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Abstract. The success of set theory as a foundation for mathematics inspires its use 
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briefly review classical set theory from an AI perspective, and then consider alterna- 
tive set theories. Desirable properties of a possible commonsense set theory are 
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" . . .  among all the mathematical theories, it is 
just the theory of sets that requires clarification 
more than any other." 

(Mostowski 1979) 

1. INTRODUCTION 

Set theory is a branch of modem mathematics with a unique place because various 
other branches can be formally defined within it (Suppes 1972). For example, 
Book 1 of the influential works of N. Bourbaki is devoted to the theory of sets, 
which provides the framework for the whole enterprise. Bourbaki has said in 
1949: " . . .  all mathematical theories may be regarded as extensions of the general 
theory of s e t s . . ,  on these foundations I can state that I can build up the whole 
of  the mathematics of  the present day" (Goldblatt 1984). Indeed, one can 
represent a natural number as a set, a rational number as a pair of natural numbers, 
a real number as a set of rationals, and so on (Mac Lane 1986). Hence, most 
of  the mathematical entities may be regarded as sets and set theory can be 
considered as the fundamental theory underlying mathematics. 1 This brings up 
the possibility of using set theory in foundational studies in artificial intelli- 
gence (AI), particularly in commonsense reasoning. McCarthy (1983) has 
emphasized the need for foundational research in AI and claimed that AI needs 
mathematical and logical theory involving conceptual innovations. He stated 
that one of  the key problems is the formalization of commonsense knowledge and 
reasoning. In his opening address in I J C A I - 8 5  (McCarthy 1985), he stressed 
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the feasibility of  using set theory in AI and invited researchers to concentrate 
on the subject. 

There is, in some sense, great beauty, economy, and naturalness in using sets 
for modeling and knowledge representation in AI (Akman 1992). This is owing 
to the fact that sets agree very well with our intuitions (Parsons 1990). G6del 
(1947) eloquently states this in the following excerpt: 

But despite the remoteness from sense-experience, we do have something like a perception of 
the objects of set theory, as is seen from the fact that the axioms force themselves upon us as 
being true. I don't see any reason why we should have less confidence in this kind of percep- 
tion, i.e., in mathematical intuition, than in sense-perception. 

In this survey, we first give a brief review of classical set theories, trying to 
avoid the technical details - which the reader can find in classical texts like 
(Halmos 1974) or (Fraenkel et al. 1973) - and instead focusing on the under- 
lying concepts. We then consider the alternative set theories which have been 
proposed throughout the century to overcome the limitations of classical theories. 
Later, we investigate the properties of a possible commonsense set theory, treating 
different aspects such as urelements, cumulative hierarchy, self-reference, car- 
dinality, well-orderings, and so on. We finally summarize the noteworthy research 
on the subject and offer our concluding remarks. 

2. CLASSICAL SET THEORY 

2.1. Earliest Developments 

G. Cantor 's work on the theory of  infinite series and related topics should be 
considered as the foundation of the research in set theory. In Cantor's concep- 
tion, a set, or aggregate, is a collection into a whole of definite, distinct objects 
of our perception or our thought, called the elements of the set (Cantor 1883). 
This property of definiteness implies that given a set and an object, it is possible 
to determine if the object is a member of  that set; in other words, a set is com- 
pletely determined by its members. 

In the earlier stages of  his research, Cantor did not work from axioms (Suppes 
1972). However,  all of  his theorems can be derived from three axioms: 
Extensionality which states that two sets are identical if  they have the same 
members, Abstraction which states that for any given property there is a set whose 
members are just those entities having that property, and Choice which states 
that if b is a set, all of  whose elements are non-empty sets no two of which 
have any elements in common, then there is a set c which has precisely one 
element in common with each element of  b. 

The theory was soon threatened by the introduction of  some paradoxes which 
led to its evolution. In 1902, Russell found a contradiction in Frege's founda- 
tional system (Frege 1893) which was developed on Cantor's naive set conception 
(van Heijenhoort 1967). Frege's reaction to this can be found in the appendix 
to the second volume of  his famous Grundgesetze der Arithmetik: "Hardly 
anything more unfortunate can befall a scientific writer than to have one of the 
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foundations of  his edifice shaken after the work is finished. This was the position 
I was placed in by a letter of Mr. Bertrand Russell." This contradiction could 
be derived from the Axiom of Abstraction (which was named Axiom V in Frege's 
system) by considering "the set of all things which have the property of not being 
members of themselves." This property can be denoted as ~(x  e x) in the language 
of first-order logic. (~(x e y) will be denoted as x ~ y from now on). 

The Axiom of Abstraction can be formulated as 

Vx3y[x e y ~-~ qo(x)], 

where q0(x) is a formula in which y is free. In the case of  Russell 's Paradox 
q0(x) 0= x ~ x and we have: Vx3y[x ~ y ~ x ~ x]. Substituting y for x, we reach 
y ~ y ~ y ff y. The problematic thing here is the set x with property x ~ x. 

Another antinomy occurred with the conception of the "set of all sets," V -- 
{x : x -- x}. The well-known Cantor 's Theorem states that the power set (set 
of all subsets) of  V has a greater cardinality than V itself. This is obviously 
paradoxical since V by definition is the most inclusive set. This is the so-called 
Cantor's Paradox (Cantor 1932) and led to discussions on the sizes of  compre- 
hensible sets. Strictly speaking, it was Frege's  foundational system that was 
overthrown by Russell's Paradox, not Cantor's naive set theory. The latter came 
to grief precisely because of the preceding "limitation of size" constraint. Later, 
von Neumann would clarify this problem of size by stating that (Goldblatt 1984) 
"Sorne predicates have extensions that are too large to be successfully encom- 
passed as a whole and treated as a mathematical object." 

Such paradoxes shook the theory to its foundations and were instrumental in 
new axiomatizations of the set theory or in alternate approaches. However, it is 
believed that axiomatic set theory would still have evolved in the absence of 
paradoxes because of the continuous search for foundational principles. 
Axiomatization of  a theory is important since it provides a concise formulation 
of the principles of  the theory and allows fundamental notions like complete- 
ness and consistency to be discussed in a precise way; these would be formulated 
in an imprecise manner (e.g., in natural language) otherwise. 

2.2. Alternate Approaches and Axiomatizations 

The new axiomatizations took a common step for overcoming the deficiencies 
of the naive approach by introducing classes, a membership-eligible entity cor- 
responding a given condition. NBG, which was proposed by von Neumann (1925) 
and later revised and simplified by Bernays (1937) and G6del (1940), was the 
most popular of these. In NBG, there are three primitive notions: set, class, and 
membership. Classes are considered as totalities corresponding to some, but not 
necessarily all, properties. The classical paradoxes are avoided by recognizing 
two types of classes: sets and proper classes. A class is a set if it is a member 
of some class. Otherwise, it is a proper class. Russell's Paradox is avoided by 
showing that the class Y -- {x : x ~ x} is a proper class, not a set. V is also 
considered as a proper class. The axioms of NBG are simply chosen with respect 
to the limitation of size constraint. 
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Strengthening NBG by replacing the axioms of class existence with an axiom 
scheme, a new theory called Morse-Kelley (MK) is obtained (Morse 1965). MK 
is suitable if one is not interested in the subtleties of set theory. But its strength 
risks its consistency (Mendelson 1987). 

Ackermann (1956) also proposed an axiomatization again employing classes, 
but in which the central objects are sets. The main point of this axiomatization 
is that its axioms retain only the weakest consequences of the limitation of size 
contraint, i.e., a member of a set and a subclass of a set are sets. 

Other approaches against the deficiencies of the naive approach alternatively 
played with its language and are generally called type-theoretical approaches. 
Russell and Whitehead's Theory of  Types is the earliest and most popular of these 
(Whitehead and Russell 1910). In this theory, a hierarchy of types is established 
to forbid circularity and hence avoid paradoxes. For this purpose, the universe 
is divided into types, starting with a collection M of individuals. The elements 
of M are of type 0. Sets whose members are of type 0 are said to be of type 1, 
sets whose elements are of type 1 are said to be of type 2, and so on. The 
membership relation is defined between sets of different types, e.g., x ~ ~ yn+l. 
Therefore, x ~ x is not even a valid formula in this theory and Russell's Paradox 
is avoided. 

Similar to the Theory of Types is Quine's New Foundations (NF) which he 
invented to overcome some unpleasant aspects of the former (Quine 1937). NF 
uses only one kind of variable and a binary predicate letter ~ for membership. 
A notion called stratification is introduced to maintain the hierarchy of types) 
In NF, Russell's Paradox is avoided as in the Theory of Types, since x ~ x is 
not stratified. 

2.3. ZF Set Theory 

Zermelo-Fraenkel (ZF) is the earliest axiomatic system in set theory. The first 
axiomatization was by Zermelo (1908). Fraenkel (1922) observed a weakness 
of Zermelo's system and proposed a way to overcome it. His proposal was 
reformulated by Skolem (1922) by introducing a new axiom. This axiomatiza- 
tion is carried out in a language which includes sets as objects and E for 
membership. Equality is defined externally by the Axiom of Extensionality which 
states that two sets are equal if and only if they have the same elements. 

ZF's essential feature is the cumulative hierarchy it proposes (Parsons 1977). 
The intention is to build up mathematics by starting with the empty set and 
then construct further sets in a stepwise manner by various defined operators. 
Hence there are no individual objects (urelements) in the universe of this theory. 
The cumulative hierarchy works as follows (Tiles 1989). 

The Null Set Axiom guarantees that there is a set with no elements, i.e., the 
empty set 0 .  This is the only set whose existence is explicitly stated. The Pair 
Set Axiom states the existence of a set which has a member when the only existing 
set is 0 .  So the set {0 } can now be formed now and we have two objects 0 
and {0 }. The application of the axiom repetitively yields any finite number of 
sets, each with only one or two elements. It is the Sum Set Axiom which states 
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the existence of sets containing any finite number of elements by defining 
the union of already existing sets. Thus U {{0 ,  {O}}, {{0 ,  { 0 } } } }  = 
{0 ,  {O}, {0 ,  {0}}}.  However  it should be noted that all these sets will be 
finite because only finitely many sets can be formed by applying Pair Set and 
Sum Set finitely many times. It is the Axiom o f  Infinity which states the 
existence of at least one infinite set, from which other infinite sets can be formed. 
The set which the axiom asserts to exist is {0 ,  {O}, {0 ,  {O}}, {O,{O},  
{0 ,  {0}}}  . . . .  }. The cumulative hierarchy is depicted in Figure 1. Thus, the 
ZF universe simply starts with the O and extends to infinity. It can be noticed 
that cumulative hierarchy produces all finite sets and many infinite ones, but it 
does not produce all infinite sets (e.g., V). 

Fig. 1. ZF universe extending in a cumulative hierarchy. 

While the first five axioms of ZF are quite obvious, the Axiom o f  Foundation 
cannot be considered so. The axiom states that every set has elements which 
are minimal 3 with respect to membership,  i.e., no infinite set can contain an 
infinite sequence of members . . . E x3 E xz E x~ E Xo. Infinite sets can only 
contain sets which are formed by a finite number of iterations of set formation. 
Hence this axiom forbids the formation of  sets which require an infinity of  
iterations of an operation to form sets. It also forbids sets which are members 
of themselves, i.e., circular sets. Russell 's Paradox is avoided since the prob- 
lematic set x -- {x} cannot be shown to exist. (This will be demonstrated shortly.) 
The Axiom o f  Separation makes it possible to collect together all the sets 
belonging to a set whose existence has already been guaranteed by the previous 
axioms and which satisfy a property q~: 

Vx3u[x E u ~ x ~ v & ~(x)]. 

The axiom does not allow to simply collect all the things satisfying a given mean- 
ingful description together into a set, as assumed by Cantor by his Axiom of 
Abstraction. It only allows to form subsets of a set whose existence is already 
guaranteed. It also forbids the universe of sets to be considered as a set, hence 
avoiding the Cantor's Paradox of the set of all sets. The Axiom o f  Replacement 
is a stronger version of the Axiom of Separation. It allows the use of functions 
for the formation of sets but still has the restriction of the original Axiom of 
Separation. It should be noted that these two axioms are in fact not single 
axioms but axiom schemes. They become axioms when one substitutes a specific 
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description or relational expression in the language of ZF instead of the variable 
expression ¢p(x). Therefore, we say that ZF is not finitely axiomatizable. 4 

The Power Axiom states the existence of  the set of  all subsets of  a previ- 
ously defined set. The formal definition of the power operation, P, is P(x) = 
{y : y C x}. The Power Axiom is an important axiom, because Cantor's notion 
of an infinite number was led by showing that for any set, the cardinality of its 
power set must be greater than its cardinality. 5 

The Axiom of Choice is not considered as a basic axiom and is explicitly stated 
when used in a proof. ZF with the Axiom of Choice is known as ZFC. 

It should be noted that the informal notion of cumulative hierarchy summa- 
rized above has a formal treatment. The class WF of well-founded sets is defined 
recursively in ZF starting with O and iterating the power set operation P where 
a rank function R(tz) is defined for ct ~ Ord, the class of  all ordinals: 6 
• g ( 0 )  = 0 ,  

• R(a  + 1) = P(R(a)) ,  
• R(a)  -- Up<~R([3) when a is a limit ordinal, 
• W F  = U { R ( a )  : a ~ Ord}. 
This universe of WF is depicted in Figure 2 which bears a resemblance to 
Figure 1. This is justified by the common acceptance of  the statement that the 
universe of ZF is equivalent to the universe of  WF (Kunen 1980). 

Let us now recall Russell 's Paradox. We let r be the set whose members are 
all sets x such that x is not a member of x. Then for every set x, x a r if and 
only if x ¢ x. Substituting r for x, we obtained the contradiction. 

With the preceding discussion of WF the explanation is not difficult. When 
we are forming a set z by choosing its members, we do not yet have the object 
z, and hence cannot use it as a member of z. The same reasoning shows that 
certain other sets cannot be members of  z. For example,  suppose that z ~ y. 
Then we cannot form y until we have formed z. Hence y is not available and there- 
fore cannot be a member of z. Carrying this analysis a bit further, we arrive at 
the following. Sets are formed in "stages." For each stage S, there are certain 
stages which are before S. 

R(a) 

Fig. 2. WF universe defined recursively in terms of ordinals. 
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Stages are important because they enable us to form sets. Suppose that x is 
a collection of sets and Z is a collection of stages such that each member of x 
is formed at a stage which is a member of Z. If there is a stage after all of the 
members of E, then we can form x at this stage. Now the question becomes: Given 
a collection 2 of  stages, is there a stage after all of  the members of E? We 
would like to have an affirmative answer to this question. Still, the answer cannot 
always be "yes"; if Z is the collection of all stages, then there is no stage after 
every stage in Z. 

It can be said that ZF and NBG produce essentially equivalent set theories, 
since it can be shown that NBG is a conservative extension of ZF, i.e., for any 
sentence % if ZF ~ % then NBG ~ (p (Mendelson 1987). The main difference 
between the two is that NBG is finitely axiomatizable, whereas ZF is not. Still, 
most of the current research in set theory, e.g., research on independency and con- 
sistency, is being carried out in ZE Nevertheless, ZF has its own drawbacks 
(Barwise 1975). First of all, it is too weak to decide some questions like the 
Continuum Hypothesis (G6del 1947). Another critical point is that while the 
cumulative hierarchy provides a precise formulation of many mathematical 
concepts, it may be asked whether it is limiting, in the sense that it might be 
omitting some interesting sets one would like to have around, e.g., circular sets. 
Clearly, the theory is weak in applications involving self-reference because 
circular sets are prohibited by the Axiom of Foundation. 

Strangely enough, ZF is too strong in some ways. Important differences on 
the nature of the sets defined in it are occasionally lost. For example, being a 
prime number between 6 and 12 is a different property than being a solution 
to x 2 - 18x + 77 = 0, but this difference disappears in ZF. Similarly, for an 
arbitrary Abelian group (G, +), all of  the following subgroups of G are consid- 
ered as equivalent in ZF (Barwise 1975), while the definitions are increasing in 
logical complexity: 7 
• p G =  { p x : x  ~ G } - - t h e l e f t c o s e t o f G ,  
• T =, { x  : nx -- 0 for some integer n > 0} = the torsion subgroup of G, 
• U { H  : H is a divisible subgroup of G } = the divisible part of G. 

A desirable property, the Principle of Parsimony, which states that simple facts 
should have simple proofs, is quite often violated in ZF (Barwise 1975). For 
example, the verification of a trivial fact like the existence in ZF of a × b, the 
set of  all ordered pairs (x, y) such that x ~ a and y ~ b, relies on the Power 
Set Az~iom. 8 

It can also be claimed mathematical practice suffers from the fact that all 
the mathematical objects are represented as sets in ZF. For example, while one 
can construct in ZF something isomorphic to the real line, the practicing math- 
ematician is not very interested in this. Representing reals as sets could be 
considered important from a theoretical view-point, but we should hardly ever 
worry about the fact that ~ can be determined by the infinite sequence (1, 2), 
(1.4, 1.5), (1.41, 1.42) . . . .  
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3. ALTERNATIVE SET THEORIES 

3.1. Admissible Set Theory 

Admissible sets are formalized in a first order set theory called Kripke-Platek (KP) 
(Kripke 1964). Barwise weakened KP to a new theory KPU by readmitting the 
urelements (Barwise 1975). Urelements are the objects (or individuals) with no 
elements, i.e., they can occur on the left of  ~, but not on the right. They are 
not considered in ZF because ZF is strong enough to live without them. But 
since KPU is a weak version of KP, Barwise decided to include them. 

KPU is formulated in a first order language L with equality and with the 
membership symbol added. It has six axioms. The axioms of  Extensionality 
and Foundation are about the basic nature of  sets. The axioms Pair, Union, 
and Ao-Separation 9 treat the principles of  set construction. These five axioms 
can be taken as corresponding to ZF axioms of the same interpretation. The impor- 
tant axiom of Ao-Collection assures that there are enough stages in the (hierar- 
chical) construction process. 

The universe of admissible sets over an arbitrary collection M of urelements 
is defined recursively: 
• V , , , ( O )  = ~ ,  
• VM(~ + 1) = P(M U VM(CX)), 
• VM(X) = U~<~VM(eO, if ~ is a limit ordinal, 
• v M - -  U,,v~(~). 
where P is the power operation, and t~ and ~. are ordinals. This universe can be 
depicted as in Figure 3. It should be noticed that the KPU universe is like the 
ZF universe (excluding the existence of urelements), since it supports the same 
idea of  cumulative hierarchy (Barwise 1977). 

If M is a structure ]° for L, then an admissible set over M is a model UM of 
KPU of the form UM = (M; A, E), where A is a nonempty set of  non-urelements 
and ~ is defined in M x A. Such a typical admissible set over M can be depicted 
as in Figure 4. A pure admissible set is an admissible set with no urelements, 
i.e., it is a model of KP. Such a set can be depicted as in Figure 5. 

KPU is an elegant theory which supports the concept of  cumulative hier- 
archy and respects the principle of parsimony. (The latter claim will be proved 
in the sequel.) But it still cannot deal with self-reference because of  its hierar- 
chical nature. 

V M (ct) 

Fig. 3. The universe of admissible sets (adapted from (Barwise 1975)). 
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Fig. 4. A typical admissible set (adapted from (Barwise 1975)). 

Fig. 5. A pure admissible set (adapted from (Barwise 1975)). 

3.2. Hyperset Theory 

It was Mirimanoff (1917) who first stated the fundamental difference between 
well-founded and non-well-founded sets. He called sets with no infinite descending 
membership sequence well-founded and others non-well-founded. Non-well- 
founded sets have been extensively studied through decades, but did not show 
up in notable applications until Aczel. This is probably due to the fact that 
the classical well-founded universe was a rather satisfying domain for the 
practicing mathematician ("the mathematician in the street" (Barwise 1985)). 
Aczel 's work on non-well-founded sets evolved from his interest in modeling 
concurrent processes. He adopted the graph representation for sets to use in 
his theory. A set like a -- {b, {c, d}} can be unambiguously depicted as in 
Figure 6 in this representation (Aczel 1988), where an arrow from a node x to 
a node y denotes the membership relation between x and y (i.e., y c x). 

A set (pictured by a graph) is called well-founded if it has no infinite paths 
or cycles, and non-well-founded otherwise. Aczel's Anti-Foundation Axiom, AFA, 
states that every graph, well-founded or not, pictures a unique set. Removing 
the Axiom of Foundation (FA) from the ZFC and adding the AFA results in 
the Hyperset Theory. (ZFC without FA is denoted as ZFC-.) What is advan- 
tageous with the new theory is that since graphs of arbitrary form are allowed, 
including the ones containing proper cycles, one can represent self-referring 
sets. For example, the graph in Figure 7 is the picture of  the unique set f2 = 
~} .  

The picture of a set can be unfolded into a tree picture of the same set. The 
tree whose nodes are the finite paths of the apg 11 which start from the point of 
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a 

Fig. 6. Representation of the set a = {b, {c, d}} in Aczel's conception. 

II 

Fig. 7. The picture of the circular set f~ = {f]}. 

the apg, whose edges are pairs of paths (n o --~ . . . ~ n, n o ~ . . . ~ n ~ n'), 
and whose root is the path n o of length one is called the unfolding of that apg. 
The unfolding of an apg always pictures any set pictured by that apg. Unfolding 
of the apg in Figure 7 results in an infinite tree, analogous to ~ ~ {{{ . . . }}} .  

According to Aczel 's  conception, for two sets to be different, there should 
be a genuine structural difference between them. (Therefore all the three graphs 
in Figure 8 depict the unique non-well-founded set f~ ~- {f2}.) 

f~C 

fl 

( ) 

fl l l  

fi 

Fig. 8. Other graphs depicting f~. 
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Aczel develops his own extensionality concept by introducing the notion of 
bisimulation. A bisimulation between two apg's, G1 with point Pt and G2 with 
point P2, is a relation R C G~ x G2 satisfying the following conditions: 
1. plRp2 
2. if nRm then 

• for every edge n --+ n' of  G~, there exists an edge m --~ m' of  G2 such 
that n'Rm' 

• tor every edge m ---) m' of  G2, there exists an edge n --~ n' of  G~ such 
that n'Rm' 

Two apg's G~ and G2 are said to be bisimilar, if  a bisimulation exists between 
them; this means that they picture the same set. It can be concluded that a set 
is completely determined by any graph which pictures it. 

The uniqueness property of AFA leads to an intriguing concept of exten- 
sionality for hypersets. The classical extensionality paradigm, that sets are equal 
if and only if they have the same members, works fine with well-founded sets. 
However, this is not of use in deciding the equality of say, a -- {1, a} and b = 
{1, b} because it just asserts that a = b if and only if a -- b, a triviality (Barwise 
and Etchemendy 1987). However, in the universe of hypersets, a is indeed equal 
to b since they are depicted by the same graph. To see this, consider a graph G 
and a decoration D assigning a to a node x of G, i.e., D(x) = a. Now consider 
the decoration D'  exactly the same as D except that D'(x) = b. D'  must also be 
a decoration for G. But by the uniqueness property of AFA, D -- D', so D(x) = 
D'(x) ,  and therefore a --- b. 

The AFA universe can be depicted as in Figure 9, extending around the well- 
founded universe, because it includes the non-well-founded sets which are not 
covered by the latter. 

3.2.1. Equations in the AFA Universe 
Aczel 's theory includes another important useful feature: solving equations in 
the universe of Hypersets. 

Let ~A be the universe of  hypersets with atoms from a given set A and let 
~A" be the universe of hypersets with atoms from another given set A' such that 
A C_ A" and X is defined as A' - A. The elements of X can be considered as 
indeterminates ranging over the universe ~A" The sets which can contain atoms 

A F A universe 
/ N 

Fig. 9. AFA universe extending around the well-founded universe (adapted from (Barwise and 
Etchemendy 1987)). 
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from X in their construction are called X-sets .  A sys tem o f  equat ions  is a set of 
equations 

{ x = a x : x • X A a x i s a n X - s e t }  

for each x • X. For example,  choosing X -- {x, y, z} and A = {C, M} (thus 
A' -- (x, y, z, C, M}), consider the system of equations 

x =  (C, y}, 
y -- (C, z}, 
Z-- {M, x}. 

A solut ion to a system of equations is a family of pure sets b x (sets which can 
have only sets but no atoms as elements), one for each x • X, b~ -- ~a~. Here, 

is a subs t i tu t ion  opera t ion  (defined below) and rca is the pure set obtained 
from a by substituting b~ for each occurrence of an atom x in the construction 
of a. 

The Subs t i tu t ion  L e m m a  states that for each family of  pure sets b~, there 
exists a unique operation ~ which assigns a pure set rca to each X-set a, viz., 

na  = {rob : b is an X-se t  such that b • a} U {~x : x • a n X}. 

The Solution L e m m a  can now be stated (Barwise & Moss 1991). If ax is an X- 
set, then the system of equations x = a~(x • X )  has a unique solution, i.e., a unique 
family of pure sets b~ such that for each x • X ,  bx ~ rcax. 

This lemma can be stated somewhat differently. Letting X again be the set 
of indeterminates, g a function from X to P(X) ,  and h a function from X to A, 
there exists a unique function f f o r  all x • X such that 

f ( x )  = {f(y)  : y • g(x)} U h(x). 

Obviously, g(x)  is the set of indeterminates and h(x) is the set of atoms in each 
X - s e t  ax of an equation x = a~. In the above example, g(x)  = {y}, g(y)  = {z}, 
g(z) = {x}, and h(x)  = {C}, h(y)  = {C}, h(z) = {M}, and one can compute the 
solution 

f ( x )  = {C, {C, {M, x } } }, 
f (y)  = (C, {M, {C, y}}}, 
f ( z )  -~ (M, (C, (C, z}}}, 

The Solution Lemma is an elegant result, but not every system of equations 
has a solution. First of all, the equations have to be in the form suitable for the 
Solution Lemma. For example, a pair equations such as 

x - -  { y , z } ,  

y = {1, x}, 

cannot be solved since it requires the solution to be stated in terms of the inde- 
terminate z. (These are analogous to the Diophantine equations.) As another 
example, the equation x = P(x)  cannot be solved because Cantor has proved (in 
ZFC-) that there is no set which contains its own power set - no matter what 
axioms are added to ZFC-. 
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As another example due to (Barwise and Etchemendy 1987), it may be verified 
that the system of equations 

x-- {C, M, y}, 
y = {M, x}, 
z =  {x , y ) .  

has a unique solution in the universe of Hypersets depicted in Figure 10 with 
x - - - a , y - - b ,  andz---c. 

C 

O O 
C M 

Fig. 10. The solution to a system of equations (adapted from (Barwise and Etchemendy 1987)). 

This technique of solving equations in the universe of hypersets can be very 
useful in modeling information which can be cast in the form of equations (Pakkan 
1993); e.g., situation theory (Barwise and Perry 1983), databases, etc. since it 
allows us to assert the existence of some graphs (the solutions of the equations) 
without having to depict them with graphs. We now give an example from 
databases. 

3.2.2. AFA and Relational Databases 
Relational databases embody data in tabular forms and show how certain objects 
stand in certain relations to other objects. As an example adapted from (Barwise 
1990), the database in Figure 11 includes three binary relations: FatherOf, 
MotherOf, and BrotherOf. (Binary relations can be represented as sets of ordered 
pairs such that if an object a stands in relation R to another object b, denoted 
by aRb, then (a, b) ~ R.) A database model is a function M with domain some 
set Rel of binary relation symbols such that for each relation symbol R ~ Rel, 
R M is a finite binary relation that holds in model M. 

If one wants to add a new relation symbol SizeOf to this database, then Rel' 
= Rel U {SizeOf}. A database model M for Rel' is correct if the relation SizeOf M 
contains all pairs (R, n) where R ~ Rel and n --- IR 1, the cardinality of R. Such 
a relation can be seen in Figure 12. Now it may be taken for granted that every 
database for Rel can be extended in a unique way to a correct database for Reg. 
Unfortunately, this is not so. 
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FatherOf 

John Bill 

John Kitty 

Tom Tim 

MotherOf 

Sally Tim 

Kathy Bill 

Kathy Kitty 

Fig. 11. 

BrotherOf 

I Bill I Kitty I 

A relational database consisting of three binary relations. 

SizeOf 

FatherOf 3 

MotherOf 3 

BrotherOf 1 

SizeOf 4 

Fig. 12. The SizeOf relation defined for the database in Figure 11. 

Assuming the FA, it can be shown that there are no correct database models. 
Because if M is correct, then the relation SizeOf stands in relation SizeOf to n, 
denoted by SizeOf SizeOf n. But this is not true in ZFC because otherwise 
(SizeOf, n) E SizeOf. 

If Hyperset Theory is used as the meta-theory instead of ZFC in modeling such 
databases, then the solution of the equation 

x = {(R M, IgUl) : e  ~ R e l }  U {(x, IRell + 1)} 

(which can be found by applying the Solution Lemma) is the desired SizeOf 
relation. 

4. COMMONSENSE SET THEORY 

4.1. Mot ivat ion 

The success of  set theory in mathematics owes to the fact that all compound 
entities and the relations between their parts can be represented in terms of  sets. 
We claim that this also applies to commonsense set theory. 

If  we want to design artificial systems which will work in the real world, 
they must have a good knowledge of that world and be able to make inference 
out of  their knowledge. The common knowledge which is possessed by any 
child and the methods of making inferences from this knowledge are known as 
common  sense.  Common sense covers the fields of experience in which we all 
reason the same way and to the same effect. Any intelligent task requires it to 
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some degree and designing programs with common sense is one of the most 
important problems in AI. McCarthy (1969) claims that the first task in the 
construction of a general intelligent program is to define a naive commonsense 
view of the world precisely enough, but also adds that this is a very difficult thing. 
He states that "a program has common sense if it automatically deduces for 
itself a sufficiently wide class of immediate consequences of anything it is told 
and What it already knows," and proposes a program, the Advice Taker (McCarthy 
1959). 

It appears that in commonsense reasoning, a concept can be considered as 
an indivisible unit, or as composed of other parts, as in mathematics. Relation- 
ships, again as in mathematics, can also be represented with sets. For example, 
the notion of "society" can be considered to be a relationship between a set of 
people, rules, customs, traditions, etc. What is problematic here is that com- 
monsense ideas do not have very precise definitions since the real world is too 
imprecise. We can face commonsense ideas in a variety of ways: by example, 
counter-example,  analogy, or partial description (Perlis 1988). Even then we 
may not consider them in terms of  indivisibles but in somehow composed ways. 
For example, consider the following definition of "society" (adapted from the 
Webster's Ninth New Collegiate Dictionary with some modifications): 

Society gives people having common traditions, institutions, and collective activities and inter- 
ests a choice to come together to give support to and be supported by each other and continue 
their existence. 

It should be noted that the notions "tradition," "institution," and "existence" 
also appear to be as complex as the definition itself. So this definition should 
probably better be left to the experience of the reader with all these complex 
entities. 

Nevertheless, sets may still be useful in commonsense reasoning. Whether 
or not a set theoretical definition is given, sets are useful for conceptualizing 
commonsense terms. For example, we may want to consider the set of "tradi- 
tions" disjoint from the set of "laws" (one can quickly imagine two separate circles 
of a Venn diagram). We may not have a well-formed formula which defines either 
of these sets. Such a formation process of collecting entities for further though 
is still important and simply corresponds to the set formation process of formal 
set theories, i.e., the comprehension principle. It helps us name the unities we 
have formed out of entities and use those names for further reference to those 
unities. 

Having decided to investigate the use of  sets in commonsense reasoning, we 
have to concentrate on the properties of such a theory. Instead of directly checking 
if certain set-theoretic technicalities have a place in our theory, we first look from 
the commonsense reasoning point of view and examine the set-theoretic princi- 
ples which cannot be excluded from such reasoning. 

4.2. Desirable Properties 

A theory proposed for commonsense reasoning should be examined from a variety 
of angles. We first begin with the general principles of set formation. The first 
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choice that comes to mind is to allow urelements. This seems like the right 
thing to do because in a naive sense, a set is a collection of  individuals 
satisfying a property. This is what exactly corresponds to the unrestricted 
Comprehension Axiom of  Cantor. However,  we have seen that this leads to 
Russell's Paradox in ZF. The problem arises when we use a set whose comple- 
tion is not over yet in the formation of another set, or even in its own formation. 
Then we are led to the question when the collection of all individuals satis- 
fying an expression can be considered an individual itself. Since we are talking 
about the individuals as entities formed out of  previously formed entities, the 
notion of  cumulative hierarchy immediately comes to mind. 

The cumulative hierarchy is one of  the most common construction mechanisms 
of our intuition and is supported by many existing theories, viz., ZF and KPU. 
It can be illustrated by the hierarchical construct in Figure 13, where we have 
bricks as our individuals, and make towers out of bricks, and then make walls 
out of  towers, and so on. In the cumulative hierarchy, any set formed at some 
stage must be consisting of  the urelements (if included in the theory) and the 
sets which have been formed at some previous stage (Shoenfield 1977) (but 
not necessarily at the very previous stage, as in Russell 's Type Theory). This 
provides talking about collections of previously formed objects as a new object 
in a safe manner and prevents entities of very large size to be formed. Because 
a possible commonsense set theory also needs to be mathematically precise, it 
should take care of the question when a collection formed of previously formed 
sets will be considered as a set. 

At this point, the problem of  sets which can be members of themselves arises, 
since such sets are used in their own formation. Circularity is obviously a common 
means of  commonsense  knowledge representation. For example,  non-profit  
organizations are sets of individuals and the set of all non-profit organizations 
is also a set; all these are expressible in the cumulative hierarchy. But what if 
the set of all non-profit organizations wants to be a member of  itself, since it 
also is a non-profit organization? This is not an unexpected event (Figure 14) 

bricks 
$ 

towers made of bricks 
$ 

walls made of towers 
$ 

rooms made of walls 
$ 

buildings made of rooms 
$ 

Fig. 13. A hierarchical construction exemplifying the cumulative hierarchy (adapted from (Perlis 

1988)). 
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? 
E NPO 

Fig. 14. Can the set of non-profit-organizations be a member of itself?. 

because this umbrella organization would probably benefit from having the status 
of a non-profit organization (e.g., tax exemption, etc.) (Perlis 1988). 

Thus we conclude that a possible commonsense set theory should also allow 
circular sets to be expressed. This is an important issue in representation of  
meta-knowledge and is addressed in (Feferman 1984) and (Perlis 1985). In these 
references, a method which reifies (creates a syntactic term from a predicate 
expression) a well-formed formula into a name for the well-formed formula 
asserting that the name has strong relationship with the formula, is presented. 
In this way, any set of well-formed formulas are matched with a set of names 
of well-formed formulas, thereby allowing self-reference by the use of names. 
In (Feferman 1984), the urgent need for type-free (admitting instances of self- 
application) frameworks for semantics is especially emphasized. However, such 
formalizations which also capture the cumulative hierarchy principle are not 
very common. Among theories reviewed so far, Aczel's theory is the only one 
which allows circularity. By proposing his Anti-Foundation Axiom, Aczel 
overrode the FA of ZF which prohibits circular sets, but preserved the hierar- 
chical nature of the original axiomatization. 

As an application of such a theory, we see the Situation Theory (Barwise 
and Perry 1983). Situations are parts of the reality that can enter into relations 
with other parts. Their internal structure are sets of facts and hence they can be 
modeled by sets. There has been a considerable deal of work on this especially 
by Barwise himself (Barwise 1989a). He used his Admissible Set Theory (Barwise 
1975) as the principal mathematical tool in the beginning. However,  in the 
handling of circular situations, he was confronted with problems and then dis- 
covered that Aczel 's  theory could be a solution (Barwise 1989c). Circular 
situations are common in our daily life. For example consider the situation in 
which we utter the statement "This is a very exciting situation." While we are 
referring to a situation, say s, by saying "this situation," our utterance is also a 
part of that situation. As another example, one sometimes hears public announce- 
ments concluding with "This announcement will not be repeated." If announce- 
ments are assumed to be situations, then this one surely contains itself. 

Barwise defined the operation M (to model situations with sets) taking values 
in hypersets and satisfying~2: 
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• if b is not a situation or state of affairs, then M(b)  = b, 
• if o - (R, a, i), then M(c)  -- (R, b, i) (which is called a state model) ,  where 

b is a function on the domain of a satisfying b(x) -- M(a(x)) ,  
• if s is a situation, then M(s)  -- ( M ( o )  : s ~ o ) .  
Using this operation, Barwise then proves some theorems, including the one which 
states that there is no largest situation (corresponding to the absence of  a uni- 
versal set in ZF). 

We also see a treatment of self-reference in (Barwise and Etchemendy 1987), 
where the authors concentrate on the concept of  truth. In this study, two con- 
ceptions of truth are examined, primarily on the basis of the notorious Liar 
Paradox. 13 The authors make use of Aczel 's  theory for this purpose. A state- 
ment like "This sentence is not expressible in English in ten words" would be 
represented in Aczel 's theory as in Figure 15, where (E, p, i) denotes that the 
proposition p has the property E if i -- 1, and it does not have it if  i -- 0 (which 
is the case for the figure if we take E to be the property of "being expressible 
in English in ten words"). 

The model theory of  common knowledge can also be studied using self- 
reference and situation theory (Barwise 1989d). This will be our next subject. 
The discussion on common knowledge will be followed by two discussions on 
membership and counting, respectively. 

P 

Fig. 15. The picture of the statement "This sentence is not expressible in English in ten words" 
(adapted from (Barwise and Etchemendy 1987)). 
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4.2.1. Common  Knowledge  
Two card players P1 and P2 are given some cards such that each gets an ace. Thus, 
both P1 and P2 know that the following is a fact: 

c -- Either PI or P2 has an ace. 

When asked whether they knew if the other one had an ace or not, they both 
would answer "no." If they are told that at least one of them has an ace and 
asked the above question again, first they both would answer "no." But upon 
hearing P~ answer "no," P2 would know that P~ has an ace. Because, if P1 does 
not know P2 has an ace, having heard that at least one of them does, it can only 
be because P1 has an ace. Obviously, P1 would reason the same way, too. So 
they would conclude that each has an ace. Therefore, being told that at least 
one of them has an ace must have added some information to the situation. 
How can being told a fact that each of them already knew increase their infor- 
mation? This is known as Conway ' s  Paradox .  The solution relies on the fact 
that initially o was known by each of them, but it was not common knowledge.  
Only after it became common knowledge, it gave more information. 

Hence, common knowledge can be viewed as iterated knowledge of o of the 
following form: P1 knows o, P2 knows o, P~ knows P2 knows o, P2 knows Pl 
knows a,  and so on. This iteration can be represented by an infinite sequence 
of facts (where K is the relation "knows" and s is the situation in which the 
above game takes place, hence 0 ~ s): (K, Pl, s), (K, P2, s), (K, P1, (K, P2, s)), 
(g, P2, (K, PI, s)) . . . .  However, considering the system of equations 

x = ((K,P~,y),(K,PE,y)}, 
y = s U {(K,PI,y),(K,PE,y)}, 

the Solution Lemma asserts the existence of the unique sets s' and s U s' satis- 
fying these equations, respectively, where 

s' = {(K, Pl, s U s'), (K, P2, s U s') 

Then, the fact that s is common knowledge can more effectively be represented 
by s' which contains just two infons and is circular. 

4.2.2. Possible Membersh ip  
One filrther aspect to be considered is "possible" membership which might have 
many applications, mainly in language oriented problems. This concept can be 
handled by introducing partial functions - functions which might not have 
corresponding values for some of their arguments. A commonsense set theory 
may be helpful in providing representations for dynamic aspects of language 
by making use of partiality. For example, partiality has applications in modality 
(the part of  linguistics which deals with modal sentences, i.e., sentences of 
necessity and possibility), dynamic processing of syntactic information, and 
situation semantics (Mislove et al. 1990). 

We had mentioned above that situations can be modeled by sets. Consider a 
situation s in which you have to guess the name of a boy, viz., 

s ~ The boy's name is Jon or the boy's name  is John. 
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This situation can be modeled by a set of two states of affairs. The problem 
here is that neither assertion about the name of the boy can be assured on the 
basis of s (because of the disjunction). A solution to this problem is to repre- 
sent this situation as a partial set, one with two "possible" members. In this 
case s still supports the disjunction above but does not have to support either 
specific assertion. There is another notion called clarification, which is a kind 
of general information-theoretic ordering that helps determine the real members 
among possible ones. If there exists another situation s', where s' ~ The boy's 
name is Jon, then s' is called a clarification of s. 

4.2.3. Cardinality and Well-Ordering 
There are other set-theoretical aspects like cardinality and well-ordering issues 
to be considered for a commonsense set theory. We have previously stated that 
classical set theory does provide a precise framework for mathematics. This 
assertion is arguable for commonsense reasoning. Minsky (1981), for example, 
had mentioned that the proof of the consistency of modern set theory indicates 
that it is inadequate for AI purposes and he criticized the popularity of formal 
logic in AI arguing that some important properties of logic, e.g., consistency 
and completeness, may not be desirable for knowledge representation. Indeed, 
as McCarthy (1977) pointed out, since there is no general agreement on the 
fundamental structure of the world, the need for precise representations might 
lead to the use of imprecise or inconsistent formalizations. 

The following example illustrates this point (Zadrozny 1989). Imagine a box 
of 16 black and 10 white balls (Figure 16). We know that there are 26 balls in 
the box, or formally, the cardinality of the set of bails in the box is 26. After 
shaking the box, we would say that that the bails in the box are not ordered 
any more, or again formally, the set of the balls does not have a well-ordering. 
But this is not true in classical set theory, because a set with finite cardinality 
must have a well-ordering. 

Counting is an important activity to be mentioned at this point. While the 
formal principles of counting are precise enough for mathematics, we can observe 
that people also use other quantifiers like "many" or "more than half" for counting 
purposes in daily speech. For example, if asked about the number of balls in 
the box in Figure 16, one might have simply answered "Many balls!" So, at 
least in principle, different counting methods can be developed for common- 
sense reasoning. It is natural to expect, for example, that a system which can 
represent a statement like "A group of kids are shouting" should probably not 
answer questions such as "Who is the first one?" (Zadrozny 1989). 

Fig. 16. Balls with a finite cardinality but without a well ordering. 
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We also expect our theory to obey the parsimony principle. This is a very 
natural expectation from a commonsense set theory. We have observed that the 
proof of the existence of a simple fact like the Cartesian product of two sets 
a x b required the use of the Power Axiom in ZF. 8 The set obtained in this manner 
just consists of pairs formed of one element of the set a and one element of 
the set b. To prove this, the strong Power Axiom should not be necessary. We 
observe this in KPU set theory where the proof is obtained via definitions and 
simple axioms TM (Barwise 1975). 

4.3. Some Interesting Attempts 

There is relatively little work on the use of set theory in AI. McCarthy (1980) 
exploited sets in his nonmonotonic reasoning method circumscription. 15 A weak 
set theory has been proposed as a specification language called SETL by Schwartz 
et al. (1986). Allgayer (1990) proposed an approach to introduce ways to talk and 
reason about sets into term languages like KL-ONE, which are widely used in 
natural language processing. Set theory has also been the subject of research in 
automated theorem proving. Data on the use of inference rules in student- 
constructed proofs in axiomatic set theory is presented in (Suppes and Sheehan 
1981). The computer programs that are used in the computer-aided set theory 
course of Suppes and Sheehan represent perhaps the largest production programs 
created thus far for instructional purposes. Brown (1978) gave a deductive system 
for elementary set theory which is based on truth-value preserving transforma- 
tions. Quaife (1992) presented a new clausal version of NBG set theory, 
comparing it with the one given in (Boyer et al. 1986), and claimed that auto- 
mated development of set theory could be improved. We will now mention 
some essential research efforts, by Perlis, Zadrozny, Mislove et al., and Barwise 
towards a possible commonsense set theory. 

4.3.1. Perlis's Commonsense Set Theory 
Perlis's approach was to develop a series of theories towards a complete com- 
monsense set theory. He first proposed an axiom scheme of set formation for a 
naive set theory which he named CST o (Perlis 1987): 

3yVx[x ~ y e-~ lp(x) & lnd(x)]. 

Here ~ is any formula and Ind is a predicate symbol with the intended exten- 
sion "individuals." This theory lacks further axioms, like an axiom of exten- 
sionality, which can be easily added. However, Ind can sometimes be critically 
rich, i.e., if ~ is the same with Ind itself, then y may be too large to be an indi- 
vidual. (This is the case of Cantor's Axiom of Abstraction.) Therefore, a theory 
for a hierarchical extension for Ind is required. To support the cumulative hier- 
archy, Perlis extended this theory to a new one called CSTj using Ackermann's 
Scheme (Ackermann 1956) which is a formal principle of this hierarchy: 

HC(yl)  & . . . & HC(yn) & Vx[q~(x) ~ HC(x)] --~ 
3z[HC(z) & Vx[x e z ~ $(x)]] 

where HC(x) can be interpreted as "x can be built up as a collection from 
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previously obtained entities." C S T  1 is consistent with respect to ZE Unfortunately, 
it is hierarchical and hence not able to deal with self-referring sets. 

Perlis finally proposed CST2 which is a synthesis of the universal reflection 
theory of Gilmore-Kripke (Gilmore 1974), which forms entities regardless of their 
origins and self-referential aspects, and the hierarchical theory of Ackermann 
(1956). GK set theory has the following axiom scheme where each well-formed 
formula et(x) has a reification (name) [ct(x)] with variables free as in ~ and dis- 
tinguished variable x 

y ~ [o~(x)] ~-) ~*(y) 

where y does not appear in ~.16 There is also a definitional equivalence (denoted 
by =) axiom: 

w = z ~ V x ( x  ~ w ~ x ~ z ) .  

GK is consistent with respect to ZF (Perlis 1985). Perlis then proposed the 
following axioms to augment GK: 

(Extl) x ~. y <---> ext x - ext y 
(Ext2) x = ext x 
(Ext3) x ~ HC --~ 3y(x = ext y) 
(Aext) Yl . . . . .  y, ~ HC & ~/x(d~x --~ x ~ HC) 

--> ext[dp] ~ HC & ~/x(x e [dp] ~ ~(x)) 

These axioms provide extensional constructions, i.e., collections determined only 
by their members. Thus, while GK provides the representation of circularity, these 
axioms support the cumulative construction mechanism. This theory can deal with 
problems like non-profit organization membership described earlier (Perlis 1988). 
But Perlis could not prove the consistency of CST2 yet because this requires 
linking two notions of membership of the two theories. 

4.3.2. Zadrozny on Cardinalities and Well-Orderings 
Zadrozny does not believe in a "super theory" of commonsense reasoning about 
sets, but rather in commonsense theories involving different aspects of sets. 
He thinks that these can be separately modeled in an existing set theory. In 
particular, he proposed a representation scheme based on Barwise's KPU for 
cardinality functions, hence distinguishing reasoning about well-orderings from 
reasoning about cardinalities and avoiding the box problem mentioned earlier 
(Zadrozny 1989). 

Zadrozny interprets sets as directed graphs and does not assume the FA. A 
graph in his conception is a triple (V, SE, E) where V is a set of vertices, SE is 
a set of edges, and E is a function from a subset of SE into V x V. It is assumed 
that x ~ y if and only if there exists an edge between x and y. He defines the 
edges corresponding to the members of a set as 

EM(s) = {e c ES : 3v[E(e) = (v, s)] }. 

In classical set theory, the cardinality of a finite set s is a one-to-one function 
from a natural number n onto a set, i.e., a function from a number onto the 
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nodes of  the graph of the set. However, Zadrozny defines the cardinality function 
as a one-to-one order preserving mapping from the edges EM(s) of a set s 
into the numerals Nums (an entity of  numerals which is linked with sets by 
existence of a counting routine denoted by #, and which can take values like 
1, 2, 3, 4, or 1, 2, 3, many). The last element of the range of  the function is 
the cardinality. The representation of the four element set k = {a, b, {x, y}, d} 
with three atoms and one two-atom set is shown in Figure 17. The cardinality 
of the set is about-five, i.e., the last element of Nums which is the range of the 
mapping function from the edges of the set. (The cardinality might well be 4 if 
Nums was defined as 1, 2, 3, 4.) Zadrozny then proves two important theorems 
in which he shows that there exists a set x with n elements which does not have 
a well ordering and there exists a well ordering of type n, i.e., with n elements, 
the elements of which do not form a set. 

More recent work of  Zadrozny treating different aspects of  computational 
mereology vis-d-vis set theory can be found in (Zadrozny and Kim 1993). 

1 -----~' 2 ~ 3 " about-five . . . .  

x y 

Fig. 17. The one-to-one order preserving cardinality function of Zadrozny (adapted from (Zadrozny 
1989)). 

4.3.3. Protosets of  Mislove et al. 
Mislove, Moss, and Oles (1990) developed a partial set theory, ZFAP, based on 
protosets, which is a generalization of HF - the set of well-founded hereditarily 
finite sets. Iv A protoset is like a well-founded set except that it has some kind 
of packaging which can hide some of its elements. There exists a protoset _1_ 
which is empty except for packaging. From a finite collection xl . . . . .  x,, one 
can construct the clear protoset {x~ . . . . .  x,} which has no packaging, and the 
murky protoset [Xl . . . . .  x,] which has some elements, but also packaging. For 
example, a murky set like [2, 3] contains 2 and 3 as elements, but it might contain 
other elements, too. We say that x is clarified by y, x E y, if one can obtain y 
from x by taking some packaging inside x and replacing this by other proto- 
sets. 

Partial set theory has a first order language L with three relation symbols, 
(for actual membership),  ~<> (for possible membership),  and set (for set 

existence). The theory consists of two axioms and ZFA set, the relativization of  



302 MOJDAT PAKKAN AND VAROL AKMAN 

all axioms of ZFA (ZF + Aczel's AFA) to the relation set. The two axioms are 
(i) Pict, which states that every partial set has a picture, a set G which is a 
partial set graph (corresponding to the accessible pointed graph of Aczel) and 
such that there is a decoration d of  G with the root decorated as x, and (ii) 
PSA, which states that every such G has a unique decoration. Partial set theory 
ZFAP is the set of all these axioms. ZFAP is a conservative extension of ZFA. 

4.3.4. Barwise's Situated Set Theory 
Barwise (1989b) attempted to propose a set theory, Situated Set Theory, not 
just for use in AI, but for general use. He mentioned the problems caused by 
the common view of set theory with a universal set V, but at the same time 
trying to treat this universe as an extensional whole, looking from outside 
(which he names "unsituated set theory"). His proposal is a hierarchy of universes 
V0 C V1 C V2 C . . . which allows for a universe of a lower level to be 
considered as an object of a universe of a higher level. He leaves the axioms 
which these universes have to satisfy to one's conception of set, be it cumula- 
tive or circular. There are no paradoxes in this view since there is always a 
larger universe one can step back and work in. Therefore, the notions of "set," 
"proper class," and the set-theoretic notions "ordinal," "cardinal" are all context 
sensitive, depending on the universe one is currently working in. This proposal 
supports the Reflection Principle which states that for any given description of 
the sets of all sets V, there will always be a partial universe satisfying that 
description. 

Barwise (1989c) also studied the modeling of partial information and again 
exploited Hyperset Theory. For this purpose, he used the objects of the universe 
°F a of hypersets over a set A of atoms to model non-parametric objects, i.e., objects 
with complete information and the set X of indeterminates to represent parametric 
objects, i.e., objects with partial information. (The universe of hypersets on A 
U X is denoted as OVa[X], analogous to the adjunction of indeterminates in 
algebra.) 

For any object a ~ OVa[X], Barwise calls the set 

par(a) --- {x ~ X : x E TC(a) }, 

where TC(a) denotes the transitive closure of a, the set of  parameters of a. If 
a E OVA, then par(a) -- O since a does not have any parameters. Barwise then 
defines an anchor as a function f with domain(f) C_ X and range(f) C c~F A - -  A 
which assigns sets to indeterminates. For any a E OVa[X] and anchor f,  a ( f )  is 
the object obtained by replacing each indeterminate x ~ par(a) A domain(f) 
by the set f(x) in a. This is accomplished by solving the resulting equations by 
the Solution Lemma. 

Parametric anchors can also be defined as functions from a subset of X into 
OVA[X] to assign parametric objects, not just sets, to indeterminates. For example, 
if a(x) is a parametric object representing partial information about some non- 
parametric object a ~ OVa and if one does not know the value to which x is to 
be anchored, but knows that it is of the form b(y) (another parametric object), 
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then anchoring x to b(y) results in the object a(b(y)) which does not give the 
ultimate object perhaps, but is at least more informative about its structure. 

5. CONCLUSION 

We conclude by stating that set theory can be useful in commonsense reasoning. 
The methodology may change, of course. A universal commonsense set theory 
can be developed by means of proposing new axioms or modifying existing ones. 
Alternatively, different set-theoretic concepts may be examined and modified 
based on existing set theories. No matter what proposal is followed, we believe 
that further research in this field should be promising and may even lead to a 
"mathematical metaepistemology analogous to metamathematics," as pointed 
out by McCarthy (1988). 
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NOTES 

a Note, on the other hand, that another great mathematician of  this century, R. Thom, has said in 
1971: "The old hope of  Bourbaki, to see mathematical structures arise naturally from a hierarchy 
of  sets, from their subsets, and from their combination, is doubtless, only an illusion" (Goldblatt 
1984). 
2 A well-formed formula w is said to be stratified if integers are assigned to the variables of  w 
such that: all occurrences of  the same free variable are assigned the same integer, all bound 
occurrences of  a variable that are bound by the same quantifier are assigned the same integer, and 
for every subformula x e y, the integer assigned to y is equal to the integer assigned to x + 1. For 
example, (x c y) & (z e x) is stratified as (x ~ c y2) & (z o e x~). 
3 In every subset of  the set of  natural numbers, ordered according to increasing magnitude of its 
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elements, there is a first element. This also holds for arbitrary ordered sets as follows. A binary 
relation < over a set a is a partial ordering of  a if (i) x g x for any x ~ a, and (ii) if x < y and 
y < z, then x < z. (a is called a partially ordered set.) A partial ordering < of  a is a linear ordering 
if x < y, or x m y, or y < x, for all x, y E a. If a is a partially ordered set and b is a nonempty 
subset of  a, and v ~ a, then v is called the least element of  b if v ~ b and Vx ~ b(v < x), and w 
is called a minimal element of  b if  w ~ b and Vx ~ b(x < w --~ w ~ x). 

4 A theory T (any set o f  formulas closed under implication, i.e. for any 9, if T ~ 9, then tp ~ T) 
is finitely axiomatizable if and only if there is a finite T' C T such that for every ~ in T, T' ~ ~ .  
5 Cantor (1883) stated that two sets are equipollent, or have the same power, if and only if they 
can be put into one-to-one correspondence. The axiom for cardinal numbers states that two sets 
have the same cardinality if they are equipollent, denoted by Ixl = IYl- m is a cardinal number if 
and only if there is a set a such that lal = m. 
6 A linear ordering < of  a set a is a well-ordering if every nonempty subset of a has a least 
element. Informally, an ordered set is said to be well-ordered if the set itself, and its nonempty subsets 
have a first e lement  under the order prescribed for its elements by that set. An ordinal number 
stands for an order type which is represented by well-ordered sets. First, call a set a transitive if 
Vx(x ~ a ---) x C_ a). Then, a set is an ordinal number  (or ordinal) if  it is transitive and well- 
ordered by e .  It should be noted that in case of  finite sets, the notions of cardinal number and ordinal 
number are the same. The class of all ordinal numbers is denoted by Ord. The relationship < between 
two ordinals ct and 13, ~t < [~, is defined if  and only if ct ~ 13. If ¢t ~ ~ + 1, then ct is called a 
successor ordinal; else it is a limit ordinal. The Axiom of  Infinity guarantees the existence of 
limit ordinals other than 0. In fact, co, the set o f  natural numbers,  is the next limit ordinal (cf. 
Figure 2). 
7 A group (G, +, 0) (where G is a nonempty set, + is a function mapping G × G into G, and 
0 e G) satisfies the following axioms: 

VxVyVz[x + (y + z) ~ (x + y) ÷ z], 
Vx(x + 0 = x), 
Vx3y(x + y = 0). 

An Abelian group is a group G satisfying: 

VxVy(x + y = y + x). 

An Abelian group is divisible if 

Vn > 1Vx3y(ny = x). 

It should be noted that this axiom is not first-order since there is a quantification over the set of 
positive integers. Hence, a divisible Abelian group is not finitely axiomatizable in first-order logic. 
An Abelian group is torsion if 

Vx3n >_ l(nx = 0). 

The last remark regarding axiomatizability applies to torsion groups, too. 
We have to prove the theorem 

3e~'x[x ~ c ~ 3y3z(y E a & z ~ b & x = (y, z))] 

to show that the Cartesian product set exists. The main point o f  the proof is that if x = (y, z), and 
if y ~ a and z ~ b, then x ~ P(P(a O b)). Then, by the Axiom of  Separation, 

(1) 3cVx[x ~ c e-~ x ~ P(P(a U b)) & 3y3z(y E a & z ~ b & x = (y, z))]. 

The theorem to be proved is equivalent to (1) without the statement x ~ P(P(a U b)). Then we 
must show that the equivalence in (1) still holds when that statement is eliminated. Given (1), it 
follows that 

(2) x e c 

implies 

(3) 3y3z[y ~ a & z ~ b & x ~ (y, z)]. 
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To prove the converse implication, we must show that (3) implies x ~ P(P(a U b)), since it is obvious 
by (1) that (3) implies (2). By (3) and the definition of  ordered pairs x = ({y),  {y, z}}, and by the 
hypotheses y e a and z E b, we have: 

{ y } C  {atO b} and {y,z} C {a U b}. 

Then by the following theorem (which can be proved by the Power Axiom): 

(4) b ~ P(a) ~ b C a, 

we conclude: 

{y} c P ( a  U b) and {Y,Z}  ~ P(a U b). 

Thus, ((y}, try, z}} _C P(a U b), i.e., x C_ P(a U b), and again by (4), we have x ~ P(P(a U b)). 
9 The collection of A0 formulas of  a language L is the smallest collection F containing the atomic 
formulas of L and inductively defined as: 
(a) If q~ is in F, then ~q~ is also in 1-'. 
(b) If q~, "q are in F, then (tO A ~ )  and (q~ V xg) are also in F. 
(c) If ~ is in F, then Vu E v tO and 3u E v 9 are also in F for all variables u. and v. 
~o A structure for a first-order language L is a pair (M, 1), where M is a nonempty set called the 
domain of  the structure and 1 is an interpretation function assigning functions and predicates over 
M to the symbols in L (Mendelson 1987). 
1~ Aczel uses tagged graphs to represent sets, i.e., each childless node in the graph is tagged by 
an atom or 0 .  A pointed graph is a tagged graph with a specific node no called its point. A pointed 
graph is accessible (denoted as apg) if  for every node n there is a path no ~ n~ --~ . . . -~ n. 
A decoration of  a graph is a function D(n) for each node n, defined as: 

D(n) = [ tag(n), if n has no children, 
[ (D(m) : m is a child of  n}, otherwise. 

A picture of  a set is an apg which has a decoration in which the set is assigned to the point. 
~2 A state o f  affair (a.k.a. infon) (R, a, i) is a triple where R is an n-ary relation, a is an 
appropriate assignment of  objects,  and i is the polarity, 1 if there is at least one instance of  R 
holding of  a, and 0 otherwise. By a state of  affair, a state that affairs may or may not he in is 
meant. When i = 1, that state of  affair is called a fact  and the polarity is usually omitted. For example, 
the state of affair (sleeping, Tom, garden) is a fact if Tom is indeed sleeping in the garden. 
~3 The word paradox refers to any statement which is contrary to common sense and intuition. 
The Liar Paradox (also known as the Epimenides Paradox) is one of  the most famous paradoxes 
which disturbed philosophers, mathematicians, and linguists throughout history. According to this 
paradox, Epimenides, the Cretan, said "All Cretans are liars." Now this statement cannot be true 
since this would make Epimenides a liar, leading to the falsity of  his statement. The statement cannot 
be false either, since this would imply that Cretans are not liars, hence what Epimenides  says 
should be true, leading to a contradiction. 
~4 The predicate of  a, b, u, which is defined as "u is an ordered pair (y, z) with y E a and 
z ~ b" in KPU, is Ao. Hence, Ao-Separation can be used once it is known that there exists a set c 
with (y, z) E c for all y ~ a and z ~ b. This follows from Ao-Collection as follows. Given y ~ b, 
there exists a set d = (y, z). So, by Ao-Collection, there exists a set Wy such that (y, z) c wy for all 
z e b. Applying Ao-Collection again, we have: 

Vy ~ a 3 w V z  ~ b 3d E w ( d =  (y, z)) 

so there is a c~ such that for all y e a, z a b, (y, z) e w for some w ~ c~. Thus, if c = Uc l ,  then 
(y ,z )  ~ c f o r a l l y  e a a n d z  e b. 
~5 Circumscription is a tool to jump to certain conclusions. The main point of  circumscription is 
that the objects that can be shown to have a certain property tp by reasoning from certain facts are 
all the objects that satisfy ~. Thus one circumscribes the set of objects. 
~6 The * is the notation for first writing all --) symbols in terms of  & and --1, then passing 
negations in ct through to predicate letters, and finally replacing each occurrence of  a subformula 
--,x ~ [y] in the result by x E [--,y]. 
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17 The transitive closure of a set, denoted by TC(a), is defined by recursion as follows: 
• I..J°a = a ,  
• U"+la = U(Una),  
• TC(a) = U ( U " a  : n = 1, 2 . . . .  }. 
Hence, TC(a) = a U U a  U UZa . . . For any infinite cardinal m, the set H(m) is defined as 
H(m) ~ {x : ITC(x)[ < m}. The elements of H(m) are said to be hereditarily of cardinality less 
than m. {H(n) : n = 1, 2 . . . .  } is a set of hereditarily finite sets. Hence, every element of a 
hereditarily set is a hereditary set (Kunen 1980). 
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