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Abstract
Why would we want to develop artificial human-like arithmetical intelligence, when 
computers already outperform humans in arithmetical calculations? Aside from 
arithmetic consisting of much more than mere calculations, one suggested reason 
is that AI research can help us explain the development of human arithmetical cog-
nition. Here I argue that this question needs to be studied already in the context 
of basic, non-symbolic, numerical cognition. Analyzing recent machine learning 
research on artificial neural networks, I show how AI studies could potentially shed 
light on the development of human numerical abilities, from the proto-arithmeti-
cal abilities of subitizing and estimating to counting procedures. Although the cur-
rent results are far from conclusive and much more work is needed, I argue that AI 
research should be included in the interdisciplinary toolbox when we try to explain 
the development and character of numerical cognition and arithmetical intelligence. 
This makes it relevant also for the epistemology of mathematics.

Keywords  Philosophy of arithmetic · Arithmetic · Artificial Intelligence · Cognitive 
modelling · Numerical cognition · Deep neural networks

1 � Artificial Intelligence and Arithmetic

Approaches to artificial intelligence (AI) can be categorized in many ways, but one 
of the most fundamental distinctions concerns what is understood by the subject 
matter itself, i.e., what exactly is the intelligence that is pursued artificially. Stand-
ardly, this division is made along two dimensions (e.g., Russell & Norvig, 2020). 
The first dimension concerns whether intelligence is a property of behavior or inter-
nal processes (e.g., thought or reasoning). The division along the second dimension 
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is based on whether intelligence should be human-like or rational in a more general, 
abstract sense.

These differences are particularly interesting in relation to human cognitive 
abilities in processing numerosities.1 The history of machine solution of numerical 
problems goes back to at least the designs of Leonardo da Vinci and first functional 
mechanical calculators of arithmetical operations were introduced in the seventeenth 
century by Wilhelm Schickard and Blaise Pascal (Russell & Norvig, 2020). The 
development of electronic calculators in the 1940s and 50s, and in particular the 
introduction of solid-state transistors in the 1960s was transformative to the field 
(Hamrick, 1996). The speed and reliability of the new electronic calculators conclu-
sively established calculating arithmetical operations as a domain in which machines 
outperform humans. Since the 1970s, pocket-sized electronic calculators have been 
available, and they (and later smartphones) have revolutionized the way arithmetical 
operations are carried out. Instead of using traditional cognitive tools, such as pen 
and paper, abacus and the slide rule, that facilitate arithmetical calculations, modern 
people can perform arithmetical operations by simply being able to feed the input to 
a machine and read the output.2

In calculating arithmetical operations, the electronic calculator follows algo-
rithms that, while human-programmed, are not meant to simulate or emulate human 
processes of arithmetical reasoning in, e.g., mental arithmetic or pen and paper cal-
culations.3 Electronic calculators do not memorize, for example, addition or mul-
tiplication tables. They may follow a multiplication algorithm that resembles the 
way humans conduct long multiplication on pen and paper (called the schoolbook 
or standard algorithm), but calculators function with binary representations of num-
bers and (standardly) calculate every multiplication using the same algorithm. This 
is clearly different from human performance in multiplication, in which the result 
of 9  *  9, for example, is usually recalled by rote memory whereas the result of 
11 * 11 needs to be (at least for many people) calculated following the schoolbook 
algorithm.

1  By “numerosity”, I refer to a wider notion of quantity compared to the mathematical notion of “num-
ber”. Humans have quantitative abilities already in infancy, which are also shared by many non-human 
animals. These limited and/or approximate non-symbolic abilities have been called quantical (Núñez, 
2017) and proto-arithmetical (Pantsar, 2014, 2015) in the literature. The proto-arithmetical abilities are 
discussed in detail in Sect. 2 but since they don’t involve (to the best of current knowledge) exact number 
concepts, it is important not to refer to them in terms of numbers, which are culturally developed notions 
(for more, see (Pantsar, 2019, 2021b)). The general term “numerosity” thus includes numbers but also 
the proto-arithmetical quantity representations (see (Pantsar, 2023) for more on the topic of numerosity 
representations).
2  The electronic calculator is of course also a cognitive tool, so the difference concerns the kind of cog-
nitive tools that are used and how. In case of applying pen and paper algorithms, humans need to have 
knowledge of at least addition and multiplication tables, whereas with other cognitive tools less arith-
metical ability is required of the agent. The electronic calculator is a culmination of this development. 
See (Fabry & Pantsar, 2021) for more on cognitive tools and arithmetical cognition.
3  Simulation is connected to the behavior-approach to AI, in that the purpose of a simulation is to imitate 
human intelligent behavior. Emulation, on the other hand, refers to reproducing the cognitive processes 
artificially, and as such is connected to approaches focusing on the internal processes of AI. In this paper 
I will mainly focus on simulations, which may or may not be emulations.
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Therefore, when comparing the human cognitive ability of conducting arith-
metical calculations (possibly including cognitive tools such as pen and paper) to 
machine calculation, we can see that the artificial intelligence (the calculator) is 
designed to follow a particular type of processing, rather than simulating human-
like ability with arithmetical operations. It is unlikely that there will be any change 
in this state of affairs, for a simple reason: arithmetical operations have already for 
many decades been something that machines are extremely good at. In comparison, 
humans are woefully slow and unreliable in their ability to conduct arithmetical cal-
culations. It is hard to see why an engineer would try to build a machine that calcu-
lates arithmetical operations in the manner of human agents.

However, this is only the case if the focus is on calculating results of arithmeti-
cal operations. Human numerical ability encompasses much more than just arith-
metical calculations. Even when limiting numerical ability to the natural numbers, 
arithmetic is a discipline including a multitude of activities aside from calculations 
of results of arithmetical operations. In addition, arithmetic is associated with a wide 
range of applications both in science and everyday life. On the highest level, what 
human mathematicians typically consider interesting about arithmetic are not calcu-
lations, but proving general theorems about all natural numbers. In this way, human 
arithmetic—and therefore also artificial human-like arithmetical intelligence—is 
clearly a much wider field than what can be carried out by electronic calculators. 
But what exactly is it? This is the question I will focus on first in this paper.

When we want to simulate human-like numerical cognition and arithmetical intel-
ligence, what precisely is the target phenomenon? This what-question, as will be 
seen, prompts further questions. How could human-like artificial arithmetical intel-
ligence be developed? And particularly interesting for philosophy, why would we 
want to do that? In this paper, I will treat all three—the what, how and why—ques-
tions. In Sect. 2, regarding the what-question, I show that human numerical cogni-
tion is in many ways peculiar and differs from the kind of numerical manipulation 
associated with formal arithmetic. In Sect. 3, regarding the how-question, I present 
recent progress in simulating human numerical cognition by deep neural networks. 
In Sect.  4, regarding the why-question, I analyze the relevance of these develop-
ments to the study of numerical cognition in humans and by extension the episte-
mology of arithmetic. Finally, in Sect. 5, I will present some problems and future 
prospects related to developing artificial human-like arithmetical intelligence.4

4  In this paper, I speak both of human-like cognition and human-like intelligence. This is not meant 
to suggest that the two words are synonymous, although they clearly are closely intertwined. While the 
topic is ultimately the possibility of creating human-like arithmetical intelligence, as will be seen in this 
paper, it is closely connected to forms of numerical cognition that we share with many non-human ani-
mals and already possess as infants. It is controversial whether such cognition should be called intelli-
gence, which is the main reason for discussing both cognition and intelligence in this paper.
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2 � Human Numerical Cognition

In order to model human-like arithmetical intelligence, we need to have a good 
understanding of what the relevant cognitive processes are. Since we are ultimately 
interested in elucidating arithmetic as a human activity, I contend that we should not 
be a priori excessively discriminatory concerning what counts as a relevant cogni-
tive process. For example, clearly learning and conducting formal proof procedures 
are part of arithmetical intelligence. But how much will they tell us about what is an 
interesting theorem for a human arithmetician? To understand arithmetical cogni-
tion, we need to understand arithmetic as a human endeavor. The first step of this is 
to study how human arithmetical intelligence develops, starting from basic numeri-
cal cognition.5

The problem is, human numerical cognition is full of peculiar phenomena 
that are seemingly harmful for the development of arithmetical intelligence, as 
it is understood in terms of modern mathematics. For example, numerical cog-
nition includes a Stroop effect, a delay in reaction time in presence of incon-
gruent stimuli. Experiments show that judgments of numerosity can be influ-
enced by non-numerical magnitude stimuli, such as object size. In one example, 
Henik and Tzelgov (1982) showed that adult humans show both longer reaction 
times and lower accuracy in estimating which number is larger when the physi-
cal number symbol was incongruent with the numerical value (e.g., the pair 5.3 
was more difficult to process than the pair 5.3). Presumably, humans confuse 
the physical size with the numerical value and when prompted to answer which 
one is “larger”, they need to process the answer for longer when the stimuli are 
incongruent. It should be noted that the difference was not due to the subjects 
being confused about what they were asked. Even though it was clear that it 
was the size of the numerical value that they were asked about, the Stroop effect 
remained.

At a first glance, it seems that the Stroop effect on numerosities is something 
that we should hardly consider as a goal for artificial agents. It is difficult to see 
it serving any beneficiary purpose for the development of arithmetical intelligence. 
Yet this kind of judgment is potentially problematic when we consider the possi-
bility of constructing human-like artificial intelligence. We do not know everything 
that is essential to the development of human arithmetical intelligence. While the 
numerical Stroop effect may be an unwanted side effect, its existence could also be 
indicative of some important characteristic of the way human beings cognize about 
numerosities and magnitudes.

This brings us to the question just what we mean by human numerical cognition 
and arithmetical intelligence. This question is divided into two subquestions. First, 

5  Following the empirical literature, here “numerical” refers to abilities concerning numerosities, which 
include – as described in Footnote 1 – culturally developed abilities with symbolic numerals but also 
non-symbolic proto-arithmetical abilities. By “arithmetical”, in contrast to proto-arithmetical, I refer 
exclusively to natural numbers and their operations.
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we need to ask what the target phenomenon in general is that we are trying to cap-
ture in the study of cognition and intelligence. Second, we must ask how similar that 
cognition and intelligence is across cultures and individuals.

For the first question, the standard approach traditionally in artificial intelligence 
and cognitive science has been to focus on human competence rather than perfor-
mance (Chomsky, 1965). Individuals differ, of course, in their abilities, so Chom-
sky was looking for a way to talk about human abilities and capacities in a general 
way. Chomsky introduced the distinction for linguistics, but it has since been widely 
applied for also other cognitive phenomena (e.g., vision; see Marr, 1982). Funda-
mentally, the idea is that rather than actual individuals, in cognitive modelling we 
are interested in ideal human agents.6

However, when it comes to something like arithmetical intelligence, this approach 
is potentially problematic. Arithmetic, unlike language and vision, is a cognitive 
ability that does not exist universally among the human species. It has developed 
independently several times over the course of human history, but there are also 
cultures that have never developed arithmetic, or even basic numeral words (Gor-
don, 2004; Ifrah, 1998; Pica et al., 2004). Therefore, to answer the second question 
presented above, arithmetical cognition not only differs across individuals, but also 
greatly among cultures. In order to deal with this integral cultural aspect of arith-
metical cognition, we have argued for enculturated competence as an amendment 
of the Chomskyan notion of competence (Fabry & Pantsar, 2021). The target phe-
nomenon, when it comes to human arithmetical intelligence, is not some universal 
ability. Instead, it is a culturally shaped ability, which should be studied in that par-
ticular context (Pantsar, 2019).

However, as argued by many researchers (Butterworth, 1999; Carey, 2009; 
Dehaene, 2011), it is quite likely that human arithmetical intelligence is developed 
based on universal, evolutionarily developed abilities to observe and process numer-
osities, what Carey (2009) calls core cognitive abilities. These abilities are thought 
to be present already in infancy and shared with many non-human animals. Such 
non-symbolic proto-arithmetical abilities (Pantsar, 2014) are standardly divided 
into two in the literature. First is subitizing, the ability to determine the amount of 
objects in our field of vision accurately without counting (Dehaene, 2011; Knops, 
2020; Pantsar, 2019, 2021a; Starkey & Cooper, 1980). The subitizing ability is accu-
rate, but it stops working when the number of objects exceeds three or four, which 
is generally thought to be the limit of the object tracking system (OTS). The OTS, 
also called the parallel individuation system in the literature (see, e.g., Carey, 2009), 
allows observing multiple objects in parallel and is often thought to be the cogni-
tive system behind the subitizing ability (Knops, 2020). Because the OTS serves 

6  The focus on abilities of ideal agents should not be confused with the abilities being optimal for cogni-
tive tasks, although the two have sometimes been conflated in cognitive science (see, e.g., Anderson, 
1990). The reason for focusing on ideal agents is to move the focus to general human competence.
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other functions beside subitizing the numerosity of objects, it is not considered to be 
numerosity-specific.

The second ability is estimating without counting and it is usually thought to 
be due to an approximate number system (ANS) (or “number sense”) (Dehaene, 
2011; Spelke, 2000). Unlike the subitizing ability, the estimation ability is not 
limited to small numerosities. However, the estimations get increasingly inaccu-
rate as the sizes of the estimated collections increase. This logarithmic nature 
of the ANS is captured by the so-called Weber-Fechner Law (or Weber’s Law), 
according to which humans can detect (without counting) differences in sizes of 
magnitudes when they are above a certain ratio (Knops, 2020).

The ANS is thought to be responsible for two peculiar effects in human 
numerical cognition. Consistent with the Weber-Fechner Law, the ANS has two 
standard behavioral signatures. First is the distance effect, which means that dis-
tinguishing between numerosities becomes easier with increasing numerical dis-
tance between them. Second is the size effect, which refers to the way numerosity 
estimations become less accurate as the numerical size of the estimated collection 
increases.

These ANS signatures also influence the human performance in numerical tasks 
after they have developed symbolic ability to process numerosities. Consider, for 
example, the following task: which one of the numbers below is bigger?

4 5

After that, consider the task which of the following numbers is bigger:

4 9

One might expect that an arithmetically trained adult would find both tasks 
equally easy to solve. But the data in fact show that the reaction time with the top 
pair is considerably longer than with the bottom pair, consistent with the distance 
effect (Dehaene, 2011). Indeed, the distance effect remains in place even when solv-
ing the problem requires comparing the first digit of two-digit numbers. For exam-
ple, compare the pairings:

71 65

 And:

79 65

Even though the second digit makes no difference for solving the task, again the 
data show a distance effect that makes the reaction time associated with the top pair 
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longer (Hinrichs et al., 1981; Pinel et al., 2001). The distance effect even remains 
when the task is to determine whether two numbers are the same, in which case all 
that is needed is to distinguish between two number symbols (Dehaene & Akhavein, 
1995). These data suggest strongly that the ANS cannot be “turned off” and it 
remains a part of our numerical cognition even when we have developed symbolic 
abilities to process numerosities.7

3 � Modelling and Simulating Human‑Like Numerical Cognition

The phenomena above present an interesting matter for the question of modelling 
human numerical cognition and developing human-like artificial arithmetical intel-
ligence. As originally envisioned by Newell and Simon (1961), the aim of artificial 
intelligence was to emulate human cognition. However, the distance and size effects, 
as well as the Stroop effect, seem like aspects of human cognition that are sub-opti-
mal and confusing. Hence, any rational approach to AI (as opposed to human-like 
approach to AI) would be likely to see them as the kind of baggage that should not 
be included in artificial intelligence. On the other hand, if we want to model human 
arithmetical intelligence, how can we know that the proto-arithmetical abilities and 
their peculiarities are not in fact important? Even though the Stroop, size and dis-
tance effects by themselves might not be useful for an arithmetical AI, they could be 
symptoms of some underlying features that are essential to the way human numeri-
cal cognition functions, and thus also matter in the question of simulating human-
like arithmetical intelligence.

Recently, there has emerged a direction of AI research that deems it important 
to simulate human numerical cognition, warts and all. The Stanford research group 
led by Jay McClelland has established a project to train artificial neural networks 
to learn in a two-dimensional visual environment in a way that aims to mirror the 
way children develop early numerical cognition (McClelland et al., 2016). Instead 
of symbol-based processing, their use of artificial neural networks (from here on 
just neural networks) is meant to simulate how training with visual stimuli can lead 
an AI to develop its own ability to process numerosities. An important pioneering 
experiment in this research area was reported by Stoianov and Zorzi (2012) who 
used a “stochastic hierarchical generative model”, which is a generic multilayer (i.e., 
deep) neural network that has one visible layer that encodes sensory data and hidden 
layers that generate increasingly complex nonlinear representations of the sensory 
data. Such features are seen as attractive for cognitive modelling, since they can mir-
ror the neuronal structure of the brain (Stoianov & Zorzi, 2012).

What Stoianov and Zorzi did was to present the deep neural network with pairs 
of images with different sizes and numbers of dots, as is done standardly in number 

7  Indeed, while the examples here involve symbolic numerals, it is important to remember that ANS-
based estimation is a proto-arithmetical ability that is present in human infants and many non-human 
animals. In experiments on them, collections of dots or other physical shapes are used (see, e.g., Knops, 
2020).
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comparison tasks concerning the ANS with humans (Dehaene, 2011). This was done 
by unsupervised learning, so the neural network was not trained to focus on numer-
osity, area size, or any other factor of the visual stimuli. What the researchers found 
out was that the neural network learned to perform the numerosity comparison task 
with similar behavioral signatures as humans and non-human animals (Stoianov & 
Zorzi, 2012). Furthermore, the response profiles of the emergent “numerosity detec-
tors” in the neural network resembled those reported earlier in the lateral intrapari-
etal area of macaque brains (Roitman et al., 2007).

In the experiment reported by Stoianov and Zorzi, numerosity emerges as a sta-
tistical property of the input images. In the Stanford group, this line of research 
has been developed further. In an experiment reported by Testolin and colleagues 
(Testolin et al., 2020), numerosity discrimination is reported in generic deep neural 
networks, starting from a randomly weighed neural network. In addition to vector 
images of dots, as in the Stoianov and Zorzi study, the network of Testolin and col-
leagues learns numerical acuity from “natural” visual stimuli (derived, for example, 
from pictures of groups of animals), resulting in trajectories highly similar to the 
ones observed in human longitudinal studies (Halberda & Feigenson, 2008; Piazza 
et al., 2010). Furthermore, the final competence of the neural network is an approxi-
mation of that of human adults (Testolin et al., 2020).8

What do these results imply? As argued by Testolin and colleagues, they suggest 
that the human numerical estimation ability is not necessarily due to an evolutionary 
developed numerosity-specific system, as assumed in the ANS hypothesis. Rather, 
a generic unsupervised neural network can end up with a similar numerical acuity, 
both by observing collections of dots and images derived from natural scenes. Of 
course, this does not mean that the ANS hypothesis is incorrect, but it should be 
enough to make us consider whether the estimation ability is due to some more gen-
eral cognitive characteristic involved in learning.

Intriguingly, the data reported in such experiments does not fully conform to the 
human proto-arithmetical abilities involving numerosities. In another experiment, 
reported in (Chen et al., 2018), it is shown that this kind of emerging numerical acu-
ity shows a coefficient of variation consistent with the Weber-Fechner Law, but only 
starting from four items. This is in line with the argumentation of Carey, Beck, and 
others who believe the OTS to be integral to the development of exact number con-
cepts (Beck, 2017; Carey, 2009). Hence we should consider the possibility that the 
OTS is an innate cognitive system while, instead of an approximate number system, 
the numerosity estimation ability emerges generally in complex enough neuronal 
systems with appropriate training material. To test this hypothesis, we would need 

8  The way to get output from the neural network, i.e., to translate its internal representations into behav-
ioral responses, is to train a “classifier” that maps the internal representations at the deepest layer of the 
network into a (binary) classification response, which indicates whether the visual input is larger than a 
given reference number (Stoianov & Zorzi, 2012; Testolin et al., 2020). This classifier is only meant to 
allow estimating how well the representation of the neural network supports explicit numerosity judg-
ments, and does not feature in the way the neural network learns to represent the visual input (Zorzi 
et al., 2013). The “natural” data set used by Testolin and colleagues (2020) consisted of images with rec-
tangular boxes indicating sizes and positions of objects in natural scenes (like groups of animals), gener-
ated from computer vision data sets used in the PASCAL detection challenge (Everingham et al., 2010).
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neural networks designed to simulate the OTS by limiting the amount of objects 
they can “observe” in parallel.

So far we have been discussing only proto-arithmetical abilities, but there have 
already been initial steps toward training neural networks to learn culturally spe-
cific numerical procedures, such as counting. Unlike in learning the estimation abil-
ity, in teaching a neural network to count the learning is supervised. In an experi-
ment reported by Fang and colleagues (Fang et al., 2018), a recurrent neural network 
goes through a process of teacher guided or teacher monitored learning in which it is 
given two-dimensional images of blobs.9 The general idea is to teach the network to 
“touch” the blobs and connect it to a numeral word, simulating the way children learn 
to count.10 In teacher guided learning the teacher gives the network the targets of the 
next count word and the next blob location (or, if at the end of the counting procedure, 
a signal to end the process). In teacher monitored learning, the network attempts a pro-
cedure which is then corrected by the teacher by demonstrating the correct counting 
procedure (ibid.). The results showed that after mastering the task of “touching” the 
blobs, the networks achieved near perfect scores in counting to six after 2,000 training 
trials, after which they learned to count further with more trials. Importantly, the net-
works were generic systems that had no previous ability in processing numerosities. 
Obviously there are many aspects of children’s acquisition of number concepts that are 
not reflected in the results, but the data from the study is consistent with data on chil-
dren’s learning of counting. Also for children, counting does not seem to require a full 
grasp of number concepts (Davidson et al., 2012), and gestures like pointing have been 
shown to be advantageous (see, e.g., Alibali & DiRusso, 1999).

This research direction was taken further in the experiment reported in (Di Nuovo 
& McClelland, 2019), in which a humanoid robot with two functional “five-fingered 
hands” was trained to use them to represent spoken numeral digits. The robot AI 
receives proprioceptive information from the robot hands, simulating tactile and 
proprioceptive sensory input in humans. What their analysis showed was that the 
proprioceptive information improved accuracy in recognizing spoken numeral 
words, through the AI being faster in creating a uniform number line than a control 
AI without the robot hand. Similar results were reported for a humanoid robot in 
(Pecyna et al., 2020). This type of research, while still in very early stages, could 
help reveal why finger counting procedures are advantageous also for human chil-
dren in learning to count and acquiring number concepts (see, e.g., Bender & Beller, 
2012).11

Without further evidence, simply learning a counting process and recognizing 
numeral words is not necessarily connected to number concepts, but research like 

9  A recurrent neural network, unlike a feedforward network, allows for cycles, i.e., it can feed its outputs 
(whether intermediate or final) into its own inputs (Russell & Norvig, 2020, Sect. 21.6).
10  Of course no actual touching takes place, given that entire process is run on a computer. Here “touch-
ing” refers to the network having a point position (a coordinate pair on the display) as part of its output, 
which was treated as both the center of gaze and the location it was touching on the display (Fang et al., 
2018).
11  Indeed, this kind of “embodied” AI research can potentially provide insights into how the develop-
ment of human arithmetical cognition is embodied (see Fabry (2020) for more on the topic of embodi-
ment in the development of arithmetical knowledge and skills).
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the simulations referenced above could prove to be important in explaining num-
ber concept acquisition. After that initial stage, the next challenge would be to 
simulate the learning of arithmetical operations. Ultimately, the aim of human-like 
arithmetical cognition would be to prove theorems of arithmetic. As should have 
become clear by now, the state-of-the-art of the current research is far from such 
human arithmetical ability. However, in only a few years, there has been progress 
with machine learning in deep neural networks that already points to relevance in 
explaining human development in numerical cognition. At this point we should start 
considering just how relevant the data are, and in what way.12

4 � Relevance for Research on Numerical Cognition and Epistemology 
of Arithmetic

It should be stressed that a lot of further research is needed before results like the 
ones considered in the previous section can be seen as solid evidence against or 
for particular views concerning the development of human numerical cognition 
and arithmetical intelligence. However, the potential of this type of AI research for 
explaining the emergence of human numerical cognition can be immediately seen. 
Aside from locating neuronal activity in numerosity processing to certain parts of 
the brain (most importantly the parietal and frontal lobes, and specifically the intra-
parietal sulcus, see, e.g., (Bugden et al., 2012; Fias et al., 2007)), the evidence for 
the existence of the ANS is primarily behavioral. But if the behavioral signatures of 
the ANS emerge also from generic deep neural networks, and if we believe that arti-
ficial neural networks can help explain human cognition, the ANS hypothesis may 
need to be reassessed. If the hypothesis receives no further support, we should at 
least be open to considering the possibility that there may not be numerosity-specific 
innate cognitive systems, given that the OTS is not numerosity-specific, either. In 
that case, numerical ability would develop based on more general cognitive char-
acteristics. This would be a major departure from much of the present literature on 
numerical cognition and therefore a highly important topic for the epistemology of 
arithmetic.13

If correct, the absence of numerosity-specific innate cognitive systems would not 
imply that there are no evolutionarily developed proto-arithmetical abilities. This 
is important to note. The research on artificial neural networks in no way suggests 
that subitizing and estimating are not evolutionarily developed proto-arithmetical 

12  Here the division made often in AI research between scientific and practical projects (see, e.g., 
Mitchell, 2019) is relevant. A theorem-proving AI would be a practical application in AI research that 
could help mathematicians. The kind of research presented in this paper, on the other hand, appears to 
be mainly relevant for the scientific side by understanding human intelligence better through trying to 
simulate it with computers. However, this distinction is not clear-cut and as will be seen in the rest of this 
paper, in particular “ Sect. 5”, the scientific and practical projects often have common goals.
13  This is not to say that accepting the existence of a numerosity-specific ANS is ubiquitous in the litera-
ture on numerical cognition (see, e.g., Leibovich et al., 2017). It is, however, still the mainstream view 
(see, e.g., Clarke & Beck, 2021).
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abilities. What it suggests is the possibility that one of these abilities (estimating) 
may emerge from more general features of learning based on sensory input of dis-
crete objects. This is an interesting prospect that should be taken into consideration 
also in the neuro-psychological study of human numerical cognition.14

However, subitizing and estimating are proto-arithmetical, not arithmetical, abili-
ties. What could research on deep neural networks tell us about the development of 
proper arithmetical abilities? As mentioned above, aside from behavioral signatures, 
the evidence for the existence of ANS in humans is mainly based on fMRI studies 
that show consistent activation of certain brain regions, including the intraparietal 
sulcus (IPS), in numerical estimation tasks (Cantlon et al., 2006). Since the IPS is 
also activated in symbolic numerical tasks, it has been argued that in the course of 
development of arithmetical cognition, the neural circuits originally developed for 
the ANS are recycled for new, arithmetical purposes (Menary, 2015). This princi-
ple of neuronal recycling was proposed originally by Dehaene, and Menary made 
it the foundation of his account of enculturation (Dehaene, 2009; Menary, 2014, 
2015). Enculturation refers to the transformative processes in which interactions 
with the surrounding culture shape how cognitive practices are acquired and devel-
oped, leading to both structural and functional changes in the brain (Fabry, 2018; 
Menary, 2015). The key idea behind the enculturation framework is to stress the 
importance of the way evolutionarily developed biological faculties are transformed 
through the cultural transmission of cognitive practices in the course of ontogenetic 
development.

Arithmetic consists of such cognitive practices, and starting from the acquisition 
of number concepts, processes of enculturation shape the development of our arith-
metical ability (Fabry, 2020; Jones, 2020; Pantsar, 2019, 2021a). But what are the 
biological faculties that are transformed in this process? This is where the research 
on human-like AI in deep neural networks could become highly relevant. It is possi-
ble that the IPS, for example, as the location of the “number sense” (Dehaene, 2011) 
is not due to any numerosity-specific biological cognitive system located in the IPS. 
One of the functions the IPS is primarily associated with is visual attention, and it is 
thought to play a key role in visuospatial working memory (Todd & Marois, 2004). 
It could be the case that the numerosity estimation ability is located in the IPS 
because it is closely connected to visual attention, in particular visuospatial work-
ing memory. Since the neural network experiments reported in (Stoianov & Zorzi, 
2012) and (Testolin et al., 2020) use 2D images as their sole input, this connection is 
certainly worth studying. Perhaps there is something general about processing visual 
stimuli of objects that leads to the emergence of the estimation ability?

Related to this, it has been suggested that instead of neuronal recycling a dif-
ferent, more general principle of neural reuse (Anderson, 2010) is the founda-
tion of enculturation (Fabry, 2020; Jones, 2020). According to the neural reuse 
hypothesis, there is greater structural and functional plasticity in the brain, which 
allows for more variation in the allocation of neural resources for particular 

14  Here the existing AI research has an important gap: it focuses only on visual input, whereas the ANS 
is not limited to the visual modality (see, e.g., Castronovo & Seron, 2007; Crollen & Collignon, 2020).
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cognitive functions. In light of the evidence from neural networks, neural reuse 
could indeed provide a better explanation of learning. There is reason to believe 
that learning is not tied as strongly to particular “modules” of the brain as the 
neuronal recycling principle suggests (Fabry, 2020; Pantsar, 2019). While there 
are undoubtedly many functions that in neurotypical individuals are located in 
the same areas of the brain, the brain also has a great deal of plasticity. This is 
supported by many data concerning the way also non-typical brain regions can 
be adopted for cognitive purposes (Anderson, 2010; Anderson, 2015;). Unlike 
in the so-called blank-slate theories of mind, however, the neural reuse account 
includes the notion of functional bias, which can explain why cognitive abilities 
can be typically associated with particular brain regions (Anderson, 2015).

This is consistent with the data on congenitally blind individuals that show 
how numerical cognition maps onto brain regions that are typically associ-
ated with visuo-spatial processing in the sighted, including the IPS (Crollen 
& Collignon, 2020). Moreover, blindness does not prevent the development of 
the estimation ability; indeed, data show that blind subjects have higher acu-
ity in (tactile and auditory) numerosity estimation tasks than sighted ones (Cas-
tronovo & Seron, 2007). In addition, early (but curiously not late) blindness is 
associated with better arithmetic ability in adults compared to sighted subjects 
(Dormal et  al., 2016). These data suggest that while visual processing may be 
closely connected to the development of numerosity estimation and later arith-
metical ability, it is neither indispensable nor even ultimately advantageous in 
that development. The study of Crollen and Collignon also suggests that there 
is another reason why numerical ability is associated with brain regions such as 
the IPS, and it is not due to the connection to processing visual stimuli.

Does this indicate that there exists an ANS after all, and it is located (in an 
important part) in the IPS? While this possibility cannot be ruled out, I want to 
suggest another possible explanation. The object tracking system has also been 
located (partly; also other brain regions are associated with it) in the IPS (Blum-
berg et al., 2015; Howe et al., 2009). While often associated with visual object 
tracking, the object tracking ability is not limited to vision. Interestingly, audi-
tory object tracking has been associated with common attentional resources with 
visual object tracking (Fougnie et  al., 2018). It could be that a general object 
tracking ability is responsible for the emergence of both proto-arithmetical abili-
ties: subitizing and estimation. Instead of being tied to vision, our proto-arith-
metical abilities are associated with the IPS because it is (partly) responsible 
for our general ability to track objects. Here we can see a potential connection 
to the neural network studies presented in the previous section. What the neural 
networks learned to do was based on visual input, but it was ultimately based on 
responding to discrete objects. Perhaps that could be the key to explaining why 
the estimation ability emerged in the generic deep neural networks. What they 
had in common with both sighted and congenitally blind people was that they 
processed inputs of clearly distinguishable objects.
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5 � Future Prospects and Problems

In the end of the previous section, I have pondered different hypotheses concern-
ing the emergence of the proto-arithmetical abilities. Those hypotheses are highly 
speculative and not meant to suggest anything more than possibilities for future 
research. An interesting hypothesis to test, for example, would be whether neural 
networks develop the estimation ability if not shown clearly distinguishable dis-
crete objects. However, it would hardly be unambiguous what the confirmation or 
disconfirmation of that hypothesis would entail in terms of explaining the devel-
opment of human proto-arithmetical abilities and numerical cognition. These 
questions require a lot more research before any connection between AI research 
and human cognition can be considered to be corroborated. But I contend that 
the experimental work reviewed in this paper shows potential for such research. 
Ultimately, I believe that AI research in this area should be conducted in close 
connection with cognitive neuroscience, in a genuinely interdisciplinary approach 
where philosophical research should not be forgotten.

Of course scientific AI research is valuable on its own, but in explaining the 
development of numerical and mathematical cognition, it could have relevance 
to a wide field of questions. To give just one example, a basic question prompted 
by the research presented above is what would be the minimal system that can 
develop ANS-like behavior. This could be relevant for determining what kind of 
neuronal structure is required for proto-arithmetical abilities to arise.

More generally, AI research on deep neural networks could help us get a bet-
ter grasp of the different influences (e.g., proto-arithmetical and cultural) in the 
development of arithmetical intelligence. In a collaborative interdisciplinary 
research program, one key issue would be to understand better just how human 
numerical cognition develops. In order to make an AI learn (even roughly) like 
humans, or to recognize that it indeed learns like humans, we need to know more 
about the way humans learn. I have proposed that the framework of encultura-
tion is important for this purpose. Some AI learning associated with numerical 
abilities (like the experiment about the ANS signature) is unsupervised, but if we 
want to simulate arithmetical learning, it has to be supervised and structured, to 
mirror the way humans acquire number concepts and arithmetical abilities super-
vised by parents, teachers, etc. In order to do this, we need to know how human 
learning is supervised and structured, and what effect it has on the development 
of cognitive capacities.

Aside from the question of modelling human (or animal) cognition, the most 
obvious connection is to the field of education science. If an AI can simulate the 
development of human mathematical cognition, it could be used to design new 
teaching contents and methods. With human children, seeing the effect of new con-
tents and methods takes years. In addition, such experimentation is potentially prob-
lematic ethically, since a group of children as test subjects may be exposed to infe-
rior teaching, which could damage their future prospects in education and wider in 
life. With artificial intelligences, there is no such risk and the process takes far less 
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time. The simulation of years’ worth of education could be conducted in the matter 
of hours.15

While research on deep artificial neural networks shows promise, we should also 
have a healthy dose of skepticism regarding the kind of claims that can be made. 
One important issue is that the training sets for neural networks tend to be several 
orders of magnitude larger than what humans typically experience in their learn-
ing process. Given the potential differences in the respective learning processes, it 
is reasonable to be skeptical of the way deep neural networks learn things fitting 
with actual human learning. This is a general problem that goes beyond numerical 
and mathematical cognition. As remarked by Dehaene, for example, the way babies 
can learn new words with only one or two repetitions is in stark contrast to the inef-
fective way neural networks learn content (Dehaene, 2020). This is something that 
Bayesian approaches to AI are designed to tackle, but the progress so far still leaves 
an enormous gap between the way humans (and other animals) learn and machine 
learning.

However, while there is reason for skepticism, this matter should be seen as a 
challenge to be tackled rather than an insurmountable problem.16 Different sizes of 
training sets can be experimented on and they can be compared with the kind of 
amounts of similar experiences that human children would typically encounter in 
their ontogeny. For example, as reported by Testolin and colleagues (2020), the arti-
ficial neural networks developed ANS-type numerosity discrimination ability up to 
Weber fraction 0.4 after roughly 1.5 million pattern presentations. Similar ability in 
humans is present around four years of age (Halberda & Feigenson, 2008; Piazza 
et al., 2010). Are these figures comparable? How many relevant natural patterns can 
a four-year old be presumed to have experienced? This is not easy to establish, but 
doing so would be important for determining the similarity (or difference) of human 
and AI learning processes. This is particularly relevant for supervised and structured 
learning. While thus far the way deep neural networks learn tends to require huge 
training sets, with different kinds of teacher guided or teacher monitored learning 
the size of the sets could be made much smaller. For example, in the counting exper-
iment reported by Fang and colleagues, the supervised neural network managed to 
count to six after 2,000 training trials. This could be comparable to the amount of 
trials children require in learning to count.

Generally, while we can expect many similar problems as AI research advances, I 
believe that AI has established itself as a relevant research topic related to the study 
of human numerical cognition and arithmetical intelligence. We are only in early 

15  Although it should be pointed out that in order to create as human-like experiences for the AI as pos-
sible, it would need to move and interact in a three-dimensional environment, which makes the process 
much slower. The kind of simulated “touching” that the AI is doing in the experiments above, for exam-
ple, may have importantly different characteristics from actual three-dimensional action. In developing 
embodied AI’s, such as humanoid robots, one of the challenges is to make use of their vastly superior 
processing speed while trying to create simulations of the kind of environments and interactions that 
human subjects face.
16  Indeed, this challenge has been recently tackled, for example, in the case of solving Sudoku puzzles 
(Nam & McClelland, 2021).



1 3

Developing Artificial Human‑Like Arithmetical Intelligence…

stages of that research, but there is reason for optimism, as well as for a healthy dose 
of skepticism. While the empirical data is far from conclusive, the modern methods 
of machine learning provide an interesting new dimension to studying the develop-
ment of human numerical and arithmetical cognition. Although the neural networks 
in the research discussed in this paper can, at least for now, only be assessed in terms 
of their behavior, they are an important development over the “Turing test” kind of 
approach to AI in which a computer is specifically programmed to simulate human 
behavior. Unlike that kind of programming, the neural networks provide a bottom-
up approach to emulating human cognition. That generic neural networks can learn 
some behaviors that have been considered to be the domain of human (and animal 
cognition), like the ANS-based estimation, is a highly interesting result that should 
not be dismissed.
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