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Abstract.  Recent work has defended “Euclidean” theories of set size, in which 

Cantor’s Principle (two sets have equally many elements if and only if there is a one-to-

one correspondence between them) is abandoned in favor of the Part-Whole Principle (if 

A is a proper subset of B then A is smaller than B).  It has also been suggested that 

Gödel’s argument for the unique correctness of Cantor’s Principle is inadequate.  Here 

we see from simple examples, not that Euclidean theories of set size are wrong, but that 

they must be either very weak and narrow or largely arbitrary and misleading. 

 

 

 §1. Introduction.  On the standard Cantorian conception of cardinal number, 

equality of size is governed by what we will call…  

(CP) Cantor’s Principle:  Two sets have equally many elements if and only if 

there is a one-to-one correspondence between them. 

Another principle that is at least naively appealing has been called (Mancosu 2009)…  

(PW) The Part-Whole Principle:  If A is a proper subset of B, then A is smaller 

than B.  

This is a variant of Common Notion 5 from Euclid’s Elements:   

 (CN5) The whole is greater than the part.   
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Hence we will call theories and assignments of set size Euclidean if they satisfy PW
1
 

(despite differences between PW and CN5 and doubts raised about the authorship of the 

Common Notions
2
).  It is well known that for infinite sets, CP and PW are incompatible.  

Galileo, for example, pointed out that the square numbers (1, 4, 9, 16,...) can be matched 

one-to-one with the positive integers, though the squares also form a proper subset of the 

positive integers (1939; see Bunn 1977, Parker 2009, and Mancosu 2009 for references to 

earlier, related observations).  He therefore rejected the whole idea of relative size (larger 

and smaller) for infinite collections.  Bolzano instead denied CP in favor of PW (1950, 

1973).  

 It’s widely taken for granted today that Cantor’s theory is the only correct one and 

views like Galileo’s and Bolzano’s are just mistaken.  Gödel argued explicitly for that 

position in 1947 (1990).  But as pointed out in Parker 2009, Gödel’s argument is only an 

intuition pump.  He asks us to imagine transforming the physical objects in one set to 

resemble those in another, and infers without further argument that two such sets must 

have the same size.  The argument is appealing, but the intuition that a set must be larger 

than any proper subset is also strong, at least for those not already indoctrinated into 

Cantorian set theory.  After all, if A ⊂ B then B contains all the elements of A and more.  

Perhaps some of the arguments below can help persuade resistant students of set theory to 

suspend such intuitions, but merely pumping other intuitions misses the point.  CP and 

PW are both intuitive, so we cannot refute one just by stimulating sympathies for the 

other. 

                                                 
1
 This differs from some uses of ‘Euclidean’ in the related literature.  Cf. Mayberry 2000; Benci, Di Nasso, 

and Forti 2007.  Note Mayberry’s theory is finitistic and takes CP for granted; it is not particularly relevant 

to the present discussion. 

2
 Tannery 1884; cf. Heath 1956, p. 221. 
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Recently, several authors have developed and defended Euclidean theories of 

number (Katz 1981; Benci and Di Nasso 2003a; Benci, Di Nasso, and Forti 2006, 2007; 

Parker 2009; Mancosu 2009; Di Nasso and Forti 2010; Gwiazda 2010).  Benci and Di 

Nasso (2003a) have even shown that Euclidean measures of set size are consistent with 

ZFC.  Hence, the Gödelian view that Euclidean theories are false or wrong is highly 

questionable; it requires us to believe that, even if a concept is vague and permits 

different refinements (as the size of an infinite set did before Cantor’s theory of 

cardinality became standard), one refinement may somehow be uniquely correct, and the 

others mistaken.  Of course, that was very much the point of Gödel’s paper (mainly as 

applied to the continuum), but there are problems with his view.  Besides the well known 

epistemological objections (Benacerraf 1973), it tends to delegitimize alternative ideas 

that may have value.  Even if Cantor’s theory is by far the best or most natural theory of 

transfinite set size, Benci and Di Nasso’s work proves that there are alternatives that 

inherit much from our naive notions of number, and these may have intrinsic interest or 

special uses, e.g., in non-standard probability theory (McCall and Armstrong 1989, 

Gwiazda 2010, Wenmackers and Horsten 2010), the foundations of non-standard analysis 

(Benci and Di Nasso 2003b), or number theory (in connection with density measures; Di 

Nasso 2010). 

However, our main question here is whether it’s possible to have a good 

Euclidean theory of set size, and my answer is, no, not really—not if that means it must 

be strong, general, and well motivated.  I will argue that any Euclidean theory strong and 

general enough to determine the sizes of certain simple, countably
3
 infinite sets must 

                                                 
3
 There is no inconsistency or question begging involved in applying Cantorian concepts like countably 

infinite here.  Our question is whether there are useful Euclidean conceptions of size in addition to Cantor’s 
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incorporate thoroughly arbitrary choices.  One reason for this is that if sets are always 

larger than any of their proper subsets, set sizes are not invariant under rigid 

transformations.  Hence, the assignment of Euclidean sizes to certain sets must be as 

arbitrary as a choice between equally natural coordinate systems.  The failure of rigid 

transformation invariance for Euclidean sizes has been noted elsewhere (e.g., Di Nasso 

and Forti 2010), but neither its simplicity and fundamentality nor its implications have 

been adequately highlighted.
4
  PW alone implies that very pedestrian, countable, and 

even bounded sets violate rigid transformation invariance.  In fact, even the tiniest 

rotation of a point set can effect an enormous change in set size.  Moreover, even relative 

sizes violate rigid transformation invariance.  That is, PW implies that for some equal-

sized sets A and B, the images TA and TB by a translation or rotation are not equal in size 

to each other.  So Euclidean relative sizes too are as arbitrary as a choice of coordinates.  

The examples are very simple and the proofs extremely easy, which again illustrates how 

basic the arbitrariness of Euclidean sizes is.  It is no merely technical snag, but a robust 

and general handicap.  

Thus I hope to provide a more cogent and detailed account than Gödel did of just 

what is “wrong with” Euclidean theories, without claiming that they are wrong and with 

as little reliance as possible on either ontology or intuition.  One traditional question at 

stake is which definitions of set size best accord with our pre-theoretic intuitions, but that 

is not our main concern here.  What seems more important is to develop concepts and 

                                                                                                                                                 
concepts.  Recent work on Euclidean theories, such as BDF’s, employs a great deal of standard set-

theoretical machinery, including the Cantorian notion of cardinality.  

4
 Di Nasso and Forti (2010) note that their Euclidean “numerosities” are not preserved by rigid 

transformations because of the Banach-Tarski paradox, but as we will see, the result is demonstrated by 

much simpler examples.  As well, the argument from Banach-Tarski requires finite additivity, while in fact 

any Euclidean size assignment on a sufficiently broad domain violates rigid transformation invariance, 

whether additive or not.  
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theories that are useful, not necessarily for building bridges, but to the understanding.  

And while the exploration of Euclidean theories of size is certainly enlightening, one of 

the things it ultimately reveals is how limited Euclidean sizes themselves are by their 

unavoidable arbitrariness.  This is not to say they are useless altogether; as noted they 

may well have special applications to probability and number theory.  However, anyone 

who has hoped for a revolutionary new Euclidean theory of set size with breadth and 

informativeness approaching what we would expect from a notion of how many will 

ultimately be disappointed. 

An important target of this critique is the theory of numerosities developed by 

Benci, Di Nasso, and Forti (henceforth BDF; see Benci and Di Nasso 2003a; BDF 2006, 

2007; Di Nasso and Forti 2010; Blass, Di Nasso, and Forti 2011).  Briefly, numerosities 

are Euclidean set sizes with the algebraic and ordering properties of the ordinary whole 

numbers (i.e., those of a discretely ordered semi-ring).  However, I will not give a 

detailed account of numerosities, for the points to be made here are very general; any 

Euclidean theory that determines the sizes of the examples below will be plagued with 

arbitrariness. 

The structure of the paper is as follows:  In §2 we lay out some basic assumptions, 

notation, and terminology.  §3 explains what I mean by arbitrariness and why it is 

undesirable, and tries to head off a couple of misunderstandings.  In §4 we discuss the 

failure of absolute translation invariance, i.e., the fact that sets cannot in general be equal 

in size to their translations if PW holds.  §5 concerns the failure of relational translation 

invariance, the fact that Euclidean size relations between sets are not preserved by 

translations.  §6 concerns the failure of rotation invariance (absolute and relational) for 
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bounded sets and the extreme sensitivity of Euclidean sizes to rotation.  In §7 we consider 

and reject a charitable, pluralist view of the situation, and in §8 we discuss the prospects 

for partial Euclidean size assignments, and contrast the arbitrariness of Euclidean sizes 

with the incompleteness of the Cantorian theory.  §9 concludes with brief remarks on 

what we should take away from all this. 

 

  

 §2. Notation, terminology, and background assumptions.  We use N for the set 

of whole numbers (including zero), Z for the integers, Z
+
 for the positive integers (N \ 

{0}, where ‘\’ is set difference), and R for the reals.  P(A) denotes the power set {B:  B ⊆ 

A}. 

 We’ll use the following expressions in connection with size concepts in general: 

Definition 1.  (i)  A size assignment is a measure or a size ordering.  

 (ii)  A measure (or size function) is just a function [·]: D → S from a domain D of 

sets into a linearly ordered set S = 〈S, < 〉. 

 (iii)  If [⋅] is a measure, [A] is called the absolute size of A. 

 (iv)  We write [A] < [B] and [B] > [A] if [A] < [B] but not [B] < [A]. 

 (v)  A measure [·] is Euclidean on D if for all A, B ∈ D, A ⊂ D implies [A] < [B]. 

 (vi)  A measure [·] is total on D if for all A, B ∈ D, [A] < [B] or [B] < [A]. 

 (vii)  A size ordering (or size relation) < is a reflexive, transitive relation (i.e., a 

preorder) on a domain D of sets. 

 (viii)  The pairs (A, B) such that A < B are called relative sizes. 
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 (ix)  We write A < B and B > A if A < B but not B < A. 

(x)  We write A ≈≈≈≈ B if A < B and B < A. 

(xi)  A size ordering < is Euclidean on D if for all A, B ∈ D, A ⊂ B implies A < B. 

(xii) A size ordering < is total on D if for all A, B ∈ D, A < B or B < A.  

Note ‘measure’ for us is a very general term; it does not imply additivity or that [∅] = 0, 

though Euclidean measures always satisfy monotonicity (i.e., if A ⊆ B then A < B).  The 

relations <, <, <, <, and ≈≈≈≈ are all transitive, and ≈≈≈≈ is an equivalence relation expressing 

equal size.  As usual, ‘=’ is reserved for identity:  A = B if and only if ‘A’ and ‘B’ denote 

the very same object.  Where absolute sizes are defined, we assume that [A] < [B] if and 

only if A < B.  Where they are not, we can always let [A] = {C ∈ D:  C ≈≈≈≈ A}; then if < is 

total, letting [A] < [B] if and only if A < B gives us a linear order on the range of [·], so 

that [·] is a measure.   

 These stipulations are inspired by an intuitive analysis of size, but they can also 

be motivated by utility, since relations with such properties have special applications; or 

we can simply take them to demarcate the scope of the present inquiry.  If we must 

abandon such basic assumptions to defend Euclidean sizes, that in itself illustrates how 

limited such sizes are. 

 Note also that an assignment is Euclidean on D if PW applies to all proper 

subset/superset pairs in D, but this does not imply totality; we may still have sets in D 

that are not comparable at all.   

 It is important for us to distinguish between size assignments, as just defined, and 
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theories of size.  Assignments are mathematical relations, and we impose no constraints 

on their complexity.  They need not be constructive, definable, or recursively 

enumerable.  A theory, on the other hand, is often understood as a deductively closed set 

of sentences or propositions generated by some recursive set of axioms and inference 

rules.  We need not be completely precise here; the important thing for us is that a theory, 

on this conception, is something we can state and work with.  In the interest of 

usefulness, it must be somehow expressible, while an assignment need not be.   

 We will avoid the term ‘cardinal’ and its derivatives as much as possible.  

Cantor’s adoption of that term for what he originally called “powers” reflects his later 

view that his concept of power was the correct analysis of the naive notion of number of 

elements.
5
  We might have tried to reclaim ‘cardinal’ for that pre-theoretic notion without 

assuming that Cantor’s was the uniquely correct analysis of it, but Cantor’s usage is 

deeply entrenched, as even BDF’s Euclidean papers reflect.  Still, to avoid confusion and 

prejudice, we revert to Cantor’s earlier term ‘power’ for his cardinals (writing |A| for the 

power of A), and use ‘count’ for the general notion of number of elements, as 

distinguished from both non-integral magnitudes and ordinal positions (2
nd

, 3
rd

, etc.).   

 Central to the notion of count is the property of… 

 Discreteness:  If A < B then A ∪ {x} < B.  

This just says that if one set is strictly smaller than another, then adding a single element 

cannot make it strictly larger—two sets can’t differ in count by less than a whole element.  

BDF’s numerosities have this property, and it’s of particular interest because of the 

                                                 
5
 See Parker 2009, especially the footnotes, for discussion of the evolution of Cantor’s thought on the 

number of elements of a set. 
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ancient project of understanding the relation of count to geometric measure and, 

relatedly, that of individual points to the continuum.  Furthermore, for sets of numbers or 

points, a system of sizes that violates Discreteness would be misleading.  If two sets are 

not vague or fuzzy and do not differ by a part of an object (as in the case of 6 apples 

compared to 6½ apples), then to represent them as differing by less than one whole 

element conveys quite the wrong idea.  It suggests, for example, that we could make the 

sets equal by adding or removing a part of an object, or by including an object more 

definitely.  But neither holds for the sets we will consider; they contain only whole 

elements and contain them wholly.  So we have good reasons to assume Discreteness, but 

in fact most arguments here do not require it. 

 Finally, we will make occasional use of this commonplace notation: 

Definition 2.  For a transformation T: X → Y and a set A ⊆ X, TA = {Ta:  a ∈ A}.  In 

particular, for a set A of numbers, xA + y = {xa + y:  a ∈ A}. 

So for example 2N + 3 = {3, 5, 7, 9,...}. 

 We will need a few more expressions, concepts, and postulates, but these will be 

introduced as they come to bear.   

  

 

 §3.  The trouble with arbitrariness.  Here I want to say a little about what I 

mean by arbitrariness and why it is undesirable, and head off a couple of 

misunderstandings. 

 ‘Arbitrary’ can mean many things, but the main thing I mean by it here is that 
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Euclidean size assignments are unmotivated in many of their specific details.  Particular 

sizes could be chosen differently without any significant loss of utility or elegance.  One 

might object that, in connection with Euclidean theories, arbitrariness is motivated, since 

it is better to have a partly arbitrary Euclidean theory than none at all.
6
  But this confuses 

the issue.  The first question is not whether arbitrariness itself is motivated but whether 

the particular details of a given Euclidean size assignment are well motivated.  If not all 

of them are, that is what I call arbitrariness.  Whether the benefits of such a partly 

unmotivated theory outweigh its detractions is another question.  Perhaps a partly 

arbitrary theory is useful for some purposes, but it is also limited and, as I will argue 

shortly, misleading.   

 Another possible objection is that the Euclidean theories on offer don’t determine 

sizes arbitrarily; they leave sizes indeterminate where well motivated principles do not 

decide them, and this is just what they should do.
7
  Indeed, the theories of BDF and 

others do not determine the sizes of all sets, or even all sets of whole numbers.  However, 

those theories are about Euclidean assignments that are total over some broad class of 

sets.  In most of their papers, BDF define ‘numerosity function’ so that such a function 

must be total over a broad domain such as the entire power set of N (Benci and Di Nasso 

2003a) or the class of all sets of ordinals (BDF 2006).  Even where totality is not built 

into their definition (e.g., Di Nasso and Forti 2010), the whole point of the elaborate 

construction of numerosities (from selective ultrafilters) is to ensure totality.  So BDF’s 

theory may not itself decide sizes arbitrarily, but the assignments that the theory describes 

do.  My claim is that Euclidean theories and assignments must be either arbitrary or too 

                                                 
6
 One reader of an earlier draft made such a remark. 

7
 This is another comment made by a reader. 
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weak to decide the relative sizes of some very simple sets.  The theory of numerosities 

suffers from the latter limitation, and numerosities themselves from the former. 

 But what, you may ask, is so bad about arbitrariness?  If there is no good reason 

to say that A is not smaller than B, for example, then why not just stipulate that it is?  The 

problem with this is that it’s misleading.  Consider this analogy:  You’re very hungry and 

you want a very filling and nourishing meal.  A lunch truck comes along offering three 

different meals:  A, which is free, B, which consists of A plus a nutritious side-dish and 

costs a dollar, and C, which is altogether incomparable to either A or B and also costs a 

dollar.  Since you can’t compare C to A or B, you choose a partly arbitrary preference 

ordering under which C is better than A and at least as good as B.  On that basis you pay 

a dollar for C, even though there is in fact no good reason to regard C as better than the 

free meal A.  You’ve just wasted a dollar.  You could instead have gotten A, which is 

neither better nor worse than C, and kept your dollar, or you could have spent your dollar 

on B, which is definitely better than A.  Instead you’ve spent a dollar on C when there 

was no good reason to.  This is how partly arbitrary size assignments are misleading and 

potentially costly.  Of course, we are not concerned here with such quotidian matters as 

buying lunch, but arbitrary size assignments can be epistemically costly in a similar way; 

they obscure inherent truths by mixing them with haphazard stipulations.   

 One might object that language always involves haphazard stipulations, but this is 

mainly in the choice of symbols used.  Where the concepts expressed are also somewhat 

arbitrary (like the culinary distinction between fruits and vegetables, for example), this 

again limits their usefulness and scientific interest.   

 The claim that arbitrariness in size assignments is misleading and obscures 
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inherent truths suggests a degree of realism.  And in a sense this is right; at least for the 

purposes of this paper, I do take it for granted that there are some objective logical facts 

that are relevant to our discussion—in particular, facts about which propositions do and 

don’t follow from ZFC and other theories, given the standard ways of interpreting those 

theories.  I do not suppose, as Gödel did, that there is any objective fact about what the 

size of an infinite set consists in, or whether set sizes satisfy CP or PW, for I think we are 

free to employ non-standard and even unnatural notions if we wish.  But generally 

speaking, a useful size assignment is one that reflects antecedent facts about the sets 

measured, or the implications of other theories that are independent of the notion of size 

adopted.  Sizes might for example reflect facts about which sets can be put in one-to-one 

correspondence, or which are proper subsets of others, or which ones resemble each other 

in the spatial arrangement of their elements.  But one way or another, sizes should be 

informative.  The problem with Euclidean sizes is that, if they cover even the simple 

examples below, then some of them are not informative, and this makes them misleading.                 

 Now to the examples.  

 

 

 §4. Absolute translation invariance.  Consider the sets N = {0, 1, 2,…} and N + 

1 = {n + 1:  n ∈ N} = {1, 2, 3,…} = N \ {0}.  According to PW, N > N + 1.  Yet N + 1 is 

merely a translation of N, so already we have a violation of translation invariance.   

 Intuitively, a translation is a transformation that preserves distances as well as 

directions.  More precisely,  
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Definition 3.  T: S → S is a translation on a metric space
8
 〈S, d〉 if for all x, y ∈ S, d(x, y) 

= d(Tx, Ty) and d(x, Tx) = d(y, Ty).
9
 

What we have just seen is that Euclidean sizes on the sets of whole numbers violate 

(ATI) Absolute Translation Invariance:  If T is a translation on 〈S, d〉 and A ⊆ S 

then TA ≈≈≈≈ A. 

But the problem is not at all restricted to whole numbers.  It easily generalizes to arbitrary 

Euclidean spaces, in the usual geometric sense of ‘Euclidean’.  To be precise, 

Definition 4.  Let S = 〈S, d 〉 and S' = 〈S', d' 〉 be metric spaces.   

 (i) S is isometric to S' if there is a one-to-one map f : S → S' such that for all x, y 

∈ S, d(x, y) = d'(f(x), f(y)). 

 (ii) S is Euclidean if it is isometric to (R
n
, δ ) for some n ∈ Z

+
, where δ  is the 

standard Euclidean metric δ (〈x1,…, xn〉, 〈y1,…, yn〉) = ((y1 − x1)
2
 + … + (yn − xn)

2
)
1/2

. 

Remark 1.  If S = 〈S, d〉 is a Euclidean metric space and < is a Euclidean size ordering 

on P(S), then < violates ATI.  

Proof.  Euclidean spaces always have translations, since R
n
 does.  So let T be a 

translation on S.  Let p ∈ S and P = {p, Tp, TTp,…} = {T
n
p:  n ∈ N}.  (See Figure 1.)  

                                                 
8
 A metric space is just set equipped with a measure of distance between elements.  The precise definition 

can be found in any introductory analysis textbook or internet resource.  

9
 This is not a standard definition of ‘translation,’ but it captures the right cases and saves us introducing 

more structure on the space 〈S, d〉.  This makes it both general and easy to state. 
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Then TP = {Tp, T
2
p, T

3
p,…} ⊂ P.  So by PW, TP < P, contradicting ATI.

10
 

In fact, our assumptions here are stronger than necessary to get a failure of translation 

invariance.  Besides PW, all we need is a translation with an infinite forward orbit {p, Tp, 

TTp,...} (cf. BDF 2007, §3.1).  The Euclidean background space is just a natural way to 

guarantee this.   

 This is a trivial result, deserving only the status of a remark, but consider the 

implications.  It implies first that the size of a set depends on its particular position in 

some background space.  Two sets, like N and N + 1, or P and TP, can be entirely alike in 

structure, and yet, due only to which particular elements are contained within this 

structure and where they happen to be, unequal in size.  And as illustrated by sets N and 

N + n, or P and T
n
P, they may differ vastly in size—that is, by an arbitrarily large finite 

number of elements.
11

 

 This is not only counterintuitive but impractical.  One of the very useful features 

of our usual notions of size is that they meaningfully classify distinct objects as equal.  

(PW only does part of this job; it tells us that certain sets aren’t equal, but not which ones 

are.)  Another useful feature of sizes is that they abstract away from the natures of the  

                                                 
10

 We could instead prove this from the existence of sets in S isometric to N and N + 1, but the proof from 

more generic point sets is illustrative.  A parallel remark applies to other proofs below. 

11
 P and TP also illustrate a fundamental conflict between two Common Notions from Euclid’s Elements.  

Common Notion 4 is translated by Heath (1956) as,  

(CN4) Things coinciding with one another are equal to one another.    

If the sense of ‘coinciding with’ (or ‘applying onto’, as Heath also suggests) is the sense in which, for 

example, one line segment coincides with another of the same length, then surely the sets P and TP 

coincide as much as any two sets or figures, so by CN4 they must be equal.  Yet TP is a proper part of P, so 

by CN5, P is larger.  Below we will see examples of bounded figures (or point sets) for which CN4 and 

CN5 are incompatible.  (BDF claim in 2007 that numerosities satisfy both CN4 and CN5, but this is 

because they interpret ‘applying onto’ as ‘related by an isometry’, and define an isometry as a numerosity-

preserving transformation.  This makes CN4 trivial.) 
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Figure 1.  TP is just a translation of P, but given PW, TP is smaller than P. 

 

 

natures of elements, what is left as a basis for equality but the structural features of 

sets?
12

  So even if we reject CP, we have good motivations to hope for some weaker, 

more specific structural principle of equality, and ATI is an especially weak one.  It 

proposes not that any bijection implies equal size (CP), not that continuous bijections 

imply equal size, not that order preserving bijections imply equal size, but only that 

bijections that preserve all differences and directions imply equal size.  But as we have 

just seen, even that fails for Euclidean sizes.   

 One might object that transformation principles like ATI are all too Cantorian.  If 

we are going to evaluate the competing principles CP and PW, it might be argued, we 

should not assume that certain mappings preserve size, as that’s too prejudiced towards 

                                                 
12

 BDF also concern themselves with bases for equality, or as they put it (2007), the search for interesting 

“isometries,” which they define as transformations that preserve numerosity.  They point out that certain 

product principles imply certain limited invariance properties (2006, 2007).  However, as they also 

acknowledge, their product principles prove problematic, and PW imposes severe restrictions on size-

preserving maps:  No map with an infinite forward orbit preserves Euclidean sizes (2007, §3.1).  So the 

prospects for interesting isometries are not great. 
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CP.
13

  But the point here is that PW does not just contradict CP; it also contradicts much 

weaker, useful principles.  Even if we are prepared to drop CP, it would be useful if the 

size of a set indicated some antecedent fact about its structure.  So preferably, 

transformations that preserve structure or a great deal of structure ought to preserve size.  

In general, one-to-one correspondence preserves very little structure, while a translation 

preserves as much as possible without necessarily preserving the internal structures of the 

individual elements.  So it is one thing to say that Euclidean sizes violate CP, and quite 

another to say that they violate principles like ATI.  Violating ATI suggests that set size 

is not determined by structure at all. 

      The violation of ATI is even worse news for point sets than for sets of numbers.  

Numbers arguably have distinct qualitative or structural properties, absolute positions on 

the number line, and special relations to each other that go beyond their relative positions.  

But point sets like our P and TP above are only distinguishable by their positions; the 

points themselves have no distinctive characteristics other than their particular positions 

in the space.  So unless we want the size of a set to depend on its particular position (even 

while holding the relative positions of the elements fixed), or perhaps on the bare 

haecceities of its elements (if there are such things), we should like ATI to hold.  And for 

Euclidean sizes it can’t. 

 One consequence of this is that any assignment of numerical absolute sizes to sets 

like our P and TP would be arbitrary.  As noted in §2, we could define the absolute size 

of a set as the equivalence class of sets related to it by ≈≈≈≈ (derived from <), but there is no 

preferred way to associate such a Fregean “size” with any standard number applicable 

                                                 
13

 In fact, this argument was made by a reader of an earlier draft. 
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outside the particular domain of ≈≈≈≈, such as an ordinal or a hyper-integer.
14

  After all, we 

might assign a particular number ν  to P and ν  − 1 to TP, or ν + 1 to P and ν  to TP, or 

evenν + 243 to P and ν + 242 to TP.  Any choice among such options would be as 

arbitrary as a choice between isometric coordinate systems that differ only in the 

locations of their origins, or between physical reference frames that are stationary relative 

to each other.   

 Further, this means we have no useful way of comparing Euclidean sizes of 

infinite sets (of the same power
15

) that live in different spaces.  If a set Q in a metric 

space T is isometric to our set P in S, then it is isometric to each translation image T
i
P.  

So why should Q be equal to P instead of, say, T
 717

P?  If we could assign the sets definite 

numerical sizes, then sets assigned the same number could be regarded as equal.  But if 

we have no good reason to assign a set one number rather than another, then equating sets 

that are assigned equal numbers is capricious, uninformative, and ultimately misleading.   

 So the failure of ATI might seem natural given PW, but for all of the reasons just 

given, it is nonetheless very limiting.  

 

  

  §5.  Relational translation invariance.  Though translations do not preserve 

Euclidean size, one might hope that they would at least preserve the Euclidean size 

relations between sets.  That is, we would like... 

                                                 
14

 The numerosities in BDF’s consistency proofs are hyper-integers, i.e., equivalence classes (relative to 

some selective ultrafilter) of infinite sequences of integers.  My present point entails that any assignment of 

specific hyper-integers to sets like P and TP is arbitrary. 

15
 We might, like BDF, assume that larger Cantorian power implies larger Euclidean size, i.e., |A| < |B| ⇒ 

A < B (the “Half-Cantor Principle”).  Then we could usefully compare sets if they have different powers.  

But this gives us no general means of comparing sets of the same power while upholding PW. 
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(RTI) Relational Translation Invariance.  If T is a translation on a metric space 

〈S, d〉 and A, B ⊆ S then A < B if and only if TA < TB. 

But no, even this fails under mild conditions. 

 For a concrete example, consider EVEN = 2N = {0, 2, 4,…}, ODD = 2N + 1 = 

{1, 3, 5,…}, and EVEN + 2 = 2N + 2 = {2, 4, 6,…}.
16

  Assuming PW, EVEN > EVEN + 

2.  But is ODD the same size as EVEN or as EVEN + 2?  Or neither?  Assuming PW, 

totality, and Discreteness, any choice violates RTI.  By Discreteness, ODD can’t be 

between EVEN and EVEN + 2 in size (though it lies between them in position).  So by 

totality, ODD must be at least as large as EVEN or at least as small as EVEN + 2.  If 

ODD is as large as EVEN, then RTI implies that EVEN + 2 is as large as ODD.  But then 

by transitivity, EVEN + 2 is as large as EVEN, contradicting PW.  Similarly, if ODD is 

instead as small as EVEN + 2, then RTI and transitivity imply that EVEN is as small as 

EVEN + 2, again contradicting PW.   

  As argued in §2, it would be misleading to drop Discreteness.  We will consider 

abandoning totality in §8.  But we will soon see that RTI fails under other mild 

conditions, without Discreteness or totality.  (The failure is robust:  It obtains from 

different, independent, weak assumptions.)   

 Again, the result generalizes easily to arbitrary Euclidean metric spaces: 

Remark 2.  If 〈S, d〉 is a Euclidean metric space and < is a total Euclidean size ordering 

on P(S) satisfying Discreteness, then < violates RTI. 

                                                 
16

 This example is closely related to the coin flipping examples in Williamson’s critique of non-standard 

probabilities (2007). 
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Proof.  Let T be a translation on 〈S, d〉, p ∈ S, and Q = {T
2n

p:  n ∈ N}.  (See Figure 2.)  

Then repeat the preceding argument with Q in place of EVEN, TQ in place of ODD, and 

T
2
Q in place of EVEN + 2. 

 Such violations of RTI are misleading.  Suppose for example we have EVEN ≈≈≈≈ 

ODD but ODD > EVEN + 2.  This would suggest that there is some special relation 

between the former two sets that does not hold between the latter.  But aside from the 

postulated size relation itself, there isn’t.  EVEN and ODD are related in exactly the same 

way as ODD and EVEN + 2, namely by the translation Tn = n + 1.  Of course, it is easy 

to define relations that hold between EVEN and ODD but don’t hold between ODD and 

EVEN + 2, but by the same token, lots of relations hold between the latter two and not 

the former.  The point is, there is no particularly important or size-like relation that holds 

of the former two and not the latter—nothing to warrant assigning the former sets the 

same size but not the latter.  We could just as well stipulate that EVEN > ODD ≈≈≈≈ EVEN 

+ 2, and adopting one of these orderings over the other obscures the fact that neither 

ordering is particularly privileged.   

 In fact, Benci and Di Nasso (2003a) show that the existence of numerosities 

satisfying either stipulation is consistent with ZFC.  (The existence of such numerosities 

is implied by the existence of selective ultrafilters, which is itself independent of ZFC but 

implied by the Continuum Hypothesis.)  So even ZFC, PW, the strong algebraic and 

ordering properties of numerosities, and the Continuum Hypothesis together do not 

resolve basic questions like whether EVEN ≈≈≈≈ ODD. 

Benci and Di Nasso themselves suggest that the indeterminacy of numerosities  
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Figure 2.  T
2
Q ⊂ Q, while TQ is disjoint from both. 

 

 

 

can be overcome by introducing further postulates, such as n[nZ
+
] = [Z

+
], i.e., that the 

sum of n terms each equal to [nZ
+
] is [Z

+
].  Given the algebraic properties of 

numerosities, this implies that EVEN > ODD ≈≈≈≈ EVEN + 2.
17

   

 

But Benci and Di Nasso do not claim that this one postulate resolves all of the 

indeterminacy of numerosities, and it may well be that no finite or recursively 

enumerable set of postulates can define a unique total Euclidean size assignment on 

arbitrariness of Euclidean sizes unless the postulates themselves are non-arbitrary.  And 

what is there to recommend Benci and Di Nasso’s postulate n[nZ
+
] = [Z

+
]?  It may look 

                                                 
17

 Benci and Di Nasso use ‘Even’ to denote our set EVEN + 2 = {2, 4, 6,...} and ‘Odd’ for our ODD = {1, 

3, 5,...}.  In that notation, their postulate implies that Even ≈≈≈≈ Odd, which perhaps makes it seem more 

natural. 
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natural if we are particularly interested in Z
+
, but one could just as reasonably stipulate 

that n[nN] = [N] instead, and then we would have EVEN ≈≈≈≈ ODD > EVEN + 2.   

The underlying difficulty is that all of these assignments violate RTI.  If EVEN 

and ODD are equal in size, then ODD and EVEN + 2 are not, and vice versa, assuming 

Discreteness.  So the size relation between two sets depends not only on their structural 

properties and relations to one another but on where in particular they happen to be on the 

number line.  And thus the choice between stipulations like EVEN ≈≈≈≈ ODD and ODD ≈≈≈≈ 

EVEN + 2, or between n[nZ
+
] = [Z

+
] and n[nN] = [N], is as arbitrary as the choice of a 

favorite position on the number line.   

Furthermore, even if one could eliminate the indeterminacy of Euclidean size 

assignments on P(N), there would remain many other indeterminacies to reckon with in 

other contexts.  As before, the failure of translation invariance is even more worrying for 

point sets than for number sets.  We might concede the possibility that ‘EVEN ≈≈≈≈ ODD > 

EVEN + 2’ is somehow a better stipulation than ‘EVEN > ODD ≈≈≈≈ EVEN + 2’ for 

reasons having to do with the distinct properties of the numbers involved.  But for our 

point sets Q, TQ, and T
2
Q, in the context of a space with no privileged origin, there is no 

such possibility.  To stipulate that, say, Q ≈≈≈≈ TQ > T
2
Q would be indisputably arbitrary, 

because the sets Q and TQ take the same positions in one reference frame or coordinate 

system as TQ and T
2
Q take in another (even in a coordinate system isometric to the first), 

and there is nothing in the intrinsic natures of the points to distinguish the relation of Q to 

TQ from that of TQ to T
2
Q.   

 Now let’s see a violation of RTI without Discreteness or totality.  It’s more than 
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enough to assume that N is the same size as its reflection (−1)N = {0, −1, −2,...}.  Then if 

Ti = i + 1 for all i ∈ Z, PW implies that TN < N and (−1)N < T(−1)N = {1, 0, −1,…}.  By 

transitivity, TN < T(−1)N, but since N ≈ (−1)N, this contradicts RTI.   

 In fact, we can get a more general result with only a very weak assumption about 

point sets:  

(WRP) Weak Reflection Principle.  There is a translation T on 〈S, d〉 and points p, 

q ∈ S such that {T
n
p:  n ∈ N} ≈≈≈≈ {T

−n
q:  n ∈ N} (where T

−n
q is the unique point r 

such that Tr = q).  

Remark 3.  If < is a Euclidean (partial) size ordering satisfying WRP on a Euclidean 

metric space 〈S, d〉 then < violates RTI. 

Proof.  Again we generalize the numerical example:  Let P = {T
n
p:  n ∈ N} ≈≈≈≈ R = {T

−n
q:  

n ∈ N}.  (See Figure 3.)  Then by PW, TP < P ≈≈≈≈ R < TR, and hence TP < TR.  So R < P, 

but it is not the case that TR < TP, contradicting RTI. 

Like ATI and RTI, WRP is desirable.  The sets P and R are rigid rotations of each 

other, so they’re structurally and qualitatively alike and hence should have the 

same size.  To regard one as larger than another would be as arbitrary as a choice 

between isometric coordinate systems.  We will discuss rotation and reflection 

invariance more generally below; the present point is just that we do not have to 

assume Discreteness or totality to get a violation of RTI.  Even for Euclidean 

notions of size that are not notions of discrete count—for continuous magnitudes,  
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Figure 3.  If P = {T
n
p:  n ∈ N} is the same size as R = {T

−n
q:  n ∈ N}, 

then PW implies that TP < TR, so translations do not preserve relative 

size.    

 

 

for example—and even for Euclidean partial size assignments  (provided PW holds for 

the relevant subset/superset pairs ), RTI fails under very mild and well motivated 

assumptions. 

So in general, Euclidean size orderings are arbitrary in a clear and robust way:  

Given one, we can obtain an equally valid and well (or poorly) motivated one by a mere 

translation.  The point is not that we must accept RTI and therefore reject PW.  The point 

is that if we do not want set sizes to be as arbitrary as a choice between isometric 

coordinate systems, then we should adopt RTI (and WRP) and abandon PW.   
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§6. Rotation invariance.  For the same reasons as we would like sizes (absolute and 

relative) to be translation invariant, we would also like them to be rotation invariant.  In 

many important geometric and physical contexts, there is nothing to distinguish one 

direction from another, so a distinction of size that depends on the particular orientation
18

 

of a set is baseless and misleading.  But as we will now see, Euclidean sizes must be 

sensitive to rotation, and very much so.   

 First, a couple more definitions.  We will regard reflections as a subclass of 

rotations, since a reflection in n dimensions is equivalent to a rotation in n + 1.  Hence 

any violation of reflection invariance implies a violation of rotation invariance in a 

slightly higher-dimensional space. 

Definition 5.  Let S = 〈S, d〉 be a metric space. 

 (i) A map R: S → S is a rotation on S if  

  (a) for some x ∈ S, Rx = x, and  

  (b) for all x, y ∈ S, d(x, y) = d(Rx, Ry).
19

 

 (ii)   A transformation T on S is involutory if for all x ∈ S, TTx = x.  

So reflections in particular count as involutory rotations.  Now the principles to be 

violated: 

(ARI) Absolute Rotation Invariance.  For any rotation R on a Euclidean metric 

                                                 
18

 We will use ‘orientation’ in the sense of direction or rotational position, rather than handedness.  

Orientations in this sense are what rotations alter. 

19
 Like our definition of translation, this is not necessarily standard, but it is simple and adequate for our 

purposes. 
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space 〈S, d〉 and any A ⊆ S, A ≈≈≈≈ RA. 

(RRI) Relational Rotation Invariance.  For any rotation R on a Euclidean metric 

space 〈S, d〉 and any point sets A, B ⊆ S, A < B if and only if RA < RB. 

ARI simply says that rotations preserve size, and RRI says they preserve size relations.   

 At first glance, RRI seems weaker than ARI.  After all, even if a rotation changes 

set sizes, couldn’t it always change them in the same way, and at least preserve size 

relations?  But if we assume PW and totality (or weaker, that any two sets related by an 

involutory rotation are comparable), then RRI becomes the strongest of all the invariance 

principles considered here. 

Remark 4.  Let 〈S, d〉 be a Euclidean metric space and < a total Euclidean size ordering 

on P(S).  Then RRI implies ARI, ATI, and RTI.  

Proof.  Assume RRI and let R be an involutory rotation.  (These exist by the isometry of 

〈S, d〉 with a Euclidean space.)  Then for any A ⊆ S, RRA = A.  By RRI, A < RA if and 

only if RA < RRA = A.  By totality, one of these must hold, so both do, and A ≈≈≈≈ RA.  

Hence RRI implies that involutory rotations preserve size.  But every rotation or 

translation in a Euclidean space is just a composition of two reflections, which are 

involutory rotations by the above definition.  So RRI implies ARI and ATI, and ATI 

implies RTI.
20

 

                                                 
20

 If we exclude reflections from RRI and let it apply only to handedness-preserving rotations, we can still 

obtain RRI ⇒ ATI ⇒ RTI and ARI ⇒ ATI ⇒ RTI, since 180-degree rotations are also involutory, and 

every translation is a composition of two 180-degree rotations.  However, not all rotations are compositions 

of 180-degree handedness-preserving rotations, so ARI doesn’t follow from such a weakened RRI. 
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 We already saw (Remark 1) that all Euclidean size orderings on a Euclidean 

metric space violate ATI, so by Remark 4, they also violate rotation invariance—both 

absolute and relational.  For a simple example, consider the sets N, (−1)N, and (−1)N − 2 

= {−2, −3, −4,…}.  By PW, (−1)N − 2 < (−1)N, but both are rotations of N (and even if 

we exclude reflections, they are still rotations of N in the complex plane).  So rotations 

don’t always preserve size.  And since N cannot be equal in size to both (−1)N and (−1)N 

− 2 < (−1)N, either N < (−1)N or (−1)N − 2 < N, assuming totality.  In either case we 

have a set A (= N or (−1)N − 2) and a rotation R such that A < RA but not RA < RRA, 

contradicting RRI.  So rotations can’t always preserve relative sizes either, given PW and 

totality (or comparability of involutory rotation images like A and RA).  

 Now, it’s pretty obvious that rigid translations don’t preserve Euclidean sizes if 

we consider unbounded infinite sets like P and TP above, or half-intervals like (0, ∞) and 

(1, ∞), half-planes, and so on.  It’s also known that finitely additive measures (such as 

numerosities) violate rigid transformation invariance for bounded sets, in virtue of the 

very sophisticated Banach-Tarski paradox.  But it is worth noting that Euclidean sizes in 

general, whether additive or not, must violate rotation invariance even for very simple 

bounded sets. 

 Consider an example in the Cartesian plane R
2
 with standard polar coordinates.  

The idea is to wrap point sets like our P = {p, Tp, TTp,…} onto a circle in such a way that 

the arc length between consecutive points is constant and incommensurable with the 

circumference.  Here’s how:  

Definition 6.  For any θ ∈ R, let  
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Cθ = {(1, θ + n):  n ∈ N}, 

where (1, θ + n)  is a polar coordinate pair with θ + n given in radians relative to the x-

axis.  (See Figure 4.)   

So Cθ is a countably infinite set of points on the unit circle, and the arc length between (1, 

θ + n) and (1, θ + n + 1) is 1, which is incommensurable with the circumference 2π.  Now 

take for example C0 = {(1, 0), (1, 1), (1, 2),…}.  If we rotate this set one radian counter-

clockwise, we obtain the set C1 = {(1, 1), (1, 2), (1, 3),...}.  Thus C1 ⊂ C0, so by PW, C1 

must be smaller.  By rotating C0, say, two radians clockwise, we get C−2  = {(1, −2), (1, 

−1), (1, 0),...}, which is larger.
21

  So rotations in R
2
 don’t preserve absolute sizes, and by 

Remark 4, they don’t preserve relative sizes.   

 This generalizes easily to Euclidean metric spaces: 

Definition 7.  Given a metric space 〈S, d〉, A ⊆ S is bounded if there is some n ∈ N such 

that for all x, y ∈ A, d(x, y) < n. 

Remark 5.  Let 〈S, d〉 be a Euclidean metric space of dimension at least two, and < a 

total Euclidean size ordering on the bounded subsets of S.  Then < violates ARI and RRI. 

Proof.  Let f: R
2
 → S be an isometry.  Then f[C0] and f[C1] are bounded and f[C1] is a 

rotation of f[C0], by isometry.  Also, f[C1] ⊂⊂⊂⊂ f[C0], so by PW, f[C1] <  f[C0].  Thus < 

violates ARI, and by Remark 4, it also violates RRI. 

                                                 
21

 This example is closely related to a puzzle once presented to me by Frank Arntzenius at a restaurant.  

The puzzle was roughly this:  Find a set of points on a sphere such that one can obtain a proper subset just 

by rotating the sphere.  Notice the example also shows that Common Notions 4 and 5 of the Elements are 

incompatible even for bounded figures.  See footnote 11. 
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Figure 4.  The first eight points in Cθ = {(1, θ + n):  n ∈ N} for an 

arbitrary angle θ.  Note Cθ + m ⊂ Cθ ⊂ Cθ − m for m ∈ N, and the angles θ ± 

m are dense in the circle. 

 

 

 Note that if we exclude reflections and restrict RRI to the handedness-preserving 

rotations within a given space, then RRI is consistent with PW in two-dimensional 

spaces, but not three.  In any case, such a weakened RRI is still not consistent with PW 

and Discreteness, even for bounded sets.  Given PW and Discreteness, the size relation 
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between C0 and C1/2 = {(1, 1/2), (1, 3/2), (1, 5/2),…} cannot be the same as that between 

C1/2 and C1. 

 So given PW—even without Discreteness or additivity—bounded sets that are 

mere rotations of each other differ in size, and as well the size relation between two sets 

depends on their particular orientations, even while their orientations to each other 

remain fixed.  This is again deceptive, for attributing different sizes to two sets suggests a 

substantive difference, while under PW it may merely reflect a difference in direction, 

and in contexts where there is no privileged direction or coordinate system, this means 

that both absolute and relative set sizes depend on an arbitrary choice of coordinate axes. 

 But Euclidean sizes not only vary with rotation, they are radically sensitive to it:  

Bounded sets that differ only by an arbitrarily small rotation nonetheless differ in size by 

arbitrarily large finite quantities.   

Remark 6.  For any n ∈ N and θ  ∈ [0, 2π) there are angles ρ  and σ  arbitrarily close to θ  

such that Cρ ⊂ Cθ  ⊂ Cσ  and |Cθ \ Cρ|, |Cσ \ Cθ| > n. 

Proof.  The angles θ + m for m ∈ N are dense in the circle, so choose m > n such that θ + 

m is arbitrarily close to θ.  Then |Cθ \ Cθ + m| = |{(1, 0), (1, 1),..., (1, m − 1)}| = m > n.  

Likewise choose k > n such that θ − k is arbitrarily close to θ.  Then |Cθ − k \ Cθ | = k > n. 

So there are angles ρ and σ arbitrarily close to θ such that Cθ contains all of Cρ as well as 

an arbitrarily large finite number of other points, and Cσ contains Cθ and an arbitrarily 

large finite number of other points.  These are simple facts of geometry and set theory 

independent of PW or any other postulates about infinite sizes (since Cθ + i \ Cθ + j is 

finite).  But under PW, it makes sense to say that Cθ − k  is larger than Cθ “by k elements,” 
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since Cθ < Cθ − 1 < Cθ − 2 < ... < Cθ − k.  So in this sense, arbitrarily small rotations effect 

arbitrarily large finite changes in size.
22

    

 Perhaps this is unsurprising.  After all, continuous, unbounded sets are even more 

sensitive to small rigid transformations.  The set-difference between the intervals (x, ∞) 

and (x + ε, ∞), for arbitrarily small ε, is uncountably infinite.  So an arbitrarily small 

translation can induce an uncountably infinite change in size.  Nonetheless, the example 

of the sets Cθ is striking.  There we have bounded, countable sets whose Euclidean sizes 

vary both up and down with tiny rotations in the same direction.  Turn C0 a hair 

clockwise and it becomes hundred points larger.  Turn it another hair clockwise and it 

becomes a million points smaller.    

 This just amplifies the fundamental arbitrariness implied by the failure of absolute 

rotation invariance.  Not only do Euclidean sizes depend on an arbitrary choice of 

coordinate axes, but they depend very sensitively on it, so that the tiniest difference in 

orientation can make a vast difference in size.  Similarity and proximity aren’t even good 

guides to approximate size, if PW holds.  And since Euclidean sizes are so sensitive to 

rotations in R
2
, they are similarly sensitive in any Euclidean metric space of dimension 

two or greater.  So even in Euclidean spaces where there is no preferred direction or 

designated coordinate system, Euclidean set sizes depend so sensitively on direction that 

indiscernible differences of angle imply size differences larger than any finite number 

one can comprehend.  In this respect, Euclidean size is a misleading and impractical way 

of classifying sets.  However we might measure or count a point set like Cθ, we could 

never even approximate its size (beyond determining its power; see footnote 15).   

                                                 
22

 For BDF’s numerosities, which have a rich algebra, we can say more concretely that for any θ ∈ R and n 

∈ N, there are arbitrarily small rotations R such that [RCθ] − [Cθ] > n. 
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 §7. Conventionalist pluralism.  The central problem with Euclidean sizes is 

arbitrariness.  Where disjoint infinite sets are concerned, there is no apparent motivation 

for assigning one size relation rather than another, and to choose one often involves 

privileging an arbitrary position or direction.  One might take a pluralistic view of this 

situation, and respond as follows:  The “size” of a set is naturally going to depend on 

what one means by ‘size’.  There are multiple theories available, including Cantor’s 

theory and various Euclidean theories, which differ in the sizes and size relations they 

assign to particular sets.  So yes, says the pluralist, set sizes are indeterminate until one 

chooses a sufficiently strong concept or theory of size, but that is no surprise.  We have to 

define size, at east implicitly, before it has a definite meaning, and we can define it in 

vastly many different ways, even assuming PW.  This is no mark against PW but an 

advantage; it means we have many Euclidean measures at our disposal to use for different 

purposes.    

 It should be clear from the introduction that I am sympathetic to this sort of 

pluralism in general, but there are problems with the view just stated.  Firstly, we don’t 

really have a Euclidean theory or concept of set size that determines the sizes of the 

simple sets discussed above.  BDF have shown that Euclidean assignments of size exist 

for large classes of sets (assuming the existence of selective ultrafilters), but we have 

drawn a distinction between assignments and theories (§2).  An assignment is any 

function or relation, however complex, non-computable, or undefinable, while a theory 

must be somewhat comprehensible and communicable, at least if it is to be useful.  
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Likewise, a concept must be something we can at least partly grasp if the word is to 

support its psychological applications.  But it is doubtful that a satisfyingly strong and 

broad Euclidean size assignment can be determined by any tractable theory or intelligible 

concept.  All known arguments for the existence of broad Euclidean assignments are non-

constructive, and this suggests that there might not be any recursively enumerable theory 

that determines a particular Euclidean size assignment.  And if not, then Euclidean size 

assignments are not as easy to grasp or work with as what we usually call theories or 

concepts.  In that case, we’re not just facing an arbitrary choice between different notions 

of size; there isn’t anything as useful as a Euclidean notion of size that determines the 

sizes of sets like those discussed above.     

Secondly (against the above-mooted pluralist position), we have seen good 

reasons to believe that any that a Euclidean size assignment that resolves our examples 

will incorporate unmotivated details.  Such assignments are misleading, for while some 

sizes will reflect logical facts or consequences of established theories (like ZFC), others 

will be purely arbitrary, so that it becomes difficult to tell which results have significance 

and which don’t.  Having a variety of conceptual tools at one’s disposal may be a benefit, 

but if each of these tools mixes meaningful content with arbitrary stipulations in a way 

that’s difficult to extricate, that’s detrimental.  A random pile of arrows isn’t a theory in 

any useful sense, because it’s not a theory of anything of interest, and it’s not 

comprehensible or useful.   

So the pluralist view is correct in that a theory of size need not be a theory of the 

one true notion of size and its properties, but a useful theory is one that conveys factual 

or logical insights of some kind, and preferably doesn’t mix these with free, unmotivated, 
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and inexpressibly complex choices. 

 

 

 §8.  Partial size assignments.  Since Euclidean set sizes are not in general 

determined by well motivated principles (nor perhaps by comprehensible principles), one 

solution might be to adopt a partial Euclidean size assignment as a theory of size.  

EVEN, for example, might be regarded as neither smaller than ODD, nor larger, nor 

equal, on such an approach.  Consider the theory consisting of just PW and BDF’s Half-

Cantor Principle, that |A| < |B| implies A < B (where again |·| is Cantorian power; BDF 

2006, 2007), but without the assumption of totality.  On this theory, sets of larger power 

are larger, and proper subsets are smaller, but sets of the same power such that neither is 

contained in the other have no definite size relation.  Wouldn’t this be better than 

Galileo’s solution (1939), according to which no infinite sets have relative sizes?  And 

wouldn’t it be in some ways better than Cantor’s, which fails to discriminate at all 

between sets of the same power, even when one contains the other?   

 One objection to this proposal is that it adds nothing to the familiar concepts of 

power and proper subset.  In fact it obscures those concepts a little.  To say that A is 

smaller than B, in this theory, is just to say that, either A has smaller power than  

B or A is a proper subset of B (or both).  Wouldn’t it be better to distinguish these cases, 

just as we already do in our standard language of set theory?  Uniting the relations of 

proper subset and smaller power in one relation muddies things.  But if we bring in 

further principles, such as Discreteness, RTI, or algebraic properties like BDF’s, the 

union may not be so fruitless.  No well motivated Euclidean theory will determine all set 
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sizes or relative sizes, but if we open the scope of investigation to partial measures and 

partial size relations, perhaps some Euclidean assignment (or several) will prove to be 

both comprehensible and enlightening in applications. 

 But even partial Euclidean assignments suffer from arbitrariness.  Whatever 

further properties we may add, PW alone implies that size is not preserved by rigid 

transformations, even for bounded point sets.  The relative sizes of C0 and C1, for 

example, are determined by PW:  C0 > C1.  But this means that the sizes of structurally 

identical sets depend on their positions in space, which is clearly arbitrary, especially in 

contexts where there the elements are qualitatively identical and there is no privileged 

origin or direction.  Further, size must vary radically under arbitrarily small rotations, 

regardless of totality, for the relations between arbitrarily near sets Cθ and Cθ + i are 

determined by PW alone.  Size relations between sets must also vary with rotations, and 

if size relations satisfy Discreteness (as any notion of number of elements should), they 

must also vary with mere translations.  All of this holds by PW alone, without assuming 

totality, so long as PW applies to the particular sets in question. 

 But a related objection must yet be answered.  The standard Cantorian theory of 

set size is also indeterminate, in virtue of the independence of the Continuum Hypothesis 

from ZFC, and other such independence results.  ZFC does not even tell us whether the 

continuum is the same size as the second infinite cardinal, so how are Euclidean theories 

any worse?
23

  This seems to suggest that we must be content with partial size assignments 

or at least incomplete theories, whether Euclidean or Cantorian.   

 I do not wish our discussion to degenerate into a contest between Cantorian and 

                                                 
23

 Thanks to Paolo Mancosu and Leon Horsten for raising this question. 
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Euclidean theories; the limitations of Euclidean theories are what they are regardless of 

how Cantor’s theory fares.  But there is a difference worth noting between the 

independence of the Continuum Hypothesis and the arbitrariness of Euclidean sizes.  The 

Continuum Hypothesis reduces to a statement of set theory that doesn’t involve any 

notion of size.  It says that the continuum has a one-to-one correspondence with a subset 

of each set that doesn’t have a one-to-one correspondence with the integers.  ZFC does 

not tell us whether this statement, in the language of ZFC, is true.  But the Cantorian size 

relation between the continuum and sets of the second infinite power is determined by 

the truth or falsity of this proposition.  The indeterminacy of Cantorian sizes lies not in 

the Cantorian notion of size itself, but in the incompleteness of the underlying size-free 

theory of sets.  Not so for Euclidean sizes.  If every fact expressible in the language of 

ZFC were determined, this would still not fix the Euclidean sizes of sets, for we have no 

rule for assigning sizes to sets based on their set-theoretic properties.  As we have seen 

above, neither bijections nor even isometries can fix Euclidean sizes.  To put it another 

way, we at least know what power consists in:  One-to-one correspondence.  But what 

constitutes Euclidean size is only partly specified; it is a mixture of common sense (PW) 

and chimera.  

 

 

 §9.  Conclusion.  It would be unfortunate if the observations made here had any 

negative impact on research programmes like BDF’s.  Such work has shown us that 

Euclidean size assignments are logically consistent, and Euclidean conceptions of size 

need not be mere misconceptions.  As well it has revealed the subtle conditions under 
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which such assignments exist, and their connections with other deep and interesting 

topics.  And perhaps there is some hope for partial Euclidean size assignments that are 

broadly useful and enlightening.   

 But the problems of arbitrariness that plague Euclidean theories are severe.  Our 

examples show that any Euclidean theory or assignment that is strong and broad enough 

to relate even simple, countable sets like those discussed above will be arbitrary and 

misleading.  Furthermore, this is no mere technicality engendered by particular devices 

such as the Axiom of Choice or selective ultrafilters.  It is a clear, fundamental constraint 

on any application of PW to infinite sets, including sets of whole numbers and even 

bounded, countable point sets.  Euclidean theories and assignments go a long way as 

illustrations of mathematical freedom and of interesting connections within mathematics, 

but as theories of size in themselves they are deeply and disappointingly limited.  The 

problem is not that Euclidean theories are false.  It is that they are either very weak and 

narrow or arbitrary and misleading. 
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