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Abstract

Neo-Fregeans such as Bob Hale and CrispinWright seek a foundation of

mathematics based on abstraction principles. �ese are sentences involving a

relation called the abstraction relation. It is usually assumed that abstraction

relationsmust be equivalence relations, so re�exive, symmetric and transitive.

In this paper I argue that abstraction relations need not be re�exive. I

furthermore give an application of non-re�exive abstraction relations to

restricted abstraction principles.

Neo-Fregeans such as Bob Hale and Crispin Wright (e.g. Hale 1987; Hale and

Wright 2001; Wright 1983) seek a foundation of mathematics based on abstraction
principles. �ese are sentences of the following form:

(AP∼) ∀F∀G[§F = §G ↔ F ∼ G]

Here, § is an abstraction operator, which, when attached to a second-order term

(such as a predicate or a second-order variable) results in a singular term, called

an abstract term. �e referent of an abstract term—if any—is an abstract. Finally,
the relation ∼ is the abstraction relation. �e e�ect of an abstraction principle is to

map each concept onto an abstract, such that two concepts have the same abstract

if and only if they are related by ∼.
One particular instance of an abstraction principle is Hume’s Principle (HP),

which states that the number of Fs is equal to the number of Gs i� the Fs and Gs
can be put into a one-to-one correspondence. �is abstraction principle has played

a fundamental role in the neo-Fregean programme, since it serves as an axiom for
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arithmetic. �at is, along with suitable explicit de�nitions it can be used to derive

the Dedekind–Peano axioms.

Another—more infamous—abstraction principle is Frege’s Basic Law V (BLV),

which formed the basis of his theory of classes in Frege (1893). BLV states that

the extension of a concept F is equal to the extension of the concept G i� exactly

the same objects fall under F as fall under G. It is thus a natural candidate as an
abstraction principle for set theory, since sets could be considered to be extensions

of concepts. It is, alas, inconsistent, since it allows for the derivation of Russell’s

Paradox.

�ese abstraction principles are second-order, in that the abstraction operator

maps concepts or properties to objects. It is worth noting that there are also

�rst-order abstraction principles, where the abstraction operator maps objects to

other objects. For example, Frege (1884) gives as an example what has become

known as the direction equivalence, which associates lines with directions. �e

direction equivalence says that the direction of a line ℓ1 is equal to the direction
of a line ℓ2 i� ℓ1 and ℓ2 are parallel. I will only consider second-order abstraction
principles in what follows, but the same considerations will clearly apply to �rst-

order abstractions as well.

In virtually every paper and book mentioning abstraction principles, it is

claimed that the abstraction relation must be an equivalence relation, that is, sym-

metric, transitive and re�exive. �e aim of this paper is to observe that this need

not be the case; when the natural background logic of abstraction is taken into

account, there is no need for re�exivity. Indeed, non-re�exive abstraction relations

can serve a useful purpose.

i. Free logic

�emain claim of this paper may seem, at �rst, clearly false. For there appears to

be a perfectly good, simple proof that the abstraction relation must be re�exive.

Simply reason le� to right across the abstraction principle from the re�exivity of

identity as follows:

Argument 1:

1. §F = §F (re�exivity of identity)
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2. F ∼ F (reasoning le� to right across the abstraction principle)

3. ∀F(F ∼ F) (universal generalisation)

Alternatively, this argument could be phrased in the form of a reductio; assuming

an instance of non-re�exivity (i.e. F /∼ F), one may derive the apparent absurdity

that §F ≠ §F.
Such a proof takes place in a standard classical logic. But there are good

philosophical reasons for taking the natural background logic of abstraction not

to be such a standard logic, but rather a free logic. �is is a logic which removes

the usual presumption that every term in a language refers, or, equivalently, the

assumption that every functional expression denotes a total function, taking a well
de�ned value for any given argument.

�e reason that a free logic is appropriate is that one of the main claims made

by neo-Fregeans is that abstraction principles may underwrite our knowledge of

the existence of, say, numbers. But it would then plainly be begging the question

to presuppose that number terms refer before even introducing an abstraction

principle. Free logic removes this presupposition. Indeed, somewhat of a consensus

on this issue appears to have emerged in recent years.1

Moreover, it is clear that neo-Fregeans desire a negative free logic.2 �is is one

in which an atomic sentence involving a singular term may be true only if that

singular term refers. In such a logic, it is possible to infer from an atomic sentence

A(t) the existential claim ∃x(x = t). But in addition, since identity statements are

atomic sentences, a negative free logic requires a restriction on their introduction;

in order to assert t = t, one must �rst derive the claim that ∃x(x = t).3
If a negative free logic were not adopted (resulting instead in a positive free

logic), abstraction principles would be vacuous, since it could just be the case that

1So, for example, on behalf of the neo-Fregeans, see Hale and Wright (2003, 2008, 2009), and on

behalf of their opponents, MacFarlane (2009); Rum�tt (2003); Shapiro and Weir (2000) and, to a

lesser extent, Potter and Sullivan (2005).

2See the previously cited papers by Hale and Wright. But although it is clear that a negative free

logic is desired by neo-Fregeans, it is highly contentious whether such a choice of logic is justi�ed.
So, for example, the majority of those opponents of neo-Fregeanism cited in the previous footnote

claim that a negative free logic is not justi�ed. �is is not the topic of this paper, however, and I shall

simply assume that the correct free logic is a negative one.

3For a more thorough introduction to free logic an its varieties, see Bencivenga (2002).
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no abstract term refers. But, if the abstraction relation is re�exive, the existence of

abstracts can be derived in a negative free logic as follows:

Argument 2:

1. F ∼ F (an instance of re�exivity of ∼).

2. §F = §F (right to le� across abstraction principle).

3. ∃x(x = §F) (since identity statements are atomic).

It can be noted that this is essentially the converse of argument 1.

Now, if we accept a negative free logic as the background for abstraction, there

is no longer a need for the abstraction relation to be re�exive. For in a negative

free logic, argument 1 is fallacious. �e premise of that argument—that §F = §F
for any F—is not a logical truth, requiring as it does an additional premise that

§F exists, which is just what is missing in a free logic. Likewise, the statement that

§F ≠ §F is not an absurdity in a negative free logic; it simply amounts to the claim

that §F does not exist.

So re�exivity of the abstraction relation is essentially tied to the existence

of abstracts; the existence of §F entails that F ∼ F (by a simple modi�cation of

argument 1), and conversely, F ∼ F entails that §F exists (by argument 2). In the

limiting case, the general re�exivity of the abstraction relation entails that every

concept has an abstract—so that the logic is essentially non-free—and a non-free

logic entails that every concept has an abstract.

But since there is no reason to adopt this limiting case for all abstraction

principles tout court, the requirement typically made that abstraction relations are

re�exive should be abandoned.4

ii. Free logic and restricted abstraction principles

Further than simply being consistent, there are many natural cases where non-

re�exive abstraction relations can be put to good use. In particular, this will be the

case when there is a desire to restrict abstraction principles.

4A stronger case for the acceptability of non-re�exive abstraction operators could be given by

giving a model-theoretic proof for the consistency of such principles. I will not go into the details of

such a proof here, but merely note that it is relatively trivial to construct such models, by letting the

function denoted by the abstraction operator be unde�ned for F such that F /∼ F.
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�ere are a number of cases in which it might be desired that not every concept

has a corresponding abstract. Perhaps most notable is the case of BLV, where we

may wish that some, but not all, concepts have a corresponding extension, on

pain of contradiction. But there are also other abstraction principles which one

may wish to restrict. So, for example, there is a natural abstraction principle for

order types, which is inconsistent if not restricted. Or, one may want to restrict an

abstraction principle for rational numbers in such a way as to rule out fractions

with zero as a denominator.

It would be natural in such circumstances to turn to free logic. A�er all, for a

restricted abstraction principle, the desired e�ect should be that certain concepts

do not have corresponding abstracts, and thus that the abstraction operator is

a partial function. Most approaches to restricting abstraction principles have,

however, taken place in a non-free logic, and thus been constrained to make use of

re�exive abstraction relations.5 Most such approaches havemade use of a technique

popularised by Boolos (1989) in a restriction to BLV. He restricts BLV to concepts

which are small, by which he means not equinumerous with the universe. He does

so as follows:

(NV) εF = εG ↔ (Small(F) ∨ Small(G) → ∀x(Fx ↔ Gx))

He calls this abstraction principle New V.
�e e�ect of New V is not that the non-small concepts fail to have abstracts.

Instead, they all have the same abstract. �e resulting restriction thus bears some

resemblance to the Frege-Carnap chosen object approach to empty singular terms

(c.f. Kaplan 1972). �is approach �rst identi�es a particular null object.6 �en

terms which would otherwise be taken to be non-denoting are stipulated to have

the null object as their referent.

�is method can be extended to abstraction principles more generally. Given

an abstraction principle with relation ∼, we can restrict it to concepts which satisfy

5One possible exception is Wright (2001), who considers how the direction principle might be

restricted so as to rule out directions for objects which are not lines. He considers that the abstraction

operator may only be partially de�ned, since ‘unsuitability of either object to be parallel to anything,

then by the same token they are not self -parallel’ (p. 314). He does, however, go on in the same paper

to assume that abstraction operators must be equivalence relations.

6�is use of the word ‘null’ should be distinguished from the common use of ‘null set’ to mean

the empty set. To avoid ambiguity, I will always use ‘empty set’ to refer to a set with no members,

and ‘null object’ to refer to a null object in the sense of the chosen object theory.
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a formula ϕ(F) as follows:

(NAP∼,ϕ) §F = §G ↔ (ϕ(F) ∨ ϕ(G) → F ∼ G)

Assuming that ∼ is an equivalence relation, the resulting abstraction relation is

also an equivalence, on the proviso that ∼ is a congruence with respect to ϕ—that

is, if ϕ(F) and F ∼ G, then ϕ(G).7
Again the e�ect is that non-ϕ concepts are all mapped to the same abstract.

�is approach has been essentially the standard approach to restricted abstraction.

So, various restrictions of BLV along these lines have been made with varying

choices of ϕ; some alternatives to smallness which have been suggested are double-
smallness (roughly, smaller than some concept which is smaller than the universe)

(e.g. Hale 2000, 2005) and de�niteness (e.g. Shapiro 2003; Shapiro and Wright

2006). Likewise, this method of restriction has been used for other abstraction

principles. For example, Cook (2003) makes use of such a technique to restrict an

abstraction principle for order types (so as to avoid the Burali-Forti paradox) and

Shapiro (2000) does the same for an abstraction principle for rational numbers (to

rule out cases where the denominator would be 0).

�e results of this method of restriction are to some extent rather unnatural.

�ey require a seeming super�uous null object, and in some cases a hierarchy of

objects based on this null object (so, for example, in the case of set theory, there

are abstracts which correspond to sets formed out of the null object and so on).

Moreover, in theories which make use of multiple abstraction principles, there

may be a need for there to be a null object for every type of abstract introduced.

�ese problems are reasonably super�cial, in that it is a relatively trivial matter

to restrict quanti�ers to ‘genuine’ abstracts—i.e. those that do not involve the null

object in any way. So, for example, in set theory, this would require restricting

to objects which are neither the null object nor sets with the null object in their

transitive closure. And no technical problems arise if we take this approach (see

7Proof: Re�exivity follows immediately from the re�exivity of ∼, and symmetry follows imme-

diately from the commutativity of disjunction together with the symmetry of ∼. For transitivity,

suppose that ϕ(F) ∨ ϕ(G) → F ∼ G and ϕ(G) ∨ ϕ(H) → G ∼ H. Now suppose that ϕ(F) ∨ ϕ(H),
with the intention of showing F ∼ H. Suppose ϕ(F). �en F ∼ G and hence (since ∼ is a congruence)

ϕ(G). �enG ∼ H and we have F ∼ H by the transitivity of ∼. A similar argument goes if we assume

instead that ϕ(H).
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Boolos (1989) for details in the case of NV). Nonetheless, it would be desirable to

avoid them if it is possible to do so.

And indeed, in the presence of a free logic, there is a very natural alternative to

the Boolos method, by allowing for an abstraction relation which is non-re�exive.

Since partial functions are admissible in a free logic, the aim is to construct an

abstraction principle whose e�ect is that the abstraction operator denotes a partial

function which is unde�ned for non-ϕ concepts. Such an abstraction principle is

available as follows:

(FAP∼,ϕ) §F = §G ↔ (ϕ(F) ∧ ϕ(G) ∧ F ∼ G)

�e abstraction relation in this case is clearly transitive and symmetric, as-

suming that ∼ is.8 But it is not re�exive in general. In particular, if ¬ϕ(F), then
¬(ϕ(F) ∧ ϕ(F) ∧ F ∼ F). It is, however, re�exive for ϕ concepts.

What is the e�ect of this? It is straightforward to prove that, in a negative free

logic, the following follows from FAP∼,ϕ:9

(1) ∀F(ϕ(F) ↔ ∃x(x = §F))

�at is, it does exactly what is required of it.

�e result of this abstraction principle is, I claim, more natural than that of

the Boolos method. It does precisely what might be expected of an abstraction

principle restricted to ϕ concepts; to concepts which are ϕ, it assigns abstracts
according to the original abstraction relation. To concepts which are not ϕ, it
assigns no abstracts at all. So, in the case of set theory, a free logic based restriction

will assign no abstract to the Russell concept and (for most choices of restriction)

will assign no abstract to the universal concept. �ere is no need for a number of

strange objects as there are in the Boolos case. �us, if there is a need or desire

to restrict an abstraction principle for whatever purpose, a free-logical restriction

should be preferred to the Boolos-style restriction.

Finally, it is important to say something about the relationship between FAP-

and NAP-style restriction, and to anticipate an objection to the FAP-style which

8Proof: Symmetry follows immediately from the commutativity of conjunction together with the

symmetry of ∼. Transitivity follows immediately from the transitivity of ∼.

9Proof: First note that the new abstraction relation holds between a concept F and itself i� ϕ(F).
�en (1) follows immediately from this and the observation in the previous section that re�exivity

coincides with abstract existence.
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may arise from this relationship. �e answer is that, although very similar, the

free logic method is slightly weaker logically. �e reason is that, as long as there is

at least one concept which is provably non-ϕ, the Boolos method allows one to

prove that there is a null object. Depending on the nature of ϕ, this may provide

one with a method to prove that certain other concepts are ϕ, and so on. Indeed,

Boolos makes essential use of such a bootstrapping technique in his proof that

New V allows for a certain amount of set theory: It can easily be shown that the

universal concept (that given by the formula x = x) is not small, and that the empty

concept (that give by the formula x ≠ x) is small. �ey thus have distinct abstracts,

which then means that singleton concepts (e.g. one given by a formula x = a for
some a) are not small, and so on. Such a method is unavailable for the free logical

approach.

It can however be shown that the supply of such an object, or something similar,

is all that the Boolos method provides over and above the free-logical approach.

In particular, if we add to FAP∼,ϕ a statement asserting that there is at least one

urelement—an object which is not the abstract of any concept—then the resulting

systems are of the same logical strength. (See the appendix for full details).

But this lack of logical strength should not be considered a weakness of this

method of restriction, anymore than the relative weakness of one abstraction

principle to another should count as a weakness in general. Di�erent abstraction

principles will correspond to di�erent kinds of abstract object, or perhaps to

di�erent conceptions of a kind of abstract object; their relative logical strength will

thus correlate with the relative strength of the corresponding conception. Suppose,

for example, that we are presented with an abstraction principle Awhich is logically

stronger than HP (perhaps an abstraction principle for set theory). �is does not

mean that we should abandon HP in favour of A, together with some (perhaps

unnatural) de�nitions of arithmetical vocabulary in the language of A. A strong

case can be made for HP accurately representing a particular conception of the

concept of (cardinal) number, whereas Amay not, and this is reason enough to

make use of HP as an axiom for arithmetic in place of A.
So too should we not abandon an FAP-style restriction in favour of a possibly

logically stronger NAP-style restriction. If I am right that FAP more naturally

and accurately represents the result of restricting an abstraction principle, then

it is really the case that this weakness correctly represents the weakness of the

corresponding conception. �e corresponding NAP-style restriction, by contrast,
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does not represent such a restriction, but instead represents a di�erent kind of

abstract object altogether—one which includes a null object—which simply bears

a resemblance to the restricted principle.

Absent any particular reason to prefer the conception of objects implicit in

NAP-style restrictions, one should thus prefer the FAP-style version. And in cases

where the NAP-style restriction is required (such as when NAP is stronger than

FAP), it should be kept in mind that the kind of abstract objects involved do not

simply result from a restriction of the base class, but involve also a sometime

peculiar null-object. �at is, it is not simply a restriction that is required, buy a

wholly di�erent abstraction principle, related to the original principle some way

other than as a restriction.

iii. Conclusion

�ere have been two main aims of this paper. �e �rst is to argue that there is

no need for abstraction relations to be re�exive. Such a restriction on abstraction

principles should thus be dropped. �e second has been to point out a novel

method of producing abstraction principles, by harnessing non-re�exive abstrac-

tion operators. �is method of restriction, I claimed, is more natural than the

predominantly used method in the literature, and thus should be considered as

the default option for restriction.

A. Proof of interpretability.

For the purposes of showing the relationship between FAP and NAP, I shall make

three assumptions about the nature of the restriction. �ese are:

a) �e restriction is non-vacuous, so that ∃F¬ϕ(F).

b) ∼ is a congruence with respect to ϕ.

c) ϕ does not contain the abstraction operator §.

�ese assumptions hold for all examples of restriction in the literature. (a) and (c)

could be dispensed with, but this would result in additional complication for little

gain. (b) is required if Boolos-style restrictions are to be consistent (otherwise, the

new abstraction relation may not be transitive).
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First, let us set up languages and theories. We will have separate languages for

each abstraction principle to make it clear that the abstraction operator in each

case means something di�erent.

Let L1 be the second-order language whose only non-logical constant is the
abstraction operator §1. Let T1 be the L1-theory which results from the addition of

NAP∼,ϕ to non-free second-order logic.

Let L2 be the second-order language whose non-logical constants are the
abstraction operator §2 and constant c (which will denote an urelement). Let T2
be the theory which result from the addition to negative free second-order logic

both FAP∼,ϕ and the following sentence:

ψ df= ∃x(x = c) ∧ ∀F(§2F ≠ c)

ψ says that ‘c ’ refers (which is required since the logic is free) and that c is not the
abstract of any concept.

�en, the claim of this appendix is that T1 and T2 are mutually interpretable.

�at is, there is a translation τ1 ∶ L2 → L1 such that, for any formula ϕ of L2, if
T2 ⊢ ϕ then T1 ⊢ τ1(ϕ). And conversely, there is a translation τ2 ∶ L1 → L2 such
that for any formula ϕ of L1, if T1 ⊢ ϕ then T2 ⊢ τ2(ϕ).

(I will from this point on omit the subscripts on NAP and FAP, with the

assumption that the relation is always ∼, and the restriction is always ϕ.)

1.1. Interpreting T2 in T1

To show that T1 interprets T2, we need a translation τ ∶ L2 → L1. �is will take

the form of de�nitions of §2 and c in the language L1. �e de�nition of §2 will

be a formula σ(F , x) such that T1 ⊢ ∀F∀x∀y(σ(F , x) ∧ σ(F , y) → x = y). �e

de�nition of c will be a formula γ(x) such that T1 ⊢ ∀x∀y(γ(x) ∧ γ(y) → x = y).
�is then induces a translation by treating each occurrence of §2F and c as de�nite
descriptions ( ιx)σ(F , x) and ( ιx)γ(x) respectively, which are then eliminated in

the usual Russellian manner.10

10Note that only a uniqueness requirement is placed on these de�nitions, but no existence require-

ment. �is is because the theory which is being interpreted is in a free logic so the constant may fail

to refer and the function may fail to be total.
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�e following de�nitions su�ce:

σ(F , x) df= x = §1F ∧ ϕ(F)

γ(x) df= ∃F(¬ϕ(F) ∧ x = §1F)

It is easy to check that the required uniqueness conditions obtain.

We need to show that, for any theorem of T2, T1 proves its translation. However,
it is well known that for translations of this sort, it is su�cient to show that this

holds for the axioms of T2, that is, for FAP and ψ. We can show this as follows:

For FAP, �rst note that:

τ(FAP) = τ[∀F∀G(§2F = §2G ↔ ϕ(F) ∧ ϕ(G) ∧ F ∼ G)]
= ∀F∀G(τ(§2F = §2G) ↔ ϕ(F) ∧ ϕ(G) ∧ F ∼ G)
= ∀F∀G(∃x(σ(F , x) ∧ σ(G , x)) ↔ ϕ(F) ∧ ϕ(G) ∧ F ∼ G)

Now, to prove the le� to right direction, suppose that σ(F , x) ∧ σ(G , x). �us

ϕ(F), ϕ(G) and §1F = x = §1G. So, from the le� to right direction of NAP, F ∼ G,
and we have the right hand side of τ(FAP) as required.

For the right to le� direction, suppose that ϕ(F) ∧ ϕ(G) ∧ F ∼ G. Let x =
§F. �en, immediately, σ(F , x). In addition, the right hand side of NAP clearly

obtains (since ϕ(F) ∨ ϕ(G) and F ∼ G), so, by the right to le� direction of NAP,

§G = §F = x, and so σ(G , x) as well. Hence we have ∃x(σ(F , x) ∧ σ(G , x)) as
required.

For ψ, �rst note that:

τ(ψ) = τ(∃x(c = x) ∧ ∀F(c ≠ §2F))
≡ ∃xγ(x) ∧ ∀F∀x(γ(x) → ¬σ(F , x))

�e �rst conjunct follows fairly immediately from the assumption that the

restriction is not vacuous, together with the fact that, for NAP-style restrictions,

every concept is still assigned an abstract.

For the second conjunct, suppose for contradiction that γ(x) but σ(F , x). γ(x)
is ∃F(¬ϕ(F) ∧ x = §1F). Let G be such a concept, so that ¬ϕ(G) and x = §1G.
σ(F , x) is ϕ(F)∧ x = §1F. �us §1F = §1G, and so, by NAP, F ∼ G. But since ϕ(F)
and ¬ϕ(G), this contradicts the assumption that ϕ is a congruence.
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So, we have it that T1 proves the translations of FAP and ψ. It follows that
T1 proves the translation of any theorem of T2 by a simple but tedious induction

(where the base case is what has just been proved). �us T2 is interpretable in T1.

1.2. Interpreting T1 in T2

�e procedure is the reverse of the previous direction. �is time we need a trans-

lation τ ∶ L1 → L2. In this case, there is just the abstraction operator which

requires de�nition. �is de�nition will take the form of a formula σ(F , x) such
that T2 ⊢ ∀F∃x∀y(σ(F , y) ↔ y = x). In contrast to the interpretation of T2 in T1,
there is an existence requirement here, since the logic of T1 is not free.

A suitable σ is the following:

σ(F , x) df= (ϕ(F) ∧ x = §2F) ∨ (¬ϕ(F) ∧ x = c)

Existence and uniqueness are simple to prove. Again, to show that this is an

interpretation, it is su�cient to show that T2 ⊢ τ(NAP). First note that:

τ(NAP) =τ[∀F∀G(§1F = §1G ↔ ϕ(F) ∨ ϕ(G) → F ∼ G)]
=∀F∀G(∃x(σ(F , x) ∧ σ(G , x)) ↔ (ϕ(F) ∨ ϕ(G) → F ∼ G))

To prove the le� to right direction: Assume that the le� hand side holds, so that

there is x such that σ(F , x) ∧ σ(G , x). To show the right hand side, suppose that

ϕ(F) ∨ ϕ(G). Without loss of generality, suppose ϕ(F). �us, x = §2F, and, by ψ,
x ≠ c. �us, since σ(G , x), ϕ(G) and §2F = §2G. So, by the le� to right direction

of FAP, we thus have F ∼ G as required.

To prove the right to le� direction: Assume that the right hand side holds, so

that ϕ(F)∨ϕ(G) → F ∼ G. Now, either ϕ(F) or ¬ϕ(F). In the former case, by our

assumption, F ∼ G, and so, since ∼ is a congruence, ϕ(G). So ϕ(F)∧ϕ(G)∧F ∼ G,
and thus by the right to le� direction of FAP, §2F = §2G. Let x = §2F, and then

σ(F , x) ∧ σ(G , x) as required.
Suppose instead that ¬ϕ(F). Again, since ∼ is a congruence with respect to ϕ,

¬ϕ(G). �en let x = c, and we have σ(F , x) ∧ σ(G , x) as required.
So T2 proves the translation of NAP. As before, a simple but tedious proof by

induction will show that T2 proves the translation of any theorem of T1 and hence

T1 is interpretable in T2.
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