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Abstract
Beck (Cognition 158:110–121, 2017) presents an outline of the procedure of boot-
strapping of integer concepts, with the purpose of explicating the account of Carey 
(The Origin of Concepts, 2009). According to that theory, integer concepts are 
acquired through a process of inductive and analogous reasoning based on the object 
tracking system (OTS), which allows individuating objects in a parallel fashion. Dis-
cussing the bootstrapping theory, Beck dismisses what he calls the "deviant-inter-
pretation challenge"—the possibility that the bootstrapped integer sequence does not 
follow a linear progression after some point—as being general to any account of 
inductive learning. While the account of Carey and Beck focuses on the OTS, in this 
paper I want to reconsider the importance of another empirically well-established 
cognitive core system for treating numerosities, namely the approximate number 
system (ANS). Since the ANS-based account offers a potential alternative for inte-
ger concept acquisition, I show that it provides a good reason to revisit the devi-
ant-interpretation challenge. Finally, I will present a hybrid OTS-ANS model as the 
foundation of integer concept acquisition and the framework of enculturation as a 
solution to the challenge.
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1  Introduction

Currently, one of the most discussed accounts in the philosophical literature on 
number concept acquisition focuses on the bootstrapping of integer concepts.1 The 
bootstrapping account is based on Quine’s (1960) idea of how genuinely new con-
cepts can emerge from previous conceptual content. The most famous theory of the 
bootstrapping of natural number concepts was presented in detail by Carey (2009) 
in her book The Origin of Concepts. In that highly influential book, Carey argues 
that the first four numerals in the counting list are determined by procedures that 
are "constraints on computations" due to the core cognitive object tracking system 
(OTS). Recently, this stage of Carey’s bootstrapping theory has been successfully 
explicated by Beck (2017). I see Beck’s interpretation of Carey’s account, which I 
will call the “Carey–Beck” theory of bootstrapping, as the strongest formulation yet 
in the literature of the general argument that natural number concepts are based on 
our cognitive core systems. For that reason, I focus in this paper on that version of 
the bootstrapping theory. As will be seen, I do not think that the Carey–Beck argu-
ment is fully convincing as it is. However, it provides a fruitful framework for study-
ing the question of number concept acquisition. In the latter part of this paper, I will 
suggest my own theory of the influence and role of core cognitive abilities in the 
process of number concept acquisition.

In Sect. 2, I present the Carey–Beck bootstrapping account and analyze what is 
meant by “constraints on computations” based on the OTS. Section  3 deals with 
two challenges presented against the bootstrapping account, namely the “deviant-
interpretation” and the “circularity” challenges. Beck (2017) argues that the lat-
ter is a proper challenge while the former is a general challenge for any account 
based on inductive learning and therefore not specific to bootstrapping. In Sect. 4, 
I propose that the existence of another core cognitive system for treating numerosi-
ties, the approximate number system (ANS), requires us to reconsider the deviant-
interpretation challenge in a stronger form. Namely, the ANS-based quantity estima-
tions have logarithmic rather than linear character and as such provide a potential 
route to “deviant” number concepts. This argument is developed in detail in Sect. 5. 
In Sect. 6, I propose an OTS-ANS hybrid account as the most feasible model for 
number concept acquisition. I will then show in Sect.  7 that this model can meet 
the stronger deviant-interpretation challenge by being placed within the framework 
of enculturation. This framework introduces cultural factors to the model, which 
explains why the linear interpretation of number concepts is present in ontogeny.

1  More specifically, the discussion is about positive integer concepts, i.e., the natural number concepts 
(1, 2, 3,…). From now on, I will not distinguish between “integers”, “numbers” and “natural numbers”. 
In mathematics zero is usually included in the set of natural numbers but here it is excluded.
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2 � The Carey–Beck bootstrapping theory

The Carey–Beck theory of bootstrapping is located in the core cognitive framework, 
which takes human cognition to begin with “highly structured innate mechanisms 
designed to build representations with specific content” (Carey 2009, p. 67). The 
mental structures that represent the content realize “core cognition”. According to 
the core cognitive framework in numerical cognition, two of the core cognitive sys-
tems are used for detecting quantities in the world. One, the approximate number 
system (ANS), enables estimating quantities and it will play an important role in this 
paper. But let us focus first on the core cognitive system that the Carey–Beck theory 
of number concept acquisition is based on. This system is called the object tracking 
system (OTS) and it allows parallel individuation, the creation of models of a small 
set of individuals in the working memory (Carey 2009).2 Both the ANS and the OTS 
are often described as non-symbolic to distinguish them from quantity representa-
tions in terms of numerical or linguistic symbols (see, e.g., Hyde 2011).

The OTS is already present in human infants and we appear to share the object 
tracking ability with many nonhuman animals (Starkey and Cooper 1980; Wynn 
1992; Dehaene 1997/2011; Spelke 2000; Carey 2009). It is based on the ability to 
represent objects as persisting individuals and it is closely related to the ability to 
perform multiple-object tracking (Trick and Pylyshyn 1994; Spelke 2000). Impor-
tantly for numerical cognition, the OTS is thought to enable subitizing, the ability 
to determine the quantity of objects in the field of vision without counting, for up 
to three or four objects. In Carey’s (2009) account, subitizing is explained by the 
quantity being recognized by forming distinct mental representations for each of the 
observed objects. These representations work by employing object files. Three dots 
in the field of vision, for example, are represented in three distinct object files.3

The object files are thus not numerosity-specific, but they are thought to allow 
detecting numerosity. Up to four items, detecting how many object files are 
employed allows determining the quantity of the items. However, the ontogenetic 
development related to recognizing quantities requires several stages in a process in 
which the implicit representation of numerosity is associated with number words. At 
the first stage of the process, the level of being one-knower, a child grasps that the 
numeral "one" is associated with observing one object. When the child becomes a 
two-knower, she also grasps that the numeral "two" is associated with observing two 
objects. Since object tracking stops working after four objects, for four-knowers, a 

2  It should be noted that in Carey (2009), she also discusses other cognitive systems as potential influ-
ences on the bootstrapping process. In this paper I follow Beck and focus mainly on the OTS-based 
account in presenting the work of Carey, although I will deviate from this policy when relevant. This 
topic will be discussed more in Sect. 4 where some of the empirical evidence for focusing on OTS is 
presented.
3  The prevalent conception in the literature is that the OTS indeed enables the subitizing ability while 
the ANS enables an estimation ability. (see, e.g., Hyde 2011). The subitizing and estimating abilities 
have different behavioral signatures, and they have also been reported to have different neural correlates 
in an fNIRS (functional near-infrared spectroscopy) study (Cutini et al. 2014). It is now generally agreed 
that the OTS and the ANS are indeed two separate systems.
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qualitative leap must be made so that the child can become a cardinality-principle 
(CP) knower, i.e., in order to acquire the ability to generally match the last numeral 
uttered in the counting sequence with the cardinality of a group of objects (Sarnecka 
and Carey 2008; Lee and Sarnecka 2011). In other words, instead of becoming a 
“five-knower”, the child at that stage of development also grasps the numerals six, 
seven, and so on (Lee and Sarnecka 2010).

Carey (2004, 2009; see also LeCorre and Carey 2007; Sarnecka and Carey 2008) 
has proposed a particular type of bootstrapping process as the solution to explaining 
this qualitative leap. Against the "building block" model of concept acquisition pro-
posed by Fodor (1975, 1998), she argues that acquiring integer concepts is a process 
that cannot be reduced to composition from simpler concepts. Thus, bootstrapping 
must be a process that yields the acquisition and understanding of genuinely novel 
concepts. The solution to this process of creating new concepts seemingly out of 
thin air is provided by the “computational constraints” provided by the OTS. This 
kind of bootstrapping process consists of three stages. First is acquiring a list of 
placeholders void of semantic content. This is the stage at which children can recite 
part of the verbal count list without grasping the connection to quantities (see, e.g., 
Davidson et al. 2012). At this stage, a child can recite the numeral list, for example, 
up to “four”, but when asked for four things, she will choose an amount randomly. 
At the second stage, the OTS allows interpreting the first members of the place-
holder list by being associated with the procedure of establishing one-to-one corre-
spondence with mental models:

The meaning of the word ‘‘one” could be subserved by a mental model of a set 
of a single individual {i}, along with a procedure that determines that the word 
‘‘one” can be applied to any set that can be put in 1–1 correspondence with 
this model. Similarly, two is mapped onto a longterm memory model of a set 
of two individuals {j, k}, along with a procedure that determines that the word 
‘‘two” can be applied to any set that can be put in 1–1 correspondence with 
this model. And so on for ‘‘three” and ‘‘four.” (Carey 2009, p. 477).

These procedures do not function based on explicit representations of the one-to-one 
correspondence. Rather, they exist as constraints on computation. These computa-
tional constraints, Beck argues, are analogous to inference rules in logic in that they 
refer to the way “any computational theory of mind that posit explicit representa-
tions also needs procedures that govern how those representations can be manipu-
lated” (Beck 2017, p. 116). Thus establishing the one-to-one correspondence is 
based on constraints of how the mind manipulates the representations in the object 
files: “While the object files explicitly represent objects, they only implicitly repre-
sent that the objects are in one-to-one correspondence” (Beck 2017, p. 119).

The computational constraints are, according to Beck, internal to the mind. But he 
argues that also external constraints play an important role in the bootstrapping pro-
cess. Children acquire number concepts through a “counting game” in which they 
learn to associate the last word uttered in an ordered numeral list with the cardinality 
of a collection. What begins as a sequence of meaningless words, in the presence of 
the counting game allows “endowing the words in the count list with new concep-
tual roles” (Beck 2017, p. 199). In particular, the numerals develop the conceptual 
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role of being uttered when observing the corresponding number of objects: “three” 
is consistently uttered in the presence of three objects, etc. (ibid.).

Thus the internal constraints due to employing the OTS and the external con-
straints due to engaging in counting games combine to make it possible to success-
fully acquire the first four number concepts. Finally, in the third stage of bootstrap-
ping a generalizing process is carried out in order to give semantic content to every 
member of the placeholder list. According to Beck, this process can be a combina-
tion of analogous and inductive reasoning: since the first four numerals associated 
with the OTS refer to quantities separated by “one” individual, the same numer-
als associated with the counting game are also separated by “one” individual (Beck 
2017, p. 119). Extrapolating from this, children then inductively grasp that every 
term in the counting list designated a quantity “one” more than the quantity desig-
nated by the previous term (ibid.)

In sum, according to Beck (2017), after acquiring the numeral list (from an exter-
nal source like a parent or a teacher), the computational constraints coming from the 
object files used for parallel individuation, together with external constraints coming 
from counting games, are used to grasp the first integer concepts, up to the con-
cept FOUR. From this, by generalization using analogy and induction, the rest of 
the numerals are matched with the correct integer concepts and the child becomes a 
cardinality principle knower. This bootstrapping account has been discussed exten-
sively both in the literature on numerical cognition and on concept acquisition in 
general (see, e.g., Gelman and Butterworth 2005; Rips et  al. 2006; Sarnecka and 
Carey 2008; Kadosh and Walsh 2008; Spelke 2011a), as well as in the philosophy of 
mathematics (e.g., Piantadosi et al. 2012; Pantsar 2014, 2018).

3 � The deviant‑interpretation and circularity challenges

While the bootstrapping account has been widely discussed in the literature, as Beck 
(2017, p. 118) points out, too little attention has been given in the literature to the 
second stage of the process: how computational constraints can give semantic con-
tent to members of a verbal placeholder list. Most of the discussion has seemed to 
focus on the third stage of the bootstrapping account, the generalization process. 
As far as the third stage is concerned, much of that discussion has been focused 
on a particular form of what Beck (ibid., p. 112) calls the "deviant-interpretation 
challenge". This challenge is ancient and is best known among philosophers from 
Kripke’s (1982) account of Wittgenstein’s problem of rule-following, as well as 
Goodman’s (1955/1983) “grue” problem. The former "Kripkenstein" challenge asks 
how we can ever unassailably determine what rule a function follows if we only 
see a finite subset of its values. Thus, while the sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, … 
would seem to have 10 as the next member, we cannot know that. The rule could 
actually entail something like "after 9, start again from 1". Goodman voiced a simi-
lar worry in his “new riddle of induction”. Imagine that the word “grue” is used 
as a synonym for “green” before some time t, after which it is used as a synonym 
for “blue” (the meanings of the words “green” and “blue” remaining constant over 
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time). Now the question is, although “grue” is obviously an artificial construction, 
how do we know that our concepts do not change meaning like “grue” does?

In a contemporary version of the deviant-interpretation challenge, Rips and col-
leagues (2006, 2013) asked how the bootstrapping account can explain why a child 
that can count up to “twelve” continues to “thirteen” rather than, say, start again 
from “one” in a cyclical counting system. Some answers to Rips et  al. are based 
on nativist views on numerical cognition that rely on presupposing stronger innate 
representational systems for quantities that reach beyond the OTS-range (e.g., Mar-
golis and Laurence 2008). However, Rips and colleagues (2008) have responded that 
while they can accept determinate meanings for numbers in the OTS-range, count-
ing systems beyond that rely on inductive inferences that are vulnerable to deviant 
interpretations.

I will return to that debate at the end of this paper, as I do believe that the rule-
following challenge is a bona fide philosophical problem. However, I agree with 
Beck (2017, p. 113) that it is a problem for all inductive learning, not merely that 
of concept learning. More importantly, given the possibility that integer concept 
learning is particularly vulnerable to it, the rule-following challenge is definitely 
not exclusive to Carey’s account of bootstrapping of integer concepts. Whatever 
rule we posit for the learning of integer concepts, there is always the chance that 
the rule deviates at some point. After grasping the integer concept 8,526,902 prop-
erly, the rule we use to grasp the next numeral might fail to acquire the concept of 
8,526,903. There are only two possible scenarios in which the deviant-interpretation 
challenge does not apply. The first option is that all the integer concepts are innate. 
The second is that there is an innate recursive rule for integer concept acquisition. 
Since the number of integers is infinite and the brain is finite, the former position 
is impossible. The latter option cannot be ruled out as easily, but it is unsupported 
by evidence, which suggests that such recursive rules are a relatively late ontoge-
netic development and not universal (see, e.g., Sarnecka and Carey 2008; Pantsar 
2019b).4 As detailed in Sect. 7, there are cultures that do not have such recursive 
rules (Gordon 2004; Pica et al. 2004). Moreover, it would entail that the recursive 
rule is the product of evolution, which is a problematic position. The emergence of 
extensive written numeral systems is a recent phylogenetic development (see, e.g., 
Schmandt-Besserat 1996; Fabry 2020; Pantsar 2019b). While this does not preclude 
the possibility of older recursive systems of number words, the lack of evidence of 
recursive systems in non-literate cultures speaks against this possibility (see, e.g., 
Ifrah 1998; Everett 2017). Also this topic will be discussed in more detail in Sect. 7.

Based on the universal character of the deviant-interpretation challenge, Beck 
argues that Carey’s account cannot be refuted by the Kripkenstein-Goodman argu-
ment, any more than accounts of inductive learning in general can be. This leads 

4  It is more plausible that instead of there being an innate recursive rule, there is some kind of innate 
bias for some recursive rule. In this case, the deviant-interpretation challenge still applies, but in a differ-
ent form: now the question becomes why the bias is followed in some cases but not in others. The matter 
will be discussed further in Sect. 6. I thank an anonymous reviewer for their remark on this topic.
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Beck to focus on what he calls the "circularity challenge" to bootstrapping. The cir-
cularity challenge was most famously presented by Fodor, according to whom:

There literally isn’t such a thing as the notion of learning a conceptual system 
richer than the one that one already has; we simply have no idea of what it 
would be like to get from a conceptually impoverished to a conceptually richer 
system by anything like a process of learning. (Fodor 1980, pp. 148–149).

Thus, when Carey argues that by bootstrapping we can acquire richer numerical 
concepts, Fodor (2010) and Rey (2014) hit back that, circularly, any such new con-
cepts would need to be possessed by the learner already. In particular, as Rey (2014, 
p. 117) points out, Carey’s notion that the successive numerals are connected by 
the relation “one greater than” (Carey 2009, p. 277) appears to assume that there 
is a pre-existing grasp of “one greater than”, which is then used to define the suc-
cessor relation. Beck sees this as a more worthwhile challenge to the bootstrapping 
theory than the deviant-interpretation challenge. He goes on to defend Carey’s OTS-
based bootstrapping theory by interpreting her account of internal computational 
constraints that can increase expressive power (Beck 2017, p. 119). As explained in 
the previous section, the computational constraints associated with the OTS allow a 
child to grasp that the numeral “one” is associated with one object file, thus acquir-
ing the concept ONE. Then during the learning process she learns that combining 
a collection of “one” F with “one” F creates a collection of “two” F’s, acquiring 
the concept TWO—and so on until four F’s give the concept FOUR, which is the 
limit of the object tracking system. At this point, the child can then use analogy and 
induction in the extrapolation that also other words in the number sequence work in 
a similar manner: the next numeral is associated with the process of combining the 
previous collection of n F’s with “one” F. Importantly, Beck argues that this theory 
avoids the circularity challenge. By the time the analogous and inductive process of 
bootstrapping happens, the placeholders in the numeral list already have been par-
tially interpreted due to the computational constraints: the child has already grasped 
that the quantities designated by the words from “one” to “four” differ by “one” 
individual, which can be used to induce that the same difference of “one” character-
izes also the rest of the numeral list (Beck 2017, p. 119). After this, Beck contends, 
the only problem left is the deviant-interpretation challenge, but since that is a prob-
lem for any theory of inductive learning and not specific to bootstrapping, Carey’s 
account remains unharmed.

4 � The Approximate Number System

In his explication of Carey’s theory, Beck offers a clear and plausible philosophical 
account of how the bootstrapping process could work. In avoiding the circularity 
challenge, Beck manages to formulate Carey’s account so that the move from com-
putational constraints due to the parallel individuation ability to grasping the suc-
cessor function requires no further conceptual input. But in this great strength of the 
Carey–Beck theory lurks also a potential problem. As is well established [and sev-
eral times mentioned by Carey (2009)], there is also another core cognitive system 
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for treating numerosities. This system, called approximate number system (or ana-
logue magnitude system), is manifest in an estimation ability that—like the OTS—
we possess already as infants and share with many nonhuman animals (Dehaene 
1997/2011; Spelke 2000).

The estimations made with the approximate number system (ANS) have two 
important characteristics: the size effect and the distance effect. This means that 
the numerosity estimations are subject to the so-called Weber’s law: they become 
less accurate as the numerosities become larger, and distinguishing between numer-
osities becomes easier as the numerical distance between them becomes greater 
(Dehaene 2003). Thus, the ANS-based estimations are characterized by their loga-
rithmic rather than linear manner: establishing the difference between, say, sets of 5 
and 6 objects is easier than that between 15 and 16 objects. Empirical data show that 
when asked to place numerosities on a number line, people in cultures with limited 
numeral systems (such as the Pirahã and the Mundurukú of the Amazon) recruit the 
ANS and place the numerosities in a way that is best modelled as logarithmic (see 
e.g. Dehaene et al. 2008; Pica et al. 2004).5

It is generally accepted that the ANS and the OTS are two separate cognitive 
systems for treating quantities (see, e.g., Dehaene 1997/2011; Feigenson et al. 2004; 
Agrillo 2015). Furthermore, although there are well-known accounts that ascribe 
limited importance for the ANS for the early stages of number concept acquisition 
(e.g., Carey 2009; Carey and Barner 2019), many researchers believe that the ANS 
plays a key role throughout the development of number concepts (see, e.g., Dehaene 
1997/2011; Butterworth 1999; Spelke 2000; Halberda and Feigenson 2008a). Given 
this background, we cannot rule out the possibility that, just like the object track-
ing system, the ANS plays a role in the acquisition of number concepts. Indeed, 
there are accounts in the literature that take the ANS to be the primary core cogni-
tive system in developing and acquiring number concepts, most influentially that of 
Dehaene (1997/2011).

Although it is agreed that the ANS-based estimations are logarithmic in character, 
there has been disagreement on how the ANS-based numerosities are represented in 
the mind. This is still an open question. Perhaps the most famous account in the 
literature, presented by Dehaene and Changeux (1993), takes the ANS-based repre-
sentations to be logarithmic whereas the “accumulator” model of Meck and Church 
(1983) proposes that quantity information from sensory input is represented on a 
linear scale.6 However, this question of how the quantities are represented should 

6  It is a fundamental question about these models what the logarithmic and linear representations mean 
on a neuronal level. The Dehaene-Changeux model, for example, is a connectionist network and it is 
not clear what “logarithmic representation” should be interpreted to mean on a neuronal level. Here a 
key distinction should be made. Dehaene (2003) argues for a logarithmic “mental number line”, which 
I believe can be associated with both the Dehaene-Changeux and the Meck-Church model. On the 
other hand, in Dehaene (2001), instead of representations, he writes of logarithmic and linear “coding 
schemes” for quantities. These coding schemes, I understand, are the basic distinction between the two 

5  Although this does not appear to be always the case; see Núñez (2011). Perhaps most importantly, 
Núñez points out that 37% of the experimental runs on the Mundurukú reported in Dehaene et al. (2008) 
showed a bimodal response using only the endpoints of the number line. Thus the results reported by 
Dehaene and colleagues are perhaps better interpreted in a conditional manner: if subjects place numer-
osities on a number line in non-arithmetical cultures, it is in a logarithmic rather than linear manner.
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not be confused with the fact that the ANS-based estimations follow a logarithmic 
rather than a linear structure (Nieder and Dehaene 2009). For the present purposes, 
the important matter is that the ANS is manifest in estimations that are characteristi-
cally logarithmic, whereas our natural number concepts follow a linear progression.7 
This is something a core cognitive account of number concept acquisition must be 
able to explain. Therefore, based on the accounts of ANS and OTS in the literature, 
there would seem to be three possible scenarios in the core cognitive framework. 
In the first one, the Meck–Church scenario, the quantitative information due to the 
ANS is represented in a linear fashion in the mind and number concepts are acquired 
based on these representations. In the second, the Dehaene–Changeux scenario, the 
logarithmic quantity representations due to the ANS are used in acquiring number 
concepts that follow a linear structure. In the third scenario, the linear structure of 
number concepts is based on the OTS, and in this process, it overrides the loga-
rithmic character of the ANS-based numerosity estimations (and if we buy into the 
Dehaene-Changeux model, also the logarithmic character of the numerosity repre-
sentations, or coding scheme).

Importantly for the present topic, the Carey–Beck OTS-based account as it is for-
mulated by Beck (2017) would appear to be insufficient in all three cases. In the first 
two scenarios, it would be mistaken since the ANS rather than the OTS would be the 
primary cognitive system involved, and the computational constraints of the latter 
system would not be responsible for acquiring number concepts. This is a possibility 
that cannot be dismissed—even though Carey (2009, pp. 309–319) provides strong 
evidence against it—but given the growing amount of evidence that the OTS plays 
an important role in number concept acquisition, I will focus here on the third sce-
nario. In Sect. 7, however, I will argue that all three scenarios are flawed. The linear 
structure of number concepts cannot be explained in a satisfactory manner if we 
focus exclusively on the core cognitive abilities.

5 � The stronger deviant‑interpretation challenge

Let us accept for now that the Carey–Beck account is fundamentally right and that 
our number concepts follow a linear progression due to the computational con-
straints of the OTS. Given the existence of the ANS, the Carey–Beck account needs 
to answer one important question: why do our number concepts follow the linear 
character of the OTS-based representations rather than the logarithmic character 
of the ANS-based estimations? Clearly some factors are responsible for the linear 

7  It should be noted here that the ANS-based estimations are not fixed to a particular logarithmic model. 
Typically the estimation acuity increases gradually from infancy to adulthood (Halberda and Feigenson 
2008b). It has also been established that by training, we can become better estimators, which also corre-
lates with better performance with exact number concepts (Park and Brannon 2013). Curiously, there are 
reports that arithmetic training does not improve ANS acuity (Lindskog et al. 2016).

models. However, it is possible that the same coding scheme can be instantiated by different types of 
neuronal-level models.

Footnote 6 (continued)
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rather than logarithmic structure that our integers follow. The question is, does the 
Carey–Beck account provide a convincing argument that this process is explained 
by the computational constraints involved in applying the OTS? And if so, given the 
existence of two core cognitive systems for numerosities, why is it that in the boot-
strapping process only the computational constraints given by the OTS are applied, 
whereas the ANS does not appear to play a role?

To be sure, there is a strong empirical case that this is indeed what happens. 
Carey (2009) provides strong evidence against the position of Dehaene (1997/2011) 
and others who argue that the ANS provides the primary cognitive foundation for 
natural number concepts.8 For example, the data of several studies (e.g., Condry 
and Spelke 2008; LeCorre and Carey 2007) show that mapping numerals to ANS-
based estimations is an additional ability that children need to acquire after learn-
ing to count. Before that, children choose numerals at random in estimation tasks, 
not showing any sign that larger numerals should be preferred over smaller ones in 
estimating the size of larger collections (Carey 2009, pp. 314–316). After becoming 
cardinality principle knowers, it takes children about six extra months to be able to 
map estimations of larger sets (> 5) to numerals higher up the count list. This leads 
Carey (p. 316) to conclude that “These data absolutely rule out the possibility that 
mapping numerals in the range of 5 to 10 to analog magnitudes plays any role in the 
construction of the numeral list representation of natural number”.

However, even if we accepted this, it does not mean that that the ANS does not 
play any role in the general process of acquiring natural number concepts, beyond 
the range of one to ten.9 As will be seen in the next section, several researchers 
have proposed models of number concept acquisition that involve both the OTS and 
the ANS. But even though I am a proponent of such a model, ultimately it is not 
crucial for the main argument of this paper. We can accept the main tenet of the 
Carey–Beck account that it is the OTS rather than the ANS that provides the com-
putational constraints used at least in the early stages of acquiring natural number 
concepts. That is what the data strongly support. But the question I am interested 
in is why our natural number concepts follow the structure set by the computational 
constraints of the OTS also beyond the subitizing range of one to four. And in asking 
that question, we must ask why the natural number concepts follow a linear rather 
than a logarithmic structure.

By presenting this question, we return to the deviant-interpretation challenge. In 
this case, the proposed deviant interpretation is provided by the logarithmic charac-
ter of the ANS-based estimations. But now the challenge is considerably stronger 
than the standard Kripkenstein-Goodman argument since instead of a mere theo-
retical possibility, it is based on a widely acknowledged core cognitive, quantity-
specific ability. While Beck dismisses the deviant-interpretation challenge as having 

8  In the second edition of his book, Dehaene softens his position and allows for the possibility that the 
OTS is also important in number concept acquisition.
9  This is in line with the analysis of Carey (2009, Chapter 9), who accepts that mapping the numeral list 
to the ANS-based estimations can be seen as part of the bootstrapping process. The important distinc-
tion is that this is a later stage in development than mapping the counting list to the OTS-based number 
concepts.
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to deal generally with inductive learning, his criticism seems to be targeted to a par-
ticular type of the challenge, namely the general Kripkenstein-Goodman argument. 
Indeed, I agree with him that it is not fruitful to use the Kripkenstein-Goodman as 
an all-purpose tool to criticize any inductive account, including those on concept 
acquisition.

However, this does not mean that we should not consider possible deviant inter-
pretations when there are genuine alternative theories backed up by empirical data. 
To use an analogy from the philosophy of science, no amount of observations of 
white swans can rule out the existence of black swans. But once we have evidence 
suggesting the existence of black swans, we certainly cannot dismiss the black swan 
challenge merely as a case of the Kripkenstein-Goodman argument. This way, I am 
not worried that the inductive process used to learn integers up to thousands (and 
beyond) will fail at some point. What I am worried about is whether the process of 
induction and analogy based on the computational constraints as described by Beck 
can be established as our mode of cognitive access to large integers.

Another analogy helps to see the difference. Let us compare the following 
sequences:

(a)	 1, 2, 3, 4, 5, …
(b)	 2, 3, 5, 7, 11, …

In both cases, the Kripkenstein-problem is present, but there appears to be an 
important difference. In the case of the sequence (a), bringing up the Kripkenstein-
challenge would seem to be just the kind of all-purpose deviant-interpretation chal-
lenge Beck dismisses. But in the case of (b), there are several options for the sixth 
member of the sequence. Mathematically knowledgeable people probably associate 
the numbers in the sequence with the list of prime numbers, and thus the sixth mem-
ber would be 13. But based on the small part of the sequence given here, the sixth 
member could equally well be, say, 15. This would follow, for example, from the 
rule that for the second member, add one. For the next two members, add two to 
each. For the next four members, add four to each, etc.10 This kind of deviant inter-
pretation is not simply rehearsing the Kripkensteinian remark about the inductive 
nature of the process. Instead, it provides a feasible alternative interpretation for the 
continuation of the number sequence.

Similarly, the logarithmic character of the ANS-based estimations provide a fea-
sible alternative scenario that our number concepts could have taken. This way, I 
see the ANS as providing a stronger case of the deviant-interpretation challenge to 
the Carey–Beck OTS-based theory than the general Kripkenstein-Goodman argu-
ment does. If the ANS is a factor in our learning of natural numbers, the logarithmic 
character of ANS-based estimations could potentially show up in the progression of 
our number concepts. In this scenario, the distance between two successive numbers 
(in the sense of a number line) would become smaller as the numbers become larger. 

10  This is of course just one option for the rule. The On-line Encyclopedia of Integer Sequences recog-
nizes 1005 integer sequences that include the progression 2, 3, 5, 7, 11. (oeis.org).
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What this could mean in practice is perhaps hard to envision. But combined with an 
increasing lack of accuracy of the ANS as the numerosities become larger, one pos-
sibility is that number concepts would be used to refer to larger intervals of discrete 
numerosities. For example, the number concept FOUR could refer to the numerosity 
4, but some single number concept X could refer to our numerosities 5 and 6 (or, to 
put it another way, the set {5,6}), and the next number concept Y to the numerosities 
7, 8 and 9 (the set {7,8,9}). While this example is both naïve and hypothetical, it is 
certainly not a completely unrealistic scenario based on the research on the anumeric 
cultures such as the Pirahã and the Mundurukú (Gordon 2004; Pica et al. 2004). If 
a logarithmic number line models the progression of quantities, it is possible that 
number concepts would in this manner refer to larger intervals of numerosities.11

Since such number concepts did not develop in our culture, we are left with the 
three scenarios specified in the last section. First, according to the Meck–Church 
theory, although the ANS functions characteristically in a logarithmic manner, 
the numerosity representations based on it are linear. Second, according to the 
Dehaene–Changeux theory, the ANS-based numerosity representations are logarith-
mic but they are turned into linear number concepts. Or third, the ANS remains as 
a parallel system for treating numerosities but our number concepts get their linear 
structure from somewhere else (like the OTS). In the third scenario that we focus on 
here, the question is: why do children use analogical and inductive learning based on 
the OTS when they acquire integer concepts, while not employing the logarithmic 
character of the ANS-based estimations?

The question why the OTS overrides the ANS in number concept acquisition 
becomes particularly important when we remember that the ANS has one clear 
advantage over the OTS as the basic cognitive core system for quantities: while 
the OTS concerns only the numerosities from one to four, the ANS is in princi-
ple unbounded and can thus be used for large numerosities beyond the scope of 
the OTS. This wider scope of the ANS is particularly important when we note that 
the three steps (from ONE to TWO, from TWO to THREE, and from THREE to 
FOUR) that the Carey–Beck bootstrapping theory posits as the way to acquire natu-
ral number concepts is a very small amount of instances to base a general rule on. At 
the very least, the process on inductive and analogical reasoning at the foundation 
of the Carey–Beck account leaves the theoretical possibility of deviant interpreta-
tions. This theoretical possibility becomes a serious challenge when there’s already 
a quantity-specific core cognitive system in place which follows such “deviant” rule. 
Why does that system, the ANS, not take over? We can see that this is not merely 
re-stating the deviant-interpretation argument in the mold of Kripke and Goodman. 
Instead of pointing out the logical possibility of a deviant development, I am ask-
ing why the characteristics of the estimations based on a well-established ability for 
treating numerosities are not present in the early development of number concepts. 
If the Carey–Beck theory is accepted, it implies that the computational constraints 
given by the OTS are strong enough to guarantee that input on numerosity-related 

11  A different, but related suggestion is made by Ball (2017) in which he developes an account of 
“approximate cardinal numbers” as representations of ANS magnitudes.
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information coming from the ANS is ignored. The question is, why would that 
happen?

As I will aim to show in Sect. 7, I do not believe that this is simply due to some 
genetically determined psychological processes. Instead, I will argue that answer 
can be found in the way cultural factors shape the development of our cognitive 
processes. But before that can be discussed, it is necessary to specify what kind of 
role I see for the two core cognitive systems discussed above in number concept 
acquisition.

6 � Hybrid models

Given the considerations in the previous section, and the strong empirical support 
for the OTS and the ANS, I contend that we should approach the question of number 
concept acquisition in a way that allows both core cognitive systems to play a sig-
nificant role in the process. Currently, the empirical data do not support a strict com-
mitment to a single core system as the foundation of number concepts. According 
to Carey (2009, p. 316), in early number concept acquisition, at least from ONE to 
TEN, it seems that the ANS does not play a role by mapping numerals to the ANS-
based estimations. But as she also notes (p. 335), this does not imply that the ANS 
could not play any role in acquiring the general concept of natural number. Conse-
quently, we should be ready to look for possible explanations of number concept 
acquisition that evoke both systems, possibly in addition to other factors. The idea 
of both ANS and OTS being important for the process is not new in the literature on 
numerical cognition. Several researchers have proposed that the ANS could play a 
role in the acquisition of number concepts in parallel with, or as a complement of, 
the OTS. Spelke (2011b), for example, has argued that Carey’s bootstrapping under-
values the role of ANS in acquiring number concepts. The analysis of van Marle 
and colleagues (2018) implies that measures of both the OTS and the ANS predict 
knowledge-levels of cardinal numbers in children, but in the key stage of acquiring 
the cardinality principle, for example, only the ANS-measure continues to do so. 
Their “merge” theory thus suggests that the two systems both play a role in early 
acquisition of number concepts, after which the ANS plays a more important role. In 
their analysis of the subitizing ability, Clements and colleagues (2019) also suggest 
that both the OTS and the ANS should be included in the explanation. Hyde (2011) 
reviews several other empirical results which imply the need for both OTS and the 
ATS to be included in the model of number concept acquisition. In the philosophi-
cal literature on numerical cognition, I have suggested a similar hybrid model over 
single-system theories (Pantsar 2014, 2015, 2016, 2018, 2019b). I have proposed, 
among other things, that the initial notion of discrete quantity can come from the 
OTS whereas the notion that quantities form an indefinitely continuing progression 
can come from the ANS. Thus, when the task is explaining natural number concept 
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acquisition in general, in that model both the OTS and the ANS play an important 
role.12

Recall that one problematic aspect with the Beck-Carey theory is that the neces-
sary inductive and analogical reasoning is thought to be conducted based on three 
steps, by moving from ONE to TWO, from TWO to THREE, and from THREE to 
FOUR. Based on this, children are thought to make the induction step to become 
cardinality-principle knowers and consequently soon after that grasp the concept of 
natural number in general. But now the question is how we can account for the fact 
that children on this basis grasp that there are quantities greater than four. If knowl-
edge of numerosities is based on being able to track distinct objects simultaneously, 
how do we manage to apply this ability to groups of objects that we are not able to 
track in this parallel fashion? To put it another way, assuming that Carey and Beck 
are right that the concept FOUR comes from computational constraints due to the 
OTS, how do the concepts FIVE, SIX, SEVEN, etc. even make sense? After all, 
they refer to sizes of the kind of collections that are not in the domain of OTS.

What must happen is that the use of number concepts is expanded to new domains 
of collections larger than four, and thus the concept of number is no longer tied only 
to the OTS and its computational constraints. But such an expansion of the domain 
is not a trivial matter. It requires a change in how we observe the world: instead 
of collections of maximum four objects, we start to treat also larger collections in 
terms of their exact numerosity. But more important than the quantitative change is 
the qualitative one. Instead of observing collections based on the OTS, a new way of 
treating observations of collections (at least those larger than four) needs to be intro-
duced. Empirical data suggests that this change does not happen early in ontogeny: 
Corden and Brannon (2009) report data according to which infants can discriminate 
between a small and a large number only when the ratio is 1:4, making them unable 
to distinguish between, say, 2 and 6 objects.

However, we know that already long before being cardinality principle know-
ers, children can compare collections of larger cardinalities than four. Although this 
ability is approximate and gets increasingly inaccurate as the numerosities become 
larger, it is a numerosity-specific ability that has important correlations both with 
developed mathematical ability and early number concept acquisition. Studies on 
college students, for example, show that better mathematical skills are associated 
with higher acuity in estimation tasks (Cantlon et  al. 2006; Brannon and Merritt 
2011). Wagner and Johnson (2011) report that preschoolers that are not CP-know-
ers show signs of ANS-based representations in grasping the verbal numeral list. 
As mentioned above, van Marle and colleagues (2018) report a study according to 
which in acquiring the cardinality principle, it is indeed the measure of the ANS 
rather than the measure of the OTS that predicts knowledge-levels. However, data 
also suggest that the ANS alone cannot explain the early ability with numerosi-
ties. Estimates of small and large numbers differ in reaction times and accuracy, 
and individual variability in small number range does not correlate with individual 

12  I would like to thank Paula Quinon for helpful discussions in developing this view. In Quinon (forth-
coming), she develops her own hybrid account of natural number concept acquisition.
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variability in large number range (Revkin et  al. 2008; Piazza et  al. 2011; Hyde 
2011). Therefore the OTS and the ANS both appear to be used in non-symbolic 
numerical cognition and a hybrid model connecting the two is needed.

This connection between the ANS and both early and developed numerical abil-
ity could explain why the OTS-based inductive extrapolation that Carey and Beck 
propose can be carried out. Based on the ANS, children already have a great deal 
of experience in assessing the sizes of collections larger than four. They realize that 
quantities can be assigned to small collections of four or less objects, but also to 
larger ones. Based on the ANS, they can also get the general idea that quantities 
form a continuing progression. From merely three inductive steps, that can be dif-
ficult to grasp. But if the child has seen much larger collections and been able to 
estimate their numerosities, there is nothing new in treating those collections in 
terms of quantities. The new knowledge and skill component required at this stage 
is the ability to associate numerals also with larger quantities, which is present at the 
application of the ANS.13 Thus, both the OTS and the ANS can play important roles 
in the development of numerical cognition, including the crucial step of acquiring 
natural number concepts.

However, now the big question at hand is whether such a hybrid model could 
survive the stronger deviant-interpretation question presented in the previous sec-
tion. It might seem that the hybrid model runs into the same trouble as the OTS-
based Carey–Beck model, given that the ANS with the logarithmic character of its 
estimations is specifically included in the theory. Why does the hybrid theory not 
follow the ANS-based estimations and give us number concepts that are not linear? 
The answer I propose here is based on the fact that both the ANS and the OTS are 
present throughout the development of a child. If a child only had the ANS, it is pos-
sible that the resulting number system would follow a logarithmic structure, if such 
a system could develop at all. If the child only had the OTS, it is possible that the 
resulting number system would only be applicable to collections maximum of four 
items. But if both cognitive core systems are used to process quantitative informa-
tion, there is no (theoretical) limit to the sizes of collections, nor do the number con-
cepts need to be approximate.

In an ANS-based account, the latter is a problem. How does the logarithmic 
and increasingly inexact estimation ability with quantities transform into linear, 
exact number concepts? In the Carey–Beck account, the former poses an equally 
important problem: how is the ability to determine quantities up to four extended 
into general number concepts? In a hybrid model, there can be an explanation for 
both problems. The Carey–Beck account can be correct when it comes to the first 
number concepts. But for generalizing into larger number concepts, the influence of 
ANS can be the missing piece of the puzzle. The inductive and analogical reasoning 

13  It should be noted that this ANS-based association of numerals with larger quantities does not imply 
that children use ANS-based representations in the initial stage of figuring out how numerals represent 
natural numbers. There is data showing that when children figure out how counting represents natural 
numbers, they still pick numerals at random when estimating larger numerosities. It takes them approxi-
mately six months to learn to map numerals to larger estimated numerosities (Condry & Spelke, 2008; 
LeCorre & Carey, 2007).
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involved in bootstrapping could function essentially as described in the Carey–Beck 
theory. But the ANS could explain why such reasoning into larger quantities makes 
sense.

7 � Enculturation

Above I have argued that a hybrid theory can give us a more comprehensive expla-
nation of the bootstrapping process. But the challenge remains: why do the result-
ing number concepts follow a linear structure derived from the OTS rather than a 
logarithmic structure derived from ANS-based estimations? As the way to meet this 
challenge, I contend that we should not look for answers only in the ontogeny but 
also in the phylogeny and the history of number concepts.14 The development of 
linearly structured numerosity systems is not a universal characteristic, as seen, for 
example, in the case of the Pirahã (Gordon 2004). The emergence of number sys-
tems is a cultural phenomenon tied to the applications there have been for numeros-
ity concepts. It is the applicability of exact numbers to trade and other cultural phe-
nomena that has most likely made the difference in the development of numerical 
ability in different cultures (Everett 2017). Consequently, we should be prepared to 
look for the explanation for linear number concepts also in cultural factors. Seen this 
way, number concepts are the result of cumulative cultural evolution, the process 
of transmitting and developing knowledge and skills across generations (Boyd and 
Richerson 1985, 2005; Tomasello 1999; Henrich 2015; Heyes 2018).

Perhaps it is possible to have both linearly and logarithmically structured early 
number concepts, but something in cultural contexts favors the linear structure and 
allows for the development of general concept of natural number. It is of course 
possible that the preference for a linear structure is a product of biological evolu-
tion, due to an innate bias for a recursive, linear number system. However, given 
the knowledge we have about the importance of cognitive tools like symbol systems 
and writing tools in number concept acquisition, it is more likely that instead of an 
innate bias, the preference is due to cultural factors. One of the earliest known such 
cognitive tools, tallying systems of keeping track of quantities by simple stroke nota-
tion, for example, can be conducive to the emergence of linearly structured number 
concepts (Ifrah 1998). Each stroke represents one event or object and a progressing 
sequence of strokes results in a linear notation.15 Over generations, such stroke nota-
tions can be developed into, or merged with, existing numeral systems. The resulting 
cumulative cultural evolution of numbers can be a long process in which each new 
generation uses the OTS and the ANS to acquire number concepts. But importantly, 

14  This inclusion of phylogenetic considerations is not a new idea in the literature. It was already 
included by Piaget (1980) and is discussed by Carey (2009). But as will be seen, I propose a specific 
theoretical framework for combining ontogenetic and phylogenetic considerations, building on the work 
of Menary (2015).
15  Of course a system of tallying could also represent a logarithmic number structure. However, in the 
known systems of tallying the marking system has been linear (see, e.g., Ifrah 1998).



1 3

Synthese	

they are instructed of the culture-specific numeral system which determines how 
their number concepts develop.

Starting from the appearance and development of number words, the history 
of natural numbers is tightly connected to their applications and to the modes of 
cultural transmission (Pantsar 2019b). For hunter-gatherer cultures like the Pirahã, 
having a linear exact number system may not have provided important advantages. 
They engage in trade in a limited fashion, they do not practice agriculture, nor do 
they store food or other goods (Everett 2017). Consequently, they do not face many 
of the cultural conditions in which large exact number concepts have proven to be 
useful. However, the Pirahã have the same computational constraints based on the 
OTS as we do. The fact that their quantity concepts did not develop according to 
the Carey–Beck theory is not due to a difference in the cognitive core systems. The 
different ontogeny of their number concepts (if they can be called number concepts) 
is due to a different phylogeny of number concepts (if any), which in turn cannot be 
considered independently of the cultural settings. As detailed in Sect. 2, it is essen-
tial for the Carey–Beck theory of bootstrapping that in ontogeny there is access to a 
list of number words that act as placeholders, which can be filled with semantic con-
tent. But the existence of such number words is a cultural development and not the 
product of biological evolution. However, the importance of culturally-shaped fac-
tors does not end in number words. As was seen in Sect. 2, in Beck’s (2017) account 
also “counting games” are considered to be central in the bootstrapping process.

The importance of linguistic factors like systems of numbers words and cul-
tural practices like counting games fits well with the framework of Menary (2015) 
in which he presents mathematical cognition as a case of enculturation. Encultura-
tion refers to the transformative process in which interactions with the surrounding 
culture influence the acquisition and development of cognitive practices (Menary, 
2015; Fabry, 2018; Pantsar 2019b, 2020a). New cognitive capacities can be acquired 
due to the neural plasticity of the brain that makes both structural and functional 
variations possible (Dehaene 2009; Ansari 2008). Menary (2014) calls the mecha-
nism for this “learning driven plasticity” and it makes culturally developed cogni-
tive abilities like reading and writing possible by redeploying older, evolutionar-
ily developed neural circuits for new culturally specific functions (Dehaene 2009; 
Menary 2014). As well as for reading and writing, the enculturation framework has 
been used for explaining the development of mathematical cognition (Menary 2015; 
Pantsar and Dutilh Novaes 2020). So far, the literature on enculturation with regard 
to mathematical cognition has focused primarily on arithmetical abilities (e.g., Jones 
2020; Fabry 2020), but here I want to show that the enculturation framework has 
great potential also in explaining the earlier process of number concept acquisition.

In particular, the enculturation account can in the present context help explain 
the connection between the phylogeny of number concepts and their ontogeny. It is 
clear that the emergence of natural number concepts is not due to any innate physi-
ological difference in our brains, compared to the brains of people in anumeric cul-
tures. Although it is impossible to know when the first extensive number systems 
were introduced, the oldest known systems of symbolic numerals are approximately 
5000 years old (Schmandt-Besserat 1996). This would appear to be on a totally dif-
ferent time-scale from the kind of periods it would take biological evolution to give 
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rise to numerical abilities (Dehaene 1997/2011; Menary 2015; Fabry 2020). In addi-
tion, bi-lingual members of anumeric cultures—e.g., the Mundurukú—have shown 
that they can learn to count, supporting the position that the capacity to count is not 
due to some recent evolutionary development (Gelman and Gallistel 2004; Gelman 
and Butterworth 2005).16

Consequently, unlike the core cognitive abilities with quantities, although ini-
tially very likely based on the OTS and the ANS, the ability with developed number 
concepts is not due to brain regions having developed for that purpose. Instead, the 
plasticity of our brains allows old neural circuits to be redeployed to new functions. 
This principle is called neuronal recycling (Dehaene 2009; Menary 2014) and it is 
a specification of what Anderson calls neural reuse (Anderson 2010, 2015; Fabry 
2018; Jones 2020). Neural reuse refers to the general process of “circuits [continu-
ing] to acquire new uses after an initial or original function is established” (Ander-
son 2010, p. 245). The neuronally recycled functions, Menary (2014, 2015) argues, 
are dependent on cultural practices.

Because it provides a clear hypothesis of the mechanism how cultural practices 
influence the development of cognitive processes, I see the enculturation frame-
work as having great potential in explaining number concept acquisition. The rea-
son for this that we can see that the ontogeny of number concepts is made possible 
by neuronal recycling [or more extensive neural reuse, as argued by Jones (2020) 
and Fabry (2020)], which is determined by the interactions we have in our cultural 
setting. Starting from learning languages with extensive numeral systems and get-
ting the appropriate instruction, the ontogeny of number concepts is made possible 
by children’s neural circuits starting to be redeployed for new numerical purposes. 
There is empirical evidence that this is indeed the case. The intraparietal sulcus, for 
example, is used for both the core cognitive and arithmetical treatment of quanti-
ties (Dehaene and Cohen 2007), suggesting that in learning arithmetic (including 
natural number concepts), we redeploy evolutionary developed neural circuits for 
processing quantities. Without a conducive cultural setting, however, this redeploy-
ment does not happen. Aside from numeral systems, the development of numerical 
cognition is shaped by many other culturally determined factors, such as cognitive 
practices and tools (Fabry and Pantsar 2019).

While the enculturation framework as presented above may sound like an alterna-
tive to the Carey–Beck theory, it is—I contend—in fact consistent with both Car-
ey’s (2009) original work and Beck’s interpretation of it. Carey (p. 414) accepts that 
numeral systems17 are social constructions and learning them is a social process, 
but contends that emphasis on the social aspects is not enough to explain how new 
concepts can be mastered. I agree with this. I believe that our core cognitive systems 
play a crucial role in the ontogeny of acquiring number concepts. Recall also that 

16  Interestingly, in the studies by Gelman and colleagues, the bi-lingual Mundurukú continued to use the 
ANS in problem solving tasks even though they knew the Portuguese counting words which would have 
given them exact solutions. This supports the view that the cultural context is crucial for acquiring math-
ematical knowledge and skills even if the required linguistic capacity is in place (Pantsar 2019b).
17  Curiously, she only mentions the rational number system here and not the natural numbers.
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according to Beck, in addition to the internal computational constraints due to the 
OTS, external computational constraints determine the bootstrapping process. Beck 
used the game of repeating the counting list while pointing to objects as an example 
of this. This game, from having the counting list to the particular gestures used in it, 
is clearly a product of cumulative cultural evolution. Games and other cultural prac-
tices form the basis on which children learn to use words and acquire the appropriate 
concepts. Indeed, the importance of cultural input is mentioned already by Carey, 
according to whom “the capacity to represent the positive integers is a cultural con-
struction that transcends core cognition” (Carey 2009, p. 287).

This way, the present account should not be seen as an effort to refute the 
Carey–Beck theory. However, whereas Carey only points out that representing num-
bers is a cultural construction, I have wanted to make a specific proposal to enhance 
the bootstrapping theory to include cultural factors. Similarly, Beck (2017) writes 
about counting games without providing a theoretical framework for how cul-
tural factors can shape our cognitive processes. In order to place the bootstrapping 
account in a coherent theoretical framework that can include both genetically deter-
mined and culturally shaped influences, I have wanted to introduce the enculturation 
account based on neuronal recycling (or neural reuse) to the debate on number con-
cept acquisition. In turn, I believe that applying the enculturation account to number 
concept acquisition can enhance our present understanding of mathematical cogni-
tion as the result of processes of enculturation.

Recognizing the importance of the cultural input for the ontogeny of number con-
cepts by the way processes of enculturation shape the cognitive process of num-
ber concept acquisition completes the hybrid model proposed in this paper. The 
two core cognitive systems (with others possibly also involved) both play a role in 
number concept acquisition. But equally important is the role of the cultural setting 
which determines what kind of number concepts are learned and how. Crucially for 
the present context, this also provides us with a solution to the stronger deviant-
interpretation challenge. Besides the core cognitive systems, the number concepts 
we acquire are determined also by the culturally determined manner in which we are 
taught to count and use numerals.18 Simply put, our number concepts do not follow 
a logarithmic structure primarily because, as the result of cumulative cultural evolu-
tion, we are enculturated with linearly structured number concepts. It is this external 
computational constraint that can finally complete the answer to the stronger devi-
ant-interpretation challenge posed by the ANS.

18  This trajectory of culturally shaped practices continues throughout the acquisition of mathematical 
knowledge and skills (Pantsar 2019b). These influences range from the effect of numeral systems on 
arithmetical operations like addition (Buijsman and Pantsar 2020) to diagrams and spatial arrangement 
of symbols (Fabry and Pantsar 2019). Importantly, the culturally shaped practices also influence the com-
plexity of mathematical cognition, i.e., the amount of cognitive resources required for completing math-
ematical tasks (Pantsar 2019a, 2020b).
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8 � Conclusions

To sum up, the main difference of my hybrid account to the Carey–Beck account is 
ascribing a larger role for the ANS in the development of number concepts, as well 
as proposing a theoretical framework in which to research the cultural influence. The 
present account is not meant to refute the Carey–Beck bootstrapping theory. Indeed, 
I find that theory in general highly plausible. However, I have shown that the boot-
strapping theory should also include considerations on the approximate number sys-
tem, as well as an explanation of the way that culturally determined factors set exter-
nal constraints for number concept acquisition. Based on the three-part theoretical 
model (OTS-ANS-Enculturation), I have argued that the resulting hybrid system can 
solve the stronger deviant-interpretation challenge.

As a final remark, we should note that the present hybrid account can also solve 
other potentially problematic formulations of the deviant-interpretation challenge, 
such as that presented by Rips and colleagues (2006). As noted in Sect. 3, they pre-
sent the possible deviant interpretation that a natural number system based on the 
bootstrapping process could have loops in it. For example, the bootstrapping process 
could work like the numbers on a clock: after TWELVE the next number concept 
could again be ONE. This might be seen as just the kind of Kripkenstein-Goodman 
deviant-interpretation challenge that Beck saw as targeting all inductive inferences. 
While that could be the case (Rips and colleagues explicitly deny this (Rips et al. 
2006, p. B58) while Beck (2017, p. 113) disagrees), we can see that the ANS could 
prevent the possibility of such loops in the number concept structure. The ANS is 
not limited to small quantities and based on it we would expect numbers to form 
a progression rather than a looped system. Whether we agree about the relevance 
of the deviant interpretation proposed by Rips and colleagues, however, we have 
seen that the deviant-interpretation challenge is more relevant than Beck allows for. 
Indeed, if Beck’s (2017) account of answering the circularity challenge is success-
ful, the deviant-interpretation challenge may prove to be the most important remain-
ing difficulty with Carey’s bootstrapping theory. In particular, I have identified one 
form of this challenge as the most pertinent problem in developing the bootstrapping 
account: the ANS-based case that I have called the stronger deviant-interpretation 
challenge to distinguish it from the general Kripkenstein problem of inductive infer-
ences. In this paper, I have argued that by extending the framework beyond the OTS, 
this challenge can be met.
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