Early and Late Acheu-
lean production is often made. Late Acheulean tools are thought to emerge between 600 and
500 kya, and are smaller, thinner and more symmetrical than tools of the Early Acheulean
(Stout, 2018, p. 263), (Stout et al., 2014, p. 577). The Early Stone Age also sees a significant
increase in hominin brain size, from 450cm3 to 1200cm3 (Klein, 2009). There is thus a general
trajectory of increasingly sophisticated toolmaking and expanding brain size across this period.
Stout and colleagues' work focuses on the Oldowan and Late Acheulean industries, and I will
do likewise.

Oldowan toolmaking involves using a hammer-stone to strike a core. This process produces
flakes, which typically have a very sharp cutting-edge. It also shapes the core into a chopper (see
Figure 1). Typically, reduction of the core via flaking is not comprehensive, and so large parts
of the original surface of the core are preserved. At a minimum, Oldowan toolmaking requires
refined visuomotor coordination and the ability to evaluate the physical properties of stone. The
latter might be thought of in terms of causal, or perhaps technical reasoning.11 More refined
Oldowan toolmaking plausibly utilises strategic planning. For instance, repeated striking leaves
“scars” on the core, which produce better conditions (a striking platform) for future strikes.
Flake removal can thus be performed in a manner that aids future flake removal (Pargeter
et al., 2020; Stout et al., 2019).

Late Acheulean toolmaking requires a significant increase in strategic planning capacities.
The archetypal artefact of this industry is the hand-axe; a pear-shaped tool characterised by its
bifacial, symmetrical structure (see Figure 2). Creating this tool requires using a series of over-
lapping and increasingly refined procedures to impose a pre-determined form onto a core.
Reduction via flaking is more comprehensive as compared with the Oldowan, and typically
none of the original surfaces of the core will be preserved. Stout et al. (2006) divide Late Acheu-
lean toolmaking into three phases: roughing-out; primary thinning and shaping; and secondary

10There are complicated questions that arise when the neuroscience of modern humans is used to support inferences
about the cognitive capacities of ancient hominins. Addressing such questions is beyond the scope of this paper; but, at
the very least, Stout and colleagues’ results offer some general proof of principle for co-evolutionary theories. If, for
instance, no neural overlap was found, this would not be the case.
11See Khemlani et al. (2014), Spellman and Mandel (2006) for accounts of causal reasoning; see De Oliveira et al. (2019),
Osiurak and Reynaud (2020) for accounts of technical reasoning; see Moore (2011) for an account of the specific causal
relations Early Stone Age knappers may have understood.
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thinning and shaping. During the roughing-out phase, a hammer-stone is used to impose the
general form of the hand-axe onto the core. This involves creating a sharp edge around the
perimeter of the core, centred between the two faces, by removing large, long flakes. The pri-
mary thinning and shaping phase is characterised by the removal of long, thin flakes which
thins the biface and starts to impose the desired symmetry on the tool. This requires the crea-
tion of striking platforms through intensive light flaking along the edge, and also the use of a
soft-hammer; that is, a hammer made of antler, bone or wood. In the secondary thinning and
shaping stage, a soft-hammer, along with abrasion and grinding, is used more intensively to

FIGURE 1 Oldowan tools. Oldowan toolmaking involves striking a core with a hammer-stone in order

remove flakes. Both the resulting flakes and modified core (a chopper—(a) and (b) above) can then be used. Core

reduction is usually partial, so large parts of the original surface are preserved. Source: José-Manuel Benito
�Alvarez/Wikimedia commons. Image (a) is reproducible under the terms of the Creative Commons Attribution-

Share Alike 2.5 Generic licence; image (b) has been released into the public domain. URL (a) https://en.

wikipedia.org/wiki/Stone_tool#/media/File:Chopping_tool.gif. URL (b) https://en.wikipedia.org/wiki/

Oldowan#/media/File:Canto_tallado_2-Guelmim-Es_Semara.jpg

FIGURE 2 Acheulean tools. Acheulean hand-axes are characterised by their bifacial structure and

symmetry. Producing them requires performing a sequence of overlapping procedures in order to impose a

predetermined form onto a core. Core reduction is usually comprehensive, and typically none of the original

surfaces of the core will be preserved. Source: José-Manuel Benito �Alvarez/Wikimedia commons. Image (a) has

been released into the public domain; image (b) is reproducible under the terms of the Creative Commons

Attribution-Share Alike 2.5 Generic licence. URL (a) https://en.wikipedia.org/wiki/Stone_tool#/media/File:

Hand_axe_spanish.gif. URL (b) https://en.wikipedia.org/wiki/Acheulean#/media/File:Bifaz_cordiforme.jpg
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create a sharp, regular edge around the perimeter of the tool. In addition to those required for
Oldowan toolmaking, the cognitive demands of producing Late Acheulean tools include:
(i) more fine-grained motor control; (ii) better understanding of the physical properties of stone,
particularly with respect to the effects of different striking techniques and (iii) greater strategic
planning, particularly with respect to understanding the link between individual actions
(striking, grinding, etc.), short-term goals (creating a striking platform) and long-term goals
(imposing symmetrical form on to the core).

2.2 | The neural correlates of Early Stone Age toolmaking and
language

We would predict Late Acheulean production to have different neural correlates as compared to
Oldowan production (and the control task). Stout and colleagues found significant overlap in early
visual processing in the posterior occipital cortices across Oldowan and Late Acheulean tasks (Stout
et al., 2008).12 This is what would be expected given the base-level complexity of core and hammer-
stone manipulation required for each task. In addition, both toolmaking procedures placed
increased demands on an inferior parietal-ventral premotor circuit that is anatomically and compu-
tationally similar to circuits involved in phonological processing (Stout & Chaminade, 2012, p. 81).

However, Late Acheulean toolmaking produced a marked increase in right hemisphere
activity, particularly in supramarginal, ventral precentral and inferior prefrontal gyri. This is
likely a product of the increasing length and complexity of the motor actions involved, and of
the more technical role played by the left hand in manipulating the core. In addition, hand-axe
production saw an increase in activity in the right inferior and ventrolateral prefrontal cortex.
The former is thought to be at the apex of sensory and motor processing, and hence play a cen-
tral role in producing goal-directed and flexible behaviour. The latter is thought to play a role in
matching perceptual cues with action sequences (Stout et al., 2008, p. 1946). More broadly, the
activation of inferior frontal gyrus in Late Acheulean toolmaking is of interest. The region
forms part of Broca's area, and so is associated with language production and, increasingly, the
general computation of supramodal and tree-like hierarchical information (Fadiga et al., 2009;
Fedorenko et al., 2012; Koechlin & Jubault, 2006; Poldrack, 2006).13 Also of interest is the acti-
vation of the right and left dorsal portions of inferior frontal gyrus pars triangularis. The former
is thought to play a role in syntactic/semantic integration, and in processing high-level motor
representation and complex action-plans. The latter is associated with working memory and
sentence processing (Elmer, 2016; Makuuchi et al., 2009; Matchin, 2018).

2.3 | Summary

Stout and colleagues' produce two findings important for my goals. First, the increasing com-
plexity of toolmaking from Oldowan to Late Acheulean triggers activity in areas commonly

12See Stout et al. (2021) for further corroboration of these results.
13An important issue here is lateralisation, as language processing appears to be more left lateralised than manual
praxis tasks. Stout (2018, p. 264) provides some discussion of why this might be the case, including that it represents
increasing developmental accommodation to linguistic and technological environments; a theme I will return to
(thanks to an anonymous reviewer for raising this issue).
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associated with language production. Second, activity in inferior frontal gyrus in both Late Acheu-
lean toolmaking and language production suggests that it plays a central role in processing informa-
tion associated with behaviour displaying nested part-whole structure (I will go into further detail
on this in Sections 3 and 4). This corroborates claims that Broca's area more broadly is important in
the production of complex intentional action (Fedorenko et al., 2012; Koechlin & Jubault, 2006).
These results lend weight to tool-language co-evolutionary hypotheses, insofar as the emergence of
a sophisticated new goal-oriented behavioural phenotype—language—could be supported by a
pre-existing domain-general mechanism that had evolved to support a pre-existing complex, goal-
oriented behavioural phenotype—toolmaking.

3 | AN ERROR MINIMISATION MODEL FOR LATE
ACHEULEAN TOOLMAKING

With the details of Stout and colleagues' work in mind, we can now move to the task of inte-
grating their results with the framework of predictive processing. I do this in two moves. First, I
outline the basic computational details of predictive processing. Second, I propose a minimal
model for understanding the cognitive demands of Late Acheulean toolmaking based on those
details.

My general strategy here was laid out in the introduction: Both complex intentional action
and language production are thought to require goal representations with nested part-whole
structure. As a result, any information processing overlap between toolmaking and language
production may be thought of in terms of the computational mechanisms required to produce
structured goal representations. The idea, then, is that we can explain the early evolution of
syntax by appeal to more domain general capacities—namely, those required for the broader
class of complex intentional action.14

Predictive processing offers an account of perception and action using a single computa-
tional principle. Moreover, as we shall see, the stratified hierarchical nature of the theory pro-
vides a way of understanding how lower-level sensorimotor representations are modulated by
higher-level goal representations. For these reasons, it provides an attractive framework for
understanding the cognition underlying complex intentional action.

3.1 | The predictive processing framework

There are plenty of excellent overviews of predictive processing (Clark, 2013, 2016; Hohwy, 2013;
Wiese & Metzinger, 2017). Here I focus on two aspects of the theory that are important for the
explanation of complex, goal-directed action trajectories: (1) hierarchical prediction and prediction
error; and (2) prediction error minimisation. But before I begin, an important caveat. Predictive
processing, in some of its formulations, has been claimed to offer the cognitive sciences a unifying
principle governing brain function.15 None of my conclusions here are predicated on such claims.
All I borrow from the framework is the notion that perception and action are governed by predic-
tion error minimisation in generative hierarchical models.

14In adopting this general line I borrow from Planer and Sterelny (2021). I will say more about the differences between
our respective approaches in Section 4.
15See Friston (2010) and Hohwy (2013) for strong versions of this claim. Clark (2013, Section 5.2) is more cautious.
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3.1.1 | Stratified hierarchical prediction and prediction error

Predictive processing understands top-down processing as the transfer of predictions, and
bottom-up processing as the transfer of prediction errors.

Predictions are a cognitive systems' attempts to predict future sensory input. They are gener-
ated according to encoded models of the world, which in turn are the product of evolution,
experience and learning. These models allow the brain to generate a hypothesis about the
source of sensory input, which can then be used to produce predictions about future sensory
input. The models are hierarchically organised according to the spatiotemporal scale of the
causal regularities they address. At lower levels of the hierarchy there are models generating
predictions at finer-grained spatiotemporal scales; for instance, regarding the sensory input
associated with adjusting the force of a hammer-stone strike in response to scars on a core. At
higher levels of the hierarchy there are models generating predictions at broader spatiotemporal
scales; for instance, regarding the sensory input associated with assessing the properties of a
potential core. In this way, cognitive systems work to produce accurate predictions of future
sensory input over a hierarchy of spatiotemporal grain.

Bottom-up processing also plays an important role in the predictive processing framework.
But rather than being the construction of perceptual experience from the raw data of sensory
input, bottom-up processing is instead the transfer of any difference between top-down predic-
tions of sensory input and actual sensory input. In other words, bottom-up processing involves
the transfer of prediction error. At any given layer in the hierarchy, a model will receive predic-
tion error signals from the model below it, attempt to explain away this error, and forward any
error that it cannot explain to the model above it. Linked probabilistic models of this sort are
called generative models due to their ability to recreate incoming sensory states via top-down
processing (Hinton, 2007).

In sum, predictive processing envisages global interaction between top-down and bottom-up
processing. Top-down processing involves the flow of increasingly spatiotemporally constrained
predictions from more abstract to less abstract representational layers; bottom-up processing
involves the transfer of prediction error signals—mismatch between the predicted and actual
signal—from less abstract to more abstract representational layers.

3.1.2 | Perception, action and prediction error minimisation

According to predictive processing, cognitive systems attempt to minimise the difference
between predicted sensory input and actual sensory input. In other words, they attempt to mini-
mise prediction error. The brain has two strategies for eliminating any prediction error rising
through the hierarchy: it can either change the parameters of its models to account for the
error, or else it can change the sensory input causing the error such that it aligns with the cur-
rent parameters of its models. In simpler terms, the system either adjusts the model to fit the
data or adjusts the data to fit the model. Perception is the product of adopting the model-to-data
direction of fit; action is the product of adopting the data-to-model direction of fit. This yields a
unified computational account of perception and action: Although the direction of fit changes,
both phenomena are strategies for minimising prediction error.

In the case of perception, models generate a new hypothesis regarding the source of sensory
input. This produces new predictions, which, if successful, will have the effect of dampening
any prediction error rising through the hierarchy. For example, suppose I catch a glimpse of a
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figure at the end of my room from the corner of my eye. On closer inspection, however, said fig-
ure is revealed to be a pile of clothes on a chair. The best explanation of the initial (quite pat-
chy) sensory input is that there is a person in my room. Yet this explanation does not account
for the data produced when I focus my attention on the figure. As a result, prediction error rises
through the system. By producing a new explanation of the source of the sensory input—the
untidy chair hypothesis—the brain can eliminate this prediction error.

In the case of action, the brain holds its hypotheses about the world fixed. Any prediction
error rising through the system is then addressed by moving around in the world such that the
incoming sensory data is changed to fit the hypothesis. To continue the previous example, the
hypothesis that there is a person in my room generates the prediction that by turning my head I
will be able to get a better look at them. That prediction will be inconsistent with the current,
patchy sensory input emanating from the corner of my eye. This mismatch between predicted
sensory input and actual sensory input generates prediction error, but by moving my head in
order to look to the corner of the room, I can minimise this error.

Here the brain actively tests a hypothesis against the world. As Clark notes, this account of
action is, in a certain sense, subjunctive (Clark, 2016, p. 121). Motor control involves predicting
future proprioceptive and exteroceptive input were a certain action to be carried out, and reduc-
ing the gap between those predictions and sensory input by performing the modelled action.
The mechanism of prediction error minimisation works because prediction errors carry infor-
mation about the difference between the way the body is currently situated and the way the
body would be situated were an action to be carried out. Implementing that action sequence
thus eliminates prediction error. Importantly, the predicted proprioceptive and exteroceptive
input of an action is generated across all levels of the hierarchy. At lower levels, models will be
predicting sensory input over the short-term; for instance, the proprioceptive change associated
with the action of turning my head. At higher levels in the hierarchy, models will be predicting
sensory input over the long-term; for instance, the exteroceptive input associated with identity
of the person.16

Moreover, each level of the hierarchy recapitulates this general procedure in the following
way. Just as the system as a whole uses its active states to influence the world in ways that alter
its sensory states, each model in the hierarchy uses prediction—here equivalent to active
states—to influence the layer below it in ways that will alter incoming prediction error, and
thus influence the model's sensory states (Kirchhoff et al., 2018, pp. 3–4). This top-down effect
on lower levels is also described in terms of “modulation” or “guidance”. In Clark's words,
higher level predictions “guide and nuance lower level response. This guidance involves expec-
tations concerning the most likely patterns of unfolding activity at the level below it”
(Clark, 2016, p. 146). As such, predictive processing architectures display a kind of transitivity.
If level A predicts and guides the activity of level B, and level B predicts and guides the activity
of level C, then level A has, to some extent, predicted and guided the activity of level C.17 Con-
sequently, higher-level goal representations are able to predict, and hence guide, the predictive
outputs of the layers below them. And reducing error against this cascade of predictions will
bring about the original goal. As I will emphasise in the following sub-section, such architec-
tures produce representations with nested part-whole structure.

16This general picture of multi-level processing according to spatio-temporal grain integrates well with the notion of
hierarchical process memory (Hasson, 2017; Hasson et al., 2015). Thanks to an anonymous reviewer for this pointer.
17See Drayson (2017) for more nuanced discussion.
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3.2 | An error minimisation model for Late Acheulean toolmaking

Stout and colleagues' data suggests that the neural overlap between toolmaking and language
(specifically in inferior prefrontal gyrus and Broca's area more broadly) may indicate that the
region underwrites the production of complex intentional action. My task now is to outline
how these behaviours might be implemented using a prediction error minimisation model.

We have seen that Early Stone Age toolmaking—and, in particular, Late Acheulean
toolmaking—is a complex goal-oriented task requiring significant strategic planning and tech-
nical skill. The nested part-whole structure of these tasks have been outlined in some detail by
Stout, using tree-like hierarchies (see Figure 3). This work is important for my purposes, as it
outlines the complexity of the action plans required to produce a tool, rather than the complex-
ity of the tool itself. Indeed, Stout (2011) argues that focusing on the latter has meant we have
underestimated the level of cultural variation across the Early Stone Age.18 Transposing Stout's
action plans into the error minimisation framework gives us a potential reading of the cognition
of those toolmakers. The results indicate that the Early Stone Age signals the presence of repre-
sentations with sophisticated nested part-whole structure. I take my proposal to be broadly con-
sistent with a range of more detailed work applying generative hierarchical models of cognition
to complex intentional action in general, and to language in particular (Farmer et al., 2013;
Koechlin & Jubault, 2006; Lupyan & Clark, 2015; Pickering & Clark, 2014; Pickering &
Gambi, 2018; Pickering & Garrod, 2013); though none of these accounts deal specifically with
the demands of stone toolmaking.

FIGURE 3 An action plan depicting complex flake detachment in Late Acheulean toolmaking. Lines

connect subordinate goals/actions with broader goals/actions. Boxes enclose action chunks that have been

“collapsed”, and whose subordinate elements have been omitted to avoid crowding. Adapted from (Stout, 2011,

p. 1052)

18See also (Stout et al., 2021).
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The basic mechanics of the proposal are as follows. Consider the action trajectory required
for complex flake detachment, outlined in Figure 3. We can transpose this into the error
minimisation framework as follows. First, a goal representation, <complex flake detachment>,
becomes salient in the upper levels of the model hierarchy. This produces a prediction of the
sensory input expected were this goal to be brought about, which modulates the structure of
goal representations in the models below it; to <target selection>, <hammer selection> and
<percussion>. These predictions select further specific goal representations further down the
hierarchy. For example, from <percussion> to <platform preparation>, and so on. Lower-level
goal representations, such as <hammerstone selection>, <position core>, and <light percus-
sion>, are nested within—or constituents of—<platform preparation>. And all of these are
constituents of <percussion>, which itself is a constituent of <complex flake detachment>.

Each new goal representation within a model produces predictions, which in turn modulate
the goal representations of models below it, right down to predictions of the proprioceptive
input expected from fine-grained motor outputs such as <grasp> and <rotate>. The initial goal
thus produces a set of structured representations running down the generative hierarchy. If
these goal representations are held fixed, the system will encounter a corresponding cascade of
prediction errors running back up the hierarchy. However, by moving in such a way as to
reduce these errors, the motor system will produce behaviours that achieve the initial goal of
<complex flake detachment>.

During the performance of an action plan, new goal representations will be selected at vari-
ous levels in the hierarchy. For instance, the system might select <position core> and deselect
<hammerstone grip>. When this new goal representation becomes salient, a new set of predic-
tions is produced. These then remodulate the goal representations in models beneath it, such
that <grasp> and <rotate> become goal representations regarding the core, which in turn
modulate further fine-grained proprioceptive predictions further down the hierarchy. This new
set of structured representations will produce a new set of corresponding prediction errors. By
reducing this error through action, and by repeating this process, the system can reiterate a
behaviour.19

So the combination of top-down and bottom-up transfer of predictions and prediction errors
between hierarchical layers of models, and the presence of transitively linked goal representa-
tions, produces representations with nested part-whole structure. And this is a product of the
fact that creating a Late Acheulean hand-axe is a particularly complex, goal-oriented activity
requiring significant strategic planning abilities.

At this stage it is important to make clear what I am—and what I am not—claiming via this
account. First, I am not claiming that structured representations emerged in the Late Acheu-
lean. Goal representations with some level of nested part-whole structure were required to pro-
duce both the Early Acheulean and the Oldowan (though with much less sophistication in the
case of the latter). Indeed, Planer and Sterelny (2021, pp. 121–126) argue that structured repre-
sentations are found in the cognitive profiles of the great apes and some primates, and I agree
with them. What I am claiming is that the production of stone tools—and in particular, given
the significant increase in strategic planning capacities required, the Late Acheulean—drove a

19An interesting question following from this is how a new goal representation becomes salient. There are at least two
ways an account like mine may go on this issue, depending on how unifying one takes the error minimisation
framework to be. On one hand, some theorists think the error minimisation can do the explanatory work—Hohwy and
colleagues (Corcoran et al., 2020; Hohwy, 2013) appear to think this. On the other hand, we might posit some other
computational mechanism to account for the raising of a new goal representation. I suspect the latter move is the better
bet, but elaborating those details is beyond the scope of this paper.
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marked increase in the complexity and sophistication of pre-existing representational capacities
with nested part-whole structure. This echoes Stout's work emphasising the increasing com-
plexity of action plans across the Early Stone Age (Stout, 2011; Stout et al., 2021). Second, I am
not claiming that the above framework provides a computational account of the cognitive
capacities required to produce the language abilities we find in modern day humans. Propo-
nents of tool-language co-evolutionary theories are often accused of failing to provide such an
account,20 despite the fact that doing so would actually negate any need for a co-evolutionary
approach. If we were to find that all the cognitive capacities required for modern day language
abilities were present in the Early Stone Age, then there would be no need to make the claim
that a new behaviour was able to co-opt cognitive resources that had evolved for a pre-existing
behaviour. The claim is not that the cognitive underpinnings of toolmaking and language are
the same. Rather, what is required from a co-evolutionary theory is a stipulated set of capacities,
that are importantly not equivalent to those required to produce language, but which are none-
theless capable of being acted on by selection to bring about full-blown language abilities. My
point is that the above model offers an account of this kind. In particular, the level of planning
and motor skill required to produce Late Acheulean tools signals the emergence of representa-
tions displaying sophisticated nested part-whole structure, and these are an important ingredi-
ent in explaining the evolution of language.

An important related issue concerns a dis-analogy between the way language and toolmak-
ing are learnt. Becoming an expert Early Stone Age toolmaker takes a long period of time and
significant focused mental effort.21 Sequential steps are reinforced over many repetitions, and
the fast, fluid, tree-like hierarchical action performed by experts is the end product of a pro-
longed, iterated learning process. By comparison, it is often claimed that children appear to
learn language almost effortlessly.22 This might suggest that, in modern humans, sequential
processing is required to learn how to produce a hand-axe, whereas tree-like hierarchical
processing is employed from the outset by children learning to speak.

The above observation can be easily accommodated by the error minimisation account. To
reiterate, the claim is not that the cognitive capacities required to produce language and stone
tools are the same; rather it is that language evolution involved co-opting and refining some
pre-existing cognitive resources that had evolved for toolmaking. Furthermore, there is plenty
of scope between the Early Stone Age and today for syntax specific, tree-like hierarchical capac-
ities to have evolved in response to increasingly language rich cultural environments. The dif-
ferences in the way language and toolmaking are learnt may well be a product of the fact that
domain specific mechanisms have evolved with respect to the former, but not the latter. It may
even be the case that, in modern-day humans, sequentially learnt action plans exploit linguistic
cognitive resources. All this is perfectly consistent with the claim that those syntax specific
capacities had an evolutionary precursor in the structured representations required to produce
stone tools; which is to say that it is perfectly consistent with a co-evolutionary error
minimisation account.23

20For instance, Berwick and Chomsky (2017, p. 171) and Botha (2020) have criticised Stout and colleagues on such
grounds. Gabri�c (2021) makes a similar point to mine regarding the inadequacy of such criticisms.
21For instance, Stout reports that it took him 300 hours of practice to produce a Late Acheulean hand-axe that equalled
the skills of those produced by ancient toolmakers at the famous Boxgrove site in England (Stout, 2016, p. 33).
22My own view is that there is considerable evidence that language learning in childhood is far from “effortless”
(Chater & Christiansen, 2018; Yang & Piantadosi, 2022). However, I want to show here that the error minimisation
view can accommodate both sides of this debate.
23Thanks to an anonymous reviewer for pushing me on this issue.
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Finally, it is worth saying something about how the predictive processing account relates to
traditional, Chomskyan computational models. There are at least two ways this could go. On
one hand, some theorists believe the two frameworks can be fruitfully combined. For instance,
Fitch's account of tree-like hierarchical cognition builds in aspects of both predictive processing
and Chomskyan computation (Fitch, 2014; Fitch & Martins, 2014). On his view, integrating the
two frameworks provides a route to a broad theory of neuro-computation; one that does justice
to the fact that we are animals, and also to the fact that we are animals with a peculiar set of
capacities. Key here is the claim that humans have an advanced (but not species-specific) pro-
pensity to infer tree-like hierarchies from sequential data. The programme outlined in this arti-
cle fits well with Fitch's account. In particular, we can see how a phylogenetically diverse
trait—the control of action via error minimisation—might have provided the right kind of
machinery that could be evolved, via toolmaking, into the more advanced tree-like hierarchies
that are typically thought to underly language production.

On the other hand, some theorists are sceptical that Chomskyan computational models can
be neurobiologically realised. Petersson, Folia and Hagoort, for instance, argue that the infinite
memory resources required by Chomskyan computation is in contradiction with the fact that
the brain is a finite-state system (2012). As a result, they think it “seems natural to try to under-
stand language acquisition and language processing in terms of adaptive stochastic dynamical
systems” and “syntax processing in terms of noisy spiking network processors” (2012, p. 93).
The error minimisation account is an attractive package for theorists of this stripe for two rea-
sons. First, predictive processing is comparatively well-grounded in empirical neuroscience
(Fitch, 2014, p. 343). Second, the probabilistic neural networks of predictive processing lend
themselves well to interpretation in terms of “stochastic dynamical systems” and “noisy spiking
network processors”. As such, the framework might be fruitfully developed by those who reject
Chomskyan computation.24

3.3 | Summary

In this section, I proposed an error minimisation model for understanding the action sequences
required to produce Late Acheulean tools. Stout and colleagues have demonstrated the neuro-
anatomical overlap between toolmaking and language. The model I propose outlines a plausible
computational overlap between the two behaviours: namely, the requirement for complex struc-
tured representations. As language production is one instance of the broader category of skilled
intentional action, the practice of toolmaking may well have produced the right kind of
cognitive platform required to support the production of language.

4 | THE EVOLUTION OF LANGUAGE

In this section, I situate my proposal within broader debates concerning the evolution of lan-
guage. I begin by showing that the error minimisation account supports gradualism—the view
that language evolved via incremental steps over a long period of evolutionary time—and
rejects saltationism—the view that language appeared via sudden random mutation. I then

24Including Petersson et al. (2012), but also others, for example, Christiansen and Chater (2016), and Rodriguez (2001).
Thanks to an anonymous reviewer for helpful comments here.
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emphasise an important feature of the account: It can explain the evolution of structured represen-
tations without positing a corresponding transition from sequential information processing to tree-
like hierarchical information processing. This, I argue, makes it better suited to gradualism than
some other gradualist proposals; in particular that offered by Planer and Sterelny (2021).

Saltationism is typified by Berwick and Chomsky (2016, 2017, 2019). In their view, the abil-
ity to produce syntax is the result of a random genetic mutation that produced a neural “re-wir-
ing”. This event happened comparatively recently—some 80–120 kya. Consequently, among
the hominin genus, the cognitive capacities required to produce syntax are restricted to Homo
sapiens. In contrast, the error minimisation account suggests that the cognitive capacities driv-
ing the early evolution of our syntactical abilities were not specific to either language or
H. sapiens. Rather, those capacities are to be found at low levels in any organism capable of
intentional action with nested part–whole structure. They have, however, reached particularly
high levels of sophistication in the hominin lineage—notably from Homo erectus through Homo
heidelbergensis to H. sapiens—in part through the co-evolutionary effects of toolmaking and lan-
guage production. This is significant, as the capacity to produce syntax is often thought to be
a—if not the—distinctive, domain specific feature of the language faculty (Hauser et al., 2002).
Language production utilises many capacities that play a broader role within cognitive systems;
for instance, memory, executive control and theory of mind. While these are integral to the pro-
duction of language, they are not language specific. The capacities underwriting the production
of syntax, however, are plausibly language specific. The account developed here suggests that
evolution of syntax was able to co-opt pre-existing capacities—structured representations—that
had been increasingly refined through toolmaking. As such, the error minimisation approach
supports gradualism.

Indeed, the gradualist credentials of the error minimisation model run deeper than this.
Consider the following three competing views. As we have seen, Berwick and Chomsky (2016)
are saltationists: They hold that explaining the complex nested part–whole relations we find in
language commit us to structured representations, and that there are no plausible intermediary
stages between representations without structure and representations with structure. So lan-
guage cannot have evolved incrementally, and instead must have appeared suddenly. Frank
et al. (2012) believe that parsimony and evolutionary continuity considerations make sal-
tationism unattractive, and hence want an account that avoids sudden transitions. Their solu-
tion is to reject the claim that language production requires structured representations—
instead, they develop an account of syntax based on sequential processing. Planer and
Sterelny (2021) take a different line. On their reading, some basic nested part-whole structure is
present in the behavioural and learning profiles of the great apes and some other primates.
Thus there is no need to posit any transition from non-structured to structured representations
between the last common ancestor with the chimpanzee and modern day humans; all that is
required is the incremental sophistication of pre-existing capacities across that time-frame
(some 7 million years).

These various accounts are attempting to balance two desiderata. The first is evolutionary
continuity, which motivates a reluctance to posit any sudden transition to structured represen-
tations. The second is the notion that language production requires structured representations.
Both Berwick and Chomsky and Frank and colleagues see these two desiderata as mutually
incompatible. The former are committed to both the psychological reality of generative gram-
mars and structured representations, and to the view that a gradualist account of such mecha-
nisms is impossible. A sudden transition is thus an unavoidable aspect of their theory. For the
latter, evolutionary continuity concerns outweigh the commitment to language production
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requiring structured representations. They thus attempt to generate a sequential account of the
production of syntax. In developing their gradualist theory, Planer and Sterelny neatly sidestep
this dilemma by decoupling the evolution of structured representations from the evolution of
language, insofar as the former long predates the latter. However, this does not rid them of the
need to posit a transition—albeit gradual—from representations without structure to represen-
tations with structure; rather, they have pushed that transition further back in phylogeny. And
accounting for that transition, on their account, requires positing a corresponding transition
from sequential information processing to tree-like hierarchical information processing.

The error minimisation account provides a different story; one that offers a more straightfor-
ward fit with the demands of gradualist explanation. This is because predictive processing archi-
tectures can account for the transition between non-structured representations and structured
representations without needing to posit a corresponding transition in types of information
processing. On the error minimisation account, structured representations evolve via a gradual
increase in the quantity and complexity of models in a cognitive system; not via the emergence
of a new type of processing. In what remains of the article, I will develop this point a bit
further.

Planer and Sterelny tie the evolution of behaviour displaying nested part-whole structure to
the evolution of Broca's area (2021, p. 141). In their view, the development of this area in the
great apes, our own species and some other primates—particularly macaques (Ferrari
et al., 2003; Rizzolatti et al., 1996)—represents the emergence of a new type of information
processing: tree-like hierarchical processing. Such capacities are capable of producing struc-
tured representations, which in turn are required to get complex goal-oriented behaviours like
toolmaking and language up and running. However, complex goal-oriented behaviours are not
confined to primates. For instance, consider dolphin hunting techniques (Gazda et al., 2005;
Krützen et al., 2014), tool use among New Caledonian Crows (Bugnyar, 2019; Miller
et al., 2020; Taylor et al., 2009), or the ability of Elephant matriarchs to locate water during a
drought (Foley et al., 2008). On Planer and Sterelny's account, these behaviours will need to be
explained without recourse to structured representations, or they must appeal to convergent
evolution. Now, there is no in-principle reason why these explanations are not possible; but
some story must be told.

The error minimisation approach avoids this explanatory burden, and offers a more evolution-
arily continuous account. On this view, the stratified cognitive hierarchies of organisms displaying
very simple, reactive, inflexible behaviour will be composed of a small number of models
characterised by sensorimotor representations that issue simple predictions to the motor plant. Sys-
tems of this kind will not produce structured representations, as they lack the higher-level, multi-
modal goal representations required to modulate representations further downstream in the hierar-
chy. On the other hand, organisms displaying more complicated behaviour will have extended gen-
erative hierarchies, with models in the upper levels employing sophisticated, multi-modal
representations capable of producing predictions over broad spatiotemporal scales, and capable of
structuring the representations in models below it according to specific goals.25

So the predictive processing approach allows us to move from inflexible, reflexive behaviour
to more complex intentional action via the gradual increase in number and sophistication of
models in a stratified hierarchy. As such, there is no need to posit a transition from sequential
information processing to tree-like hierarchical information processing; it is error minimisation
all the way down. The key transition to be explained on this approach is the transition from

25See Corcoran et al. (2020) for a detailed account of how generative hierarchies might be elaborated in this way.
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basic, low-level sensorimotor representations to more abstract, multi-modal goal representa-
tions. The role that Broca's area plays in the processing of complex goal-oriented actions sug-
gests that its function may lie in processing representations of this latter kind. Explaining this
transition in representational sophistication may be a formidable task; but it is a task that
Planer and Sterelny must also address.

To sum up: The work of Frank and colleagues' indicates that, when it comes to cognitive
processing, there are those who take evolutionary continuity concerns very seriously; to the
extent that they are willing to reject the dominant view that language processing requires struc-
tured representations. Planer and Sterelny's account offers a gradualist route to the evolution of
structured representations, but one that is committed to a transition between types of informa-
tion processing. The predictive processing account also provides a gradualist route to structured
representations, but one that does not require any transition between types of processing. It is
an attractive view, then, for those who emphasise evolutionary continuity.

5 | CONCLUSION

My goals in this paper have been twofold. I aimed first to provide an error minimisation
account of the cognitive processes underlying Late Acheulean toolmaking. I argued that doing
so reveals that the task requires complex structured representations, and that these represent a
plausible pre-cursor to the fully formed syntactic capacities found in modern humans. I then sit-
uated my account in the literature, and gave some reasons why it might be a better fit with
gradualist theories of language evolution than Planer and Sterelny's account.

More broadly speaking, the error minimisation approach offers a distinctly continuous story
of the evolution of complex action; it is thus an attractive option for those who prioritise prag-
matics and gradualism in the evolution of language.
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