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Abstract
We propose a pluralist account of content for predictive processing systems. Our 
pluralism combines Millikan’s teleosemantics with existing structural resemblance 
accounts. The paper has two goals. First, we outline how a teleosemantic treatment 
of signal passing in predictive processing systems would work, and how it inte-
grates with structural resemblance accounts. We show that the core explanatory 
motivations and conceptual machinery of teleosemantics and predictive processing 
mesh together well. Second, we argue this pluralist approach expands the range of 
empirical cases to which the predictive processing framework might be success-
fully applied. This is because our pluralism is practice-oriented. A range of different 
notions of content are used in the cognitive sciences to explain behaviour, and some 
of these cases look to employ teleosemantic notions. As a result, our pluralism gives 
predictive processing the scope to cover these cases.

1  Philosophy, Cognitive Science and Representation

Philosophy and cognitive science have a complicated relationship when it comes 
to representation. Here is an illustrative caricature of that relationship. Cognitive 
science departments generate data, and attempt to explain that data using theories. 
Sometimes those theories posit representational content. At this point, philosophy 
departments sit up and take notice. Representational content is a long-contested 
notion in philosophy, and we can’t have other disciplines using it without proper 
analysis. Philosophers then assess how content could be attributed to cognitive 
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systems in the context of the new theory. In a manner of speaking, then, philoso-
phers licence the use of representational content.1

Predictive processing is a new, ambitious theory in the cognitive sciences. Propo-
nents of the view treat the brain as a sophisticated hypothesis testing system. Mod-
els of the world are used to produce predictions of future sensory input, which are 
then updated based on any difference between predictions and actual sensory input 
(called prediction error). This process results in more accurate predictions, which in 
turn means the system minimises prediction error over the long term (Clark, 2013; 
2016; Friston & Kiebel, 2009; Hohwy, 2013). Linked probabilistic models of this 
sort are called “generative hierarchies” due to their ability to recreate incoming sen-
sory states via top-down prediction (Hinton, 2007).

Advocates of the theory refer to “models of the world” (Hohwy, 2016, p. 281) 
being “encoded” and “updated” in the brain (Clark, 2017,  p.  12) (Friston 
et al., 2011, p. 138) (Hohwy, 2016, p. 280) (Wiese & Metzinger, 2017, p. 10). It is 
also typical to speak of cognitive systems using these models to “compute predic-
tions” (Clark, 2017, p. 9; Wiese & Metzinger, 2017, p. 5). A framework that appeals 
to encoded models of the world which compute predictions suggests an interpreta-
tion in terms of information-bearing structures that are produced, manipulated and 
stored by the brain. Consequently, it seems proponents of predictive processing will 
require a licence for representational content.2 In other words, we need some way of 
understanding how it might be that the various parts of a generative hierarchy come 
to be content-bearing.

Traditionally, it has been assumed that philosophy departments should issue one 
type of licence. This in turn has generated a lot of disputes among philosophers as 
they argue the case for their chosen account of content (Cummins, 1996; Dretske, 
1981; Fodor, 1990; Millikan, 1984). Often, it is alignment with philosophical intui-
tions that guide these debates and constrains theory construction. But, as Shea suc-
cinctly puts it, “When it comes to subpersonal representations, it is unclear why 
intuitions about their content should be reliable at all" (Shea, 2018, p. 28). This sug-
gests it is worth exploring other approaches to the problem. Another strategy, which 
has only gained interest more recently, acknowledges that finding one overriding 
account of representation for the cognitive sciences is unlikely to be successful. As 
such, philosophers should be sensitive to the fact that cognitive scientists employ a 
range of different notions of representation (Godfrey-Smith, 2004; Planer & God-
frey-Smith, 2021; Shea, 2018). We should hence be in the business of providing plu-
ralist licences for content, precisely because the explanatory work facing cognitive 
science produces a range of different approaches to representation, which in turn 
require different notions of content. This involves a particular view on the role of 

1 How much attention cognitive science departments pay to this licensing system varies by department, 
but at least some appear to take it seriously.
2 There are those who deny that predictive processing should be understood in representationalist terms; 
e.g. Hutto (2018). Here we sideline such debates. Our aim is to provide a teleosemantic analysis of sig-
nals in predictive processing systems for those who want to understand such systems in representational 
terms.
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philosophers of science in such debates, one which is more sociologically, or prac-
tice oriented (in what follows, we’ll use the latter term). The task facing philosophy 
is not to isolate a particular concept that covers all cases. Rather, it is to describe 
and clarify the range of different concepts that are used, or that might be used, to 
explain the workings of a successful scientific practice. Accordingly, philosophical 
intuitions do not play a central role in guiding theory construction in the practice-
oriented approach.3 Our pluralism is motivated by this line of thinking.

To date, attempts to assign content to predictive processing architectures have 
appealed to structural representations (Gładziejewski, 2016; Kiefer & Hohwy, 2018; 
2019). According to this view content is determined by a structural resemblance 
between an internal cognitive state and an external state of affairs. When applied 
to predictive processing, this is understood as the claim that the causal-probabilistic 
structure of generative hierarchies resemble the causal-probabilistic structure of the 
external world. We do not disagree with this approach; however, we think appealing 
to other theories of content, that have themselves been applied in cognitive science 
more broadly, can also be applied to predictive processing. Specifically, we appeal 
to teleosemantic thinking. This allows us to target a tightly specified sub-part of pre-
dictive processing machinery. Our approach is to outline how signals in generative 
hierarchies—that is, predictions and prediction errors—can be given a teleosemantic 
treatment. In what follows, we use Millikan’s sender-receiver model to argue that 
predictions represent external states of affairs and prediction errors represent the dis-
crepancy between predictions and the states of affairs they predict. We thus advocate 
an account of the content-determining structures in predictive processing systems 
that appeals to both teleosemantics and structural representations. In other words, 
we issue a pluralist licence.

We have two main goals. Our primary goal is to show how a teleosemantic 
account of the content of signals in generative hierarchies would work. This takes 
up the majority of the paper. A secondary goal is to make the case for pluralism. We 
do not spend too much time on this task, as the fact that practice-oriented pluralism 
(as outlined above) is a position in the literature is reason enough to explore such 
treatments of predictive processing. Nonetheless, it is interesting to explore how 
pluralism plays out in this specific case. Predictive processing is claimed to be a 
highly general theory of action and perception, which applies to all cognitive sys-
tems (Hohwy, 2013; Clark, 2016). As such, it will need to be applicable across the 
phylogenetic spectrum. We think having teleosemantics on the table will help in this 
task. Accordingly, we expand on this motivation for our approach, and identify some 
specific cases where a pluralist treatment might be useful.

We proceed as follows. Section 2 provides a brief overview of predictive process-
ing. Section 3 outlines Gładziejewski’s causal-probabilistic resemblance account of 
content in generative hierarchies. Section  4 provides a primer on teleosemantics. 
Section 5 gives our teleosemantic account of predictions and prediction errors. Sec-
tion 6 makes the case for pluralism. Section 7 concludes.

3 We largely follow the program outlined by Nick Shea here (Shea, 2018, Sections 2.2 and 2.6).
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2  Predictive Processing

The literature on predictive processing is a large and complicated body of work, of 
which there are some excellent introductions (Clark, 2016; Hohwy, 2013). The over-
view we offer below is a general gloss, and is necessarily selective in the aspects it 
focuses on.4 In particular, we aim to draw out the sender-receiver structure of gen-
erative hierarchies in order to tie this with teleosemantic theory.

Our overview focuses  on two features of the theory: (i) hierarchical prediction 
and prediction error;  and (ii) prediction error minimisation.5 We address each in 
turn.

2.1  Hierarchical Prediction and Prediction Error

The nature of bottom-up and top-down processing is re-conceived on the predictive 
processing framework. Top-down processing is understood in terms of prediction; 
more specifically, as attempts to predict future sensory input. Bottom-up processing 
is understood as the transfer of prediction error, where prediction error is the differ-
ence between predicted sensory input and actual sensory input (see Fig. 1).

Predictions are generated by encoded models of the world, which in turn are pro-
duced via experience, learning and evolution. These models incorporate hypotheses 
about the causes of sensory input, and generate predictions about future sensory 
input. They are hierarchically organised according to the spatiotemporal scales of 
the causal regularities they address. At lower levels in the hierarchy, models gener-
ate predictions at faster time scales and at more fine-grained spatial resolution; for 
instance, about which sensory transducers will be activated in the immediate future 
given those that are currently activated. At higher levels in the hierarchy, models 
generate predictions at slower time scales and at a broader level of spatial resolution; 
for instance, about the change in temperament of a friend after the birth of their first 
child. The predictions of models at the lowest level target the states of sensory trans-
ducers, whereas the predictions of any model above the lowest level target the states 
of the model directly below it.

Bottom-up processing is also reformulated on this account. Rather than being an 
encapsulated process in which perceptual experience is constructed from the raw 
data of sensory input, bottom-up processing is understood as the transfer of predic-
tion error. At any given layer in the hierarchy, a model will receive prediction error 
signals from the model below it, attempt to explain away this error by refining its 
model, and forward any residual error that it cannot explain to the model above it.

4 Notably, we do not go into the role of precision estimates in prediction error minimisation. This is for 
reasons of space, and because we do not think such detail affects our argument.
5 There are some who believe predictive processing offers a general theory of the brain, encompassing 
all our mental processes e.g. Hohwy (2013). Others are more cautious (Clark, 2013, §5.2). We are scepti-
cal of the more ambitious formulations of predictive processing. All we rely on here is the claim that 
prediction error minimisation governs perception and action.
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2.2  Prediction Error Minimisation

According to predictive processing, the central goal of a cognitive system is to mini-
mise prediction error over the long-term. There are two ways in which the brain 
can deal with an active error signal. One option is to formulate a new hypothesis 
regarding the cause of the sensory input generating the prediction error. This can 
then be used to produce new predictions which can account for the error signal. On 
the predictive processing framework, this is the mechanism underlying perception, 
and is known as perceptual inference. Perception is understood as the product of the 
system’s ability to settle on a hypothesis that best explains sensory input; which is to 
say that prediction error is minimised. This process exhibits a mind-to-world direc-
tion of fit, in so far as states of the brain are adjusted in order to accommodate states 
of the world. Perceptual inference implies that, at every layer in the hierarchy, mod-
els are able to adjust their parameters according to the content of bottom-up predic-
tion error signals. The content of these signals is, broadly speaking, the difference 
between (the content of) predicted sensory input and actual sensory input.

However, the brain also has the option of exploiting the world-to-mind direction 
of fit in minimising prediction error. In other words, it can adjust its place in the 
world in order to accommodate states of the brain. In this case the brain does not 
alter its hypotheses; instead it acts to bring about changes such that future sensory 
input matches the predictions of those hypotheses. On the predictive processing 

Fig. 1  The mechanism at the 
core of predictive processing. 
Top-down transfer of predic-
tions and bottom-up transfer 
of prediction errors across a 
hierarchy of models
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framework, this is the mechanism underlying action, and is known as active infer-
ence. More precisely, the brain generates action by predicting the proprioceptive 
sensory input given a hypothetical action, and then minimises the difference between 
its predicted sensory input and actual sensory input by changing the world or its 
position in the world. Importantly, active inference is recapitulated in the activity of 
each individual model in the hierarchy. Every model uses action—here the genera-
tion of predictions—to influence the states of the model below it in ways that will 
alter incoming prediction error, and hence the sensory states of the original model. 
That is, each model uses its active states to influence its sensory states. This top-
down influence of higher models on lower models is typically described in terms of 
“modulation" or “guidance" (Clark, 2016, p. 146; Kirchhoff et al., 2018).

So, according to predictive processing, both perception and action are products of 
the more general imperative to minimise prediction error, and hence are explained 
by appeal to a single computational mechanism. Moreover, the theory implies that 
every model in the hierarchy is able to produce contentful predictions and prediction 
errors, and is in turn capable of adjusting its parameters in response to contentful 
predictions and prediction errors. This part of the predictive processing mechanism 
will be the target of our teleosemantic analysis.6

2.3  The Sinister Figure Example

A simple example (one that will be familiar to most) illustrates the mechanism being 
proposed here. Imagine that you have just woken up in the middle of the night. As 
you yawn and stretch, you happen to glance toward the corner of your room, and 
see what looks to be a sinister figure lurking there. Startled, you quickly sit up and 
turn on the light. Thank God, you gasp—it was just a pile of clothes strewn across a 
chair!

According to predictive processing, this case should be analysed as follows. The 
hypothesis that the cause of your initial sensory input was a (sinister) figure provides 
an excellent explanation of that input. As such, the best way to minimise prediction 
error was to deploy the sinister figure hypothesis; which in turn explains the char-
acter of your visual experience. But the alarming nature of that experience imme-
diately brings about the need to investigate further. The sinister figure hypothesis 
generates the prediction that you will get a better look at whoever it might be if you 
sit up and turn on the light. This high-level prediction modulates the behaviour of 
models below it, which in turn produce further predictions, and so forth down the 
hierarchy. A cascade of predictions relating to the hypothetical action—you turning 
on the light—are thus generated. If the hypothesis ‘I am turning on the light’ is held 
fixed, this will result in a corresponding cascade of prediction errors rising up the 
hierarchy, as sensory input will not match predictions. By moving in such a way as 
to turn on the light, this error signal is minimised. However, the new sensory state 
generated by turning on the light is not explained by the original (sinister figure) 

6 Other contentful aspects of the mechanism, such as the hypotheses contained in models, are accounted 
for via structural resemblance. We go into more detail in the following section.
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hypothesis. So again we have a difference between predicted sensory input and 
actual sensory input. Consequently, a new hypothesis must be deployed to suppress 
the error rising through the system. The hypothesis that there is a pile of clothes on a 
chair in your room explains the new sensory input well. By producing a new hypoth-
esis–the untidy chair hypothesis–the error signal can be explained away. Prediction 
error is then minimised if the system settles on this hypothesis.

Although just a toy example, this gives us an idea of how predictive processing 
understands the computational link between action and perception. In the end, both 
are strategies the brain uses to minimise prediction error. Furthermore, the com-
bined processes of predicting sensory input and updating models in response to pre-
diction error allow the system to build increasingly accurate models of the world. A 
cornerstone of the framework is that every model in the hierarchy is able to produce 
and respond to contentful predictions and prediction errors.

The preceding discussion raises two important questions. First, in what sense do 
models become ‘increasingly accurate’? Second, how do prediction and prediction 
error signals get their content? In the next three sections we address these questions.

3  A Structural Resemblance Account of Content for Generative 
Hierarchies

We noted in the introduction that previous attempts at ascribing content to predic-
tive processing architectures have appealed to structural resemblance. We agree that 
this strategy constitutes a plausible theory of content for generative hierarchies. In 
this section, following Gładziejewski (2016), we outline the sense in which inter-
nal models structurally resemble the external world. In the following sections, we 
outline a teleosemantic theory of the content of signals in predictive processing 
architectures.

The core claim put forward by proponents of structural representations is that 
content is determined, to some extent, by a structural resemblance between an inter-
nal cognitive state and an external state of affairs. The challenge is then to deter-
mine precisely what this structural resemblance amounts to, in any particular case of 
representation. Gładziejewski (2016, p. 566) cites cartographic maps as the “golden 
standard" for structural representations. This is because:  (1) they are  representa-
tional; (2) they guide the actions of their users; (3) they do so in a detachable way; 
and (4) they allow their users to detect representational errors. Fulfilling the latter 
three conditions is an important part of any theory of representation (especially if, 
following Gładziejewski, we want to meet Ramsey’s (2007) job description chal-
lenge). However, here we will focus on the first condition: how exactly is it that 
models in predictive processing architectures structurally resemble external states of 
affairs?

When it comes to cartographic maps, the structural resemblance relation is spa-
tial. For example, if my map of the university depicts the cognitive science depart-
ment as being closer to the cricket pitch than the philosophy department, then we 
can conclude that the layout of the university itself is such that cognitive science 
department is closer to the cricket pitch than the philosophy department. Of course, 
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in the case of predictive models, it is implausible that the structural resemblance 
relation is between spatial quantities. Rather, the claim is that the causal-probabilis-
tic structure of internal models resembles the causal-probabilistic structure of exter-
nal states of affairs.

Gładziejewski (2016, pp. 571–572) argues that causal-probabilistic resemblance 
has three dimensions. The first of these is a probability distribution, which defines 
a likelihood. According to predictive processing, variables in a model encode the 
probability of some sensory input occurring given some external state of affairs.7 
The claim, then, is that the relation between variables in a model and lower-level 
sensory activity structurally resembles the relationship between worldly causes of 
that sensory activity and the activity itself. For an example we will repeatedly draw 
on below, consider the capacity of a trained rat to press a lever to retrieve food. The 
rat’s hierarchical model represents the lever in terms of the probability that certain 
sensory patterns are produced; from short-term time scales—such as the colour and 
shape of the lever—to more long-term time scales—such as the interoceptive sensa-
tions associated with the digestion of food. The probabilistic relationship between 
the lever-representing model and sensory input thus structurally resembles the 
causal relationship between the actual lever and sensory input.

However, models do not predict sensory input in a straightforward manner. As we 
have seen, the system as a whole predicts sensory input transitively, in that higher-
level models produce predictions of activity in lower-level models. This suggests a 
causal-probabilistic structural resemblance between (on the one hand) the values of 
interacting variables evolving via inter-model dynamics and (on the other) causal 
relationships between objects in the world. If, for example, there is a causal relation-
ship between lever-pressing and food, then this relationship should be recapitulated 
in the way that the values of different variables across models influence one another. 
So levers can be represented not only in terms of their relationship to future sensory 
input, but also in the way they causally interact with other objects. This is the second 
dimension of structural resemblance.

Models also structurally resemble causal-probabilistic relationships in the world 
via encoded priors. If a generative hierarchy is to realise Bayesian reasoning, it must 
be capable of comparing the probability that a lever is the cause of current sensory 
input with the probability that the system would encounter a lever, independently 
of the evidence provided by current sensory input. For instance, if it is more likely 
that our trained rat encounters actual functioning levers, rather than objects that look 
like levers but cannot be pressed, then the system should prefer the former hypoth-
esis. The values of priors thus structurally resemble the experience-independent 
causal-probabilistic structure of the world. This is the third dimension of structural 
resemblance.

We now have a sketch of how content in generative hierarchies might be under-
stood in terms of causal-probabilistic resemblance with the world. However, given 

7 ‘Likelihood’ is a technical term for a conditional probability that plays a specific role in Bayesian infer-
ence. Somewhat confusingly, the likelihood of an hypothesis with respect to some data is the conditional 
probability of that data given that hypothesis.
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our practice-oriented approach, it will be useful to have more than one account of 
content on the table. This will allow predictive processing to be applied in case stud-
ies that might require different notions of content. In Sect. 5, we will outline how 
teleosemantics can provide an account of content for signal passing between models. 
In Sect. 6, we explain why this is important and describe such a case study. But first 
we offer a brief primer on teleosemantic theory.

4  Teleosemantics

Teleosemantics defines a representation as an intermediary between two cooperat-
ing devices: (1) a sender, which produces the intermediary, and (2) a receiver, which 
conditions its behaviour on the intermediary.8 The sense in which these devices 
must be ‘cooperating’ is cashed out in terms of proper functions. A proper func-
tion is a causally downstream outcome that a device has been selected for bring-
ing about, either through natural selection, reinforcement learning, explicit design or 
some other appropriate selection process.9

We will briefly introduce proper functions before describing their role in the 
definition of representational content. Many biological devices are adaptations, hav-
ing selected effects that contribute to their proliferation. The mammalian heart, for 
example, has a selected effect to pump oxygenated blood around the body. In achiev-
ing this effect hearts contribute to the reproduction of the genes that produced them, 
thereby contributing to the production of more hearts in future. When causal effects 
lead devices to be reproduced, teleosemantics calls those effects proper functions. 
However, the term is not only applied to devices produced by genes proliferating due 
to natural selection. Any device that owes its present form to selection on the effects 
of its ‘ancestors’ has a proper function. Consider again the capacity of a trained rat 
to press a lever to retrieve food. This capacity has lever-pressing as a proper func-
tion. A lever-pressing disposition has been reinforced by the reliable appearance of 
food after individual lever-pressing events. The disposition ‘proliferates’ because 
previous manifestations of that disposition were followed by consumption of food. 
For a disposition to proliferate here means being more likely to occur in a given 
environment than other possible dispositions. Reinforcement is therefore construed 
as selection (Hull et  al., 2001); it is differential retention of a certain disposition 
(lever-pressing) and is relevantly similar to the kind of process exemplified by nat-
ural selection. In the case of reinforcement learning, the ‘ancestors’ of a present 
behaviour are earlier instances of that disposition performed by the learner.

8 Here and throughout we refer to Millikan’s (2004, §6) teleosemantic theory. For a fuller exposition of 
this version of teleosemantics see Mann & Pain (2022).
9 As noted in Mann & Pain (2022), the question of the relationship between different processes of 
selection, especially between learning and natural selection, has been much discussed and is not settled 
(Artiga, 2010; Baigrie, 1989; Catania, 1999; Hull et al., 2001; Kingsbury, 2008; Skinner, 1981; Watson 
& Szathmáry, 2016). Teleosemantics requires that there be an explanatorily relevant similarity in the pro-
cesses that give rise to functional behaviours. Millikan (1984, §§1–2) defends this claim extensively in 
defining proper function.
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How do proper functions generate representational content? Entities that stand 
in a sender-receiver relationship to each other, and have a shared proper function 
as a consequence of selection, endow their intermediaries with representational 
content. The justification for this definition is as follows. The shared proper func-
tion is a downstream causal effect that the receiver must exercise causal influence to 
bring about, modelled in Fig. 2 as a certain value of the ‘Effect’ variable. However, 
external states of the world also have causal influence on the effect, meaning the 
receiver cannot simply act to produce the desired value. If the receiver could condi-
tion its behaviour on the external state, it could produce an appropriate act in order 
to ensure the effect takes the value required. But it cannot observe the state directly: 
the best it can do is condition its behaviour on the intermediary. When conditioning 
on the intermediary leads to greater success than acting unconditionally, teleose-
mantics asserts that this must be due to a relation between the intermediary and the 
external state. Teleosemantics identifies this relation as the basic form of represen-
tational content.10 When these circumstances hold, the intermediary is a representa-
tion and the external state is its truth condition.

There are in fact two kinds of basic representational relation. The one more com-
monly referred to is the descriptive relation, which holds between the signal and the 
external state. The other is the directive relation, which holds between the signal and 
the proper functional effect it is supposed to help bring about. Because teleoseman-
tics was originally developed as a theory of human natural language, the two basic 
relations are usually associated with indicative sentences (that say how the world 
is) and imperative sentences (that say what action to take). In basic systems, these 
two aspects are tightly coupled. A signal will have one particular state to which it 

Fig. 2  The basic teleosemantic model. The Receiver has a proper function to bring about some Effect 
(in a causal model, this function would be specified as a requirement to set the effect variable to a cer-
tain value). However, the receiver is hindered by interference from some State, causally upstream of the 
effect, on which the receiver cannot directly condition its behaviour. The Sender, which has a proper 
function to help the receiver achieve its function, produces a Signal on which the receiver can condition 
its behaviour. Teleosemantics asserts that when the receiver conditions its behaviour on the signal and 
is more successful than it would have been otherwise, this increased success can only be fully explained 
by adverting to a relation between the signal and the state. This relation is then the basic representa-
tional relation, or descriptive relation. The signal bears a directive relation to the proper functional effect 
(descriptive and directive relations illustrated with dashed lines). This figure and caption first appeared in 
Mann & Pain (2022).

10 More precisely: the content of a signal picks out which state would have to obtain in order for the 
signal to bear the appropriate relation to it. The appropriate relation is the one that must hold for the con-
sumer’s response to successfully achieve the effect.
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corresponds, and simultaneously one particular act it is supposed to prompt. In more 
complex systems, descriptive and directive aspects can come apart. There can be 
purely descriptive signals, which correspond to individual states of the world but do 
not prompt any single action. Complex systems can combine descriptive signals to 
form an accurate picture of the world and guide flexible behaviour. There can also 
be purely directive signals, which prompt specific actions but need not be tied to 
specific environmental circumstances.

The basic teleosemantic framework depicted in Fig. 2 occurs within models of 
cognition, and practitioners often draw on concepts of signalling, messaging, infor-
mation or representation in giving explanations. The theory thus offers an attrac-
tive option for understanding the content of prediction and prediction error signals 
in generative hierarchies, especially within the context of the practice-oriented 
approach.

5  A Teleosemantic Account of Content for Predictions and Prediction 
Errors

In this section we bring together teleosemantics, predictive processing, and struc-
tural resemblance. Our goal is to show how predictions and prediction error signals 
get their content.

5.1  Models in the Hierarchy are Senders and Receivers

Predictions and prediction errors are signals sent between models in the generative 
hierarchy. Models play the role of senders and receivers in the teleosemantic frame-
work. Consequently, our initial task is to address the following question: what is the 
proper function of a model in a generative hierarchy? At first pass, there look to be 
at least two plausible answers to this question.

In the broadest sense, a model is adaptive in so far as it is accurate with respect 
to the world. As we have seen, on Gładziejewski’s structural resemblance account, 
models resemble the causal-probabilistic structure of the world. To increase a mod-
el’s accuracy is thus to increase its causal-probabilistic resemblance with the world. 
All other things being equal, this allows an organism to interact more successfully 
with its environment. For instance, in the case of a trained rat, an accurate model 
will more reliably bring about the pressing of a lever that delivers food. So we might 
want to say that, in general, the proper function of a model is to accurately represent 
the world.

However, a model does not have direct access to the world; how then can it accu-
rately represent it? In the case of our rat, the problem is that the success-relevant 
effect—that is, the pressing of the lever—requires having an accurate model of a 
state of the world—that is, the lever itself. But the model cannot directly condition 
its behaviour on that state. What the model can directly access is the incoming sen-
sory signal, and the flow of top-down predictions and bottom-up error signals. As 
we have seen, a core commitment of predictive processing is that by conditioning 
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their behaviour on these signals, models will become more accurate with respect to 
the world. Hohwy (2013, pp. 50–51) argues that, for a model in a predictive process-
ing hierarchy, increasing mutual information with worldly affairs is extensionally 
equivalent to minimising prediction error. On the structural resemblance account 
outlined above, a model increasing its mutual information means that the values of 
hidden variables will come to map more reliably on to causal-probabilistic relation-
ships between objects in the world and an organism’s sensory states. Consequently, 
in a more restricted sense, we can say that models are adaptive in so far as they 
minimise prediction error. It is hence possible to understand prediction error mini-
misation as the proper function of a model.

The upshot is this. Minimally, the proper function of a model is to minimise pre-
diction error. However, given this entails that mutual information between a model 
and the world is maximised, this is extensionally equivalent to saying that the proper 
function of a model is to accurately represent the world. And in any specific case, 
this will cash-out as the need to accurately represent some particular part of the 
world. For instance, an accurate model of a lever is selected for in a rat via learning 
because it aids in the pressing of the lever, which delivers food.

The core commitments of teleosemantics and predictive processing thus mesh 
together well. Predictive processing offers a mechanism for understanding how the 
brain overcomes the central inferential problem it faces: identifying the external 
structure of the world from the noisy, uncertain signals it has direct access to. The 
structure of this mechanism should be familiar to teleosemanticists: by condition-
ing its behaviour on an internal signal, a device can aid an organism by producing 
adaptive responses to the external environment. What teleosemantics offers is a way 
of understanding why predictions and prediction error signals can be understood as 
representational. This is because explaining the increased success produced by more 
accurate models requires positing a relation between intermediaries—predictions 
and prediction errors—and external success-relevant circumstances. In the remain-
der of this section, we run through the mechanics of this proposal in more detail.

5.2  The Content of Prediction Signals

According to predictive processing every model throughout the generative hierarchy 
is constantly issuing predictions about the sensory input of the model directly below 
it. More specifically, higher models in the hierarchy issue predictions of future sen-
sory input which determine prior distributions used by lower models. When these 
predictions fail to match the sensory input the lower model receives from even fur-
ther down, error begins to rise in the system. By adjusting states of the world and 
their place in it, organisms can reduce this error. From a teleosemantic perspective 
we can understand the higher model in the hierarchy as the sender, the lower model 
as the receiver, and the prediction as the signal (see Fig. 3).

The two models are a pair of cooperating devices. The proper function of the 
receiver-model is to minimise prediction error over the long term and thus maxim-
ise its accuracy with respect to the causal-probabilistic structure of the world. But 
attaining these success conditions involves tracking circumstances that the model 
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cannot directly access (long-term error minimisation and states of the world). The 
sender-model emits a prediction signal, on which the receiver-model conditions 
its behaviour. More specifically, the prediction signal modulates the priors of the 
receiver-model, such that they reflect (at a finer spatio-temporal grain) the priors of 
the sender-model. The organism will then act to reduce the error that arises from the 
predictions produced when model priors are set in this way. This process of actively 
testing predictions against the world minimises prediction error over the long term. 
Consequently, by conditioning its behaviour on the prediction signal, the receiver-
model is better able to achieve its proper function.

On the teleosemantic analysis, explaining this success requires positing a relation 
between the internal signal and an external success-relevant condition. In the case 
of our trained rat, successful active inference will more reliably bring about lever-
pressing. The goal of lever pressing is selected at the highest level in the rat’s cogni-
tive system. Each model in the system then modulates its priors according to top-
down predictions regarding the sensory input expected from pressing the lever. The 
priors of the models are held fixed, and hence the only way to reduce the ensuing 
prediction error rising up through the system is to move in such a way as to match 
the initial predictions. This then brings about the actions required to complete the 
goal of lever-pressing. There is hence a descriptive relation between the prediction 
signal and the lever. In the case of active inference, initially this descriptive rela-
tion will mis-represent the lever. That is, it will predict the sensory input associated 
with the pressed lever, and not as the lever currently is (unpressed).11 The prediction 

Fig. 3  The content of prediction signals. P: Prediction; M1: a lower model in the hierarchy; M2: a higher 
model in the hierarchy. M2 emits P, which determines the priors of M1. These quantities are then held 
fixed, such that minimising the error raised against them results in bringing about the effect that is the 
proper function of M1. Over the long term, this process will both increase mutual information between 
models and the world and increase the accuracy of the system’s predictions. According to teleoseman-
tics, explaining this success requires positing a relation between P and the external success-relevant cir-
cumstances. A descriptive relation (represented with a dashed line) holds between P and upcoming sen-
sory input of M1. In the case of active inference, the content of P will mis-represent some state of the 
world. A directive relation (represented with a dashed line) holds between P and the effect that it is the 
proper function of M1 to bring about: altering the priors that encode its expectations about future sen-
sory input, and eventually raising a prediction error if that input diverges from P 

11 Here we follow Wiese (2017) in treating action as being prompted by systematic misrepresentation. 
On an alternative view, the descriptive content of the prediction is not that the lever is currently being 
pressed (the falsity of which prompts action) but that the lever will be pressed in the near future (the truth 
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signal will come to accurately represent lever-pressing when the motor system has 
moved the body in such a way as to reduce error and bring about the system’s goal. 
Thus there is a directive relation between the prediction and the external effect of 
lever-pressing.

The portrayal of action as a form of inference highlights a clash of perspectives 
between active inference and teleosemantics. Proponents of active inference say that 
since the process by which actions are chosen is relevantly similar to the process by 
which models are updated, we should describe action as a form of inference. Con-
trariwise, proponents of teleosemantics say that since anything that plays the role of 
action in the teleosemantic schema counts as action, and updating a model counts as 
action in the schema, so perceptual inference (which consists in updating a model) 
counts as action. We believe this is a difference of perspective rather than a disa-
greement over matters of fact.

Fig. 4  The content of prediction error signals. PE: Prediction Error; M1: a lower model in the hierarchy; 
M2: a higher model in the hierarchy. M1 emits PE, on which M2 updates its priors in order to account 
for the error. Conditioning its behaviour in this way will both increase mutual information between 
itself and the world and increase the accuracy of the model’s predictions. According to teleosemantics, 
explaining this success requires positing a relation between PE and the external success-relevant circum-
stances. A descriptive relation (represented with a dashed line) holds between PE and the magnitude of 
the difference between earlier predictions of M2 and sensory input received by M1. Because it concerns 
the content of the original prediction signal, the prediction error signal is a metarepresentation. A direc-
tive relation (represented with a dashed line) holds between PE and the effects that it is the proper func-
tion of M2 to bring about: either updating its priors (inference), or effecting some change in the world 
(action); either of which should serve to quash future prediction errors

Footnote 11 (continued)
of which is ensured by action) (Smith et al., 2022). Since we’re telling the story in terms of misrepre-
sentation, we might be subject to a broader set of issues that have been raised for teleosemantics in the 
past. We leave open whether these problems, if they arise, should be confronted directly, or whether the 
appropriate response is to switch to the ‘true prediction’ account. Thanks to an anonymous reviewer for 
raising this point.
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5.3  The Content of Prediction Error Signals

Recall that on the predictive processing story, bottom-up processing involves the 
transfer of prediction error. More specifically, each model in the hierarchy receives 
error signals from the one below it, adjusts its priors in an attempt to account for the 
error, and forwards any residual error to the model above it. This is the mechanism 
of perceptual inference. From a teleosemantic perspective we can treat the lower 
model in the hierarchy as the sender, the higher model as the receiver, and the pre-
diction error as the signal (see Fig. 4).

The two models are a pair of co-adapted, cooperating devices. The proper func-
tion of the receiver-model is to minimise prediction error over the long term and 
thus maximise its accuracy with respect to the causal-probabilistic structure of the 
world. But attaining these success conditions involves tracking circumstances that 
the model cannot directly access (long-term error minimisation and states of the 
world). The sender-model emits an error signal, on which the receiver-model condi-
tions its behaviour. More specifically, the receiver-model will update its parameters 
in an attempt to account for the incoming error signal. If this process is successful 
the model increases its accuracy, which has the effect of producing more accurate 
predictions in the future and hence minimises prediction error over the long term.

Prediction errors appear to be metarepresentational. Their content concerns the 
content of predictions, in that they say whether and how much a prediction was 

Fig. 5  Simplified form of the actor-critic framework discussed by Shea (2014, p. 320, Fig. 1). The sys-
tem employs a decision procedure Π that chooses acts A

i
 in proportion to their expected payoffs V

i
 . The 

actual payoff, r, of an act at the previous timestep is used to update the system’s estimates of V
i
 . This is 

done by generating a prediction error signal indicating the magnitude of the difference, � , between the 
expected reward and the actual reward. The system’s representation of the expected reward is updated 
based on this error and a learning parameter � . We have added a dashed-line box picking out the subsys-
tem that can be generalised to a model-to-model relationship within a generative hierarchy (Fig. 6)
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inaccurate. Shea (2014) has argued that a particular class of signals in the brain, 
bearing some similarities to the prediction errors discussed here, are metarepresen-
tational. The context of the argument is a particular computational model of neural 
processing, the actor-critic framework, within which a reward prediction error signal 
appears (Fig. 5).12 Shea argues that error signals in this framework are metarepre-
sentational, with their contents being about the inaccuracy of another (first-order) 
representation.

It is worth seeing whether Shea’s account applies to prediction error signals in the 
predictive processing hierarchy, and so it is worth outlining similarities and differ-
ences between the hierarchy and the actor-critic framework on which Shea’s account 
is based. First, Shea is making claims about specific signals that have been discov-
ered in the brain. Computational cognitive scientists have established that the actor-
critic framework is a good way to understand the dynamics and function of this part 
of the brain, and so the prediction error signals that appear in that framework are 
appropriately identified with the brain signals that play the equivalent prediction 
error role. We by contrast are discussing hypothetical prediction error signals that 
would be found in the brain if the generative hierarchy turns out to be an accurate 
depiction of brain activity. We don’t regard it as settled that the brain contains gen-
erative hierarchies but, if it does, we are committed to the claim that the contents of 
prediction errors are as we describe them here. Second, the actor-critic framework 
is much simpler than the predictive processing framework. The computations car-
ried out by an actor-critic system are called model-free, in that there is no compo-
nent representing causal relationships. There is just a point estimate representing the 
expected reward for a particular behaviour. It is this point estimate whose inaccuracy 
the prediction error signal indicates. By contrast, the predictive processing hierar-
chy is decidedly not model-free: it contains models whose purpose is to represent 
causal-probabilistic features. So the first-order representation whose content the pre-
diction error signal indicates cannot be exactly the same component in the actor-
critic framework and in the predictive processing framework. Instead, the prediction 
error indicates the inaccuracy of the prediction itself, not the model that emitted the 
prediction.

Although the first-order representation whose content the prediction error signal 
concerns is the prediction rather than the model that emitted it, a version of Shea’s 
argument in favour of metarepresentational content still goes through. Prima facie, 
the prediction error signal is metarepresentational. Its content is that the prediction 
was accurate or inaccurate. The content of the prediction error signal is that the 
prediction was in error by such-and-such an amount. It is this metarepresentational 
content that explains why the model updates its priors; when the signal correctly 
indicates the error in the prediction, the model’s updates cause it to produce more 
accurate predictions in future. In a way, this is a more general case of the actor-critic 

12 Shea uses the term “actor-critic model”. In this sense a model is a scientific device used to represent 
brain activity. In the sense we have been employing the term, a model is a component in a generative 
hierarchy that represents causal-probabilistic features of the world. To avoid confusion, in this section we 
will use the term ‘framework’ to label scientific models.
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framework (Fig. 6). In the actor-critic framework, the system keeps track of just one 
feature of the external world (the expected reward) and emits just one kind of pre-
diction (also the expected reward). In the predictive processing framework, a model 
keeps track of multiple features of the external world (every causal-probabilistic 
relationship that model represents) and emits multiple kinds of prediction (anything 
the creature could encounter that it is that particular model’s job to keep track of; 
i.e. anything at the appropriate level of spatiotemporal grain). Predictive processing 
systems are multi-tasking actor-critic systems. If we accept Shea’s claim of metarep-
resentational content in the latter, there is no special reason to withhold it from the 
former.

By conditioning its behaviour on the error signal, the receiver-model is better 
able to achieve its proper function. As we have seen, according to teleosemantics 
explaining this success requires positing a relation between the internal signal and 
an external success-relevant condition. Take the case of a model in a rat’s cognitive 
system whose proper function is to aid lever-pressing. The model adjusts its priors 
according to the bottom-up error signal. The proper function of the model deter-
mines the correspondence the error signal bears to the lever. Importantly, the general 
content of an error signal will always be the difference between predicted sensory 
input and actual sensory input. And in this particular case, the content will be the 
difference between the prediction initially issued by the model regarding expected 

Fig. 6  The boxed portion of the actor-critic framework (Fig. 5) is a degenerate kind of predictive pro-
cessing architecture. The main text leverages Shea’s argument to establish the claim that prediction error 
signals have metarepresentational content. Note that the component types in this figure do not match 
component types in the generative hierarchy, because the actor-critic framework is a ‘model-free’ means 
of using feedback to update representations. That is why the model at level n + 1 here appears in a circle, 
while the model at level n appears inside a rectangle: the actor-critic framework is cast in terms of repre-
sentations and linear operations, rather than models and signals
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sensory input caused by the lever and actual sensory input caused by the lever. There 
is hence a descriptive mapping relation between the prediction error signal and the 
lever, and a directive mapping relation between the prediction error signal and the 
external effect of lever-pressing.

5.4  The Sinister Figure Example: Teleosemantics Version

Let’s now run the sinister figure example through our hybrid structural resemblance-
teleosemantic account. Initially, when you wake, the sinister figure hypothesis domi-
nates. Prediction error is minimised if that hypothesis is deployed, as it best explains 
your current sensory input. Models in the system adjust their priors and issue pre-
dictions accordingly. Both predictions and prediction errors bear a descriptive rela-
tion to the untidy chair, with the indicative content <there is a sinister figure>. Of 
course, here that content is inaccurate with respect to the world.13 The sinister figure 
hypothesis also allows the system to raise new predictions, such as the prediction 
that turning on the light will reveal the identity of the sinister figure. This will pro-
duce corresponding prediction error, which can be minimised if you act in such a 
way as to bring the prediction about. Predictions (and hence prediction errors) bear 
a directive relation to the external state of affairs of turning on the light, with the 
imperative content <turn on light>. Here the system exploits a world-to-mind direc-
tion of fit. However, in this case the outcome of turning on the light will generate 
a mismatch between predicted sensory input and actual sensory input. In order to 
eliminate this error, a new hypothesis will be raised: the untidy chair hypothesis. 
Here the system exploits a mind-to-world direction of fit. The fact that models in 
the system condition their behaviour on the error signal here indicates that there is a 
representational relation between the error signal and the success-relevant external 
circumstances; that is, the untidy chair. The new hypothesis produces predictions 
bearing a descriptive relation to the untidy chair, with the indicative content <there 
is an untidy chair>.

This illustrates the neat way in which predictive processing and teleosemantics 
mesh. By minimising error, predictive brains are able to increase the accuracy of 
their models, despite having no direct link to the causes of their sensory inputs. 
Via appeal to success-relevant circumstances, teleosemantics gives us an account 
of how the flow of predictions and error can bear content about the external world; 
again, despite the brain having no direct contact with those circumstances.14 The 
overall picture we are advocating is that generative hierarchies are able to increase 

13 This illustrates an important point. According to predictive processing, the primary goal of cognitive 
systems is to minimise error. In general, this will produce the result that, over the long-term, models will 
become more accurate with respect to the world. But this will not always be the case. Sometimes the 
impetus to minimise error early in the hierarchy will lead to inaccuracies between models and the world. 
Illusory cases such as these draw a lot of interest from proponents of the view, as error minimisation is 
thought to provide an explanation for such perceptual phenomena. See for instance Hohwy’s discussions 
of binocular rivalry or the rubber hand illusion (Hohwy, 2013).
14 This is not to say that structural representation accounts do not mesh with predictive processing sys-
tems. Rather, we are simply motivating the thought that teleosemantics is likewise a good fit.
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their structural resemblance with the world by processing signals with teleosemantic 
content.

5.5  Two Objections

We now consider two important objections to our account.15 The first is that it seems 
wrong to treat higher-level models as senders and lower-level models as receivers. 
The second is that it seems wrong to treat the content of a first-order representation 
(i.e. a model) as dependent on the content of a meta-representation (i.e. an error sig-
nal). We address each in turn.

Intuitively, it seems strange to assign the role of sender to a higher-level model 
and the role of receiver to a lower-level model. Higher models lie ‘deeper’ within 
the cognitive system, further from the sensory surface and thus further from the 
world which they are supposed to be providing information about. Signals are sup-
posed to provide information about external states of affairs. But how can a model 
that is physically further away from the world provide a model that is physically 
closer to the world with information about the world? By contrast, the usual way 
the sender-receiver framework is applied to cognitive systems treats sensory appa-
ratus as the sender and motor apparatus as the receiver; this makes sense because 
sensory apparatus has access to worldly information that motor apparatus does not. 
Our application of the framework to the predictive processing hierarchy seems to get 
things the wrong way round.

To respond, our application of the sender-receiver framework makes sense when 
we consider the different information that is stored in models at different levels. 
Higher models store information that is relevant on longer timescales or that con-
cerns objects and events that are more causally opaque. It is true that they build up 
this information from the signals that are passed to them from the lower levels. But 
it need not be true that the predictions they pass back down the hierarchy contain 
information that those lower levels already possess. For one thing, there could be 
multiple lower models serving a single higher model, such that the higher model is 
able to integrate information and generate predictions that no single lower model 
could have access to. For another, the lower models might simply fail to encode and 
store information that is nonetheless transmitted further up the hierarchy, such that 
it is news to them when it comes back in the form of predictions. Consider by way 
of analogy a housebound analyst who receives letters from servants gathering infor-
mation from the outside world. If the servants were numerous enough and forgetful 
enough, eventually the analyst could gather more information (and issue more accu-
rate predictions) than any single servant.16

16 In not one but two of Agatha Christie’s Poirot mysteries (‘The Disappearance of Mr Davenheim’ and 
‘The Mystery of Hunter’s Lodge’) the eponymous detective solves the crime without leaving his home, 
relying solely on information provided by Inspector Japp and Captain Hastings—neither of whom figures 
out the solution before Poirot reveals it.

15 Thanks to an anonymous reviewer for raising these.
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The second objection stems from our characterisation of prediction error signals 
as metarepresentational. Our picture seems to suggest that the accuracy of a first-
order representation (i.e. a model in the hierarchy) is made possible by a metarepre-
sentation (i.e. an error signal). This looks problematic: presumably metarepresenta-
tions cannot be prior to the first-order representations they metarepresent. We should 
instead tell a story on which first-order representations come first and metarepresen-
tations are defined subsequently.

To respond, first note that Shea’s account has the same consequence. We charac-
terised predictive processing hierarchies as multi-tasking actor-critic systems, and in 
both cases a first-order representation is kept attuned to the world by use of an error 
signal. The use of an error signal to improve the accuracy of a first-order represen-
tation does not threaten its status as first-order. There is a difference between how 
the first-order representation gets its content and how it is kept accurate. So if we 
can give an account of how the first-order representation gets its content independ-
ent of any metarepresentational updating, we will have avoided the problem. And 
our account is just that the content of a model derives from its structural resem-
blance with external affairs. A model is a structural-resemblance representation that 
does not depend on error signals for its representational status or for its content, 
though it does utilise error signals to improve its accuracy. One might wonder how 
a model can gain representational status before the predictive processing hierarchy 
is ‘brought to life’, so to speak, with its first bouts of signalling. One possibility is to 
appeal to innate priors, such that a hierarchy has some amount of in-built structure 
that very loosely tracks (i.e. structurally resembles) features of the world. Brains are 
imbued with these in-built first-order representations, that may be vague or inac-
curate at the outset, and are then iteratively updated through experience. This is one 
possible way in which models can be attributed first-order representational content 
before the predictive processing hierarchy kicks into life; there may be others. The 
important point is that first-order representations do not depend on metarepresenta-
tions for their content or representational status, even if they do depend on them to 
remain accurate.

6  Why We Should Issue Pluralist Licences

We have offered a pluralist account of content for predictive processing architec-
tures: models in generative hierarchies get content in virtue of their causal-proba-
bilistic resemblance with the world; while signals get their content in virtue of their 
etiology. In this section we explore in more detail the motivating reasons for adopt-
ing a practice-oriented pluralism.

6.1  Practice‑Oriented Pluralism

Some may worry about pluralism. Shouldn’t we want to give a single overarching 
account of content in predictive processing architectures? Isn’t a unified account 
preferable to meshing together two different accounts? After all, the claim that 
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content is determined by histories of selection and the claim that content is deter-
mined by structural resemblance are very different claims: why think they will play 
nicely together? Methodological pluralism is not always a good thing, especially if 
you inherit the problems of both theories.

We think there are good reasons to adopt a pluralist approach to cognitive repre-
sentations despite these concerns. Here we align with those who express pessimism 
at the chances of ever finding a single unifying theory of representation via philo-
sophical means alone. Although the prospects for such a theory looked promising 
in the 1980s—particularly through the work of Fodor, Dretske and Millikan—prob-
lems persist.17 As a result, many feel those projects failed to deliver (Godfrey-Smith, 
2004; see also Planer & Godfrey-Smith, 2021; Shea et  al., 2017). One reason for 
this is that cognitive science spans the domains of folk-psychology and scientific-
psychology. This requires—to borrow Wilfrid Sellars’ famous terms—going back 
and forth between the manifest and scientific images. Given such disciplinary com-
plexity, we should expect to see a diversity of accounts of content emerge. Peter 
Godfrey-Smith puts the point as follows:

Cognitive scientists forge different kinds of hybrid semantic concepts in dif-
ferent circumstances—in response to different theoretical needs, and different 
ways in which scientific concepts of specificity and folk habits of interpreta-
tion interact with each other.
Godfrey-Smith (2004, p. 160)

Given this situation, what is the role of philosophers of cognitive science working 
on content? One answer is that the goal is to use philosophical analysis to distill a 
core, unifying concept that will cover all cases. However, as above, there are many 
who worry this project is not achieveable. Another answer is as follows: the goal is 
to describe the range of different concepts at play in cognitive science, and account 
for their explanatory purchase. On this view, the business of licensing content needs 
to be sensitive to the variety of representational concepts at play in cognitive sci-
ence. Pluralism, then, looks unavoidable.

Recent work by Nick Shea builds on this idea. Shea’s approach is to look at the 
way cognitive scientists use notions of representation to successfully explain behav-
iour. The result of this process is a “varitel” semantics, which combines teleoseman-
tics and structural correspondence (Shea, 2018, Chapter 2). Both offer organisms a 
relation with external circumstances that they are able to exploit. On Shea’s view, 
pluralism is a commitment of this explanatory strategy:

We may get one theory of content that gives us a good account of the correct-
ness conditions involved in animal signalling, say, and another one for cogni-
tive maps in the rat hippocampus. There is no need to find a single account that 
covers both.
Shea (2018, p. 43)

17 This is not to suggest that these theories are uniquely problematic. In this respect, they are in exactly 
the same position as every philosophical theory.
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For both Godfrey-Smith and Shea, exploring pluralist strategies offers the best way 
forward for those attempting to produce naturalised theories of content. Our account 
is developed with this general methodological commitment in view. But why is 
building in an etiological account of the content of signals in generative hierarchies 
useful? Our answer to this question is that there are, and are likely to be, many cases 
where doing so can help account for explanatory success in cognitive science. And 
if predictive processing—as a general theory of cognition—is to be applied to these 
cases, then building in teleosemantics is an important project. Covering the range 
of cases that might require teleosemantic treatment is well beyond the scope of this 
paper. However, below we run through a brief case study in order to illustrate the 
thinking behind it.

6.2  Practice‑Oriented Pluralism and Predictive Processing

As we have outlined, on Nick Shea’s view philosophical theories of content should 
be guided by cases of explanatory success in the cognitive sciences (Shea, 2018). 
And, given that cognitive science deals with such a broad range of cases, it is unsur-
prising that this process will produce a range of different approaches to content. 
Here we briefly run through an illustrative case: that of decision making in Rhe-
sus monkeys. However, it is worth noting that Shea offers a wide variety of cases, 
from neural network models (Shea, 2018, Section 4.3) to animal signalling (Shea, 
2018, Section 4.5). It is also important to note what is being claimed by Shea (and 
ourselves) in these cases. The claim is not that no other account of content might 
be capable of explaining the results produced in these studies. Rather the claim is 
that, when we look to these studies, we find that the type of content used to do the 
explanatory work is best captured by teleosemantics. To put this another way, the 
question is not “which theory of content best covers all these cases?", it is “which 
theory best accounts for explanatory success in this particular experimental case?". 
This reflects the practice-oriented approach: the role of philosophy is to describe the 
representational concepts that are being employed in successful scientific practice.

Teleosemantics is an outcome-oriented theory of content. Shea incorporates 
this notion into his theory of function, using the term consequence etiology (Shea, 
2018,  p.  48). Roughly the idea is that certain processes, such as natural selection 
and learning, stabilise traits in an organism. Shea’s account of function differs from 
the notion of proper function we’ve been working with, and the magnitude of that 
difference depends on the use to which the notions are put. One thing they have 
in common is that they fit naturally with studies employing reward-based learning 
paradigms, in particular the research cluster around the neurophysiology of reward. 
Many studies in this area aim to identify the values and likelihoods of reward func-
tions, where those values represent external circumstances that are good or bad out-
comes for the experimental subject. Behaviour stabilises in a subject—such as our 
lever-pushing rat—because certain signals in the subject’s cognitive system start to 
reliably correlate with specific rewards. In the opening paragraph of his overview on 
the neurophysiology of reward paradigm, Wolfram Schultz writes:
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The functions of rewards are based primarily on their effects on behavior and are 
less directly governed by the physics and chemistry of input events as in sensory 
systems. Therefore, the investigation of neural mechanisms underlying reward 
functions requires behavioral theories that can conceptualize the different effects 
of rewards on behavior. The scientific investigation of behavioral processes by 
animal learning theory and economic utility theory has produced a theoretical 
framework that can help to elucidate the neural correlates for reward functions 
in learning, goal-directed approach behavior, and decision making under uncer-
tainty.
Schultz (2006, p. 87)

It is easy to see why teleosemantics is well-placed to “conceptualize the different effects 
of reward on behaviour", and more why this research program aligns well with a conse-
quence etiology account of function. It gives us a precise way of showing how learning 
processes in a system can come to represent the utility of beneficial external outcomes.

For instance, in a study presented by Kiani and Shadlen (2009), Rhesus monkeys 
were given a post-decision wagering task. Subjects were required to make decisions 
about the overall direction of motion in a dynamic random dot display. The difficulty 
of this task was specified by the percentage of coherently moving dots and the length 
of time the display was viewed for. Saccadic eye movement was used to identify the 
monkey’s decision, directed toward either a right or left visual target. Correct decisions 
were given a liquid reward, while incorrect decisions were not. Finally, the monkeys 
were given a “sure target"; that is, a target in the centre of the screen that guaranteed a 
reward, but at approximately 80% of the liquid reward for a correct choice. The thought 
was that the monkeys would opt for the sure target as the difficulty of the task went up, 
which in turn would reflect the level of certainty they had in their ability to successfully 
complete the initial task. Kiana and Shadlen’s results supported this hypothesis.

Now, suppose we want to understand this experimental data using a predictive pro-
cessing framework. We need some way of understanding how the value of an external 
success-condition (the reward) comes to be represented by internal mechanisms, such 
that we can explain the behaviour of the subjects, and in particular the way the uncer-
tainty and reward values are balanced. As a teleosemantic treatment of internal sig-
nals gives us a consequence etiology account of function, it is well placed to deliver on 
this explanatory task. More broadly, this shows that, if we adopt the practice-oriented 
approach, developing a range of theories of content for predictive processing systems 
is an important task. This is because it gives us the tools to explain the broad range of 
experimental paradigms and results we find across the cognitive sciences.

7  Conclusion

Our goals in this paper were twofold. First, we wanted to show how a teleoseman-
tic account of content for prediction and prediction error signals could mesh with a 
broader causal-probabilistic account of generative heirarchies. We argued this pro-
cess revealed important similarities between the explanatory motivations and con-
ceptual machinery employed by teleosemantics and predictive processing. Second, 
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we wanted to advocate the virtues of pluralist approaches to representational con-
tent. We followed Peter Godfrey-Smith and Nick Shea in maintaining that a single, 
overarching account of content for cognitive science is unlikely to be successful. 
Cognitive scientists employ a range of different content-invoking concepts, and phi-
losophers should be developing frameworks that respect this theoretical diversity. 
We think this is a good reason to issue predictive processing with a pluralist licence 
for content.
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