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Evidentialism, Inertia, and Imprecise Probability 

 

1 Introduction 

 

Evidentialists say that a necessary condition of sound epistemic reasoning is that our beliefs 

reflect only our evidence. This thesis arguably conflicts with standard Bayesianism, due to 

the importance of prior probabilities in the latter. Some evidentialists have responded by 

modelling belief-states using imprecise probabilities (Joyce 2005). However, Roger White 

(2010) and Aron Vallinder (2018) argue that this Imprecise Bayesianism is incompatible with 

evidentialism due to “inertia”, where Imprecise Bayesian agents become stuck in a state of 

ambivalence towards hypotheses. Additionally, escapes from inertia apparently only create 

further conflicts with evidentialism. 

 

 This dilemma gives a reason for evidentialist imprecise probabilists to look for 

alternatives without inertia. I shall argue that Henry E. Kyburg’s approach offers an 

evidentialist-friendly imprecise probability theory without inertia, and that its relevant anti-

inertia features are independently justified. I also connect the traditional epistemological 

debates concerning the “ethics of belief” more systematically with formal epistemology than 

has been hitherto done. 

 

 In Section 2, I explain what I shall mean by “evidentialism”. In Section 3, I describe 

imprecise probability’s appeal for evidentialists, plus the challenge from inertia. In Section 4, 

I introduce Kyburgian probability. In Section 5, I argue for its felicitous fit with 

evidentialism. In Section 6, I examine how Kyburgian probability avoids inertia; I argue that 

it does so under surprisingly general conditions. Yet I finish by giving reasons why even 

convinced Kyburgians should not discard Imprecise Bayesianism entirely. 

 

2 Evidentialism 

 

in the sense I am using it, ‘evidentialism’1 is a claim about doxastic rationality, i.e. about 

when a person’s beliefs are sound or defective. A belief-state B is defective if B fails to 

satisfy some (genuine) epistemic norm; B is sound if it satisfies all the norms; therefore, B is 

sound if and only if B is not defective. ‘Belief-states’ include belief, disbelief, or equivocal 

states of belief, plus aspects of these states like belief ambiguity (Runde, 1990; Al-Najjar and 

Weinstein, 2009) and strength of credence. 

 

 
1 I shall use ‘single inverted commas’ to refer to unnamed words/sentences, “double inverted commas” for 

quotation, and bold for sentence names. I shall not distinguish between statements and sentences. 
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 Another preliminary concept is the notion of ‘total evidence’. Its definition is 

contentious, but I shall define it this way: S’s total evidence with respect to a statement H at a 

time t is the set of statements that (1) S should be aware of at t and (2) provide epistemic, as 

opposed to pragmatic, reasons to adopt some belief-state with respect to H. If I should be 

aware of E but I ignore it due to prejudice, laziness, or cowardice, E is nonetheless part of my 

total evidence. This definition of ‘total evidence’ obviously leaves many questions 

unanswered, but these are unimportant here. 

 

 For any subject S, any statement H, a belief-state B, and total evidence ET, 

evidentialists make the following claim about which states are sound:  

 

Evidentialism: S’s B for H is sound if and only if B is purely and properly determined by ET.  

 

 Evidentialism is “strict” or “moderate” depending on how this norm combines with 

other norms, e.g. the extent to which moral, prudential, or other considerations can override 

our obligation to have sound belief-states. An extremely strict evidentialism would say that 

Evidentialism is an indefeasible norm of rationality. For moderates, it is just a pro tanto 

duty. Insofar as moderates regard this duty as more easily defeasible, they are less strict in 

their evidentialism. This spectrum of variations means that it is not neatly demarcatable from 

non-evidentialism, but I shall simplify my discussion by only discussing strict evidentialism. 

If an imprecise probability theory is compatible with this uncompromising variant, then 

prima facie it is compatible with more moderate versions. 

 

 The influential theses below will recur in my discussion. They follow from some 

natural analyses of what ‘purely and properly determined’ might mean in Evidentialism: 

 

Proportionality: S’s B is sound with respect to a statement H if and only if S’s strength of 

belief in H is proportionate to ET. In other words, how strongly you believe H should be 

justified by ET. 

 

Uniqueness: If two subjects S1 and S2 possess the same ET for H, then S1 and S2 should have 

the same type of B for H2. 

 

Representation: If there is a contrast between two bodies of total evidence Ei and Ej in some 

aspect of evidential support, then sound belief-states will represent this difference. For 

example, some philosophers have argued that if Ei provides more information with respect to 

H than Ej provides for H, then this should somehow be reflected in belief-states (Joyce, 

2005). 

 

Exclusion: If anything other than ET (moral considerations, aesthetic considerations, wishful 

thinking, caprice etc.) affects the determination of B, then B is defective3.  

 
2 Naturally, they will not have the same token of B; what they should share is a type of psychological state.  

 
3 Uniqueness is distinct from Exclusion: for instance, if objective moral values play a role in determining one’s 

doxastic obligations, Uniqueness could still be true (the moral values and evidence would jointly require unique 

belief-states) but not Exclusion. 
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 Uniqueness indicates a close relationship between objectivity and evidentialism. 

However, this connection should not be exaggerated, because evidentialism (as I have 

defined it) leaves open the possibility that subjective considerations partly determine what 

constitutes S’s total evidence. When we reason, we face a choice of how much epistemic risk 

to tolerate. Evidentialists may say that subjective judgements are involved in trading-off our 

desire to acquire true evidence with our desire to avoid accepting false evidence. Yet, insofar 

as our total evidence is subjective, evidentialism loses much of its purpose, since a significant 

part of its appeal for its adherents is minimising the subjective factors in our reasoning. 

Therefore, in practice, evidentialists also think that there are strong objective constraints on 

acceptable total evidence. 

 

3 Imprecise Probabilities 

 

By ‘probability theory’, I mean (a) an interpretation of the meaning of ordinary language 

probabilistic statements like ‘The hypothesis H is probable’ and/or ‘The event A is probable’, 

plus formal statements like ‘P(H) = 0.75’, and (b) a set of rules for determining when such 

statements are true. By ‘imprecise’, I mean any approach to formalising probabilities where 

the probability values are sometimes intervals, fuzzy numbers, or similar values, rather than 

real numbers or their equivalents. In the imprecise theories that I shall discuss, the 

probabilities in question are interpreted as epistemic, not physical, probabilities. 

 

 My description of evidentialism had many terms requiring elucidation, e.g. 

“proportionate” belief. Imprecise probability theories have several propitious features for the 

purpose of this elucidation. Firstly, while probabilities seem promising for analysing 

evidentialism and other epistemological concepts, Uniqueness has an uneasy and contentious 

fit with precise probabilism. Suppose that P(. | .) measures a Bayesian subject S’s credence in 

each of a Boolean algebra of statements, conditional on their evidence. The calculus of 

probabilities provides few constraints upon P(H | ET), the conditional probability of H given a 

body of total evidence ET. Unless these probabilities are somehow a part of their total 

evidence (weakening Uniqueness to merely require people with identical credences to 

respond identically to the same evidence) or the rational credences are unique (as Objective 

Bayesians argue) this means that sound belief-states are much less constrained than 

evidentialists desire. Finding constraints that identify unique but imprecise degrees of belief 

seems easier. 

 

 Secondly, some evidentialists worry that standard precise Bayesianism conflates some 

importantly distinguishable belief-states. For example, imagine that you encounter a two-

sided alien coin with an apparently symmetric shape, but with dimensions that are very 

unfamiliar to you. You do know that the tosses are exchangeable. Additionally, for all you 

know, it might also have very different dynamics from normal coins. H1001 says that the coin 

will land on Side-1 on the toss after 1,000 tosses. Ec is your scanty total evidence about the 

coin, including the knowledge that any tosses not landing on Side-1 or Side-2 are re-tossed. 
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Suppose that P(H1001 | Ec) = 0.5. Now imagine you toss the coin 1,000 times and it lands on 

Side-1 in 500 tosses and Side-2 in 500 tosses. The results of these tosses are reported in E1/2, 

so that your total evidence is now (E1/2 ^ Ec). With suitable priors, P(H1001 | E1/2 ^ Ec) = 0.5. 

However, some have argued that there is a relevant asymmetry between your total evidence 

before and after learning E1/2 that your belief-states should somehow reflect (Popper, 1980 

pp. 407–408). If so, precise probabilism violates Representation. 

 

 Thirdly, there is the problem of having equivocal beliefs in all hypotheses for which 

your evidence is evenly balanced. Proportionality requires equivocal beliefs given total 

evidence that is neutral towards any hypothesis. Consider the alien coin. Let Hn2 be the 

hypothesis that the coin will land on Side-1 in two consecutive tosses. Suppose that you 

believe that the coin tosses are exchangeable. Assume an apparently equivocal prior 

distribution in which the probability that every coin toss i lands on Side-1 is 0.5 for each toss 

described in your algebra. This prior seems to give us a satisfyingly neutral belief-state. 

Suppose that you think that the tosses are physically independent (e.g. one toss landing on 

Side-1 does not affect the chance that another toss will do so) and your data model reflects 

this assumption. Yet, suppose you also believe that evidence of coin toss outcomes is relevant 

to the outcomes of future tosses; in particular, 0.51 is your credence in the coin landing on 

Side-1 in the one toss given that it has landed on Side-1 in the only preceding toss. Let H1 be 

the hypothesis that it lands on Side-1 in the first toss and H2 that it lands on Side-1 in the 

second toss. From the probability calculus, P(Hn2) = P(H1)P(H2) = (0.5)(0.51) = 0.255. 

Additionally, it follows that P(¬Hn2) = 1 – P(Hn2) = 0.745. Hence, while your beliefs are 

neutral with respect to the result of any individual toss i, they commit you to strong opinions 

about other hypotheses, even though your total evidence seems neutral towards them too. 

Intuitively, this is far from Proportionality: despite your symmetric evidence with respect to 

Hn2 and ¬Hn2, your belief-states favour the latter. In general, there is no way of using precise 

probabilities to represent a belief-state that is equivocal with respect to all the statements of a 

complex Boolean algebra of statements (Cox, 2006 p. 73).  

 

 Instead, philosophers like James M. Joyce (2005) have argued for using a set of 

probability functions. For my purposes, the salient claims in Imprecise4 Bayesianism are 

these:  

 

Rule (1): If S has sound belief-states, then we can model them by the cover of values given 

by a set 𝒞 consisting of probability functions, such that (a) each function provides a coherent 

additive probability measure and (b) every function assigns a value of 1 to each statement in 

S’s total evidence. For a hypothesis H, the cover of values for H from the different functions 

in 𝒞 usually5 provides an interval-valued6 representation of belief-states [x, y] where x is the 

 
4 Note that interval-valued beliefs are precise, just not real-valued. For reasons I shall not discuss, I think that 

this is a virtue, not a fault. 

 

5 Imprecise Bayesians vary about 𝒞’s convexity and closure. An interval representation is not always possible 

(Joyce, 2005 p. 177). 

 
6 I shall use ‘interval’ as an abbreviation of ‘closed unit interval’, i.e. intervals with limits [x, y,] where x ≥ 0 and 

y ≤ 1. A closed interval contains its limits, an open interval does not. 
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lowest value that any function in 𝒞 gives to H and y is the highest value. The same holds, 

mutatis mutandis, for conditional probabilities. In special cases, this interval may be 

degenerate, meaning that x = y, as in the interval [0.5, 0.5]. To describe 𝒞, I shall use an 

auxiliary function C, so that C(H, E) = [0.1, 0.8] means “The lowest value that any function 

in 𝒞 assigns to H conditional upon E is 0.1, while the highest value is 0.8.” 

 

Rule (2): If S learns E and nothing else, then her subsequent belief-states should correspond 

to a set 𝒞E, where 𝒞E is the set that results from updating each function in 𝒞 by Bayesian 

conditionalisation. Any function in 𝒞 that assigns 0 to E is not included in 𝒞E (Joyce 2010 p. 

287). 

 

 To these, an “evidentialist” Imprecise Bayesian adds a principle like the following: 

 

Chance Grounding Thesis: Suppose that S is rational and 𝒪 is the set of objective chance 

hypotheses whose numerical chance for each event A described in S’s algebra of beliefs is 

consistent with S’s total evidence. Then, 𝒞 includes all probability functions whose expected 

values for each A are those given by a probability density function (PDF) defined over the 

members of 𝒪. In general, this requirement will simply require that any sharpness in S’s 

beliefs should be justified by S’s beliefs about objective chances (White, 2010 p. 174; 

Vallinder, 2018 p. 1210)7. 

 

 In the alien coin example, there should be a function in 𝒞 for each real value from 0 

to 1 that could be assigned to H1001, because 𝒪 will have a hypothesis assigning a chance for 

each such value to the 1001st toss lands on Heads. This is even true for 0 and 1, because (for 

all you know) the coin’s shape might cause it to always roll onto one particular side. 

 

 A significant advantage of Imprecise Bayesianism is that we can often model a 

genuinely neutral set of belief-states. Consider the sequence of coin tosses. Let Hi, Ec etc. be 

as before. If C(Hi, Ec) = [0, 1] for each individual toss Hi,, then it can also be the case that 

C(Hn10, Ec) = C(¬Hn10, Ec) = [0, 1]. As we saw, this neutrality is impossible when assigning 

real values. Additionally, if our total evidence excludes some particular chances, then 

evidentialist Imprecise Bayesianism can still assign precise probabilities to the coin toss 

predictions. 

 

 Yet there is a problem with this attempted marriage of evidentialism and imprecise 

probability. Vallinder (2018) argues that Imprecise Bayesianism will often require us to adopt 

 
 
7 This version is Vallinder’s, which is more precise than White’s. In Imprecise Bayesianism ‘consistency with 

total evidence’ normally means that each statement in the total evidence has a non-zero probability (Bradley, 

2019 Section 1.1). An anonymous referee notes that this definition will require some finessing for infinite state 

spaces, where logically and metaphysically possible events sometimes must be assigned a probability measure 

of zero. I do not know how an evidentialist Imprecise Bayesian would handle that point, but perhaps non-

probabilistic modal formalisms could be used to define ‘consistency’. 
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sets of functions with a feature called “inertia”. In Imprecise Bayesianism, maximally 

imprecise belief-states for a hypothesis remain imprecise on learning evidence that neither 

contradicts nor implies that hypothesis. To see why, consider a feature of standard 

Bayesianism: if P(H) = 0 or P(H) = 1, then conditioning on any evidence E such that P(E) > 

0 will result in another extreme value PE(H) = 0 or PE(H) = 1 respectively. For example, 

consider the alien coin example. Recall that, in this example, you do not know if the tosses 

are physically independent (you just assumed they were in the precise Bayesian reasoning I 

discussed earlier) so your set 𝒞 includes functions for which they are dependent8. 

Consequently, if C(H1001, E ^ Ec) = [0, 1], the extreme probability functions Pmin and Pmax in 

𝒞 that give, respectively, probabilities of 0 and 1 to H1001, will retain this value upon learning 

E. Given these assumptions, the only exceptions are the special cases where: 

 

(a) E contradicts H1001, which eliminates Pmax and results in C(H1001, E ^ Ec) = [0, 0] because 

P(H1001 | E) = 0 for every other function. 

 

(b) E entails H1001, which eliminates Pmin and results in C(H1001, E ^ Ec) = [1, 1] because 

P(H1001 | E) = 1 for every other function.  

 

 Otherwise, Pmax and Pmin remain in 𝒞, so your belief-state for H1001 stays maximally 

imprecise9. 

 

 This result holds very generally. For example, given the earlier assumptions, your 

beliefs stay maximally imprecise even if your new evidence consists of a massive sample 

report of coin tosses all landing Heads, with no evidence that the sample is unrepresentative. 

Given the Chance Grounding Thesis, maximally imprecise belief-states will be common. 

Therefore, Imprecise Bayesianism will often force us to respond in an apparently 

disproportionate way to non-deductive (“ampliative”) evidence (see also White, 2010 pp. 

173–174)10. 

 

 
8 An anonymous referee points out that if functions in 𝒞 assign values to the individual coin toss hypotheses 

such that they are probabilistically independent (in your credences) then your belief-interval can narrow upon 

learning non-deductive evidence. For example, suppose that your new evidence H1 asserts that the first toss 

landed Heads. This evidence coin toss eliminates functions assigning P(H1 | E) = 0, and therefore P(H1 | E) > 0 

for every P∈𝒞. Since the remaining functions also treat tosses as independent, it follows that P(H1001 | E) > 0. 

Thus, C(H1001, E ^ Ec) = (0, 1], i.e. a half-open interval, differing from [0, 1]. However, in the alien coin 

example, we are assuming (epistemic) probabilistic dependence for the tosses.  

 
9 An anonymous referee worries that it might be unfair to Imprecise Bayesians (relative to precise Bayesians) to 

require them to not assume that the tosses are independent and identically distributed (i.i.d). However, for 

evidentialists, the possibility of not making this assumption in Imprecise Bayesianism is one of its attractions. 

Furthermore, merely making the i.i.d. assumption will not help: Vallinder (2018) demonstrates how inertia can 

occur with sets of beta priors where the tosses exchangeable in each element of 𝒞. 

 

10 Vallinder (pp. 1214–1216) proves that the presence of dogmatic functions from 𝒞 is unnecessary for inertia; 

it can occur even without maximally imprecise belief-states. 
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 I shall not discuss all of the possible evidentialist Imprecise Bayesian responses, such 

as disputing whether inertia is genuine problematic (Joyce, 2010 p. 291). However, I shall 

discuss one good answer, to illustrate how evidentialism constrains such responses. Some 

Imprecise Bayesians think that we should not have [0, 1] belief-states. Susanna Rinard (2013) 

argues against the use of the [0, 1] interval because of inertia. (She gives other reasons too.) If 

we also narrow the Chance Grounding Thesis in some way that excludes probability 

functions from 𝒞 that regard the evidence as irrelevant, then the issue is solved. However, 

while Rinard’s arguments are promising for non-evidentialists, evading the [0, 1] interval has 

least two problems for evidentialists11. Suppose that we model maximal ignorance in the coin 

tossing case via a set 𝒞 such that C(H1001, Ec) = [0 + δ, 1 – δ], where δ is a tiny number. This 

conflicts with evidentialism, because Uniqueness is threatened: our evidence apparently 

underdetermines δ (Vallinder, 2018 p. 1214). Moreover, Proportionality is threatened, 

because giving up the [0, 1] interval means that we no longer have an equivocal belief-state 

that can offers a generally symmetric distribution across such a wide range of hypotheses. If 

your belief state in Hi given your evidence is a half-closed interval C(Hi, Ec) = [0 + δ, 1 – δ) 

for each toss i, then your strength of belief in the hypothesis HL that a very large sequence of 

coin tosses (where the value of “large” depends on δ) will all land on Side-1 must be very 

low, despite the complete absence of evidence against HL. Whatever its other virtues, 

Rinard’s response to inertia takes would not help evidentialist Imprecise Bayesians. 

 

 I stress that non-evidentialist Imprecise Bayesian epistemologies are untouched by 

these points. Additionally, I have not argued that inertia troubles Imprecise Bayesianism as 

such. However, I have provided some reasons for evidentialists to consider an alternative 

approach. An obvious target for modification is the update method Rule (2) (White 2010, pp. 

184–185). This rule expunges probability functions in 𝒞 that assign 0 to newly accepted 

evidence and conditionalizes each surviving function. However, evidentialists should be wary 

of avoiding inertia via an ad hoc modification. They should want an independently justified 

alternative, within a systematic theory of reasoning. 

 

4 Kyburgian Probability 

 

I shall begin with the interpretation of Kyburgian probability12 statements, before explaining 

the system’s rules for determining when the statements are true or false. I shall return to 

inertia in Section 5. As in Imprecise Bayesianism, Kyburgian probabilities are epistemic 

rather than physical. However, there are three important differences of interpretation. 

 

 Firstly, Kyburg adopts a logical interpretation of probability, which I shall call 

 
11 Rinard (2013, p. 162) rejects strict evidentialism. 

 
12 I use ‘Kyburgian probability’ rather than Kyburg’s ‘Evidential Probability’ to avoid confusion with 

evidentialism. 
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‘logicism’ for short13. It is distinct from logicism in the philosophy of mathematics. 

Logicism, as I shall mean it, claims that epistemic probabilities are objective features of 

arguments which have logically consistent premises14. The restriction to consistent premises 

is because it is hard to define probabilities of arguments with logically inconsistent premises, 

e.g. P(H | E) is undefined for ordinary probability functions if E is inconsistent. The meaning 

of ‘argument strength” will vary with the logicist. Yet they agree that statements about 

(epistemic) probability are metalinguistic, just like ‘H implies E’ or ‘H has more words than 

E’. Since probability statements are metalinguistically true, if true, their truth value is 

knowable a priori by anyone who understands the relevant statements and the concept of 

probability15. Logicists interpret probability statements that do not refer to premises, like “It 

will probably rain tomorrow”, as implicitly referring (perhaps vaguely) to background 

premises. The most famous logicists are John Maynard Keynes (1921) and Rudolf Carnap 

(1962). 

 

 I shall illustrate the logicist analysis of probability with some examples. In the logicist 

conception of probabilistic notions, ‘H is probable given E’ is equivalent to ‘The argument 

from E to H is a strong argument’. Similarly, ‘H is improbable given E’ is equivalent to ‘The 

argument from E to ¬H is a strong argument’. Meanwhile, ‘H is neither probable nor 

improbable given E’ is equivalent to ‘Neither the argument from E to H, nor from E to ¬H, is 

a strong argument’. Numerical equalities like P(H | E) = r are true if and only if r correctly 

measures the strength of an argument from E to H. 

 

 The connection between logical probabilities and beliefs is controversial (Popper, 

1980). I shall assume that the epistemically sound belief-states for S correspond to the logical 

probabilities of statements given S’s total evidence16. So, if P(H | E) = r and E is S’s total 

evidence, then S should believe H to degree r. Therefore, for most logicists, while probability 

is not identical to rational degree of belief, it nonetheless guides us to epistemically rational 

beliefs. 

 

 A second difference with most Imprecise Bayesians is Kyburg’s idea that logical 

probabilities always involve statements about physical probabilities. Kyburg thinks that, 

generally, assertions of (actual or hypothetical) relative frequencies17 suffice for these 

physical probability statements (Kyburg, 2002) but his theory’s spirit is compatible with a 

larger role for propensities. I shall stick to frequencies to avoid unnecessary complications, 

 
13 In principle, one could also combine such an interpretation with a set-based approach to Bayesianism, perhaps 

similar to (Carnap, 1962 Chapter VII). 

 
14 “The logical interpretation of probability” sometimes used very broadly to mean any objective interpretation, 

but this smudges important differences (Rowbottom, 2008). 

 
15 In principle, a logicist who believed that all logical knowledge is a posteriori could say logical probabilities 

are also a posteriori. 

 
16 This makes sense for evidentialists, but a non-evidentialist could use logical probabilities for the particularly 

evidential reasons for belief. 

 
17 I shall subsequently use ‘frequencies’ as shorthand for ‘relative frequencies’. 
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but a propensity-based approach would not affect my conclusions. 

 

 The third difference with Imprecise Bayesianism is that Kyburgian intervals are not 

descriptions of a set of functions. Instead, as we shall see, the intervals are the outputs of a 

single function relating an argument’s premises to its conclusion. 

 

 Kyburgian probabilities can be determined by a sequence of formal rules. These are 

neatly defined for particular formal languages, but also (less neatly) applicable to reasoning 

in natural languages. Like the formalization of deductive logic, it is unrealistic to expect this 

formal procedure to be identical to our intuitions. Instead, he aims to model our intuitions 

about probabilistic reasoning in a way that is more precise and systematic than our ordinary 

conceptions. Implicitly, Kyburg’s metaphilosophy is similar to Carnapian “explication” 

(Carnap, 1962 Chapter I).  

 

 The core intuition behind the determination of Kyburgian probabilities is the notion 

that arguments of the form: 

 

(p1) i is a member of the reference class 𝒦1. 

 

(p2) The frequency of satisfying some expression (e.g. a predicate) Φ among members of 𝒦1 

is somewhere in the interval [x, y]18.  

 

Therefore, (c) i possesses Φ. 

 

– has a strength measurable by [x, y]19. If the interval in (p2) is [1, 1], then the argument is 

maximally strong; if it is [0, 0], then the argument is maximally weak. Intermediate intervals 

like [0.25, 0.5] or [0.9, 1] measure intermediate argument strengths20. 

 

 Hence, if (p1) stated that i is a swan and (p2) stated the frequency of whiteness among 

swans is between 90% and 95%, then this argument is strong to the extent [0.9, 0.95]. This 

interval is also our epistemically sound belief-state if our total evidence with respect to (c) 

were just (p1) and (p2). If (p2) were ‘All swans are white’, then the argument would be 

maximally strong and the belief-interval would be [1, 1]. 

 

 In real life, our total evidence is never so exiguous: we know that any i is a member of 

many reference classes. Our statistics for these classes will often conflict. Additionally, such 

arguments are “non-monotonic”: adding new premises can affect their strength. For example, 

 
18 An interval, rather than a fraction, because our statistical methods might only provide imprecise population 

frequency estimates of reference classes. 

 
19 Unlike Isaac Levi (1977) Kyburg does not require an additional premise that i is randomly selected from 𝒦. 

White (2010, pp. 170–171) succinctly presents a case against Levi in this controversy. However, Kyburg does 

require that Φ and 𝒦 are classes/properties that we regard as genuine, unlike ‘grue’, ‘grue emeralds’ etc. 

 
20 In some cases, one argument might have more informative premises than another, but equal strength, e.g. [0.5, 

0.5] relative to [0.1, 0.9]. 



10  

 

Kyburg argues that this argument is intuitively strong: 

 

(p1) i is a swan. 

 

(p2) The frequency of whiteness among swans is [0.9, 0.95]. 

 

Therefore, (c) i is white. 

 

– but adding these premises creates a weak argument: 

 

(p3) i is an Australian swan. 

 

(p4) The frequency of whiteness among Australian swans is [0.01, 0.05].  

 

  In the absence of further relevant information, it seems as though we should ignore 

the information from (p1) and (p2), because their significance is undercut by (p3) and (p4). 

For this reason, Kyburg focuses on determining (a) when we can rationally ignore 

information in our premises and (b) how to combine any conflicting information that we 

cannot rationally ignore. 

 

 Kyburg uses the term “Sharpening” for this process of ignoring information in our 

premises. The details of Sharpening evolved over time; I shall use his last version (Kyburg, 

2006). To have a Kyburgian probability, our hypothesis of interest must be equivalent to a 

class-membership statement for a single-case. (This single-case can be a population or a 

sample.) I shall continue to use i and Φ, so that our hypothesis is equivalent to ‘i is a member 

of the class of things that satisfy Φ’. Let ℛ = {R1, R2, … Rn} be the set of all the statements 

in our total evidence ET such that each element in ℛ asserts two things: that i is a member of 

a reference class 𝒦 and that the frequency of Φ in 𝒦 is somewhere in [x, y]. 

 

 Our reasoning’s premises should be our relevant total evidence, so Sharpening begins 

with rules for determining ‘relevant’ statements in ℛ: 

 

Richness: Suppose that (i) neither R1 nor R2 asserts an interval that is a proper subinterval of 

the other’s interval, (ii) the reference class described by R1 is 𝒦1, the reference class 

described by R2 is 𝒦2, and our total evidence implies that 𝒦1 is the cross product of 𝒦2 and 

another reference class 𝒦3. Richness requires that we ignore the information from R2 in 

favour of the information from R1. The intuition is that R1 is based on higher-dimensional 

evidence than R2, so it uses more of our data. R1 is ‘richer’ in the sense of stating a frequency 

that is conditional upon more of our statistical information. 

 

Example: Imagine that you are selecting a card from one of two piles. You wonder whether 

you will select a red card. You have checked each pile before shuffling them, and you have 

seen that Pile 1 has 13 reds out of 52 cards, whereas Pile 2 has 39 reds out of 52 cards. You 
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know that, once you have selected a pile, the card will be chosen randomly, but you also 

know that you will make your selection based on the outcomes of two tosses of a fair coin: 

Pile 2 if you get Heads twice, Pile 1 otherwise. Let R1 be the statement that the relative 

frequency of reds in the piles is 
52

104
 and thus in the degenerate interval [0.5, 0.5]. Let R2 be 

the statement that the (hypothetical) frequency of drawing reds in the overall selection set-up 

is (
13

52
)( 

3

4
) + (

39

52
)( 

1

4
) = (

39

208
) + (

39

208
) = (

78

208
) = 0.375 and therefore in the interval [0.375, 

0.375]. Richness requires ignoring R1 in favour of R2, because R1 provides richer information 

about card selections than the merely proportional data from R2.  

 

Specificity: This rule is applied sequentially from less to more general members of ℛ that 

survive Richness. Suppose that (i) neither R1 nor R3 asserts an interval that is a proper 

subinterval of the other and (ii) your total evidence ET implies or states that the reference 

class described by R3 is a proper subset of the reference class of R1. Specificity requires 

ignoring the information provided by R1, because R3 describes a narrower reference class.  

 

Example: Imagine you have drawn the card, but not looked at it. A trustworthy friend 

playfully snatches the card and examines it. She comments that “Wow, 9 out of 10 cards I’ve 

seen drawn today from these piles are red!” You believe her. You do not know the outcomes 

of the other selections she’s seen, but you do know that the selections she has seen are a 

proper subset of this card-drawing set-up in general. It is the latter, broader class that R1 

describes. Let R4 be the statement that [0.9, 0.9] of selections today were red. Specificity 

requires ignoring R1 in favour of R4
21.  

 

 The members of ℛ that survive Richness and Specificity are ‘relevant’. Sharpening 

next requires that we separate the intervals in the relevant statements into sets such that each 

set ℱ contains any intervals that are neither identical nor a proper subinterval of any other 

member of ℱ. Thus, in the card selection case, if the intervals of our relevant premises are 

[0.1, 0.96], [0.8, 0.85], [0.9, 0.9], [0.4, 0.95], and [0.6, 0.96], then: 

 

ℱ1 = {[0.1, 0.96]} 

ℱ2 = {[0.4, 0.95], [0.6, 0.96]} 

ℱ3 = {[0.8, 0.85], [0.9, 0.9]} 

 

 The intuition behind the next rule of Sharpening is that, once the ‘relevant’ premises 

are identified by Richness and Specificity, if one surviving interval is more precise than 

another, then it should be favoured, due to its greater content (in an informal sense). For 

 
21 An anonymous referee raises this objection: suppose that we know that coin tosses in general land Heads with 

a frequency of a particular coin in general [0.49, 0.51], but that the proportion in tosses today is [1, 1]. Shouldn’t 

we use the more general frequency [0.49, 0.51]? We should not if our hypothesis is that a particular toss i, which 

we know will occur today, will land Heads. In fact, we can determine the degenerate interval for the unit set 

consisting of i, which Sharpens conflicting reference class information via Specificity. If we do not know that i 

occurred today, then we should use the more general information. 
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example, if we have vague statistical data about the tosses of a particular £1 coin today (e.g. 

that 0.05 to 0.99 of them landed Heads) but relatively precise information about tosses of £1 

coins in general (that about 0.49 to 0.51 of them land Heads) then we should favour the more 

precise information, even though it is less specific. 

 

 The next and final rule of Sharpening is an attempt to systematise this intuition: 

 

Precision: The probability of H relative to our evidence is the shortest interval that covers all 

the intervals of an ℱ.  

 

Example: In the case of ℱ1, ℱ2, and ℱ3, the shortest cover is ℱ3’s cover, which is [0.8, 0.9], 

and therefore this is the Kyburgian probability of selecting a red card given your total 

evidence. Formally, using KP to denote the function determining the Kyburgian probability 

of an argument from ET to a conclusion H, we have KP(H, ET) = [0.8, 0.9]. In the £1 coin 

tossing case, where the ℱ sets are just {[0.49, 0.51]} and {[0.05, 0.99]}, the Kyburgian 

probability of the £1 coin landing Heads is [0.49, 0.51]. Note that KP is not an additive 

conditional probability function. 

 

 Sharpening does not necessarily determine a unique reference class statement for a 

probability. It does so in the £1 coin example: the probability interval comes from just our 

evidence about tosses of £1 coins in general. However, in the red card example, evidence 

about two reference classes jointly contribute to the probability. Thus, there are two potential 

sources of imprecision in Kyburgian probability: (i) our premises might contain approximate 

estimates of frequencies in reference classes and (ii) Precision might require an interval-

valued probability. 

 

 Furthermore, KP(H, ET) will not have a value for every possible ET: without relevant 

statistical information (including information derivable from mathematics and logic) in ET, 

there are no relevant premises, and hence no probability. However, if ET is rich enough to 

include the statistical facts derivable via mathematics and logic, then KP(H, ET) will always 

exist, because [0, 1] will always be a candidate interval for logico-mathematically contingent 

statements22. This is because we know, from deductive logic, that i is a member of the unit set 

consisting of just i, and we know (assuming classical logic) that i is either a Φ or not a Φ. 

Hence, the frequency in the unit set is 0 or 1, and therefore the frequency must be in the 

interval [0, 1]. 

 

 Kyburg’s theory raises many issues. I cannot discuss them all here, but I shall make a 

few clarificatory points. Since Kyburgian probabilities are logical probabilities, they are 

never identical to belief-states. Kyburg thinks that probability is “legislative” for belief 

(Kyburg, 2006 p. 48) so an epistemically rational person’s beliefs should correspond to the 

logical probabilities for their total evidence, but this normative claim is not an analysis of 

 
22 For logico-mathematical truths/falsehoods, their Kyburgian probability for such total evidence will be [1, 1] 

and [0, 0] respectively. 

 



13  

 

probability. 

 

 Another issue is Kyburgian probabilities’ relation to decisions. The significant 

divergence from Bayesian decision theory is regarding decisions and updating, i.e. diachronic 

coherence. In standard Bayesianism, we have a pleasingly simple relationship (aside from 

some controversial special cases23) between conditional probabilities and rational betting 

odds for H conditional on learning a sequence of propositions {E1, E2 … En}. The rational 

betting odds are given by  for each E in the sequence. In contrast, because Kyburgian 

probabilities are not conditional probabilities, we cannot determine odds in this way. 

Furthermore, it is possible that there is no conditional probability function that always assigns 

values to hypotheses that are within the Kyburgian intervals, due to Kyburgian updating’s 

divergence from conditionalization (Levi, 1977). Consequently, the probabilities are 

unattractive as a means of guiding ideally rational decisions, although Kyburg tries to argue 

otherwise (Kyburg, 1990 Chapter 8)24. 

 

 I have talked about statistical statements as if they fall like manna from heaven. 

Clearly, we need to infer them. While Kyburg’s rules of Sharpening evolved, his theory of 

inference remained fairly stable from his principal treatise on statistical inference (1974) to 

his later work (2001); see also (1990) for many details. I shall not discuss this step in detail: 

firstly, because it is logically independent of his probability theory; the same probabilities 

could be combined with a different theory of ampliative inference. Secondly, my focus is the 

probability relation between a hypothesis and some total evidence, not that evidence’s origin 

or contents. 

 

5 Kyburgian Evidentialism 

 

Before discussing inertia, I shall examine Kyburgian probability’s prima facie fit with 

Evidentialism.  

 

5.1 Evidentialism and Its Corollaries 

 

According to Evidentialism, a subject’s epistemically sound belief-states with respect to H 

are purely determined by their total evidence. Kyburgian probabilities are purely determined 

by a sequence of formal rules using the statistical information in our total evidence as the 

premises in an argument for H. Thus, if there really is a correspondence between Kyburgian 

 
23 For example, if you are confident in humanity’s extinction via nuclear war at time t, is it rational to bet on this 

event if the bet matures after t? (Talbott, 2016). 

 
24 For a synchronic set of bets, there is a simpler relationship between coherent betting and Kyburgian 

probability. Suppose that ET is a fairly rich evidential corpus and suppose we are betting about a finite set of 

statements. Kyburg proves that coherent odds can be generated directly from the coherent precise probability 

function(s) whose values for a hypothesis H given some total evidence ET are within the corresponding 

Kyburgian probability interval for KP(H, ET) (Kyburg, 1974 pp. 320–322). 
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probabilities and rational beliefs, then rational beliefs are also purely determined by evidence. 

Hence, Kyburgian probability is evidentialist. To elucidate this point, I shall return to these 

ideas from Section 2:  

 

Proportionality: If Kyburgian probabilities correspond to the proportions of belief warranted 

by the evidence, then a Kyburgian’s belief-states will be proportionate to their evidence. 

 

Uniqueness: The Kyburgian probability of any particular argument is unique. The 

probability changes only in the sense that, when our total evidence changes, a new probability 

is legislative for our beliefs.  

 

Representation: Kyburgian probability provides a flexible formalism for representing belief-

states and their features. For instance, in a simple binomial trials set-up, such as conjecturing 

the result of the next toss in a series of exchangeable tosses of a coin with unknown bias, 

Kyburgian probability intervals will narrow as evidence accumulates, which represents a 

reduction in uncertainty (Kyburg, 1968 p. 63). The intervals can widen, but only when our 

total evidence becomes more ambiguous (Seidenfeld, 2007) or potentially when it contracts. 

 

Exclusion: Prior probabilities are a major issue for standard Bayesianism’s compatibility 

with evidentialism (Kelly, 2016). There are no priors in Kyburgian probability, so this worry 

is inapplicable25. The rules of Sharpening are purely mechanical for given total evidence26.  

 

5.2 Some Challenges 

 

Kyburgian probability differs in many ways from Imprecise Bayesianism, so there might be 

problems for its compatibility with evidentialism that I have not yet considered. I shall briefly 

outline some potential issues and argue that these do not constitute problems for Kyburgian 

evidentialism.  

 

 Frederick Benenson (1984, p. 203) argues that because Kyburgian probability 

functions are determined by reference class statements about a particular domain of 

discourse, there is an arbitrary aspect of their determination. Statements about frequencies 

make different assertions depending on the domain of discourse: to assert that ‘0.1 of a 

googolplex-fold domain satisfy Φ’ is different from asserting that ‘0.1 of a ten googolplex-

fold domain satisfy Φ’. More generally, Benenson argues that any definition of probability 

using finite frequencies (in Kyburg’s case, statements about finite frequencies) in a particular 

domain involves an arbitrary choice of domain size, which affects e.g. statistical inferences. 

 
25 The closest things to priors is background statistical knowledge (e.g. that a phenomenon is approximately 

normally distributed in a population) but this information is not a ‘prior’ in sense of ideal or actual credences, 

nor Carnapian “logical” measures. Additionally, there are Kyburgian probabilities given evidence just consisting 

of all relevant logico-mathematical truths: [1, 1] for logical truths, [0, 0] for logical falsehoods, and [0, 1] 

otherwise. 

 
26 A critic of Kyburg’s theory might argue that Sharpening is arbitrary, but I am denying subjectivity in 

Kyburgian probability, not subjectivity of Kyburgian probability. 
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Implicitly, this raises an incompatibility of Kyburgian probability with Uniqueness, and 

therefore evidentialism. 

 

 However, this decision is only arbitrary if our evidence is silent on the size of our 

domain of discourse. Benenson does not substantiate this claim, while it is hardly obvious. 

Consider the size of the universe. Before Aristarchus, the Ancient Greeks had apparently 

evidence-based reasons to believe that the universe was small, since the stars appeared to be 

nearby. In contrast, given Aristarchus’s heliocentric theory, there were good reasons to think 

that the stars are far away and that the universe is relatively large, to explain the absence of 

stellar parallax. Similarly, the observations at the Hooker Telescope by Edwin Hubble and 

others provided evidence that the universe is much bigger than the Milky Way, by 

determining that galaxies like Andromeda are separate and extremely distant from the Milky 

Way27. Of course, our estimates are approximate (we should not accept any exact estimate of 

the size of the universe) but approximation does not imply subjectivity. Benenson is right that 

estimates of domain size are important in Kyburgian probability, but these estimates can be 

based on evidence.  

 

 White (2010, pp. 169–171) offers an intriguing argument for why philosophers like 

Kyburg, who think that probabilities should be determined using evidence about frequencies, 

should be precise probabilists. White proves that this doxastic norm: 

 

Frequency-Credence: If our total evidence includes statements of the form ‘i satisfies 

predicate N’ and ‘The frequency of M among N’s is r’ and no further relevant evidence about 

whether i is an N, then our credence in Ni should be r.  

 

– entails: 

 

The Principle of Indifference: Given an n-fold set 𝒱 of statements for which we know that 

one and exactly one statement is true, plus symmetric evidence with respect to each 

statement, the probability of each statement in 𝒱 is 
1

𝑛
. 

 

 Frequency-Credence thus commits us to unique precise probabilities given 

symmetric evidence for each element of 𝒱. White’s argument works because we know that 

the relative frequency of truth in 𝒱 is 
1

𝑛
. Therefore, if our only relevant evidence regarding 

Ni’s truth is that Ni is a member of 𝒱, then Frequency-Credence entails that our degree of 

belief in Ni should also be 
1

𝑛
. which is also the value that The Principle of Indifference  

mandates for r. Kyburgian probability might seem to commit us to something like 

Frequency-Credence, leading us into precision via The Principle of Indifference. If 

evidentialists have good reasons for adopting imprecise belief-states, this precision would be 

a problem for Kyburgian evidentialism. 

 
27 The details of such reasoning depend on one’s general epistemology. Donald C. Williams (1947, pp. 110–

112) suggests how enumerative induction could provide the necessary inferential steps. 
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 Kyburg anticipates this line of reasoning. To avoid it, he limits the application of 

Sharpening to exclude metalinguistic terms like ‘logically possible’ and ‘true’ from those that 

can demarcate reference classes (Kyburg, 1974 pp. 176–180 and 314–316). Hence, the 

relative frequency of 𝒱 cannot be used for a Kyburgian probability. This limitation is 

justified by an antecedent opposition to The Principle of Indifference. Whether this 

opposition is justified is beyond my scope. The point is that Kyburgian probability does not 

collapse into precise probabilism, and thus permits (and requires!) imprecision in some 

belief-states, as some evidentialists want. 

 

6 Inertia 
 

6.1 Inertia and Kyburgian Probability 

 

When do Kyburgian probabilities avoid inertia? Although Kyburg (Kyburg and Teng, 2001 

pp. 254–259) and others28 note that Kyburgian probabilities can sometimes escape the [0, 1] 

interval, the conditions under which this occurs are mostly unexamined. I shall argue that 

they are surprisingly general. 

 

  Let H be the hypothesis that i is a Φ. Let E1 be our initial total evidence. E1 contains 

all logico-mathematical truths29, plus the assertion that i exists, and otherwise the evidence in 

E1 is irrelevant to H. Let Ri be the statement that i is in 𝒦i, where 𝒦i is the unit set 

consisting of i, and that the frequency of Φ in 𝒦i is in the interval [0, 1]. Ri is a logico-

mathematical truth, so by an earlier remark Ri is in E1. By supposition, there are no other 

reference class statements in E1 with respect to i whose interval differs from [0, 1]. Given 

such austere total evidence, Ri wins by a walk-over, so that KP(H, E1) = [0, 1]. 

 

 We now consider a new body of evidence E2 formed by adding a reference class 

statement to E1. For example, on Kyburg’s theory of statistical inference, we can 

provisionally accept that a population frequency is somewhere within a confidence interval 

[x, y] if the confidence level for a sample exceeds some contextually determined level α, in 

the absence of defeating background information. By assumption, there is no relevant 

background knowledge. Suppose E2 contains both sample data and a statistical statement Rj 

inferred from this data. Rj asserts that i is a member of 𝒦j and that the frequency of Φ in 𝒦j 

is in the interval [z, w] where z ≠ 0 or w ≠ 1. (‘Or’ is inclusive here.) Either Ri and Rj can only 

be favoured over the other by Richness, Specificity or Precision. 

 

 
28 See Levi (2007, p. 265) although he misdescribes this avoidance of inertia as “creatio ex nihilo”. In Kyburg’s 

system, expanding or contracting our total evidence is a necessary condition for more precise beliefs. What 

Kyburgian probability allows is creatio ex notitia – creation from information. 

 
29 This condition could be weakened, but it removes some unimportant complications. 
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 Neither statement can defeat the other by Richness or Specificity, because those rules 

only allow us to Sharpen away conflicting intervals (neither interval is a subinterval of the 

other) and no interval can conflict with the vacuous [0, 1] interval30. There is no defeat by 

these rules even if 𝒦i is a narrower reference class than 𝒦j (which will generally be the 

case, since 𝒦i just consists of i) because Specificity requires conflict. 

 

 Yet Rj will Sharpen away Ri by Precision, because any interval other than [0, 1] will 

be more precise. In detail, the only relevant reference class statements in E2 are Ri and Rj, so 

that there are just two ℱ sets: 

 

ℱ1: {[0, 1]} 

ℱ2: {[z, w]} 

 

 [z, w] must narrower than [0, 1] if z ≠ 0 or w ≠ 1. Hence, the cover of ℱ2 must be 

shorter than the cover of ℱ1. By Precision, KP(H, E2) = [z, w]. Therefore, if we infer any 

reference class statement that is narrower than Ri, we obtain a non-vacuous rational belief-

state. Provided it is possible to ampliatively infer a non-vacuous reference class statement 

about the hypothesis’s subject, there will be no inertia. 

 

 For example, suppose that you are about to select a card from a Tarot deck. You have 

no prior evidence about the composition of Fool cards in this deck, nor about the selection 

procedure, so [0, 1] is your initial Kyburgian probability for the argument from your total 

evidence to the hypothesis that you will draw a Fool card. Suppose that I secretly saw the 

Tarot reader compiling the deck, and I observed that 90% of the cards are Fools. Imagine I 

tell you what I saw. Assume also that you believe that I am perfectly reliable on this matter. 

You now have statistical information about the card drawing that is non-deductive evidence, 

favouring the prediction that the card will be a Fool, which modifies the Kyburgian 

probability from [0, 1] to [0.9, 0.9]. Consequently, there is no inertia in this example31. 

 

 Note that, in this example, you are agnostic about the (physical) randomness of the 

selection procedure. An Imprecise Bayesian could reason in a similar way, if they made an 

assumption of random selection. The problem is that, if we assume evidentialism, then this 

assumption cannot be made, since there is no evidence for it. In Kyburg’s theory, without 

evidence regarding the selection procedure, it is information about the proportions (the 

composition of the deck) that provides the posterior belief state, due to Precision. Of course, 

if you had background knowledge about non-randomness in the selection procedure, then that 

would dominate your merely proportional beliefs by Richness or by Specificity. Our 

awareness of the potential relevance of such background knowledge is perhaps why the 

 
30 Since I have confined ‘interval’ to unit intervals, reference class statements must assert that a frequency is 

somewhere in [0, 1]. 

 
31 For an extended example using enumerative induction, see (Kyburg and Teng, 2001 pp. 254–259). 
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reasoning feels somewhat “insecure” – our evidence could plausibly be defeated by 

subsequent learning. 

 

 The Kyburgian might seem to also be making an assumption of randomness. 

However, there are a few non-trivial differences. Firstly, a belief that the selection procedure 

was random is not the only belief that would warrant believing that one’s information about 

the deck’s proportions is the appropriate reference class statement. For example, the selection 

procedure could be more likely to produce representative samples than a random selection. 

Imagine a magician’s trick selection technique, which had a lower standard deviation of 

representative samples than occur with random selection, and yet [0.9, 0.9] was still the long-

run hypothetical frequency of Fool cards given the deck’s composition32. Secondly, consider 

the case where the Kyburgian assigns the probability, but has not yet drawn the card, and 

discovers that the selection will be selected with a procedure that is strongly biased against 

Fools. If the Kyburgian was assuming a random selection, then they would have to weigh 

their new discovery against this background assumption. However, in Kyburgian probability, 

the evaluation of the new information about selections must be weighed against the 

proportional data, rather than against any rival belief about selections. We should understand 

this shift as a change from (1) agnosticism about the selection procedure and use instead of 

proportional data, to (2) a definite belief about that procedure that is evidentially superior to 

the proportional data. A change in assumptions would be a shift from one definite belief 

about selections to another such belief. 

 

 Kyburg advocates these the rules of Sharpening by arguments other than the 

avoidance of inertia. He argues that they provide intuitive results in various examples with 

different sorts of background knowledge (e.g. in Kyburg and Teng, 2001 Chapters 9 and 11). 

Additionally, he argues that reasoning with Sharpening provides a plausible reconciliation of 

classical statistics and Bayesian statistics, plus resolutions to various puzzles about inductive 

inference (Chapters 11-12; see also Kyburg, 1974). Finally, he also makes some model-

theoretic arguments in favour of the relatively controversial Precision rule (Chapter 10; see 

also Kyburg 1997). While Richness and Specificity are formalisations of Hans 

Reichenbach’s intuitively plausible injunction to use the narrowest known reference class 

data (Reichenbach, 1961 p. 316), Precision’s status is more questionable, especially since it 

is the source of divergences from Imprecise Bayesian conditionalisation (Seidenfeld, 2007). 

Kyburg proves that the Precision rule, applied to a rich but finite formal language, will 

produce probability intervals that match the minimum and maximum frequency or measures 

in any model that (model-theoretic analogues of) the other rules identify as relevant. Kyburg 

also proves the converse of this result. These model-theoretic properties arguably correspond 

to adaptations of deductive soundness and completeness to ampliative reasoning, and thus 

seem to count in Precision’s favour. Of course, all of his arguments could be contested. After 

all, no theory of probabilistic inference seems to have any knock-down arguments; they are 

 
32 Should we then interpret the assumption as a disjunction of all such sampling hypotheses such that the relative 

frequency of selecting a Fool is the same as the proportion in the deck? Psychologically, this interpretation is 

implausible as an explanation of why the Kyburgian feels comfortable using the proportional data in such cases, 

since such a disjunction would be very large and perhaps even infinite. Epistemologically, it would be very 

uncharitable as a reconstruction of the Kyburgian’s reasoning. 
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lacking in such glory. Nonetheless, the absence of inertia in Kyburgian probability is not an 

ad hoc response, because there are other reasons to be a Kyburgian. Thus, at least one 

imprecise probability theory avoids inertia, while not being a merely technical response to it.  

 

6.2 Kyburgian Probability and Imprecise Bayesianism 

 

What is the source of these differences between Kyburgian probability and evidentialist 

Imprecise Bayesianism? Recall the Chance Grounding Thesis. This principle makes the 

elimination of physical probability statements from 𝒪 into a sine qua non of greater precision 

in belief-states. In essence, our belief-state is formed using every probabilistic possibility 

given our total evidence. This is a very epistemologically cautious stance. To add to the 

cautiousness, Imprecise Bayesianism (as I have defined it) proceeds by an extension of 

conditionalisation to updating probability functions; see Rule (2) in Section 3. 

Conditionalisation is also a very cautious rule, e.g. if 0 < P(H) < 1, then the conditional 

probabilities P(H | E) = 0 or P(H | E) = 1 only occur when E implies or contradicts H. 

Therefore, it is unsurprising that combining the Chance Grounding Thesis and 

conditionalisation would result in numerous cases of inertia: the former requires us to take 

seriously the possibilities of extreme physical probabilities, while the latter means that only 

deductive inference can stop us from taking the most extreme possibilities seriously. 

 

 Kyburgian probability also begins from an epistemically cautious stance. In the 

absence of relevant evidence, we know that unit frequencies of 0 or 1 for a contingent event 

are possible. Therefore the [0, 1] interval is part of our total evidence and ex hypothesi it will 

not be Sharpened away by our initial evidence. Prior opinion, unless substantiated by 

evidence, must be disregarded. Despite genuine differences, the basic epistemological 

starting point is the same as in evidentialist Imprecise Bayesianism. 

 

 The difference thus lies in the updating methods. Space considerations preclude a full 

discussion, but Kyburg’s key idea is that if H is highly probable to at least a level α relative to 

ET and H is the most informative hypothesis about its subject matter to exceed α, then H 

should be incorporated into our beliefs at a standard of acceptance α. The simplest case is 

when the probability (relative to our total evidence) exceeds α that a sample is approximately 

representative of a population. However, more sophisticated cases of acceptance are possible 

with richer statistical information, including Bayesian statistical inferences (Kyburg and 

Teng, Chapter 11). Kyburgian acceptance is tentative: new evidence might undermine our 

inference of H. Nonetheless, this is a less epistemologically cautious procedure than 

conditionalisation, because H can be accepted into our total evidence without being 

deductively implied by it. Depending on the particular evidentialist epistemology, α could be 

determined by contextual factors or perhaps have some fixed value. For example, α > 0.5 

would correspond to the intuition that we should believe hypotheses that are “more probable 

than not” given our evidence. 

 

 Once it is accepted, H can influence other probabilities via Sharpening. In particular, 
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even though it is possible that e.g. a particular coin toss might have a physical probability of 

1 or a physical probability of 0, these mere possibilities will be ignored under the conditions I 

described in Section 6.1. The most important Sharpening rule here is Precision, which 

favours (ceteris paribus) informative reference class statements. Again, this precedence is 

less epistemologically cautious than Imprecise Bayesian updating, insofar as a premium is 

being placed on informative statements.  

 

 Whether Kyburgians’ boldness is justified is beyond my scope. I shall only note that 

the inclusion of some ampliative inference in any plausible epistemology seems unavoidable: 

not all of our apparently good arguments are deductively valid. Therefore, the mere fact that 

Kyburgian updating involves the possibility of erroneous acceptance and ignoring certain 

physical probabilities when forming belief-states does not prove that it is flawed. 

 

 Still, the divergences of Kyburgian updating from conditionalisation are concerning. 

There are many good (but I think inconclusive) arguments for conditionalisation. Kyburg was 

critical of the pragmatic arguments, like diachronic Dutch Book Arguments (Bacchus et al, 

1990). However, there are also epistemological arguments, e.g. accuracy-based justifications 

(Greaves and Wallace, 2006; Pettigrew, 2016) which are generally very interesting for 

evidentialists33. Kyburg does not discuss accuracy-based arguments for conditionalisation, 

which flourished late in his life. The successful extension of such arguments to imprecise 

beliefs (an ongoing project) would undermine Kyburgian updating. 

 

 As I cannot do justice to that debate, I shall instead present a small olive branch 

between Kyburgians and Imprecise Bayesians. Even if we suppose that the former is a better 

ideal epistemology, it has some pragmatic defects compared to Imprecise Bayesianism. In 

particular, Kyburgian updating requires constant recalculation of the probability (via 

Sharpening) with reference to the whole of one’s new total evidence to check for newly 

relevant statistical information, because there is not necessarily a sequence of conditional 

probabilities that correspond to Kyburgian updating. In contrast, Imprecise Bayesians can use 

their old conditional probabilities to calculate new probability intervals. This pragmatic 

consideration is connected to epistemic aims, as a less arduous procedure would increase our 

ability to acquire true beliefs.  

 

 Here, Kyburgians can take inspiration from scientists, who often use idealized models 

for computational tractability, and thus sometimes abandon the aim of exactly mirroring 

nature in favour of other epistemic objectives. Kyburgians might likewise sometimes adopt 

Imprecise Bayesian updating as a useful simplification of ideal updating. Kyburgians would 

thereby abandon the aim of exactly mirroring an ideal reasoner, but that is a familiar 

necessity when we leave epistemology seminars. 

 

 From a Kyburgian perspective, there are special advantages of Imprecise Bayesianism 

for such a simplification. Firstly, conditionalisation-style reasoning often occurs in Kyburgian 

probability, since reasoning in accordance with Richness is often very similar to imprecise 

 
33 But not always: see the discussion of Joyce’s arguments for Probabilism in (Easwaran and Fitelson, 2012). 
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conditionalisation. The lexical priority given to Richness in Sharpening means that this 

conditionalisation-style reasoning generally dominates the less Bayesian aspects of 

Kyburgian probability when we have rich multi-dimensional statistical information, as we 

generally do in science (Kyburg and Teng, 2001 pp. 262–264). Consequently, if we assume 

richer statistical information than we actually have, we can generally make Kyburgian 

updating match Imprecise Bayesian reasoning. This suggests a basic epistemological affinity 

between the two approaches, which is not shared between (say) Popperian learning methods 

and Kyburgian probability. Secondly, Imprecise Bayesians allow interval-valued beliefs, 

unlike standard Bayesians. Kyburgians also favour interval-valued beliefs, albeit without 

convexity (Kyburg 1990 Chapter 14). From Kyburgian viewpoint, the “imprecision” in 

Imprecise Bayesianism is a positive feature compared to standard Bayesianism, even if the 

latter is computationally easier. 

 

 This olive branch does not dissolve the differences between the two systems. 

However, it shows how the choice between Kyburgian reasoning and Imprecise Bayesianism 

for all epistemic purposes is a false dichotomy.  

  

7 Conclusion 

 

Clearly, ampliative inference is crucial for Kyburgians. To justify their escapes from inertia, I 

would have to justify ampliative inference, which is more than a little beyond my scope. The 

relationship between Kyburgian probability and inertia can only be fully analysed in the 

context of a theory of ampliative inference. I stress that Kyburgian probability is compatible 

with many approaches to ampliative inference and scientific reasoning in general. For 

example, Kyburg rejected abductive inference, but his probabilistic acceptance rules might be 

supplemented by abductive rules. Overall, Kyburg’s theory of probability is extricable from 

his broader philosophy of science. 

 

 My arguments do not contradict philosophers like Vallinder and White who contend 

that inertia afflicts some prominent imprecise probability theories. I have instead defended 

the compatibility of evidentialism and Kyburgian probability. My conclusions demonstrate 

that an evidentialist imprecise probabilism is still a promising direction for inquiry. 
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