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Abstract In this paper I develop a philosophical account of actual mathematical infin-
ity that does not demand ontologically or epistemologically problematic assumptions.
The account is based on a simple metaphor in which we think of indefinitely continu-
ing processes as defining objects. It is shown that such a metaphor is valid in terms of
mathematical practice, as well as in line with empirical data on arithmetical cognition.
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1 A Short history of the philosophy of 8( and an epistemological thesis

The history of infinity goes much further, but when it comes to the philosophy of
mathematics, one standard place to start from is Aristotle. In Physics (Book 3, chapter
6) he writes:

For generally the infinite has this mode of existence: one thing is always being
taken after another, and each thing that is taken is always finite, but always
different.

With this understanding of infinity, it becomes evident that the set of natural numbers—
defined with the usual Dedekind-Peano axiom (or equivalent) stating that for each
natural number n, its successor n + 1 is also a number—must be infinite. But as can be
seen from Aristotle’s formulation, he is not describing a set. Rather, he is describing
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a process. In this paper, I will argue that this distinction between objects (like sets)
and processes is at the very heart of how we acquire the concept of infinite—among
many other concepts—in mathematics. But let us first see how that distinction came
to be widely ignored.

Aristotle’s focus on infinite processes is not a coincidence, as he makes a clear
distinction between apeiron dunamei (the potential infinity) and apeiron hos aphoris-
menon (the actual infinity).! Aristotle only believed in the former and his work was
followed by more than two thousand years of tradition in which infinity in mathematics
was generally considered to be potential. As is well known, all this was changed by
Cantor (1892), who treated infinite sets as actual and showed that there are infinities
strictly larger than others. Such was the break in tradition that he had to invent a new
term for the numbers defined by infinite sets. Hence we still talk about transfinite
ordinals and cardinals. The lowest transfinite cardinal is of course called R and it is
the cardinality of the natural numbers.

While intuitionists questioned the use of actual infinities in mathematics, the result
of the foundational debate was that by and large mathematicians chose to follow Cantor.
However, the widespread acceptance of actual infinity among mathematicians has
come with a price, albeit a philosophical one, rather than mathematical. The solution
most mathematicians seem to be content with is to simply ignore the philosophical
concerns involved with actual infinities. But it must be remembered that Cantor made
aradical step. It is easy to agree with the Aristotelian tradition that there is such a thing
as potential infinity, as it fundamentally means nothing more than accepting that some
mathematical processes are unending. It is quite another thing to claim that infinite
sets actually exist.

Mathematicians in their work mostly ignore this question. They often talk of
completed or definite infinity, perhaps partly in order to circumvent the ontologi-
cal question. But in the philosophy of mathematics the matter is not that simple. For
(Cantor 1932, pp. 395-396), actual infinity was not just some metaphor he used for
hypothetical pursuits involving transfinite cardinals and ordinals. He thought that his
transfinite numbers were “forms or modifications of the actual infinite”.

Ultimately, Cantor seems to have believed that his analysis of the infinite leads in
one way or another to God, which also likely led to his theological pursuits later in
life. Although we may feel that this connection is feeble, it must be noted that Cantor
tackled an important issue. If we use actual infinities in our mathematics, surely we
must in philosophy strive to explain their ontological status. Cantor gravitated toward
God, but what is the fundamental difference to various platonist explanations for the
actual infinite? Where do the actual infinite sets of numbers exist?

In addition to that ontological question, the problem of epistemic access to infinity
looms large. If actual infinities exist, how can we get knowledge of them? From
that background, it makes sense to pursue the option without those ontological or
epistemological problems: that there exist no such sets. The concept of mathematical
infinity is simply something we have created ourselves. But that is also an ontological
claim and it seems needlessly limiting. In addition, the epistemological problems
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often seem to be unrelated to any metaphysical questions about mathematical objects.
Trying to refute platonism on epistemological grounds, for example, seems as futile a
pursuit as showing that Cantor’s God does not exist. Hence, to avoid commitment to
ontological positions, I start the argumentation here from an epistemological thesis:
if there are actual infinities in the world, we cannot have epistemic access to them.

In what follows I will try to show the plausibility of this claim, but ultimately it will
remain to be a thesis. There is currently no way of showing that there is, for example,
no special epistemic faculty that mathematicians apply when they study transfinite
cardinals and ordinals. But what I hope to show here is that no such epistemic faculty
or heavy ontological assumptions about mathematical objects are needed for a perfectly
satisfactory account of mathematical infinity. Once we understand the talk about actual
infinities in a proper metaphorical sense, we can build a coherent and epistemologically
plausible account of transfinite numbers based on the quite reasonable premise that
all mathematical infinities are potential.

Let me briefly defend this thesis before we begin. It in no way purports to deny
the use of actual infinities in mathematics. Although finitist mathematics is still an
interesting endeavor, in this paper I am not out to revise mathematics. The theory of
transfinite cardinals and ordinals is coherent, mathematically fruitful, and illuminates
our understanding of the concept of infinity. But at the same time, there is absolutely
nothing in it to suggest a literal philosophical reading of actuality. We can take, for
example, modal or constructivist approaches to mathematics and give corresponding
treatments of transfinite numbers.

Platonism may be losing popularity and as such the thesis here is hardly revolu-
tionary any longer. But of course there is one plausible case in which infinity could
be actual rather than potential: if our universe is infinite. Would we not have a case of
actual infinity right there? Naturally this is a possibility, which is why I must stress that
the starting thesis here is an epistemological one. Even if the universe were infinite,
the thesis states, that is not where the concept of infinity in mathematics comes from.

At this point it should be quite reasonable to assume that we do not have epistemic
access to the universe as a totality. Thus, even if there were infinite sets, all our
mathematical considerations about infinity must be based on reasoning about finite
collections. It is by considering finite collections of natural numbers that we establish
that there are potentially infinitely many of them. In short, whether there are infinite
collections somewhere in the universe or not, we do not discover them. We may succeed
in characterizing them through our mathematical work of determining the properties
of abstract structures, but in essence, we have created infinity—starting from X¢. That
is the main premise of this paper and it will be defended as the argument goes along.
Let us now see how this creation can take place.

2 How the human mind can create numbers
If we claim that all mathematical infinities are man-made, surely the system of natural
numbers—being infinite—can in some relevant way be created by us. While the most

common position in the literature has historically been that the human mind does
not create natural numbers, in recent times there has been considerable popularity for
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approaches that challenge this position. Perhaps the best-known contemporary account
is Kitcher (1983), which takes mathematics to be ultimately empirical.”> At the root
of his theory is the conviction that mathematics is “an idealized science of operations
which we can perform on objects in our environment” (p. 12). More recently, Lakoff
and Nunez (2000) have made an effort to explain how this science has developed.
Their work is controversial, but at the same time it has gained status as a standard
work for an empiricist explanation of the development of mathematics.

The above quotation of Kitcher is so easy to accept as to appear trivial—as indeed
are most of the explanations of Lakoff and Nufiez. But the key word in the quote is
“can”. Without doubt, this is true in the case of arithmetic—and it shows an insight into
learning arithmetic. Actions on pebbles, apples or something similar are a natural way
to familiarize children with arithmetic. Even the most avowed platonist will accept
that arithmetic can be learned with empirical methods. But he will—as Frege (1884)
already noted in his Grundlagen—insist that that is not what arithmetic is about. We
can learn mathematics by idealizing on the operations in our environment, but the real
question is why we can do that? What is the connection between the abstract numbers
and our everyday operations with physical objects? That is a key question also with
the present approach when we try to explain the nature of mathematical infinity. To
know what R is about, we need to first know what natural numbers are about.

Such questions used to belong almost exclusively to the domain of philosophy,
but nowadays we also have a solid body of relevant empirical data. While data from
cognitive science, psychology and neurobiology cannot—at least yet—give us a philo-
sophically satisfactory answer to what natural numbers are, there are many ways
in which such empirical data can already have philosophical importance. If we get
empirical insight into how number concepts are formed, we can gain important knowl-
edge about the epistemic access to abstract mathematical objects. Particularly relevant
would be empirical clarification of the move from playing around with pebbles into
understanding that the sequence of natural numbers can be continued indefinitely. If
we could understand this process, it seems that we would be close to explaining how
we can create infinity.

Let us see what the best empirical data currently says about such questions. Perhaps
the most important insight we have gained from the data is that processing observations
in terms of quantities is not an ability exclusive to human beings with developed
linguistic abilities. There is a great deal of evidence of animals processing observations
based on the quantity of objects. This has been detected in primates like chimpanzees,
but also in rats and small fish (Rumbaugh et al. 1987; Mechner 1958; Mechner and
Guevrekian 1962; Church and Meck 1984). It has been established, for example,
that mosquitofish can learn to choose the right hole to go through based only on the
number of objects drawn above the hole. Remarkably, the fish were able to make the
distinction even when the combined surface area and illumination of the objects were
kept constant (Agrillo et al. 2009).

Such abilities have also been detected in human infants. The famous experiment of
Wynn (1992) showed that infants reacted to the unnatural arithmetic of 1 + 1 =1 in

2 Historically, the most famous empiricist account of mathematics is Mill (1843) System of Logic.
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experimental settings. When they saw two dolls being placed behind a screen—one by
one —, they expected to see two dolls and were puzzled when there was only one—
the other having been removed without the child seeing. This tendency has later been
established to occur in many variations of the experiment: including ones where the
size, shape and location of the dolls are changed. The infants still found the changing
quantity most surprising (Simon et al. 1995; Dehaene 2011, pp. 40-48).

With such results and many others, I believe it has been established that compe-
tence with quantities is not only the language-dependent developed human ability it
was long thought to be.> However, it is important to remember that such basic abilities
to estimate and process quantities should not be confused with the arithmetic of natural
numbers as we understand it. The title of Wynn’s paper, for example, was “Addition
and subtraction by human infants.” But that seems quite misleading as it already pre-
supposes that the infants are dealing with arithmetical operations. There is a perfectly
valid alternative explanation that the infants were keeping track of the quantity of the
objects they expect to see, thus holding only one numerosity in their minds. Postulat-
ing the ability to do arithmetical operations assumes a much more developed ability
in the infants than necessary. This is an important danger to acknowledge. Primitive
abilities to deal with numerosities should be considered relevant when we study the
origins of mathematical knowledge, but we must not confuse that with developed
arithmetical thinking. That is why the infant and animal abilities are better described
as proto-arithmetical (Pantsar 2014).

If not arithmetical operations, what are the infant and animal abilities to deal with
numerosities? The ability used by the infants in Wynn’s experiment is called subitizing
(or object tracking) and it enables determining the amount of objects in one’s field
of vision without counting. This ability works only for small quantities, usually three
or four, but at most five (Dehaene 2011). But the ability with numerosities does not
stop there. For larger quantities, there is an estimation system in place. This system is
in cognitive science often called the analogue magnitude system or the approximate
number system (ANS) (Brannon and Merritt 2011; Nieder and Dehaene 2009). Unlike
subitizing, the ANS can be used for quantities beyond four or five.* When dealing with
more than three or four objects, however, the ANS quickly starts to lose accuracy (Xu
et al. 2005; Dehaene 2011, pp. 17-20). It is important to recognize just how different
the proto-arithmetical system of ANS is from developed arithmetical thinking, which
seems to require a certain level of verbal competence (Spelke 2011). But at the same
time, there are good reasons why among the empirical researchers subitizing and the
ANS are generally thought to be the precursors to actual arithmetical ability.

To see this, we must start from the very beginning. What happens in the brain
when we observe our environment? The full story is long and complicated, but the
philosophically important main idea is that the brain operates through many different

3 For more extensive information about the state of empirical study of numerical cognition, Nieder (2011),
Dehaene (2011) and Dehaene and Brannon (201 1) are good places to start. For a more detailed philosophical
interpretation of the empirical results, see Pantsar (2014).

4 1t has been suggested that subitizing and the ANS could be part of the same ability, since ANS allows
accurate estimation of small quantities. Expirements show, however, that subitizing and ANS have different
characteristics, thus supporting the idea that they are separate systems (Revkin et al. 2008).
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types of “filters” in the neural activity. When we see something, an enormous amount
of activity goes on in the brain in order to gather the relevant information from our
observation. This is why it has been so difficult to develop visual recognition in robots.
In order to separate the relevant parts of the visual field from the irrelevant, the robot
has to be programmed in excruciating detail. Our brain does such things automatically
because it is accommodated to recognize the aspects that are important. Crucially to
the matter at hand, part of this activity has to do with quantities (Nieder 2011).

We now know quite a lot about those “numerosity filters” (Nieder 2012). At the
proto-arithmetical level, our ability with numerosities is properly discrete only for
small quantities, after which it becomes increasingly approximate. But subitizing and
the ANS can be crucial in explaining the origin of our ability to deal with numerosities.
Evidence shows, for example, that there are not only distinct areas of the brain where
quantities are processed, but within those areas there are specific sets of neurons
which represent certain quantities (Nieder 2011, 2012). When a monkey is presented
with two objects, a specific set of neurons activate. When the number of objects is
three, a partly different set is activated. The experiments have been controlled for other
variables, and the scientists have been able to tease out the effect of a particular quantity
in the monkey brain. The brain, however, is a complex organ, and while there are
specific neurons for each small numerosity, those neurons do not activate completely
discretely. When the neurons for the numerosity “two” are activated, so is a small part
of the neurons for “one” and “three”. And just like the behavior of monkeys predicts,
as the numerosities become larger, the bigger the “noise” is between the different
groups of neurons. Distinguishing between four and five is much more difficult than
between one and two because in the former case more of the same neurons activate.
Our natural capacity to deal with numerosities is one of approximate estimations that
loses accuracy as the quantities become larger. What happens in the brain mirrors this.

Such data strongly suggests that subitizing and the ANS are hard-wired into the
brain structure of monkeys. Fortunately, unlike many other animals that show capacity
to deal with quantities, monkeys also have the ability—after extensive training—
to understand symbols assigned to concepts, including numerosities. What Diester
and Nieder (2007) established is that, to a large part, the same neurons in the pre-
frontal cortex were activated regardless of whether the monkey saw two objects or the
symbol 2. So when the monkey learned to use number symbols, it assimilated the new
knowledge with the primitive ability it already had about quantities. A similar thing
happens with counting. Counting is no doubt fundamental to our developed capacity to
deal with numerosities and enables us to formulate natural numbers exactly. In Nieder
et al. (2006), monkeys were presented objects one by one, to simulate a non-verbal
account of counting. As expected, there were differences in the parts of the brain that
activated compared to the task of seeing a group of objects at once. However, the study
found that at the end of the enumeration, a large part of the activated neurons were the
same as with subitizing.

What do these results suggest our ability with numerosities to be? A plausible
hypothesis seems to be that our primitive ability to deal with small numerosities is
based on subitizing and the approximate number system. But as we develop the lin-
guistic ability to count, we no longer lean only on the primitive ability in processing
numerosities. We never lose subitizing and the ANS, but the primitive systems are
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increasingly supported by a language-based ability with numerosities. This obviously
gives us a lot of added expressive power, in particular in grasping the successor oper-
ation, which makes arithmetic as we know it possible (Carey and Sarnecka 2006;
Spelke 2011).

These subjects need a lot of further study, but there is starting to be way too strong
evidence for a connection between the ANS and our arithmetical ability to be explained
away simply as a coincidence. The data clearly points to the direction that our ver-
bal ability to deal with numbers was built to accommodate the primitive non-verbal
system. That is of course nothing extraordinary. Although there are different areas of
the brain involved in subitizing and the ANS from the ones dealing with counting and
recognizing symbols for numerosities, it would be surprising if there were no con-
nections between them at all. The brain in general has evolved to facilitate learning
and the existing information is used to assimilate new data. If we have one mode for
dealing with numerosities, it would seem unlikely that the brain starts to build another
one completely from scratch instead of utilizing the existing connections.®

In the case that subitizing and the ANS are indeed the foundation for arithmeti-
cal thinking, how does arithmetical knowledge develop? In order to get a conclusive
answer we would need to have a much better empirical understanding of the develop-
ment of mathematical thinking than is currently available. However, there are some
empirical results which suggest an answer. The hypothesis that ANS and subitizing
are the foundation for arithmetical thinking includes several predictions which have
received corroboration from experiments. Studies have shown that we do not lose
ANS when we develop symbolic means to deal with quantities (Butterworth 2010;
Spelke 2011). In both older children and adults there is a strong correlation between
improved performance in symbolic mathematics and the non-symbolic processing of
quantities. Furthermore, it is known that the same brain areas activate when dealing
with symbolic and non-symbolic representations of quantities and that these areas
activate in the brains of non-human primates (Piazza 2010).

Much of the current data suggests a fundamentally simple and coherent picture.
Starting very soon after our birth, we have a non-symbolic ability to deal with small
quantities. This ability is then developed into arithmetical ability in a process where
the development of language is likely to play an important role (Spelke 2011). Exactly
how this happens is still largely unknown, but there is evidence that grasping the idea
of successor is central in this development. Based on subitizing we have the ability
to distinguish between small quantities, usually from one to four. This means that
we have different neural representations in our brain for those small numbers. One
hypothesis is that children grasp the idea that these numbers form a progression that can
be continued (Butterworth 2010). When one is added to three, even an infant can tell
that the numerosities are different. But this ability comes from the proto-arithmetical
system and it is only later that the child learns that adding one to four is similar; that

5 This account is developed in more detail in Pantsar (2014).

6 Of course one important question to ask is whether the results concerning monkeys can be applied to the
human brain. There is a lot of evidence of this. The same areas in the human brain activate as in monkeys
(Piazza et al. 2007) and college students have shown similar patterns as monkeys in number-ordering and
quantity estimation tasks (Cantlon and Brannon 2006).
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there also is a distinct number for the end product of that process (Feigenson 2011).
From that there is a short way to addition of two numbers, which in turn enables the
process of multiplication and so on.

The above results give us a strong hypothesis of how the human mind can create
natural numbers, and importantly, it does not need to involve any special capacity
for mathematical knowledge. Only a proper development of our proto-mathematical
ability to deal with quantities is required to reach our familiar natural number system.
The exact nature of this process is something that empirical research will slowly give
details about. It can hardly be expected that in a foreseeable future we will have a full
psychological account of how ANS turns into arithmetical thinking, yet already at this
point we should in philosophy be interested in possible ways of expanding the picture.
If the ANS-based theory is correct, how do we acquire more sophisticated mathemat-
ical concepts? In particular, how can the concept of infinity in all its mathematical
richness develop from such primitive origins?

3 How the human mind can create infinity

There is of course nothing new in the idea that infinity is created rather than discovered.
Indeed, it would seem that every non-platonist account of mathematics that employs
actual infinities has to embrace that idea. Still, very few explicit hypotheses about the
creation of infinity have been presented. If there is currently something resembling a
baseline hypothesis for mind-created infinity, it has to be the one in Where Mathematics
Comes From by (Lakoff and Nunez 2000, pp. 155-180). They start by rejecting the
suggestion that we could explain the notion of infinity in a negative fashion as “not
finite”:

...this does not give us any of the richness of our conceptions of infinity. Most
important, it does not characterize infinite things: infinite sets, infinite unions,
points at infinity, transfinite numbers. To do this, we need not just a negative
notion (“not finite”) but a positive notion—a notion of infinity as an entity-in-
itself. (p. 155, Italics in the original)

With the focus on infinite things, it seems clear that Lakoff and Nifiez want to explain
the mathematical notion of actual infinity. Their hypothesis is that all cases of actual
infinity are applications of one conceptual metaphor, what they call the basic metaphor
of infinity (BMI). The general idea of BMI is that processes that continue indefinitely
are thought to have an ultimate result. Just like we speak of the final resultant state of
a completed iterative process (such as counting to ten), with the help of BMI we can
speak of the “final resultant state” of iterative processes that go on and on. For example,
the definition that the successor of each natural number is a natural number gives us
an indefinite iterative process. Once we realize that the process goes on and on, we no
longer expect a final resultant state. Rather, we evoke a metaphorical “final resultant
state”, which is the concept of actual infinity we use in mathematics. And just like the
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end process of a completed iterative process, the “final resultant state” is unique and
follows every non-final state of the indefinite iterative process. (pp. 158-159).”

Many valid criticisms of the account of infinity by Lakoff and Nufiez have been
presented. Henderson (2002), for example, presents a metaphor for infinity based on
projective geometry that does not seem to be an application of BMI. Gold (2001) shows
that the way Lakoff and Nufiez derive the first infinitesimal number with the help of
BMI is inconsistent with the way mathematicians define infinitesimals. The reply of
Lakoff and Nunez (2001) makes for an interesting discussion, for they defend that the
“granular” numbers that BMI produces—which include the property of having the least
infinitesimal number—should be treated separately from formal mathematics. This
approach seems to be either mathematically misguided or makes BMI crucially lacking
as a metaphor. As Voorhees (2004) suggests, there is a big problem in considering the
granulars as mathematical relevant at all if they can contradict with our established
mathematical definition of infinitesimals. But even if we grant Lakoff and Nufiez their
position that the granulars should be considered as mathematical ideas only in a non-
formal sense, there remains the problem how these BMI-generated numbers are turned
into the mathematical objects we know and use. It seems that either BMI does not do
all that it claims to, or does it erroneously.

Even with the above problems, however, the account of Lakoff and Nuifiez is not
without its appeal. It can be easily forgotten just how slippery the concept of actual
infinity can be. Lagendoen (2002), for example, in his review of Lakoff and Nufiez
argues that we do not need a metaphor in order to understand the concept actual
infinity:

However, the result of an unending process can be understood without the use of
metaphor. Understanding of ordinary universal quantification is sufficient. One
who understands a simple English sentence such as every number is interesting,
and also understands that there is no end to the number sequence 1, 2,..., thereby
understands the concept of actual (denumerable) infinity without the use of
metaphor. So the use of metaphor is not necessary for the understanding of such
mathematical concepts as absolute infinity. (Italics in the original)

But that argument seems misguided. What is the sequence 1, 2,...in Langendoen’s
argument? Certainly it cannot be an actually infinite set to start with, since under-
standing the sequence as actual infinity is the thing he is trying to show. So he must
first be talking about a potentially infinite sequence. Since the characterization is that
“there is no end” to the sequence, that seems to be a valid interpretation. In that
case, however, we are not talking about a sequence as an object, but—as Langendoen
mentions in the beginning of the quotation—an unending process. This implies that
quantifying universally over the members simply means that “every number given

7 In Nunez (2005) this account is amended and BMI is characterized as a “double-scope conceptual blend”,
after Fauconnier and Turner (2002), This means that BMI has two input spaces, one coming from Completed
Iterative Processes and the other from Endless Iterative Processes. The idea is that that both inputs are used
in BMI to reach endless processes with final resultant states. Instead of Basic Metaphor of Infinity, in this
updated account BMI stands for the Basic Mapping of Infinity. While the new account is conceptually more
coherent, I do not see the difference as great enough to require independent treatment. Hence, in this paper
I focus on the account of BMI given in Lakoff and Nunez (2000).
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by the process is interesting”—clearly understandable as potential infinite and thus
missing its target.

However, it is not clear why there should be anything wrong in starting from
potential infinity. Recall the empirical results of the last section. They suggested that
our arithmetic of natural numbers is based on a proto-arithmetical ability on small
numerosities, which is then generalized to include larger quantities as we develop
sufficient linguistic ability. At the root of this generalization, just like at the root of
axiomatic representations of natural numbers, is understanding the concept of succes-
sor and its general applicability over natural numbers. In short, that is how we learn to
count. We count from one to ten by using the successor operation nine times. It does not
take children long, however, to realize that this process can be extended indefinitely.
Usually this happens around the age of 8. At that stage, children start understanding
infinity. And they understand it by understanding the nature of a process, i.e., counting
(Falk 2010).

Process clearly appears to be the key concept here. While I do believe that Lakoff
and Nuifiez are on the right track with a metaphorical account of infinity, it seems that
their account deals with the wrong metaphor. Where Langendoen’s argument above
fails is that it suddenly moves from an unending process to an infinite sequence. But this
is exactly the step that must be explained by an account such as Lakoff and Nufiez’s.
In this step, it seems that the difference between applying a process and understanding
a process is crucial to the matter at hand. A child learns to count at a young age, but it
takes considerably longer to understand that there is no end to the counting process.
At that latter stage, the child understands something essential about the nature of the
process, instead of just applying it.

This step of treating processes as objects of study is of course crucial to practic-
ing mathematics. Take (following Lakoff and Nuiiez) the Fibonacci sequence as an
example. The sequence

0,1,1,2,3,5,8,13,21, ...
is defined recursively by the function
FO)=0,F(1)=1andforalln: F(n) = F(n — 1)+ F(n —2).

Clearly we are talking about an infinite process here, yet in mathematics the
Fibonacci sequence is treated as an object.

This, I propose, is the key to explaining how we can successfully use infinities
in mathematics. We make use of objects defined by unending processes. This also
seems to be the foundation of BMI for Lakoff and Nifiez. We can talk about infinite
processes mathematically, because we use the metaphor of the “final resultant state”
for such processes. It seems unclear to me, however, why we need to invoke the
problematic concept of “final resultant state.” BMI seems to leave unexplained one
crucial difference between the two types of iterative processes. When we are talking
about a completed iterative process, the final state is actually final. We can reach the
number ten by counting from one without any deeper understanding of the process.
But we can only understand the “final resultant state” of an indefinite counting process
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by understanding the infinity of natural numbers. We are talking about two different
ways of treating processes here. One where the process is actual counting, the other
where we understand the general process of counting. As such, the difference between
a final resultant state and “final resultant state” is too vast for BMI to be a satisfactory
metaphor.

Fortunately, there is a much more natural explanation available—and one that fits
perfectly within mathematical practice. Our mathematical concept of infinity seems
to be based on an understanding of indefinitely continuing processes, and the best
characterization of such processes would seem to be the one that Lakoff and Nifiez
initially reject: they are not finite.

As we remember, the problem Lakoff and Nufiez had with that negative characteri-
zation was that it cannot characterize infinite things, such as infinite sets and sequences.
Of course the whole premise of their—as well as the present—theory is that there are
no such infinite things. What they are after is an explanation how we can in mathemat-
ics nevertheless speak of infinite things in a coherent manner. But for that purpose, I
suggest that the negative definition is enough.

Lakoff and Nifiez seem to make things too hard for themselves by insisting that
we need to have a way of talking about infinite things, when all we need is a way
of talking about endless processes. Take the Fibonacci sequence as an example. It is
obvious that no finite part of the sequence will ever give us the infinite series, nor will
it—based on the old “Kripkenstein” argument (Kripke 1982)—unassailably give us
the rule the series follows. But of course the recursive definition we gave above does
give us the Fibonacci sequence unequivocally. What it does not give us, however, is
the series as a thing. It gives us the series as a process, which is clearly not finite.

What are we doing when we talk about actual infinities in mathematics? The sim-
ple explanation is that we are treating the things defined by such potentially endless
processes as objects of mathematics. Let us call this the “Process — Object Metaphor”
(or POM). Clearly POM is a metaphor: unending processes are not objects and we do
not need to understand things defined by such processes as literally existing. Just as
clearly, it is a widely used metaphor in mathematics. We constantly talk about objects
defined by potentially infinite processes, like in the case of the Fibonacci sequence.

But what is POM based on, philosophically speaking? It fundamentally includes
nothing more than Aristotle’s idea of potential infinity. As we remember, Aristotle
described potential infinity as a process, whereas Cantor’s approach was to treat infinite
sets as actual. But if it is established that no mathematics is lost by taking Cantor’s
infinities to be metaphorical, we should strive to return to Aristotle’s ontologically and
epistemologically less problematic characterization of the infinite.

In the Fibonacci case, we only used the understanding that the Fibonacci sequence,
defined recursively as above, is endless, i.e., not finite. The recursive mode of presenta-
tion of course conforms to mathematical practice and under a reasonable interpretation
it is metaphysically unproblematic. We see that the Fibonacci sequence as defined by
the recursive process cannot be finite. But there is no problem in having unending
processes. Understanding that the Fibonacci sequence is infinite does not involve a
metaphor of an infinite “final resultant state”, either. It only involves the realization
that the process is not finite.

@ Springer



2500 Synthese (2015) 192:2489-2511

These are the two things we need in order to make sense of potential infinity. We
have a recursive definition for a sequence (or a set) of natural numbers. The definition
implies that the recursion is endless. As a conclusion, the sequence is not finite. In
order to speak of this sequence as an object—that is, to move to actual infinity—we
only need a third thing: the Process — Object Metaphor.

In a nutshell, the theory here is that three things are needed in order for us to reach
R, the cardinality of the lowest actual infinity:

1. A notion that some recursive processes can be continued indefinitely.

2. A way of defining such recursive processes in finite steps (e.g., a basic understand-
ing of an axiomatic system or implicit definition).

3. Treating things defined by such potentially endless processes as objects of math-
ematical study.

With the first two points we reach potential infinity in the mathematical sense and with
the third we move to the mathematical concept of actual infinity in an unproblematic
way. This account is much simpler than the one of Lakoff and Nufiez and seems to
correspond more naturally to mathematical practice. To give an example, POM clearly
captures how infinity is introduced to set theory. In standard set theory, the axiom of
infinity gives us the existence of the set of natural numbers (the inductive set):

IS e S AVx € S(x U {x}) € 5).

What the inner part of the formula describes is clearly a process of forming new sets
from previous ones—and just as clearly the process is an unending one. The axiom
simply tells us that the set defined by that process exists. This is move from a process
to an object in exactly the kind of way that POM suggests.

POM also captures the way mathematical concepts are often taught. Functions, for
example, are taught as picking one element from the image of the function for every
element of the domain. Another way to teach functions is to see the elements of domain
as the input and the elements of the image as the output. Both of these ways speak of
functions as processes and it is only much later that the students learn about treating
functions as sets of ordered pairs, i.e., as objects.

The same applies to many important mathematical concepts in different fields. In
analysis, for example, convergence is a fundamental concept. Already in the termi-
nology it becomes obvious that processes are the key to convergence. A sequence
is said to converge and the numbers are said to approach the limit of the sequence.
But if a sequence is a static object consisting of numbers, that kind of terminol-
ogy cannot make sense—unless it is meant to be metaphorical. Numbers do not
actually approach anything. The terminology not only makes sense to us, but it
is also the one that mathematicians everywhere use. I believe the reason for this
is easy to explain with the help of POM. We do not see sequences (or functions)
only as static objects. Often we see them as dynamic processes. As such, it is
natural to say that the numbers (or values of a function) approach a limit: it cor-
responds to an intuitive understanding of sequences (or functions). For example,
when we use the (e, §)-definition for the limit and convergence of a function, we
treat the function as an object. But while this method was an important advance
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mathematically, it is also notoriously hard for many students to comprehend. How-
ever, treating the function as a process—by drawing a graph, for example—helps
students understand the nature of convergence (Dawkins 2014). When they gain
knowledge of the process, they also understand the object better—just as POM
predicts.

In these four examples (the Fibonacci sequence, the axiom of infinity, functions and
convergence) we see the power of the simple metaphor that is POM. In none of the
examples did we take a well-known mathematical concept and use an arcane way of
using processes to define or teach them. Instead, we have conformed tightly to math-
ematical practice. Recursive definitions like the one for the Fibonacci sequence are
used because they capture the process of formulating new members of the sequence.
The axiom of infinity encapsulates the idea behind infinity: an indefinitely continu-
ing process. When functions are taught as processes, we are immediately aware of
their purpose in mathematics. Functions are not meant merely to be sets of ordered
pairs; they are meant to connect the domain with the image in some mathematically
interesting way. And when subjects like limits and convergence are taught in terms of
processes, students find them easier to understand.

Understanding processes appears to be at the heart of mathematics at every stage,
from learning to count to providing definitions of formal theories. But why is this the
case? In the psychology of mathematics, there is a widely accepted principle, due to
Piaget (1970), that the nature of a mathematical concept is closely connected to its
development in the individual mind. In philosophy, such principles have traditionally
found little support. Ever since Frege (1884), it has been commonplace to separate
the genealogy of mathematical concepts (whether historical or individual) from their
nature. That kind of thinking, however, presupposes that mathematical concepts can
have meanings that are independent of the work of mathematicians. While I do not want
to deny that possibility, it seems plausible that the meanings of mathematical concepts
are generally tightly connected to their development, and their use in mathematical
practice. When we see mathematics this way as essentially a human endeavor, we
see why processes play such a major role in mathematics. Human beings are active
agents that learn new things dynamically. From this background, it is not surprising
that recursive definitions, for example, play such a major role in mathematics. They
capture processes, and we associate mathematics with processes ever since we learn
to count with our fingers.

4 Comparison to other accounts

POM seems to be a simple metaphor that corresponds generally to the way we
often reason in mathematics and particularly to the way we first reason about infi-
nite mathematical objects. But what kind of a metaphor is it conceptually speaking?
The use of metaphors in language has been an active field of study in the recent
decades. One of the most important theories in the area—usually called the Con-
ceptual Metaphor Theory—was presented in Lakoff and Johnson (1980). In Lakoff
(1993), this account of conceptual metaphor is developed further and its influence
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is crucial in the metaphorical treatment given to mathematical infinity in Lakoff and
Nunez (2000).8

In conceptual metaphor theory, metaphors are thought to consist of three main
components. First is the source domain, the conceptual domain of the metaphorical
expressions. Second is the target domain, the conceptual domain we try to clarify with
the metaphors. In one standard example of conceptual metaphor theory, “love is war”,
war is part of the source domain and love part of the target domain. The third part is a
mapping between the two domains, a partial set of correspondences between elements
from the two domains. This mapping should preserve the structure of the elements of
the source domain in elements of the target domain. Obviously the mapping does not
need to be a function: it does not need to map every element of the source domain
to the target domain. The idea is that a metaphor properly used will enable us to use
structure of the source domain to explain something about the concept of the target
domain. In the standard example above, our knowledge about war is supposed to help
us understand the nature of love. While there are many important questions concerning
the technicalities of such a mapping, in this context we do not need to go further into
them. The main idea is that being familiar with a metaphor means being familiar with
the mappings between the source and target domains.

How should POM be characterized in terms of conceptual metaphor theory? The
source domain obviously consists of mathematical concepts that refer to objects such
as sets, sequences, etc. We use these expressions in mathematics without necessar-
ily believing in their objective existence. In the case of the Fibonacci sequence, for
example, we are used to speaking of an object, while what we are actually discussing
is a process. Hence, the unending process of creating new members of the Fibonacci
sequence is the concept belonging to the target domain. The metaphor of POM is suc-
cessful if the inferential structure of sequences is preserved in the inferential structure
of unending processes.

Is this the case? It is hard to think of a better example of a metaphor being suc-
cessful in terms of the conceptual metaphor theory. We have seen how objects like
infinite sets and sequences are defined via processes. This way, POM clearly corre-
sponds to mathematical practice. The source and target domains of the metaphor are
also clearly specified. We would not accept a mathematical process unless it can be
explicitly stated, and the same applies to definitions of mathematical objects. Fur-
thermore, while we may disagree about the existence of mathematical objects like
sets and sequences, mathematicians do not disagree that sets and sequences can be
characterized in terms of processes. And if in any discourse the mappings used in a
metaphor are known to preserve the inferential structure, this happens in mathematics
where the correspondences are explicitly stated as definitions.

Understanding the Fibonacci sequence, for example, means understanding the
process of creating the next number in the sequence. And when we understand that
process, we understand that it can be continued indefinitely. When this is done, we
can introduce a recursive definition for the Fibonacci sequence. Importantly, that is
essentially all there is to understand about the Fibonacci sequence as a process. Under-

8 The Conceptual Metaphor Theory has received a lot of criticism, as well. See Kovecses (2008) for a
review of some of the most important problems and a proposal for a solution.
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standing the Fibonacci sequence as an object, in turn, only adds the use of the Process
— Object Metaphor.

So far we have focused on metaphorical accounts of infinity, whether POM or the
Basic Metaphor of Infinity of Lakoff and Nunez (2000). But not all cognitive accounts
of infinity involve the use of metaphor, at least not explicitly. The BMI may be the best-
known effort to explain how the embodied mind can create the concept of infinity, but
it is by no means the only interesting one. Related to POM, in mathematics education
the importance of processes in mathematical thinking is often seen to be central. Gray
and Tall (e.g., Gray and Tall 1994; Tall 2008) have characterized this as proceptual
thinking. Roughly put, a “procept” refers to the way we use mathematical symbols
to refer to both processes and concepts. More specifically, an elementary procept is
said to be an amalgam of the process which produces a mathematical object and a
symbol which is used to represent either the process or the object. A procept is then
defined as a collection of elementary procepts which have the same object. Under this
characterization, natural numbers are elementary procepts. The symbol “3” refers both
to the object (the number three) as well as the process of counting from one to three.
But we can talk about 3 also as a procept, since it has the same object as, for example,
as the procepts 2 4 1, 3 - 1 and 6/2—as well as counting to three. In this way:

The symbol “3” inextricably links both procedural and conceptual understand-
ing. But conceptual understanding implies that the relationships inherent in all
of the different components that form 3 are also available (1 and 1 and 1; 2 and
1; 1 and 2; one less than 4 etc). The symbols 1+ 141,241, 1+2,4 — 1 all have
output 3 and together form part of the procept 3. All these different proceptual
structures allow the number 3 to be decomposed and recomposed in a variety of
ways either as process or object. In this way the various different forms combine
to give a rich conceptual structure in which the symbol 3 expresses all these
links, the conceptual ones and the procedural ones, the processes and the prod-
uct of those processes. This combination of conceptual and procedural thinking
is what we term proceptual thinking. (Gray and Tall 1994, p. 123)

Gray and Tall argue that it is the flexibility of procepts that make them so useful to
mathematical thinking. When children learn that mathematical symbols can be seen
as objects that can be decomposed and recomposed, they become more competent
mathematically.

Philosophically, the procept of course raises one crucial question: what is the nature
of the mathematical objects that help form the amalgam of elementary procept? Gray
and Tall want to remain somewhat ambivalent on the issue, which is understand-
able since their focus is not a philosophical one. Obviously there is a great deal of
mathematical agreement on what we understand by, say, the object “three”, even if
our philosophical leanings may differ. But in a philosophical account we need to be
more specific, because there is the problematic scenario that mathematical objects are
nothing beside shorthand for mathematical processes.

This may not seem particularly problematic in the case of finite numbers, as we
can easily agree that the strings of symbols 1 + 1+ 1,2+ 1,1 +2 and 4 — 1 all refer
to the same number. But what is that number, beyond using the successor function
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on the number O three times (or two times on the number 1)? If we can get a full
understanding of numbers as processes, where do objects enter the picture? Indeed,
can we understand procepts to be separate from mathematical objects (if any)?

It seems that the procept account in no way implies that mathematical objects play
a role in mathematical thinking. Rather, it works equally well under the interpreta-
tion that all we have in mathematics are processes, and any talk of objects is purely
metaphorical. 2 4+ 5, counting to seven, 10 — 3 and (10 + 4)/2 each form part of the
procept 7. But assuming that the procept 7 has an existence outside of these (and the
other) processes is not necessary. Understood this way, the procept sounds very much
like our Process — Object Metaphor. At least a considerable part of mathematics
seems to be about treating the end products as if they were independently existing
objects, but it is hard to see why we should assume any other domain for mathematical
objects. If that is indeed the case, the procept has the troubling potential to be an
amalgam of a process and an object, in which the object is actually a postulate reached
from the process by a metaphor. It seems that ultimately one part of the amalgam, the
object, would be redundant.

Aside from such general considerations, we must ask how R specifically should be
understood as a procept? If we see it in terms of the Process — Object Metaphor, we
understand that in mathematics it is advantageous to speak metaphorically about the
objects defined by unending processes. I claim that this is the only way the concept of
procept makes sense when it comes to transfinite cardinals, without assuming a heavy
platonist ontology. The talk of objects makes sense to us when it comes to something
like the number three. We have an understanding of three objects that is tied to our
primitive proto-arithmetical ability. I have argued that we develop arithmetic based on
that ability. Although strictly speaking it may be ontologically false to say there are
mathematical objects like natural numbers, there at least would seem to be something
objective (or at least maximally intersubjective) that small natural numbers refer to.

However, what is our understanding of 8¢? Do we somehow acquire the concept
of countable infinity without recourse to unending processes? If so, how is this done?
Is there a mathematical object that the cardinal R refers to and to which we have
some sort of epistemic access? Such questions seem ontologically quite problematic.
Fortunately, with the Process — Object Metaphor there is no need to speak of objects
like R outside of the unending processes that define them. With that metaphor, the
concept of procept makes perfect sense. That does, however, come with a price: the
talk of objects in defining a procept is now made redundant. What a procept is under
this new interpretation is merely a combination of processes and understanding those
processes metaphorically as objects. The procept may be an illuminating concept
to use in many cases, but without something like the Process — Object Metaphor, it
leaves important matters unexplained. With the Process — Object Metaphor, however,
the need for the concept of procept is questionable, as we immediately recognize the
importance of processes and metaphorical thinking in creating mathematical objects.

Treating processes as objects is by itself nothing new in the study of mathematical
thinking, and the procept is not the only account that applies this duality. Dubinsky
(1991), for example, includes something similar to POM in his Piaget-influenced
account of mathematical thinking. For Dubinsky, as for Piaget (e.g., Beth and Piaget
1966), the key to mathematical thinking is reflective abstraction. As one part of this
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theory is a four-fold image of learning mathematical concepts, the so called APOS
model (Dubinsky and McDonald 2002; Dubinsky et al. 2005a, b). The first level is by
action, e.g., trying out single cases. Second level is understanding the general process
by interiorizing the actions. The third level is encapsulating the process as a cognitive
object. The fourth and final level consists of organizing the actions, processes and
objects into a schema. For the present purpose, it is the second and third levels that
interest us the most. The connection between processes and objects goes both ways:
sometimes it can be beneficial to treat objects as processes. Dubinsky (1991) uses
functions as an example of a mathematical concept that we initially grasp as processes
but start treating as objects. Indeed, it is something we must do in order to include sets
of functions and quantify over them.

In this way, it should be stressed that as such, there is nothing new in emphasizing
the importance of the process-object duality in mathematical thinking. Of course that
duality is ubiquitous in teaching mathematics, whether elementary of more advanced.
In addition to functions, the axiom of choice, for example, is almost always presented
informally in terms of making selections—of course in addition to a varying degree of
formal set theory. Accounts of infinity like the one given in Dubinsky et al. (2005a,b)
closely resembles the approach here. It rejects the BMI-based theory of Lakoff and
Nufiez and especially its problematic feature of a “final resultant state” which, among
other things, can lead to the kind of misunderstandings of infinity we hope to avoid,
such as seeing infinity as the largest number. I believe that Dubinsky et al. argue
convincingly that infinity should be taught and is best understood by treating endless
processes as totalities.

But what I have argued for in this paper is something much stronger. I do not
believe that the Process — Object Metaphor is merely a useful tool in teaching and
understanding mathematics. I believe it is at the heart of a plausible theory of what
many mathematical concepts actually are.” There is a clear sense in which processes
are primary to objects.

Specifically to the matter at hand, I believe that POM captures the reason why
infinity in mathematics and the whole theory of transfinite numbers makes sense. In
a loose way, the account here could be seen as a hybrid of the views of Lakoff and
Nufiez on the one hand, and Gray and Tall, Sfard and Dubinsky on the other. It seems
to me that Lakoff and Nufez are on the right track in emphasizing the importance of
metaphorical reasoning in the development of the concept of infinity. It also seems to
me that Gray and Tall, Sfard and Dubinsky make a crucial point in emphasizing—
to different degrees—the importance of the process-object duality for mathematical
concepts. [ hope that the current account catches the best features of both approaches.

Finally, if we are trying to find out the metaphors behind the development of math-
ematical knowledge, it seems unlikely that they are specific to developed concepts
like infinity. If the BMI of Lakoff and Nufez plays a role in acquiring knowledge of
transfinite cardinals, it is plausible to think it is based on a more general and basic
metaphor. A candidate with much potential to be that metaphor can be found in POM.
Researchers in mathematics education have emphasized the importance of project-

9 In this regard, the closest relative to the approach here is probably the account of Sfard (1991), who also
emphasizes the primary nature of processes in the process-objects duality.
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object duality, without doubt for a good reason. But the real philosophical question
is why such duality should play an important role? The answer implicated by POM,
that mathematical concepts are in fact often constructed metaphorically as objects in
terms of processes, seems to make a great deal of sense.

5 Developing the hypothesis

Although POM seems to be more intuitive and a better fit with mathematical practice
than the BMI of Lakoff and Nuifiez, there is one way in which their account seems
to be more fitting. That has to do with the most common error people commit with
infinities. The notion that some recursive processes can be continued indefinitely is
so elementary that it hardly needs an explanation. By understanding the process of
counting, children early on start to realize that the set of natural numbers cannot
be finite. Of course they do not talk about sets and their understanding of infinity
is often flawed. In the classical image of the playground understanding of infinity,
infinity is seen as smaller than “infinity plus one,” let alone “infinity plus infinity”.
Similar confusions about infinity continue to exist in the minds of students throughout
their schooling (Monaghan 2001; Singer and Voica 2008). One of the most common
mistakes is to think of infinity as something like large finite numbers (Pehkonen et al.
2006). Ironically, this confusion seems to arise when students learn about the concept
of infinity. First-year university students, for example, have been found to think of
infinity quite commonly as the largest number (Tall and Schwarzenberger 1978). A
child can understand that there is nothing special about counting to, say, hundred.
The process will continue similarly regardless of how big the numbers are. Indeed,
school-aged children commonly think of infinity in terms of processes (Tirosh 1999;
Monaghan 2001). However, when they learn about the concept of infinity, they may
revert to thinking about it as the largest number (Pehkonen et al. 2006; Falk 1994;
Sierpinska 1987).

With their account of BMI, Lakoff and Nufiez are perhaps better able to explain
this latter mindset. Although they of course make it clear that infinity is not in fact a
number, they (p. 166) use BMI to explain how people get the idea of largest “integer”
0o, which is understood as a number but which cannot be used for calculations. But it
is hard to see the philosophical value of using BMI to explain such a confused concept
of infinity. Of course as cognitive scientists their job is also to explain such errors,
but even for that purpose, I believe a much simpler explanation exists: people think of
infinity as a number mostly because they are miseducated about it. There is empirical
evidence of this. In Tsamir (1999) it was found that it is common for prospective
teachers to speak of infinite sets as having the properties of finite sets. That POM does
not give us a way to think of infinity as a largest number should not count against it,
especially since thinking of infinity as a process may be the natural way for children
to understand it, as suggested by the above studies of Tirosh and Monaghan.

But while POM certainly seems plausible, is it the actual metaphor we use in
mathematics? While POM seems to capture the essence of the way we use processes
to define objects in mathematics, do we know that it is the actual principle used, or
just one explanation? Do we even use metaphorical thinking, whatever it ultimately
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is? It should be clear that we are far from a level where we can study the actual neural
processes involved in forming a concept of infinity. Hence all pursuits like the present
one are for a large part hypothetical. Nevertheless, the account based on POM seems
to carry many advantages. Lakoff and Nufiez were not content with the negative “not-
finite” characterizations of infinite, because those could not apply to infinite things.
The approach here does not have that problem. As we have seen, the existence of the
denumerably infinite set is postulated in set theory in a manner equivalent to POM.
The same applies to any recursively definable infinite set with the cardinality of Ng.
Such a definition consists of rules formulating the next member of the set in terms of
the previous ones, that is, it defines a process. With POM we make the jump to the
set defined by that process and hence have the tools to talk about infinite things. But
all the while the account is based only on the negative “not-finite” understanding of
infinity.

With that understanding of infinity come perhaps the greatest strengths of the present
account—aside from fitting well with mathematical practice—which are epistemolog-
ical and ontological. No special faculty for mathematical knowledge is postulated and
arithmetical knowledge can be based completely on our experience with finite col-
lections. No infinite amount of things is assumed, let alone some kind of epistemic
access to infinite collections. We do not need to assume the independent existence of
any mathematical objects if we see them metaphorically as defined by processes. Yet
absolutely nothing is taken away from mathematics. The account conforms to the way
denumerably infinite sets are defined. The cognitive details remain to be found out
empirically, but there is an inherent plausibility in an account that takes mathemati-
cal objects to be what mathematicians describe them to be. However we understand
those objects philosophically—and it should be remembered that the current account
is perfectly compatible also with platonist explanations—mathematics is largely about
using finite definitions to describe infinite things. That is precisely at the heart of the
POM hypothesis.

In order to be mathematically sufficient, however, POM should be able to explain
cardinalities greater than 8. That is without doubt one of the most important questions
in developing the present theory further. A detailed account of that will demand another
paper, but there is nothing to suggest that it cannot be done. The key, most likely, is
in multiple uses of the Process — Object Metaphor. Cantor’s diagonal argument,
for example, can be easily explained in terms of POM. To mirror Cantor’s (1892)
original argument, we first use POM to give us the set of all infinite sequences of
binary numbers. This is a paradigmatic case of POM use. Cantor in his paper begins
by showing a few examples of the process, which is used to characterize the object,
that is, the set of all infinite binary sequences. Then he famously describes the process
of formulating a number which is not part of this set—another use of POM. With
indirect proof Cantor then concludes that the set of all binary sequences can not be
countable, that is, the process of enumeration does not give every infinite sequence of
binary numbers. The Process — Object Metaphor can be seen many times in Cantor’s
argument.

Of course the diagonal argument is just an elementary result when it comes to
transfinite cardinals, and there are many uses of infinity in mathematics that require
their own treatment. The question of infinite ordinals is also something that cannot
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be dealt with in this paper. But POM is clearly a metaphor that can be used multiple
times, in a manner similar to Lakoff and Nufez (p. 160) using BMI multiple times
when going beyond Rg. This way, higher infinities may not need to be treated actual
in a literal sense any more than the denumerable infinity is.

Admittedly, just how POM (or indeed any explanation of infinity) can be used to
explain all the uses of higher infinities is an open question. I do not wish to claim that
POM provides an account that rescues all the uses of actual infinity in mathematics.
But there should be no controversy in trying to develop the account further. If we can
have a satisfactory metaphorical reading of denumerable infinity, it would be strange
to stop pursuing the metaphorical path for higher infinities. To echo the idea behind
Kronecker’s famous quip about God only creating the integers: if there is one infinity
that mathematicians would be ready to claim to exist, surely it is the denumerable one.
A satisfactory metaphorical reading of the denumerable infinity seems like a good
starting point for approaching higher transfinite cardinals and ordinals. In any case,
POM, unlike the BMI of Lakoff and Niifiez, is not a metaphor exclusive to questions
regarding infinity. As such, the evidence for it should be expected to come widely
from mathematical practice. Above I have mentioned a few examples, but this work
should be expanded on.

But can we conceive of mathematical practices which would count as evidence
against POM? This is a very interesting question. Since POM, if the hypothesis is
correct, is so thoroughly embedded in the way mathematics is practiced, it is hard
to conceive of possible counter-examples to it. However, if it could be established,
for example, that students understand mathematical concepts such as functions and
sequences more easily when they are not presented in terms of processes, that would put
the hypothesis in question. In the case of infinite sets, in particular, that would be strong
evidence against POM. Based on the available evidence, however, that seems quite
unlikely. Abstract concepts are notoriously hard for children to learn. For example,
the “New Math” experiment during the 1960s introduced topics such as modular
arithmetic, symbolic logic and abstract algebra to American grade schools. The result
was that children had more trouble learning basic mathematical skills like arithmetic
(Kline 1973). Similarly, it is hard to see how children could grasp the abstract concept
of an infinite set without any prior understanding that some mathematical processes
can be endless.

Finally, for developing the account, it is clear that POM should be considered
in a wider mathematical context, not just infinite sequences and sets. Geometry, in
particular, is a subject that deserves a lot more attention than can be given here.
However, from Euclid to projective geometry, it is also a subject that has always
appeared to have much use for the Process — Object Metaphor. Euclid’s postulates
are described by (depending on the translation) verbs like “draw”, “produce” and
“extend”. In projective geometry, the key concepts of real projective line and extended
real number line are usually described by “adding” points at infinity to the real number
line.

But aside from the uses of POM in sophisticated mathematics, for it to be a valid
metaphor in mathematical thought, it must also apply to more primitive cases of
mathematical cognition. In this seems to lie one of the great strengths of POM. Let us
consider perhaps the most primitive conceptual introduction to mathematics: counting.
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Of the quantities that cannot be subitized, the first access a child has comes through
counting. When she counts to, say, eight, she most probably uses fingers one by one to
reach the end product. But the end product of the counting is not the eight extended (or
unextended, depending on the culture) fingers. It is the quantity eight. The process of
extending fingers gives us the object, which we recognize in arithmetic as the natural
number eight. This is the simplest case of using POM—a metaphor that seems to be
ubiquitous in mathematics.'”
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