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Abstract

Intuitionism, Justification Logic, and Doxastic Reasoning

by

Vincent Alexis Peluce

Advisor: Sergei Artemov

In this Dissertation, we examine a handful of related themes in the philosophy of logic

and mathematics. We take as a starting point the deeply philosophical, and—as we argue,

deeply Kantian—views of L.E.J. Brouwer, the founder of intuitionism. We examine his

famous first act of intuitionism. Therein, he put forth both a critical and a constructive

idea. This critical idea involved digging a philosophical rift between what he thought of

himself as doing and what he thought of his contemporaries, specifically Hilbert, as doing.

He sought to completely separate mathematics from mathematical language, and thereby

logic. In chapter 3, we examine the philosophical foundations for this separation. Artemov

Artemov (2001) articulates what we might think of as constructive propositional reasoning

in a formal system that augments classical propositional logic with a theory of proofs. In

doing this, instead of using just one type of object to characterize constructive reasoning,

he uses two; propositions and proofs. In chapter 4, we explore the extent to which it might

make sense to think of classical propositional reasoning as instead a theory that has two

types of objects in the Artemov style. In chapters 5 and 6, we examine two specific case

studies; we look at two philosophical phenomena that admit of formal characterizations and

then propose those. In both cases, we focus on predicate style treatments of modality.
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Chapter 1

Introduction

1.1 Introduction

In this Dissertation, we examine a handful of related themes in the philosophy of logic and

mathematics. We take as a starting point the deeply philosophical, and—as we argue, deeply

Kantian—views of L.E.J. Brouwer, the founder of intuitionism. We examine his famous first

act of intuitionism. Therein, he put forth both a critical and a constructive idea. This

critical idea involved digging a philosophical rift between what he thought of himself as

doing and what he thought of his contemporaries, specifically Hilbert, as doing. He sought

to completely separate mathematics from mathematical language, and thereby logic. It is

because of this critical aspect that it is strange to think of Brouwerian and Dummettian

intuitionism as members of the same genus at all! This is the focus of chapter 3.

In chapter 3, we discuss Brouwer’s eight-fold enumeration of stages in which what be-

gins as an intuitive process descends to eventually become symbolic manipulation devoid of

content (Brouwer, 1907, pp. 94-95, 173-175). Even if we leave behind some of Brouwer’s

specific ideas about what reasoning should be like, we can start from the hypothesis that it

has some sort of intuitive character and the business of proposing and creating logical sys-

1



CHAPTER 1. INTRODUCTION 2

tems is to capture that. The challenge, then, is to provide a formal articulation of that idea.

In the propositional case, Heyting’s Intuitionistic Propositional Calculus, or IPC, is one such

attempt at responding to this challenge. Artemov Artemov (2001) takes up this challenge

as well. He articulates what we might think of as constructive propositional reasoning in a

formal system that augments classical propositional logic with a theory of proofs. In doing

this, instead of using just one type of object to characterize constructive reasoning, he uses

two; propositions and proofs. In chapter 4, we discuss the extent to which an Artemov-style

proposal can be refitted for a classical propositional reasoning. The reader will note that,

of course, classical propositional reasoning already has a formal articulation in CPC. We

explore the extent to which it might make sense to think of classical propositional reasoning

as instead a theory that has two types of objects.

In chapters 5 and 6, we examine two specific case studies; we look at two philosophical

phenomena that admit of formal characterizations and then propose those. In chapter 5, we

look at Gödel’s Disjunction, the claim that either the power of the human mind surpasses

that of any machine or that there are absolutely unsolvable problems. We follow previous

attempts at studying this thesis in formal systems of arithmetic augmented with modalities

for an epistemic feature that in some way represents the power of the human mind. Those

approaches have traditionally treated that modality as an operator. We depart from those

approaches, though, and treat that modality as a predicate. We discuss some candidate

systems.

Then, in chapter 6, we provide a response to Mannourry’s 1927 challenge through the

Dutch Mathematical Society to axiomatize intuitionistic arithmetic. While the accepted

answer to this has been Heyting Arithmetic HA, we suggest instead that an epistemic feature

ought to be added to capture what Brouwer had in mind. We propose one such system.
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1.2 Logical Preliminaries

In the first Chapter, we introduce the logical preliminaries that we will refer to throughout

this Dissertation. We introduce two propositional logics, a handful of modal logics, two

justification logics, and then the modal extensions of arithmetic that we will discuss in

Chapters 5and 6.

1.3 Kantian Brouwer

L.E.J. Brouwer famously argued that mathematics was completely separated from formal

language. His explanation for why this is so leaves room for interpretation. Indeed, one

might ask: what sort of philosophical background is required to make sense of the strong

anti-linguistic views of Brouwer? In this chapter, we outline some possible answers to the

above. We then present an interpretation that we argue best makes sense of Brouwer’s first

act.

1.4 Justification Logic

Artemov, building upon a tradition beginning with Kolmogorov and Gödel, developed a

paradigm for understanding Constructive Reasoning in terms of classical proofs. In 1933,

Gödel Gödel (1933) showed that Intuitionistic Propositional Logic could be interpreted in

S4 by prefixing every subformula of an intuitionistic propositional formula with the modal

operator □. Artemov Artemov (2001), in 2001, then showed that the modalities of S4 could

be realized with explicit proof terms. A consequence of this was, then, the interpretability

of Intuitionistic Propositional Logic into Artemov’s Logic of Proofs. This provided a novel

way of understanding constructivism. Indeed, Kolmogorov-Gödel-Artemov constructivism

flies in the face of the usual understanding of Constructive Reasoning as being distinguished
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from Classical Reasoning in terms of its theory of truth.

When Classical Reasoning is formally presented, it is usually done so in terms of Clas-

sical Propositional Logic. Constructive Reasoning, also, is usually presented in terms of

Intuitionistic Propositional Logic. Call this approach the truth paradigm. But, just as Arte-

mov showed that we can understand Constructive Reasoning of a theory of justification, can

it correspondingly make sense to think of Classical Reasoning in terms of a theory of justifica-

tion? That is, can we present a justification paradigm account of Classical Reasoning? In this

Chapter, we examine the extent to which we can understand a Kolmogorov-Gödel-Artemov-

style picture of Classical Reasoning. We present one such justification-based account of

Classical Reasoning. The traditional truth paradigm account of Classical Reasoning leads

to the well-known paradoxes of material implication. We show that the justification account

of Classical Reasoning avoids this problem.

1.5 Gödel’s Disjunction

In this Chapter we investigate epistemic predicates in extensions of arithmetic. We use as

our case study Kurt Gödel’s 1951 thesis that either the power of the human mind surpasses

that of any finite machine or there are absolutely unsolvable problems. Because Gödel also

claimed that his disjunction was a mathematically established fact, we must ask: what sort

of syntactical object should formalize human reason?

In this Chapter, we lay the foundations for a predicate treatment of this epistemic feature.

If we were to do this with an operator, we will see, we would be unable to prove a Gödel

sentence for that epistemic feature. The predicate approach, on the other hand, allows for

the proof of a corresponding Gödel sentence. We begin with a very general examination

of the Gödel sentence in the arithmetical context. We then discuss two systems of modal

predicates over arithmetic. The first, called Coreflexive Arithmetic or CoPA, extends PA
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with a coreflective modal predicate but does not contain a consistency statement. The

second, called Doxastic Arithmetic, or DA, has as its characteristic feature the consistency

statement but does not contain coreflection or its instance, the 4 axiom. We examine the

logical properties of, motivations for, and criticisms of both systems. We close with a brief

comparison of the systems in the context of Gödel’s Disjunction.

1.6 Intuitionistic Arithmetic

L.E.J. Brouwer famously took the subject’s intuition of time to be foundational and from

there ventured to build up mathematics. Despite being largely critical of formal meth-

ods, Brouwer valued axiomatic systems for their use in both communication and memory.

Through the Dutch Mathematical Society, Gerrit Mannoury posed a challenge in 1927 to

provide an axiomatization of intuitionistic arithmetic. Arend Heyting’s 1928 axiomatization

was chosen as the winner and has since enjoyed the status of being the de facto formaliza-

tion of intuitionistic arithmetic. We argue that axiomatizations of intuitionistic arithmetic

ought to make explicit the role of the subject’s activity in the intuitionistic arithmetical

process. While Heyting Arithmetic is useful when we want to contrast constructed objects

with platonistic ones, Heyting Arithmetic omits the contribution of the subject and thus falls

short as a response to Mannoury’s challenge. We offer our own solution, Doxastic Heyting

Arithmetic, or DHA, which we contend axiomatizes Brouwerian intuitionistic arithmetic.



Chapter 2

Logical Preliminaries

In this chapter, we introduce the logical preliminaries that we will refer to throughout this

dissertation. We will discuss three sorts of systems, modal propositional, justification propo-

sitional, and first-order modal. We introduce them in turn.

2.1 Propositional Logics

As a base for the logics in 2.3.1 and 2.4.1, we introduce the following two propositional logics.

These are in the following propositional language:

Definition 2.1.1 Language of Propositional Logic

For atoms A and formulas F and G:

⊥ ∣A ∣¬F ∣F ∨G ∣F ∧G ∣F → G

are all formulas in the language of propositional logic.

⊥ is the logical constant falsum. Here A,B,C, . . . are atomic propositional formulas. ¬ is the

unary connective symbol for negation. ∨, ∧, → are the symbols for disjunction, conjunction,

6



CHAPTER 2. LOGICAL PRELIMINARIES 7

and conditional, respectively. We use ¬F as an abbreviation for F → ⊥ and abbreviate ∨

and ∧ as usual.

We refer to the following as bases for other logics we consider. First, we have Classical

Propositional Logic:

Definition 2.1.2 Classical Propositional Logic CPC

1. F → (G → F )

2. (F → (G → H)) → ((F → G) → (F → H))

3. (F ∧G) → F

4. (F ∧G) → G

5. F → (G → (F ∧G))

6. F → (F ∨G)

7. G → (F ∨G)

8. (F → H) → ((G → H) → ((F ∨G) → H))

9. ⊥ → F

10. ¬¬F → F

11. Modus Ponens

The Deduction Theorem holds for all the logics we consider. It is provable in the familiar

way as follows:

Theorem 2.1.3 Deduction Theorem

⊢ F → G ⇔ F ⊢ G
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From left to right, if ⊢ F → G, then, if we assume F , by Modus Ponens we will prove G.

From right to left, if we assume F ⊢ G, there are three cases. If G = F , then F → G is

just F → F , which is provable from no assumptions. If G is an axiom, then G is provable

without F and G → (F → G) is provable by axiom 1. Then, F → G follows by Modus

Ponens. The final case is that G follows by Modus Ponens, from X and X → G. (X →

G) → (F → (X → G)) is an instance of axiom 1. By Modus Ponens on this and X → G,

we get F → (X → G). Now, (F → (X → G)) → ((F → X) → (F → G)) is an instance of

axiom 2. By Modus Ponens on this and what we obtained from the previous Modus Ponens,

we get (F → X) → (F → G). Since ⊢ X and X → (F → X) is another instance of axiom

1, we get F → X, by Modus Ponens. With that, our instance of axiom 2, and one more

Modus Ponens, we get ⊢ F → G.

Definition 2.1.4 Intuitionistic Propositional Logic IPC

1. F → (G → F )

2. (F → (G → H)) → ((F → G) → (F → H))

3. (F ∧G) → F

4. (F ∧G) → G

5. F → (G → (F ∧G))

6. F → (F ∨G)

7. G → (F ∨G)

8. (F → H) → ((G → H) → ((F ∨G) → H))

9. ⊥ → F
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10. Modus Ponens

It is worth observing that in this presentation of classical and intuitionistic propositional

logic, CPC and IPC are identical, except for the double negation axiom ¬¬F → F .

2.2 Modal Propositional Logics

The propositional modal logics we discuss are in the following language:

Definition 2.2.1 Language of Modal Logic

For atoms A and formulas F and G:

⊥ ∣A ∣¬F ∣F ∨G ∣F ∧G ∣F → G ∣ □ F

are all formulas in the language of modal logic.

The reader will note that this is just the language from Definition 2.1.1, extended with the

unary operator □. The modality □, of course, has a number of interpretations including

metaphysical necessity, knowledge, and belief.

2.3 Principles

The modal logics we discuss begin from bases of CPC or IPC and introduce various principles

and rules. The first two we consider are Distribution, or the K principle, and the rule

Necessitation. Distribution is the following principle:

□(F → G) → (□F → □G)
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This says that □ distributes over conditional. In other words, if □ holds of a conditional,

and it holds also of the antecedent of that conditional, then it holds of the consequent.

The rule Necessitation is the following:

⊢ F ⇒ ⊢ □F

This says that if F is provable, then □F is provable. It is worth noting that this only applies

to things that are provable in the logic under discussion. Necessitation does not apply to

any additional assumptions.

A modal principle that will come up quite a bit in Chapters 6 and 5 is the Consistency,

or D, principle. It is the following:

¬ □⊥

This says that it is not the case that ⊥ is necessary, or known, or believed, depending on the

interpretation of □. In the context of normal modal logics, this corresponds to the seriality

condition on the accessibility relation in Kripke frames.

Due to the definition of ¬ as implication to ⊥, Consistency can be rewritten as follows:

□⊥ → ⊥

Looking at it like this, Consistency is but one instance of another famous modal principle,

Factivity. Factivity, or the T axiom, is the following principle:

□F → F

This says that if it is necessary that F , then F holds. In other words, □F is factive. In the

context of Kripke models, this corresponds to the reflexivity condition on the accessibility
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relation.

An interesting principle is the converse of the above. This principle is called Cofactivity,

it is:

F → □F

If we limit the above to antecedents that are □’d formulas only, we get the 4 axiom, also

known as Positive Introspection:

□F → □ □ F

This corresponds to the transivity condition on the accessibility relation.

There is also the Negative Introspection principle, or 5 axiom. This is the following:

¬ □ F → □¬ □ F

This corresponds to the Euclidean condition on Kripke frames.

The B axiom is the following:

F → □¬ □ ¬F

This corresponds to the symmetry condition on Kripke frames.

2.3.1 Modal Logics

The modal logics we will consider are the following:

Definition 2.3.1 Modal Logic K

1. Rules and Axioms of Classical Propositional Logic;

2. □(F → G) → (□F → □G);

3. If ⊢ F then ⊢ □F .
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Definition 2.3.2 Modal Logic D

1. Rules and Axioms of Classical Propositional Logic;

2. □(F → G) → (□F → □G);

3. ¬ □⊥;

4. If ⊢ F then ⊢ □F .

Definition 2.3.3 Modal Logic T

1. Rules and Axioms of Classical Propositional Logic;

2. □(F → G) → (□F → □G);

3. □F → F ;

4. If ⊢ F then ⊢ □F .

Definition 2.3.4 Modal Logic 4 (or K4)

1. Rules and Axioms of Classical Propositional Logic;

2. □(F → G) → (□F → □G);

3. □F → □ □ F ;

4. If ⊢ F then ⊢ □F .

Definition 2.3.5 Modal Logic B

1. Rules and Axioms of Classical Propositional Logic;

2. □(F → G) → (□F → □G);

3. F → □¬ □ ¬F ;
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4. If ⊢ F then ⊢ □F .

Definition 2.3.6 Modal Logic S4

1. Rules and Axioms of Classical Propositional Logic;

2. □(F → G) → (□F → □G);

3. □F → F ;

4. □F → □ □ F ;

5. If ⊢ F then ⊢ □F .

Definition 2.3.7 Modal Logic S5

1. Rules and Axioms of Classical Propositional Logic;

2. □(F → G) → (□F → □G);

3. □F → F ;

4. □F → □ □ F ;

5. F → □¬ □ ¬F ;

6. If ⊢ F then ⊢ □F .

We also consider the intuitionistic versions of these. These are defined as follows:

Definition 2.3.8 Modal Logic iK

1. Rules and Axioms of Intuitionistic Propositional Logic;

2. □(F → G) → (□F → □G);

3. If ⊢ F then ⊢ □F .
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Definition 2.3.9 Modal Logic iD

1. Rules and Axioms of Intuitionistic Propositional Logic;

2. □(F → G) → (□F → □G);

3. ¬ □⊥;

4. If ⊢ F then ⊢ □F .

Definition 2.3.10 Modal Logic iT

1. Rules and Axioms of Intuitionistic Propositional Logic;

2. □(F → G) → (□F → □G);

3. □F → F ;

4. If ⊢ F then ⊢ □F .

Definition 2.3.11 Modal Logic i4 (or iK4)

1. Rules and Axioms of Intuitionistic Propositional Logic;

2. □(F → G) → (□F → □G);

3. □F → □ □ F ;

4. If ⊢ F then ⊢ □F .

Definition 2.3.12 Modal Logic iB

1. Rules and Axioms of Intuitionistic Propositional Logic;

2. □(F → G) → (□F → □G);

3. F → □¬ □ ¬F ;
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4. If ⊢ F then ⊢ □F .

Definition 2.3.13 Modal Logic iS4

1. Rules and Axioms of Intuitionistic Propositional Logic;

2. □(F → G) → (□F → □G);

3. □F → F ;

4. □F → □ □ F ;

5. If ⊢ F then ⊢ □F .

Definition 2.3.14 Modal Logic iS5

1. Rules and Axioms of Intuitionistic Propositional Logic;

2. □(F → G) → (□F → □G);

3. □F → F ;

4. □F → □ □ F ;

5. F → □¬ □ ¬F ;

6. If ⊢ F then ⊢ □F .

Artemov and Protopopescu introduce their Intuitionistic Epistemic Logics in Artemov

and Protopopescu (2016). Artemov and Protopopescu’s Intuitionistic Epistemic Logic of

belief is the following:

Definition 2.3.15 Modal Logic IEL−

1. Rules and Axioms of Intuitionistic Propositional Logic;
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2. □(F → G) → (□F → □G);

3. F → □F .

Artemov and Protopopescu’s Intuitionistic Epistemic Logic of knowledge:

Definition 2.3.16 Modal Logic IEL

1. Rules and Axioms of Intuitionistic Propositional Logic;

2. □(F → G) → (□F → □G);

3. ¬ □⊥;

4. F → □F .

2.4 Justification Logics

We will also discuss Justification Logics. Justification Logic was introduced by Sergei Arte-

mov in Artemov (1995) and Artemov (2001) as a way of making explicit the modalities in

modal logic. We follow the presentation of Artemov (2001) here. Consider, for example, the

modal formula:

□F → □F

Does this express the simple tautology that φ → φ or does this express something about the

connection between the modalities? Explicit modal logic allows us to make the distinction

between these senses.

We will use the following language for the Justification Logics we discuss:

Definition 2.4.1 Justification Logic Language

Justification terms are defined as follows for variables x, constants c and terms t and s:

x ∣c ∣t + s ∣t ⋅ s ∣!t ∣?t
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For atoms A, formulas F and G, and justification terms t, formulas are defined as follows:

⊥ ∣A ∣¬F ∣F ∨G ∣F ∧G ∣F → G ∣t ∶ F

Now, instead of modalities we have proof terms that can be fixed to formulas of any length.

We read t ∶ F as t is a proof of F . There are two types of simple proof terms; proof constants

and proof variables. There are also operations on our proof terms. The operation + expresses

that a proof is found in the sum of the terms. Consider the modal formula we looked at

above. We could translate this into either:

t ∶ F → t ∶ F

or

t ∶ F → t + s ∶ F

The first is just the tautology φ → φ, of course. The second expresses that if t is already a

proof of F , then the sum of t and any other s is a proof of F . This principle is called Sum,

we will see that it is in all of our Justification Logics.

Does the converse hold? That is, should it be the case that t + s ∶ F → t ∶ F? Not

necessarily. Imagine that the proof of F draws on both t and s but is present in its entirety

in neither.

There is another proof function for application ⋅, and related principle, Application:

t ∶ (F → G) → (s ∶ F → (t ⋅ s) ∶ G)

This gives an explicit sense to Modus Ponens. The idea is that t ⋅s expresses in the language

the Modus Ponens step we would do to conclude G from a proof t of the conditional and a
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proof s of the antecedent.

There is an explicit version of the modal Reflection axiom. This is also known as Reflec-

tion. If it is ever ambiguous, we disambiguate by calling this Explicit Reflection. This is the

following principle:

t ∶ F → F

This says that if something is a proof of F , then F is true.

Positive proof checker is the axiom relating to the symbol !, pronounced “bang.” It is

the following axiom:

t ∶ F →!t ∶ t ∶ F

The idea is that if t is a proof of F then there is a proof, !t, that verifies that t is in fact a

proof of F . This is, of course, the explicit version of positive introspection or the 4 axiom.

Negative proof checker is an axiom for the ? symbol. It is:

∶ F →?t ∶ ¬t ∶ F

This is the explicit version of negative introspection. negative proof checker

2.4.1 Logics

There are explicit justification logics corresponding to the modal logics mentioned above.

We will, though, only focus on a few systems for the purposes of this Dissertation. These

are the ones corresponding to S4 and S5.

Sergei Artemov’s Logic of Proofs (LP) is the following Artemov (2001)[p. 8]:

Definition 2.4.2 The Logic of Proofs

1. Axioms of Classical Propositional Logic;
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2. t ∶ (F → G) → (s ∶ F → (t ⋅ s) ∶ G) Application;

3. t ∶ F → (t + s) ∶ F and t ∶ F → (s + t) ∶ F Sum;

4. t ∶ F → F Reflection;

5. t ∶ F →!t ∶ t ∶ F Proof Checker;

6. An Axiomatically Appropriate Constant Specification;

7. Modus Ponens.

Building upon a Classical Propositional base with Modus Ponens, we begin by adding the

Application and Sum axioms. We then add the Explicit Reflection axiom and the Proof

Checker axiom.

At this point, the above looks quite a bit like an explicit verison of S4 without Neces-

sitation. For this, we add an axiomatically appropriate constant specification. A Constant

Specification is a set of formulas of the form cn ∶ cn−1 . . . c1 ∶ A, where A is an axiom. When-

ever cn ∶ cn−1 ∶ . . . A is in our constant specification, so is cn−1 ∶ . . . A. An axiomatically

appropriate constant specification is one where every axiom, including new axioms in the

constant specification has a justification. There are other types of constant specifications.

An axiomatically appropriate constant specification is essentially the explicit version of

axiom necessitation. That is, instead of having modal necessitation on all of our axioms

with □ we have some justification constant ca for each of our axioms a. We then inductively

prove that this holds not just for axioms but for everything provable, this is Constructive

Necessitation for LP, which is just the explicit version of the full necessitation of modal logic.

Where a ground proof polynomial is one that does not contain proof variables, it is well-

known that the following holds Artemov (1995) and Artemov (2001)[p. 10]:

Theorem 2.4.3 Constructive Necessitation (Artemov 1995)

If LP ⊢ F then LP ⊢ p ∶ F for a ground proof polynomial p.



CHAPTER 2. LOGICAL PRELIMINARIES 20

The reasoning for this is a straightforward induction on provability. If F is an axiom, the

claim holds by our axiomatically appropriate constant specification. If F follows by modus

ponens, and the theorem holds for G and G → F , then there is a proof t of G and a proof s

of G → F . Using Application and modus ponens, we then get t ⋅ s ∶ F .

We will examine also the Justification Logic JS5. This corresponds to the modal logic

S5. It is the following:

Definition 2.4.4 JS5

1. Axioms of Classical Propositional Logic;

2. t ∶ (F → G) → (s ∶ F → (t ⋅ s) ∶ G) Application;

3. t ∶ F → (t + s) ∶ F and t ∶ F → (s + t) ∶ F Sum;

4. t ∶ F → F Reflection;

5. t ∶ F →!t ∶ t ∶ F Proof Checker;

6. ¬t ∶ F →?t ∶ ¬t ∶ F Negative Introspection;

7. An Axiomatically Appropriate Constant Specification;

8. Modus Ponens.

The logic JS5 also enjoys an explicit version of necessitation (due to Pacuit (2006) and

Rubtsova (2006)):

Theorem 2.4.5 (Pacuit 2006, Rubtsova 2006) If JS5 ⊢ F then JS5 ⊢ p ∶ F for a ground

proof polynomial p.
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2.5 First-Order Arithmetic

We will focus on a couple specific extensions of Classical and Intuitionistic First-Order Logic.

Specifically, we will look at systems of formal arithmetic.

Definition 2.5.1 Language of First-Order Arithmetic

The language of first-order arithmetic consists of terms generated as follows:

0 ∣ x ∣ s(t1)∣ t1+ t2 ∣ t1 ⋅ t2

Given terms t1, t2, the equality symbol =, and formulas F and G, we generate formulas

as follows:

⊥ ∣ t1= t2 ∣ ∃xF ∣ ∀xF ∣F → G ∣ F ∧G ∣ F ∨G ∣ ¬F

The symbols s, +, and ⋅ are the symbols for successor, addition, and multiplication, respec-

tively. ∃ and ∀ are symbols for the existential and universal quantifiers, respectively.

We will use ⌜F ⌝ as the arithmetical code of F . We introduce t1 ≠ t2 as an abbreviation

for ¬(t1= t2).

For our purposes, consider any Hilbert-style axiom system for Classical First-Order Logic

with equality. Peano Arithmetic is the following:

Definition 2.5.2 Peano Arithmetic

1. Rules and axioms of FOL with equality;

2. ∀x(s(x) ≠ 0);

3. ∀x∀y(s(x) = s(y) → x = y);

4. ∀x(x+0 = x);
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5. ∀x∀y(x+s(y) = s(x+y));

6. ∀x(x ⋅ 0 = 0);

7. ∀x∀y(x ⋅ s(y) = x ⋅ y+x);

8. F (0) ∧∀x(F (x) → F (s(x))) → ∀xF (x).

The intuitionistic counterpart of the above is Heyting Arithmetic, or HA. This consists

of Peano’s arithmetical axioms and a base of first-order intuitionistic logic with equality. We

make use of the following list of axioms of intuitionistic predicate logic from Troelstra and

van Dalen (Troelstra and van Dalen, 1988, pp. 68, 48).

Definition 2.5.3 IQC with Equality

1. (F ∧G) → F and (F ∧G) → G;

2. F → (G → (F ∧G));

3. F → (F ∨G) and F → (G ∨ F );

4. (F → H) → ((G → H) → ((F ∨G) → H));

5. F → (G → F );

6. (F → (G → H)) → ((F → G) → (F → H));

7. ⊥ → F ;

8. F (x/t) → ∃xF (where t is free for x in F );

9. ∃x(F → G) → (∃yF (x/y) → G) (where x is not free in G, and y is x or y is not free

in F );

10. ∀xF → F (x/t) (where t is free for x in F );
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11. ∀x(G → F ) → (G → ∀yF (x/y)) (where x is free in G, and y is x or y is not free in

F );

12. x = x;

13. (A(x) ∧ x = y) → A(y);

14. Modus Ponens;

15. Γ ⊢ F ⇒ Γ ⊢ ∀xF (where x is not free in Γ).

(1)-(7) are the axioms of Intuitionistic Propositional Calculus. (8)-(11) are the first-order

axioms. (12) and (13) are the equality axioms, and (14) and (15) are our Modus Ponens and

Universal Quantifier Rules.

Heyting Arithmetic (HA) is the following:

Definition 2.5.4 Heyting Arithmetic

1. Rules and axioms of IQC with equality;

2. ∀x(s(x) ≠ 0);

3. ∀x∀y(s(x) = s(y) → x = y);

4. ∀x(x+0 = x);

5. ∀x∀y(x+s(y) = s(x+y));

6. ∀x(x ⋅ 0 = 0);

7. ∀x∀y(x ⋅ s(y) = x ⋅ y+x);

8. F (0) ∧∀x(F (x) → F (s(x))) → ∀xF (x).

Note that (8) is schematic.
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2.6 Arithmetical Systems with Modalities

The last sort of system we will look at are arithmetical systems with modalities. We will

look at both cases where that modality is treated as an operator and treated as a predicate.

Within a single system we will never have a modality treated as both an operator and a

predicate. For this reason, we just use the symbol □ for both. This will be clear from

context. When □ is affixed to formulas, as in □F , it is the symbol for the operator. When

it is affixed to terms, as in □(x) or □(⌜F ⌝), it is the symbol for the predicate. We make use

of Boolos brackets [ ] as well.
1
The following is the language for both systems treating the

modality as an operator and as a predicate:

Definition 2.6.1 Language of Modal Arithmetic

Terms are built up as follows:

0 ∣ x ∣ s(t1)∣ t1+t2 ∣ t1 ⋅ t2

For terms t1 and t2 and formulas F and G, formulas are generated as follows:

⊥ ∣ t1 = t2 ∣ ∃xF ∣ ∀xF ∣F → G ∣ F ∧G ∣ F ∨G ∣ ¬F ∣ □ [F ] ∣ □ F

The new element here are of course the predicate □(x) and the operator □.

There are a handful of logical systems that we will talk about to illustrate various points

in this dissertation. These are the following. First, we have Stewart Shapiro’s Epistemic

1
Where su(i, j , k) is the substitution function. As Boolos presents them, they are the following (Boolos,

1995a, p. 45). Provided a coding where ⌜F ⌝ is the Gödel number for F , we read it as “substitute numeral i

for the j
th

variable in the formula encoded with k.” Where F is a formula with m free variables vk1
. . . vkm

,
where k1 < . . . km, □[F ] is:

□(su(km, vkm , . . . , su(k2, vk2 , su(k1, vk1 , ⌜F ⌝)) . . .))

There are interesting questions about quantifying in, see (Boolos, 1995a, p. 225-6), though these are not
immediately relevant to the issue at hand and so we set them aside for the time being.
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Arithmetic, or EA: EA is the following system:

Definition 2.6.2 EA

1. Rules and axioms of Peano Arithmetic;

2. □(F → G) → (□F → □G);

3. □F → F ;

4. □F → □ □ F ;

5. ⊢ F ⇒ ⊢ □F .

It is easy to see that this is just PA extended with the modal logic S4. We will consider also

the intuitionistic version of EA, call it Epistemic Heyting Arithmetic, or EHA:

Definition 2.6.3 EHA

1. Rules and axioms of Heyting Arithmetic;

2. □(F → G) → (□F → □G);

3. □F → F ;

4. □F → □ □ F ;

5. ⊢ F ⇒ ⊢ □F .

We will consider a version of PA extended with a cofactive, predicate style, modality.

This, we call Cofactive Peano Arithmetic, or CoPA:

Definition 2.6.4 CoPA

1. Rules and Axioms of PA;



CHAPTER 2. LOGICAL PRELIMINARIES 26

2. □[F → G] → (□[F ] → □[G]);

3. F → □[F ].

We consider also the intuitionistic version of this, called Cofactive Heyting Arithmetic, or

CoHA:

Definition 2.6.5 CoHA

1. Rules and Axioms of HA;

2. □[F → G] → (□[F ] → □[G]);

3. F → □[F ].

A big theme of this dissertation is Doxastic Arithmetic, PA extended with a KD predicate,

and Doxastic Heyting Arithmetic, HA extended in the same way. Doxastic Arithmetic, or

DA, is the following:

Definition 2.6.6 Doxastic Arithmetic DA

1. Axioms and rules of PA;

2. □[F → G] → (□[F ] → □[G])

3. ¬ □ (⌜0 = 1⌝)

4. DA ⊢ F then DA ⊢ □[F ]

Here, and throughout, 1 is defined as s(0). The intuitionistic system, Doxastic Heyting

Arithmetic, or DHA, is the following:

Definition 2.6.7 Doxastic Heyting Arithmetic DHA

1. Axioms and rules of HA;
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2. □[F → G] → (□[F ] → □[G])

3. ¬ □ (⌜0 = 1⌝)

4. DHA ⊢ F then DHA ⊢ □[F ]

This is the intuitionistic version of Doxastic Arithmetic, introduced in Peluce (2018) and

Peluce (2020). We follow naming conventions introduced there.



Chapter 3

Brouwerian Intuitionism

3.1 Two Aspects of the First Act

Following Michael Dummett, it would not be hard for someone to identify intuitionism with

the acceptance of intuitionistic logic. Indeed, Dummett begins his “The Philosophical Basis

of Intuitionistic Logic” (Dummett, (1975, p. 97):

The question with which I am here concerned is: What plausible rationale can

there be for repudiating, within mathematical reasoning, the canons of classical

logic in favour of those of intuitionistic logic? I am, thus, not concerned with

justifications of intuitionistic mathematics from an eclectic point of view, that is,

from one which would admit intuitionistic mathematics as a legitimate and inter-

esting form of mathematics alongside classical mathematics: I am concerned only

with the standpoint of the intuitionists themselves, namely that classical

mathematics employs forms of reasoning which are not valid on any legitimate

construal of mathematical statements (save, occasionally, by accident, as it were,

under a quite unintended reinterpretation). Nor am I concerned with exegesis of

the writings of Brouwer or of Heyting: the question is what forms of justification

28
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of intuitionistic mathematics will stand up, not what particular writers, however

eminent, had in mind. And, finally, I am concerned only with the most funda-

mental feature of intuitionistic mathematics, its underlying logic, and

not with the other respects (such as the theory of free choice sequences) in which

it differs from classical mathematics. [Bold ours]

Perhaps the first thing one learns of L.E.J. Brouwer is his critical stance toward the use of

logic in mathematics. Obviously, if the most fundamental feature of intuitionistic reasoning

were underlying logic, Brouwer would not be an intuitionist.

Apart from this negative point about what, contra Dummett, intuitionism is not, we set

aside further discussion of intuitionism itself. In this chapter, we explore the philosophical

basis of Brouwer’s intuitionism. Specifically, we focus on the source of his critical stance

toward logic.

Brouwer’s aversion to formal methods is codified in his first act of intuitionism. For

example, we have the statement in his Cambridge Lectures (1946-50) (Brouwer, 1981, p. 4):

FIRST ACTOF INTUITIONISM Completely separating mathematics from math-

ematical language and hence from the phenomena of language described by the-

oretical logic, recognizing that intuitionistic mathematics is an essentially lan-

guageless activity of the mind having its origin in the perception of a move of

time. This perception of a move of time may be described as the falling apart

of a life moment into two distinct things, one of which gives way to the other,

but is retained by memory. If the twoity thus born is divested of all quality,

it passes into the empty form of the common substratum of all twoities. And

it is this common substratum, the empty form, which is the basic intuition of

mathematics.

Above we see both the critical aspect of the first act and a creative one. The critical aspect is
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of course that mathematics is separated from mathematical language, and thereby logic. The

creative aspect, on the other hand, has to do with the way mathematics itself is generated

in accordance with—what Brouwer calls—the perception of the move of time.

While not referred to as “the first act,” it is not hard to trace both of these themes

backward in Brouwer. For example, in Brouwer’s 1912 “Intuitionism and Formalism”—

which, of course, is a sustained criticism of formalism—we have a clear statement of the

creative aspect (Brouwer, 1912, p. 85):
1

[N]eo-intuitionism considers the falling apart of moments of life into qualitatively

different parts, to be reunited only while remaining separated by time as the

fundamental phenomenon of the human intellect, passing by abstracting form its

emotional content into the fundamental phenomenon of mathematical thinking,

the intuition of bare [twoity].

“Neo-intuitionism” is, of course, what Brouwer calls his own view in his 1912 paper to

contrast his position with the French intuitionists.

We find many explicit statements of the creative aspect around Brouwer’s 1907 disserta-

tion. Consider the following passage that was rejected from Brouwer’s 1907 dissertation van

Dalen (2013)[p. 87]:

The primeval phenomenon is simply the intuition of time, in which the iteration

of ‘thing-in-time, and one more thing’ is possible, but in which (and this is

a phenomenon outside mathematics) a sensation can resolve into constituent

qualities, such that a single moment of life is lived as a sequence of qualitatively

distinct things. . . One can, however, restrict oneself to the simple observation of

those sequences as such, independent of the emotional content, that is from the

1
Here, and throughout this dissertation, we standardize “two-one-ness”, “two-ity”, and “twoity” to just

twoity.
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various gradations of frightfulness and desirability of that which is observed in

the outer world. (Restriction of the attention to intellectual contemplation).

We find a statement of the critical aspect in Brouwer’s dissertation (Brouwer, 1907, p.

92):

[Logistics] can teach us nothing about the foundations of mathematics, because

it remains irrevocably separated from mathematics. . .

How strong is the critical aspect of the first act intended? In other words, exactly

what sort of separation is he invoking? Most simply, the distinction between formal and

mathematical reasoning could be one of degree or quality.

First, Brouwer could have the view that construction outstrips formal language in some

sense. This would allow that very simple formal reasoning counts as mathematical reasoning,

but then when a certain level of complexity is achieved, that formal reasoning loses its

mathematical character. Call this the permissivist interpretation, because it allows for some

formal reasoning to count as mathematical reasoning.

Second, Brouwer could think that uses of formalism are just in principle different from

mathematics itself. On this reading, even very simple formal reasoning corresponding math-

ematical reasoning still would not be mathematical reasoning. Call this the impermissivist

interpretation, because, of course, on this interpretation no formal reasoning counts as math-

ematical reasoning.
2

Briefly, we note that Brouwer is completely comfortable with the use of formalism for

aiding 1) communication and 2) memory. Indeed, the previous quote from Brouwer’s disser-

tation continues (Brouwer, 1907, p. 92):

[Logistics] can teach us nothing about the foundations of mathematics, because

it remains irrevocably separated from mathematics; on the contrary, in order to

2
We will discuss Brouwer’s Enumeration of Stages which are confused in the logical treatment of mathe-

matics in the following section.
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maintain an existence on its own account, i.e., to safeguard itself against contra-

dictions, [logistics] must reject all its own special principles and acquiesce to

be a faithful, automatic, stenographic copy of the language of mathe-

matics, which itself is not mathematics, but no more than a defective

expedient for men to communicate mathematics to each other and to

aid their memory for mathematics.

This is compatible with both the permissivist and impermissivist interpretations; that for-

malism could be used to aid communication and memory is independent of whether or not

formal reasoning counts as mathematical reasoning.

In sections 3.2 and 3.3 we discuss two arguments in favor of the permissivist reading. The

first has to do with very simple reasoning. There are passages in Brouwer that suggest that

using formal methods in very simple cases one can get the right answer. Depending on how

we understand this, this might be taken to support a permissivist interpretation. The other

argument has to do with one way of reading Brouwer’s claim that the set of mathematical

theorems is denumerably unfinished. We argue that both of these fail to make a good case

for the permissivist reading of Brouwer.

In section 3.4, we present Michael Detlefsen’s interpretation of Brouwerian intuitionism.

Detlefsen provides an impermissivist reading of Brouwer. We argue, however, that Detlefsen

fails to justify the sharp distinction between mathematical reasoning on one hand and logical

and linguistic reasoning, on the other. Then, in section 3.5 we present an interpretation

of Brouwer that we argue provides a philosophical ground for an impermissivist reading.

In section 3.6, we discuss the view of the continuum resulting from our interpretation of

Brouwer.
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3.2 Permissivist Brouwer: Simple Reasoning

There seem to be two main reasons to consider a permissivist interpretation of the critical

aspect of Brouwer’s first act. The first has to do with what Brouwer has to say about simple

reasoning. In “The Unreliability of the Logical Principles,” Brouwer writes (Brouwer, 1908,

p. 109):

Thus there remains only the more special question: ‘Is it allowed, in purely math-

ematical constructions and transformations, to neglect for some time the idea of

the mathematical system under construction and to operate in the corresponding

linguistic structure, following the principles of syllogism, of contradiction and of

tertium exclusum, and can we then have confidence that each part of the ar-

gument can be justified by recalling to mind the corresponding mathematical

construction?’ Here it will be shown that this confidence is well-founded for the

first two principles, but not for the third.

The thought here is that syllogism, Brouwer gives the example of hypothetical syllogism

here, and reasoning according to the principle of non-contradiction will never lead one astray.

That is, if one reasons linguistically in this way, they will be able to reconstruct the relevant

construction if need be.

Of course, this does not, however, hold in general for reasoning according to the principle

of excluded middle. This is what gets explained as the intuitionistic unsoundness of the

principle of excluded middle; it is simply not intuitionistically true that every object can be

shown to have property P or that it can be refuted that this is so.

Where s(x) stands for “the successor of x,” and other symbols have their usual meaning,

consider the following HA proof of 1 + 1 = 2 as a paradigm example of simple reasoning:

1. ∀x∀y(x + s(y) = s(x + y)) - HA axiom;
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2. ∀y(1 + s(y) = s(1 + y)) - Universal Instantiation on 1;

3. 1 + s(0) = s(1 + 0) - Universal Instantiation on 2;

4. 1 + 1 = 2 - Rewriting 3.

One reading of the above quote would suggest that perhaps examples of simple reasoning

like the above could count as properly mathematical reasoning.

While it is correct that Brouwer thinks that in simple cases formal and mathematical

reasoning can converge on the correct answer, he makes clear that syntactic transformations

or linguistic reasoning, are simply distinct from real mathematical reasoning. In his eight

step “Enumeration of the stages which are confused in the logical treatment of mathematics,”

the first four are the following (Brouwer, 1907, p. 94/173):

1. The pure construction of intuitive mathematical systems which, if they are

applied, are turned outward in life by taking a mathematical view of the world.

2. The linguistic parallel to mathematics: mathematical speaking or writing.

3. The mathematical study of language: we notice logical linguistic structures,

raised according to principles of ordinary logic or from its extension by the logic of

relations, i.e. logistics, but the elements of these linguistic structures accompany

mathematical structures or relations.

4. Forgetting the sense of the elements of the logical figures mentioned just now,

and imitating the construction of these figures by a new mathematical system

of second order, provisionally without a language parallel to the construction;

this is the system of logisticians, which, if it is in the least generalized by a free

extension, is very well pervious to contradiction, unless Hilbert’s precautions are

taken; these precautions form the main content of Hilbert’s paper.



CHAPTER 3. BROUWERIAN INTUITIONISM 35

We have a four step descent above. We go from the first stage which has to do with real

mental mathematical construction, to the second which has to do with speaking or writing

about that construction. The third stage is the very earliest that has to do with what we

think of as logical reasoning.Stages 7 and 8, in particular, are notable for our purposes. Stage

7 involves “Forgetting the sense of logical figures, and imitating their construction in anew

mathematical system,” Stage 8 centers upon consistency (Brouwer, 1907, p. 95/175). The

HA reasoning above falls into this category. Then the fourth stage has to do with studying

that which was delineated in the third stage.

Brouwer himself emphasizes that there is something important in the shift from 2 to 3,

(Brouwer, 1907, p. 95/175):

[E]ven the stages mentioned above, from the third on, are deprived of math-

ematical significance. Mathematics has its place only in the first; in practice

it cannot remain aloof from the second, but this stage remains an unconscious

non-mathematical act.

We can present this in the following table:

Table 3.1: First Four Stages of Brouwer’s Enumeration

Level 1 Level 2 Level 3 Level 4

Mental Construction Language of Math Logic Metamathematics

Mathematical? Yes No No No
Linguistic? No Yes Yes Yes
About? - Level 1 Level 1 Level 3

The permissivist interpretation is thus not supported by the passages about simple rea-

soning. Indeed, Brouwer would claim that just because a first individual reasoning at stage

1 and a second individual reasoning at stage 3 might communicate the same thing (at stage

2), it does not follow that their actions were in fact the same; the individual at stage 1 is

interacting with the objects themselves while the individual at stage 3 is dealing with an
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abstraction from the language of mathematics from stage 2—that which is used for in aiding

communication and memory in (Brouwer, 1907, p. 92).

Brouwer makes this point especially clear in discussing the principle of non-contradiction.

While he thinks that reasoning with the principle of non-contradiction will never lead to

an output that is wrong, contradiction is a linguistic representation of the inability of a

construction to proceed further (Brouwer, 1907, p. 73) He writes (Brouwer, 1907, p. 73):

At the point where you announce the contradiction, I simply perceive that the

construction no longer goes, that the required structure cannot be embedded in

the given basic structure.

While in a case like this both the intuitionist and the formalist would agree that reason-

ing in some sense stops, Brouwer’s commitment is based on the inability to manipulate a

construction itself and not on the arrival at F and its negation for some F .

Brouwer even goes so far as to allow for the possibility of two different communities

agreeing at stage 1 of the enumeration but having mutually incompatible steps to stage 2

and beyond (Brouwer, 1907, pp. 73-74):

[I]t is easily conceivable that, given the same organization of the human intellect

and consequently the same mathematics, a different language would have been

formed, into which the language of logical reasoning, well known to us, would

not fit. Probably there are still peoples, living isolated from our culture, for

which this is actually the case. And no more is it excluded that in a later

stage of development the logical reasonings will lose their present position in the

languages of the cultured people.

How would this happen? The idea would be that because of some contingent features of the

development of different communities, even if there is genuine convergence at stage 1, because

of the ways that language developed, those ideas get expressed differently at stage 2. Indeed,
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when logic is viewed as that which has its origin in the second stage, it is easy to see why

Brouwer would liken it to ethnography (Brouwer, 1907, p. 74). Indeed, this accounts for the

reason for which a Brouwerian today might acknowledge that both Heyting’s Intuitionistic

Propositional Logic and Artemov’s Logic of Proofs Artemov (2001) express the propositional

transitions of constructive reasoning.

Now, if a mathematical reasoning admits of contradictory formalizations, mathematical

reasoning seems to be essentially independent of formal reasoning. Here the issue with formal

reasoning is not that it invariably “falls short” but rather that mathematical reasoning is

independent from language in some strong sense. In other words, this example seems to

suggest the impermissivist interpretation instead.

3.3 Permissivist Brouwer: Inexhaustibility

In this section, we discuss another argument in favor of the permissivist reading of Brouwer.

This has to do with Brouwer’s claim that the set of mathematical theorems was denumerably

unfinished van Atten (2017) (see also (van Atten, 2004, p. 7-8), for discussion).

Brouwer defined denumerably unfinished sets as follows (Brouwer, 1907, p. 82):

[Those sets such that] we can never construct in a well-defined way more than a

denumerable subset of [that set], but when we have constructed such a subset, we

can immediately deduce from it, following some previously defined mathematical

process, new elements which are counted in the original set. But from a strictly

mathematical point of view this set does not exist as a whole . . .

The thought here is that as soon as one thinks one has proved every mathematical theorem,

they immediately realize that there is a further one left to prove. Strictly speaking, the set

does not exist as a whole, because it is always under construction.
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This idea was influential to Gödel. Wang reports, from Carnap’s diary, on the influence

of Brouwer on Gödel (Wang, 1987, p. 84):

Gödel talked ‘about the inexhaustibility of mathematics [...] He was stimulated

to his idea by Brouwer’s Vienna lecture. Mathematics is not completely formal-

izable. He appears to be right.’

It’s not hard to see a Brouwerian philosophical justification for such a view. Carl J. Posy

presents one such account (Posy, 1988, pp. 310-311):

The idea of a finitely (or recursively) axiomatized formal system is the modern

counterpart of Kant’s notion of conceptual description: finitely recognizable prop-

erties whose conjunction and consequences characterize a domain of objects. And

the idea of a formal language, with defined notions built on a fixed and enumer-

ated collection of base concepts, fits the same mold. With this translation—the

linguistic as the conceptual—we can indeed see the Kantian origin for Brouwer’s

claim that codified language cannot suffice to express the entire intuitive content

of our mental life and our scientific knowledge. Intuition will always outrun lin-

guistic description. This is Brouwer’s constant view, and it underlies his rejection

of mathematical formalization.

Posy’s reading emphasizes the connection to Kant’s notion of conceptual description. No-

tably, these are finitely recognizable. The problem is that, due to inexhaustibility or incom-

pleteness phenomena, “intuition will always outrun linguistic description” (Posy, 1988, pp.

310-311). This, for Posy, is the ground for the critical aspect of Brouwer’s first act.

With respect to Brouwer’s claim (Brouwer, 1907, p. 82) that denumerably finished sets

of theorems never can capture the set of mathematical theorems, which is denumerably

unfinished, Posy’s idea is that what grounds the critical aspect of Brouwer’s first act is that

the set of mathematical theorems always outruns formal theorems.
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With that in mind, we point out that we can find unambiguous statements of the in-

exhaustibility of science in contemporaries of Brouwer. Indeed, Michael Friedman discusses

such a view in the context of the dialogue between the Marburg and Southwest Schools. In

Substance and Function (1910), Ernst Cassirer writes (Friedman, 2000, pp. 78-9):

That this function [of empirical cognition] does not arrive at an end in any of its

activities, that it sees rather behind every solution that may be given to it a new

task, is certainly indubitable. Here, in fact, “individual [individuelle]” reality

confirms its fundamental character of inexhaustibility. But, at the same time,

this forms the characteristic advantage of true scientific relational concepts: that

they undertake this task in spite of its incompleteability in principle. Every new

postulation, in so far as it connects itself with the preceding, constitutes a new

step in the determination of being and happening. The individual [Das Einzelne]

determines the direction of cognition as infinitely distant point.

For Cassirer, science as a whole is such that it can never be completed. “Incompleteability

in principle” just is what is valuable about scientific concepts.
3

We argue that Brouwer held a similar view of science. For Brouwer, science has to do

with the classifying and cataloguing of “causal sequences and phenomena” (Brouwer, 1912,

pp. 123-124). In the section of his dissertation about the value of the ‘explanation’ of

phenomena, Brouwer writes (Brouwer, 1907, p. 58):

Let us remark further that it can never be said afterwards that an explanation,

which served its purpose in extending the region of known sequences by means of

induction, was shown to be incorrect. For, in that case, a clash with experience

proves no more than that on the strength of the explanation a field of induction

was opened which was too large.

3
Indeed, Hintikka uses such a view of science to argue against a the KK principle in epistemic logic

(Hintikka, 1970, pp. 148-9).
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We see that when an apparently good explanation goes wrong, it was not, strictly speaking,

incorrect. Instead, it was correct with respect to a limited domain; it went wrong in failing

to tell the whole story.

We saw in his Enumeration of the stages which are confused in the logical treatment of

mathematics that Brouwer contrasts mathematical reasoning with interpreting and codifying

that reasoning. The former, of course, has to do with real construction. The latter Brouwer

compares to ethnography (Brouwer, 1907, p. 74). Indeed, in his “Unreliability of Logical

Principles” (Brouwer, 1908, p. 108):

Moreover, the function of the logical principles is not to guide arguments concern-

ing experience subtended by mathematical systems, but to describe regularities

which are subsequently observed in the language of the arguments.

Logic here is a science just as much as linguistics. What the logician looks for are regularities

in the ways that people talk about mathematics.

We can thus return to Posy’s interpretation that the ground for the critical aspect of

Brouwer’s first act is that “intuition will always outrun linguistic description” (Posy, 1988,

pp. 310-311). The idea here was that intuition’s outrunning of language is what explains

the critical aspect of Brouwer’s first act. We showed that, though, a sort of outrunning of

explanation by phenomena was a feature of Brouwer’s more general philosophy of science.

If Posy is correct, then, Brouwer’s first act is a consequence of his philosophy of science.

This, it seems, gets the priorities wrong; indeed, if this is so, it would seem that Brouwer’s

philosophy of science is actually the Zeroeth Act of Intuitionism.

3.4 Detlefsen’s Brouwer

In his “Brouwerian Intuitionism,” Michael Detlefsen presents an impermissivist intuitionism.

For Detlefsen, it is a feature of his interpretation of Brouwer that it does not rely on a
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traditionally Brouwerian metaphysical picture (Detlefsen, 1990, pp. 502, 525, 532). A virtue

of Detlefsen’s account is that it can be seen as providing a way of rejecting Dummett’s thesis

from (Dummett, (1975, p. 97) that what is most fundamental to intuitionism is its logic,

while respecting to some extent the anti-metaphysical views expressed by Dummett in that

paper. Ultimately, however, we suggest this is the problem with Detlefsen’s Brouwerian

intuitionism.

Detlefsen contrasts what he calls classical epistemology with non-classical epistemology.

Classical epistemology, Detlefsen writes (Detlefsen, 1990, p. 509):

[E]mphasizes the contentual ingredient of knowledge, and de-emphasizes the mat-

ter of its cognitive mode.

Here the way one gets to a conclusion matters less than that they got to that conclusion.

So, if one gets to the conclusion that 1+ 1 = 2, it does not matter if they did it by reasoning

abstractly about twoity or if they did so by syntactically manipulating axioms. Clearly,

logic is granted a significant role in classical epistemology because the manner of transition

between knowledge contents is less important than the knowledge contents themselves.

Brouwerian epistemology, on the other hand, is a paradigm example of non-classical

epistemology. Detlefsen reads the first act as a Brouwerian antidote to the mistake of classical

epistemology (Detlefsen, 1990, p. 514). Detlefsen writes (Detlefsen, 1990, p. 515):

According to Brouwer, mathematics is essentially a form of introspective con-

structional activity or experience whose growth or development thus cannot pro-

ceed via the logical extrapolation of its content (as classical epistemology main-

tains), but rather only by its phenomenological or experiential development—that

is to say, its extension into further experience of the same epistemic kind.

The thought is, then, that for Brouwer logical extensions of mathematical knowledge are defi-

cient because they fail to preserve that experiential or phenomenological mode of knowledge.
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Logical reasoning, on Detlefsen’s interpretation, cannot count as mathematical reasoning

because mere convergence of content is not the same as the phenomenological development

of that content. In this sense, mathematics will be independent of logic. Mathematics will

be independent even if logic could somehow be rectified to account for inexhaustibility fea-

tures, and rectified to preserve soundness by dropping, for example, the principle of excluded

middle—that logic would “still serve only to identify those propositions that are capable of

intuitionistic justification—which is a very different thing (and epistemically inferior to)

actually supplying such a justification” (Detlefsen, 1990, p. 520).

What principle justifies Detlefsen’s Brouwer in separating mathematical practice from

logical language? Detlefsen grounds his reading in the claim (Detlefsen, 1990, p. 521):

This tenet is the deceptively simple, though in truth quite radical, idea that

mathematics, in its essence, is a form of mental activity.

Mathematics is characteristically and in essence a form of mental activity.
4

But if being essentially mental is what explains the separation of math from logic in the

first act, the following question remains. Are there other essentially mental activities, or, is

math unique in that it is the only essentially mental activity?

In the first case—if we must grant that there are other essentially mental activities—we

risk losing the importance of mathematics for Brouwer. Indeed, we do not want to commit

Brouwer to the claim that all characteristically mental activities are independent of language

in the sense required by the first act. Had Brouwer written more, on this interpretation we

would expect a fist act of imagining, dreaming, and (a priori) philosophizing as they too

seem essentially mental. Of course this does not work as an interpretation of Brouwer.

In the second case, we need to say why it is that mathematics is essentially mental.

4
That activity still has structure, though that structure is non-logical. Detlefsen writes, “[mathematical

thought] is to be thought of as a body of actions organized by a scheme of actional connections reflecting
some sort of practical disposition to pass from one act to another, rather than a body of truths organized
by a network of logical relations” (Detlefsen, 1990, p. 523).
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While Detlefsen mentions repeatedly that he wants to provide a picture of intuitionism free

of Brouwerian assumptions, he also gestures toward more substantial Brouwerian principles

(Detlefsen, 1990, p. 524), but this not quite in the context of the principle in question. In

response to the question of how individual proof activities come to constitute a global whole,

Detlefsen appeals to a characteristically Brouwerian explanation (Detlefsen, 1990, p. 524):
5

Perhaps Brouwer’s singling out of the unfolding of the bare notion of [twoity] in

the mind at perfect rest, with no ‘sinful’ designs on the conquest of nature, and

no ‘cunning’ or even ‘playful’ attempts to manipulate the stream of inner expe-

rience, can be seen as bearing on such a concern [that of the unity of the global

configuration of proof activities]: those proof-activities which are dispositionally

related to other proof-activities in such a way as to grow into the right sort of

global practice are those of the mind at perfect (causal-manipulatory) rest, with

no designs on causal dominion over nature or even over one’s own stream of inner

mathematical experience.

Detlefsen’s explanation as one of how a mathematical life, taken as a global configuration of

proof-activities, is constituted from individual proof activities has quite a bit of plausibility

as an explanation of Brouwer. Indeed, we do not question the merit of this account for that

purpose.

Detlefsen, however, does not delve further into the Kantian ground that would philo-

sophically justify the critical aspect of the first act. Indeed, this is against his stated goal

of providing an account of Brouwer free from such metaphysical assumptions. While this is

a strength in that it presents an account of Brouwerian epistemology only relying upon the

experience intensivity of mathematics, it is a weakness if we cannot explain just what is so

special about mathematical experience. In either case, we are left wanting an explanation

5
Again, we note that we standardize terminology to twoity.
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for why Brouwer should hold the strong separation between mathematics and logic; in other

words, what could justify an impermissivist interpretation of the critical aspect of the first

act?

3.5 Kantian Brouwer

We argued that arguments for permissivist readings of the critical aspect of Brouwer’s first

act fail. We suggested that convergence of simple mathematical and formal reasoning does

not entail that one counts as the other. We also argued that inexhaustibility, if it is to

explain Brouwer’s first act, justifies that separation in a philosophy of science, which seems

to put the cart before the horse. We also argued that while Detlefsen’s account explained

what such a separation between mathematical and logical reasoning would look like, it did

not sufficiently justify the strong separation between mathematics and language required for

an impermissivist reading of the first act.

In this section, we provide a philosophical basis for an impermissivist reading of Brouwer.

An interpretive problem immediately arises. While Brouwer maintained his commitments to

the creative and critical aspects of the first act (though they were not always unified under

that banner), other parts of his view changed over time. Since, as we saw, he developed his

anti-linguistic views early in his career, we elect to focus on early Brouwer.

Recall the creative aspect of the first act. The thought is that one has an experience, say,

of waiting for the train and then getting on the train.
6
They subtract away all particulars

from that experience, until they reach what Brouwer calls the intuition of bare twoity.

It is natural to thus think about what Brouwer thinks this intuition of time is like. A way

6
Note that Brouwer distinguishes between scientific and intuitive time. Intuitive time is the time that

constitutes the only a priori element of science, while scientific time is the system introduced for cataloguing
phenomena (Brouwer, 1907, p. 61/99, fn. 2). He points out that scientific time is introduced while intuitive
time is, of course, not. The sort of connection suggested by our discussion, that of being able to abstract
away from the more scientific to the intuitive, seems presupposed. Indeed, the intuitive time is what is a
priori.
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to make this precise is to ask: is time itself perceived here or is time meant as the condition

of perception (and so what is referred to is actually a form of perception)? Indeed, these

choices correspond to the two main figures that Brouwer is read in light of: Husserl and

Kant. Call the view that we can perceive the flow of time itself the Husserlian view. Let

the view that time is the condition for such perceptions (though not itself perceived) be the

Kantian view.

In this section we show that a Kantian background can provide a philosophical basis for

the critical aspect of Brouwer’s thought.
7
We then show that there is reason to read, at least

early, Brouwer in this Kantian manner.

We must begin, however, by noting two important differences between Brouwer and

Kant. First, if creation according to the intuition of time is interpreted in the Kantian sense,

Brouwer will be using the intuition here to really mean awareness of the form of perception.

Indeed, on this view it is not time itself that is perceived but rather the form of time as

it is inherent in particular moments. Second, for Kant logic characterizes the rules of a

priori reasoning (see Lu-Adler (2018) and Buroker (2019)). For Brouwer, of course, logic

does not have this privileged position. Instead, we have a picture where a priori reasoning

is mathematical. The science of logic, for Brouwer, is comprised of drawing generalizations

from people’s linguistic behavior. It would not be hard to find other ways in which Brouwer

differs from Kant (indeed, Brouwer is explicit about how he disagrees with Kant with respect

to the relation between Euclidean geometry and experience (Brouwer, 1907, pp. 70-1)).

Consider now what language would do on such a view for Brouwer. Language here would

associate linguistic objects with objects of a given domain of objects. In either case, we are

associating objects with objects; we are fully in the realm of the phenomenal. If the inner

objects of mathematics are actually created according to time understood in the Kantian

sense, then where do we put the the generation itself of these mental objects? Clearly, if

7
A similar style of proposal underlies Bentzen’s diagrammatic interpretation in Bentzen (2023).
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time is taken to be the condition of possibility of objects, then mathematical creation is

quite unlike logical activity. Mathematical creation involves real generation, while logic has

to do with the association of existing objects (again, as we saw in stage 3 of (Brouwer, 1907,

p. 95), the laws of logic are generalizations drawn from mathematical language, and is thus

twice-removed from construction itself). In other words, if time is taken to be the condition

of possibility of objects itself and so the boundary condition for phenomena, the process of

generation itself is not phenomenal.

The Kantian view thus makes mathematical generation in principle different from other

types of mental generation. We see that it provides a philosophical basis for Detlefsen’s tenet

that mathematical thinking is in essence a mental activity. On the other hand, creation

according to time in the Husserlian sense can at best say that mathematical mental creation

is different from, say, logic by degree, insofar as it is a type of coming to be according to a

(admittedly privileged) phenomenon.

We now examine reasons for thinking we ought to read early Brouwer in this Kantian

manner. Brouwer, in the concluding subsection “Summary of the relation between mathe-

matics and experience” of his dissertation, writes (Brouwer, 1907, p. 70):

Mathematics develops out of its basic intuition in a self-multiplication guided

by an entirely free choice. The only synthetic judgements a priori generally, are

therefore those which are obtained as possibilities of mathematical constructions

by virtue of the basic intuition of time.

In this short subsection, he explicitly references not only Kant but the Transcendental Aes-

thetic. This provides an obvious clue to look to what Kant writes (Kant, 2001a, A34/B50):

Time is the formal condition, a priori, of all appearances whatsoever. . . Since all

representations, whether they have for their objects outer things or not, belong

in themselves, as determinations of the mind, to our inner state; and since this
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inner state stands under the formal condition of inner intuition, and so belongs

to time, time is an a priori condition of all appearances whatsoever.

Here, of course, we find a clear articulation of the view of time suggested by our interpre-

tation. It is this, we suggest, that grounds the critical aspect of Brouwer’s first act. The

interpretive picture of Brouwer we presented was that (early) Brouwer based his criticism

of formal methods on the Kantian view of time. The early position lets us make especially

clear, however, the sense of freedom which Brouwer invokes. While there is a sense in which

logic can get at already generated constructions—when they are phenomenal, for example

as held in memory—logic does not characterize construction itself, insofar as it is something

free in the transcendental sense. This freedom is best characterized by Rilke (Rilke, 1982,

p. 159):

Look: trees do exist; the houses

that we live in still stand. We alone

fly past all things, as fugitive as the wind.

- Rilke, Second Elegy

3.6 Early Brouwer on the Continuum

The Kantian interpretation of Brouwer emphasizes that time is a form of intuition though

not itself phenomenal. This conflicts with established interpretations of Brouwer (see van

Stigt (van Stigt, 1990, p. 151), for example). Indeed, perhaps the best philosophical basis

for later Brouwer’s analysis of the continuum is in terms of Husserlian phenomenology van

Atten (2007).

Even in early Brouwer, there are claims that read most naturally as claims about the

perception of the flow of time. In his dissertation, Brouwer writes “The simplest causal se-

quences which man can perceive have in reality for their mathematical substratum only time
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as a one-dimensional intuitive continuum; it does not matter that in them no other objects,

that is invariants, than time itself, appear” (Brouwer, 1907, p. 64). While a non-Kantian

Brouwer would allow that time itself feature into perception and thus provide a straightfor-

ward interpretation of these passages, a Kantian account will need to say something more;

a Kantian interpretation of Brouwer would need to explain just what all these apparent

references to the perception of time are doing.

Our task is thus twofold: we must find a way to justify a reinterpretation of the text

at (Brouwer, 1907, p. 64), for example, where time appears and then must say something

about how that interpretation could form a consistent whole. First, how can we reconcile

an interpretation on which time is not itself perceived with passages that could suggest the

opposite? There are passages that suggest that, instead of time itself, empirical moments

are perceived and then abstracted away from. Indeed, what we called the creative aspect of

the first act of intuitionism tells us that van Dalen (2013)[p. 87]:

The primeval phenomenon is simply the intuition of time, in which the iteration

of ‘thing-in-time, and one more thing’ is possible, but in which (and this is

a phenomenon outside mathematics) a sensation can resolve into constituent

qualities, such that a single moment of life is lived as a sequence of qualitatively

distinct things. . . One can, however, restrict oneself to the simple observation of

those sequences as such, independent of the emotional content, that is from the

various gradations of frightfulness and desirability of that which is observed in

the outer world. (Restriction of the attention to intellectual contemplation).

We have an experience and then abstract away from all emotional content. At last we are

left with just twoity. This is the bare twoity of thing in time and thing again, the empty

form of all two-ities. The process described here seems to be one where empirical time is

perceived, and processed in some way, to arrive at the basic intuition.
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This is also suggested by discussion in Brouwer’s 1908 “The Unreliability of the Logical

Principles.” Having just argued that logic is not reliable in the case of wisdom or religious

truth, Brouwer begins to discuss the reliability of logic in the mathematical case. He writes

(Brouwer, 1908, p. 108):

The question remains whether the logical principles are firm at least for mathe-

matical systems exempt of any living sensation, i.e. systems constructed out of

the abstraction of repeatable phenomena, out of the intuition of time, void of

living content, out of the basic intuition of mathematics.

Here too it seems the way one gets to the intuition of time is by abstracting away from

lived experience. In order to arrive at the basic intuition of mathematics, one begins with

experience and then subtracts away particularities.

We suggest, then, that in the passages about the continuum what is being referred to

as perceived is strictly speaking, empirical. By some process akin to the subtraction of

emotional content in the case of twoity, we suggest then that the Kantian Brouwer reaches

an awareness of the continuum.

There is a question about why experience provides an intuition of continuity as opposed

to, say, an intuition of density. This is answered by the way Brouwer thinks about dis-

creteness. In his 1912 “Intuitionism and Formalism,” Brouwer writes (Brouwer, 1912, p.

128):

[The] basal intuition of mathematics, in which the connected and the separate,

the continuous and the discrete are united, gives rise immediately to the intuition

of the linear continuum, i.e., of the “between,” which is not exhaustible by the

interposition of new units and which therefore can never be thought of as a mere

collection of units.

Here discreteness and continuity presuppose one another; they are dual concepts. Imagine



CHAPTER 3. BROUWERIAN INTUITIONISM 50

someone who abstracts away from every particularity to reach the “bare twoity”. The above

passage says that in order for this to be a genuine twoity, the between cannot be thought of

as intermediate units of the same sort as “thing in time and thing again”, but rather that in

between must be thought of as having its own sui generis character. The reasoning is that if

it did not have its own unique character, we would not be able to arrive at the discrete pair

in the first place, for there would be infinitely many other discrete partners our attention

would focus on.

We must now answer the question raised by discussion in van Atten’s “Kant and Real

Numbers,” of how Brouwer (on our interpretation) gets around Kant’s lack of access to

reals van Atten (2012). Van Atten’s argument is, roughly, that since Kantian synthesis of

the imagination can only produce finitary images, incompletable processes never result in

an image for the Kantian. Since real numbers are defined in terms of infinite sequences,

Kant therefore cannot have access to them. It is natural then to think that given our early

Brouwer is constrained by this sort of Kantian view, that he could not possibly have access

to choice sequences as paradigmatic incomplete objects.

From the above, it is clear that Brouwer has a response to this. Exactly how that response

should be articulated is a further interpretive question. There are two options. The first is

that because, as we saw above, discreteness and continuity are equiprimordial (Brouwer,

1912, p. 128), Brouwer is committed to the possibility of an infinitary image, specifically,

that of the continuum contrasted with the bare twoity. Indeed, when Brouwer claims that

the discrete and continuous are equiprimordial (Brouwer, 1912, p. 128), he seems to be

saying that the basic conceptual distinction is not finite and infinite but instead discrete and

continuous. The second is that Brouwer maintains the Kantian view of image but holds that

it is not an image that one has of the continuum but rather an awareness of discreteness and

continuity as aspects of the form of perception. The thought here is that continuity is thus

just as accessible as discreteness.



CHAPTER 3. BROUWERIAN INTUITIONISM 51

Indeed, the above passage from (Brouwer, 1912, p. 128) suggests that there is one

process through which we arrive at awareness of continuity. Through the process of ab-

straction, we arrive at both twoity and the between; one could not have a twoity without

an inexhaustible between and one could not have a between without the discrete elements

of twoity as bookends. It is through the single process of abstraction away from emotional

qualities of moments that we reach the form of discreteness and continuity.

3.7 Conclusions

In this chapter we discussed the philosophical basis for Brouwer’s famous rejection of the

use of formal methods in mathematics. First, we had to get clear on just what Brouwer’s

view was. While he indeed held that the principle of excluded middle was intuitionistically

unsound, the unsoundness of certain logical principles, we argued, was not the philosophical

basis of his complete separation of mathematics and language. Instead, we argued, this was a

consequence thereof. We put forth that instead Brouwer’s strong separation of mathematics

from language had to do with a deeply held Kantian view of time. From this, we sketched

how early Brouwer was able to make sense of reasoning about continuity.



Chapter 4

Justification Classicism

4.1 Truth, Knowledge, and Justification

One might think of logic broadly as the study of reasoning. The following question then

arises: what does reasoning—and thereby logic—have to do with? That is, when we reason,

what sorts of things are we reasoning about? Sergei Artemov distinguishes three competing

paradigms in the development of logic Artemov (2020). These, in turn, provide three com-

peting answers to the above. There is the truth paradigm, on which reasoning has to do with

the behavior of truth and truths. There is the epistemic paradigm, under which reasoning

will have to do also with the behavior of knowledge. The epistemic paradigm also involves

truth insofar as knowledge involves the concept of truth. And, lastly, there is the justification

paradigm, on which reasoning will have to do with justification and truth, to the extent that

justification involves the concept of truth.

Truth, knowledge, and justification correspond to three levels of precision in logical lan-

guage. If truth, for example, is the answer to the question we began with then we might

think non-modal language is prima facie a sufficiently precise language to articulate the sorts

of distinctions we want to make in the study of reasoning. If instead reasoning has to do with

52
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knowledge, propositional language will be too coarse-grained.
1

It is natural thus to think

that modal language is the ideal level of precision at which to present our axioms, given

that the behavior of knowledge and truth is what we aim to characterize with those axioms.

Finally, if justification is taken to be the relevant concept, we will need an even more precise

language. That is, we will make use of the language of justification logic or explicit modal

logic.

Artemov has shown that for the purposes of modelling epistemic situations, the third

paradigm is preferable (see Artemov (2011), Artemov and Fitting (2019), and Artemov

and Fitting (2021)). But how do these paradigms fare as answers to the question of the

proper subject of reasoning? The distinction between Classical and Constructive Reasoning

was first posed by L.E.J. Brouwer, who sought to radically revolutionize mathematics.
2

He characterized his opposition as Classical. Today this distinction has entered common

parlance. We want an account of the subject of reasoning to have a way of explaining types

of reasoning. Hence, one way of measuring how well the paradigms answer the question of

the proper subject of reasoning is by seeing how well they can account for the difference

between Classical Reasoning and Constructive Reasoning.

The truth paradigm presents the following difference between Classical and Constructive

Reasoning. Classical Reasoning, on this view, has to do with the behavior of classical

truth. Within this paradigm, Classical Reasoning is formalized by non-modal logic, that is,

either CPC or Classical First-Order Logic. For our purposes, we consider the propositional

case since here relevant distinctions already arise. On this view, Constructive Reasoning,

on the other hand, has to do with constructive truth. This is formalized by Intuitionistic

1
In the intuitionistic setting, however, the behavior of double negation allows us to make this distinction.

It is natural to understand F not preceded by two double negations as “F has an intuitionistic proof”
and ¬¬F as “F is consistent.” This is used in the modal context as well in Artemov and Protopopescu’s
Intuitionistic Epistemic Logic (IEL) Artemov and Protopopescu (2016). In IEL F is stronger than □F , which
is stronger than ¬¬F .

2
see Carl Posy’s (Posy, 2020, p. 2) for a genealogy of our use of classical and constructive in the context

of mathematics, beginning with Brouwer’s use of “classical mathematics” in his Brouwer (1908).
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Propositional Calculus IPC.

The epistemic paradigm captures Constructive Reasoning by making use of Gödel’s 1933

Gödel (1933) interpretation of IPC in the modal logic S4. On this view, Constructive Reason-

ing is articulated by S4-knowledge, that is, knowledge that distributes over the conditional,

is factive, and satisfies positive introspection. Through a well-known argument, S5 is known

to relate to CPC as S4 relates to IPC. Within the epistemic paradigm, classical logic is then

articulated by the concept of S5-knowledge. This is like S4-knowledge except that it satisfies

negative introspection as well.

Within the justification paradigm we can also distinguish between Classical and Con-

structive Reasoning. In his 2001 “Explicit Provability and Constructive Semantics,” Sergei

Artemov—building upon a line of reasoning going back to Kolmogorov and Gödel—famously

presented a justification paradigm account of Constructive Reasoning Artemov (2001).
3
On

this view, the relevant concept is proof, specifically, proof as articulated by the axioms of his

system the Logic of Proofs or LP. Building upon Gödel’s 1933 interpretation of intuitionistic

logic in the modal logic S4, Artemov showed that the modal logic S4 could be realized in

his more expressive Logic of Proofs LP.
4
In doing so, he provided a formal account of BHK

semantics. In his 2020 “Manifesto of Justification Logic,” Artemov writes (Artemov, 2020,

p. 2):

In particular, Justification Logic realizes Gödel’s aforementioned suggestion of

modeling constructive reasoning in classical logic augmented by an explicit rep-

resentation of proofs. This led to a formalization of the paradigmatic constructive

semantics offered by Brouwer, Heyting, and Kolmogorov.

3
Let us distinguish between the epistemic and justification paradigms, on one hand, and the logics that are

representative of them on the other. On the logics, one might consider justification logic just explicit modal
logic or alternatively modal logic to be simplified justification logic. The relation between the paradigms
will be determined between how we think knowledge (without a witness) relates to explicit justification.

4
Artemov also provided an interpretation of LP in terms of arithmetic proofs Artemov (2001).



CHAPTER 4. JUSTIFICATION CLASSICISM 55

[. . . ] Justification Logic is a vibrant and lively field which—due to its founda-

tional contributions—emerges as a basic logical paradigm of the present.

Artemov’s Logic of Proofs beckons us to a paradigm of the present (without making a claim

to eternal validity of this paradigm). Further, the Logic of Proofs provides an account of

Constructive Reasoning that operates fully within a classical picture of truth. This last point

is of note. Hence, what makes Constructive Reasoning constructive is not the properties of

constructive truth but instead the architecture of proof over a background theory of classical

truth (Artemov, 2001, p. 8):

1. If t is a proof of F → G and s is a proof of F , then t applied to s is a proof of G;

2. If t is a proof of F , then t extended with any other proof is a proof of F ;

3. If t is a proof of F , then F is true;

4. If t is a proof of F , then the proof check of that fact is a proof that t is a proof of F ;

Proof distributes to the consequent of the conditional when applied to a proof of the con-

ditional’s antecedent. It also has the property that it can be extended. That is, if someone

produces a proof of F then anything extending that proof is also a proof of F . Proof is

factive; that is, if F is proved then F is true. Lastly, proof checks are themselves a form of

proof. That is, a check that t is a proof of F is itself a proof that t is a proof of F .

The justification logic corresponding to S5—(JS5)—and its applications to formal epis-

temology has been discussed in the literature (see Pacuit (2006) and Rubtsova (2006)). The

contribution of this chapter is not to the formal epistemological applications of JS5. Our

suggestion is instead that from the following:

Classical Reasoning ↪ CPC ↪ S5 ↪ JS5
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we can learn something about what Classical Reasoning really is. Because Classical Reason-

ing is fleshed-out in terms of CPC, which can be Gödel-interpreted in S5, which can then be

in turn realized in JS5, we suggest something new can be learned about Classical Reasoning

itself.

To the knowledge of the author, while the corresponding justification logic has been

much discussed, a justification paradigm account of Classical Reasoning in this sense has

not yet been given. In this chapter, we provide a justification paradigm account of Classical

Reasoning. On our view the relevant concept is not proof, as it is in Artemov’s account of

Constructive Reasoning, but is instead explicit justification. Just as, in the propositional

case, classical truth extends constructive truth, we suggest that explicit justification extends

Artemov’s notion of proof with the following:

If t is not an explicit justification of F , then there is an explicit justification that

t is not an explicit justification of F .

We will show that just as proof is the justification paradigm concept taking the place of

constructive truth, explicit justification can do the work of classical truth. In doing so, we

articulate the classical portion of Artemov’s justification paradigm:

Key Concept Language Logic

Truth Paradigm Constructivism Constructive Truth Propositional IPC
Truth Paradigm Classicism Platonistic Truth Propositional CPC

Epistemic Constructivism S4-Knowledge Modal S4

Epistemic Classicism S5-Knowledge Modal S5

Justification Constructivism Proof Explicit Modal LP
Justification Classicism Explicit Justification Explicit Modal JS5

Now, which pair provides the best account of the difference between constructive and Classical
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Reasoning?
5

Most will find the truth paradigm intuitive. Indeed, when we first teach students

about Classical Reasoning we do so by presenting CPC. It would thus not be difficult for a student

to conclude that there was something conceptually privileged about CPC. At this point, we hear

the non-classical logician suggestively asking:

Why do we assume that classical logic is conceptually privileged?

The non-classical logician will have no shortage of shortcomings of classical logic to bring up at

their disposal. Indeed, they may here put forth that while many aspects of Classical Reasoning

are well-motivated, the philosophical public outside of philosophical logic has been misled into a

privileging of Classical Reasoning for historical, sociological, and—importantly—non-philosophical

reasons. And they are not wrong to look deeper into the reasons for classical logic’s prominence.

We ask a similar question:

Why do we assume that non-modal(explicit or not) logic is conceptually privileged?

Indeed, it is worth mentioning the historical precedent set by Frege in his Begriffsschrift (see (Kneale

and Kneale, 1962, p. 548) and (Fitting and Mendelsohn, 1998, pp. 4-5) for discussion). Just as

non-classical logicians can genealogize the origin of the classical bent, one might do something

similar for the birth of the non-modal (explicit or not) bent, that is, what we have called the truth

paradigm.

With this preliminary motivation in mind, we will provide stronger support for the claim that the

truth paradigm falls short in capturing the difference between Constructive and non-Constructive

reasoning. We focus our question slightly to the following: does the truth paradigm or the jus-

tification paradigm provide a better account of the difference between classical and Constructive

5
Note that, of course, in order to focus on relevant distinctions, this picture simplifies some things. Within

what we called Truth Paradigm Constructivism, for example, there are a handful of different philosophical
positions. On our view, this includes the traditional versions of the Brouwerian picture which explains Con-
structive Reasoning in terms of constructive truth (see Brouwer (1912)), the Dummettian view on which
conditions of assertion instead play the central role (see Dummett ((1975)), and it also includes the presenta-
tions of intuitionistic logic understood in terms of Fine’s truth maker semantics Fine (2014). Fine’s approach
to intuitionistic logic—and Van Fraassen’s Van Fraassen (1969) previously developed similar approach to
classical logic—is particularly interesting as it makes use semantic ideas that go beyond traditional Truth
Paradigm approaches. These approaches introduce nuance on the semantic side, without introducing the
sorts of syntactic-nuance available in modal and justification logic.
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Reasoning?
6
We argue that the justification paradigm fares better than the truth paradigm because

it does not fall prey to the paradoxes of material implication. It is well-known that the classical

and constructive versions of the truth-paradigm suffer from the paradoxes of material implication.

These are a family of provable conditionals—of CPC, and some of IPC—in which the antecedent

does not relate to the consequent. We show that the justification paradigm avoids these paradoxes.

4.2 Artemov’s Logical Foundations of Justification Con-

structivism

In section 4.1, we presented three paradigms within logic: the truth paradigm, the epistemic

paradigm, and the justification paradigm. We narrowed our focus to the truth paradigm and the

justification paradigm. We asked the question: which can better present the difference between

constructive and Classical Reasoning? The truth paradigm accounts of constructive and Classical

Reasoning have been well-known in logic for the last century. Indeed, it is nearly assumed that

when we mention classicism or constructivism we do so within the foundational picture of the truth

paradigm.

In this section, we outline Artemov’s justification paradigm account of Constructive Reasoning.

In the next section, we present an Artemov-style justification paradigm account of Classical Rea-

soning. Gödel embedded Heyting’s Intuitionistic Propositional Calculus (IPC)—which was itself

intended as a representation of L.E.J. Brouwer’s ideas on intuitionistic truth—in the modal logic

S4 Gödel (1933). He did so by showing that if one prefixed each subformula of a theorem of IPC

with a modal operator, then the resulting formula would be provable in S4.
7
Where F

∗
is the result

6
The reader will excuse us for not considering further the epistemic paradigm. While we will talk about

modal logic—on the way to justification logic—our interest is instead what the truth paradigm and the
justification paradigm can tell us about Classical and Constructive reasoning. The limits of the epistemic
paradigm have been well-studied by Artemov and the justification logic community. Indeed, the modal
paradigm can be viewed as a limited version of the explicit modal paradigm insofar as loosely everything
that the modal paradigm can do can be replicated in the explicit modal paradigm.

7
This method of translation is initially due to Orlov. See Došen (1992) for discussion. Of course, there

are other translations that work as well.
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of syntactically prefixing a □ before every subformula in F . For example,

(A→ B)∗ = □(□A→ □B)

Gödel (⇒) Gödel (1933) and McKinsey and Tarski (⇐) McKinsey and Tarski (1944) showed:

Theorem 4.2.1 IPC ⊢ F ⇔ S4 ⊢ F
∗

This laid the foundations for what we called the epistemic paradigm account of Constructive Rea-

soning. Gödel’s 1933 interpretation gives a reading of constructive truth in terms of “proof”
8

understood in terms of a modality characterized by S4 axioms Gödel (1933).

Artemov examined these concepts in the language of explicit modal logic. A way to see why

one would want to do this at all is to notice the polysemy of:

□F → □ □ F

when □ is read as proof. One reading is:

If t is a proof of F , s is a proof that t is a proof of F .

another is:

If t is a proof of F , there is a check that t is a proof of F .

Artemov showed that there is a realization of S4 in the Logic of Proofs (Artemov, 2001, p. 25).

A realization is a replacement of modalities in a modal logic formula by proof terms. A normal

realization is one that populates negative occurrences of modalities with proof variables in the

context of an axiomatically appropriate constant specification. Artemov thus proved Artemov

(2001):
9

Theorem 4.2.2 If S4 ⊢ F then LP ⊢ F
r
for a normal realization r

8
But not, of course, provability (Gödel, 1933, p. 301).

9
The other direction is much simpler. It makes use of a mapping from every proof term to a modality,

known as the forgetful projection.
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In doing so, Artemov formally introduces the existential reading of modality. It is this step from

non-explicit modality to explicit modality that is of central interest for our project.
10

The formal

picture we have is thus:

Constructive Reasoning ↪ IPC ↪ S4 ↪ LP

What is the philosophical account here? Artemov writes (Artemov, 2001, p. 7):

This confirms Kolmogorov’s assumption of 1932 that intuitionistic logic IPC is the

calculus of proofs (solutions to problems) in classical mathematics . . . and achieves the

original objective by Gödel [1933] to define IPC via the classical notion of proof.
11

The philosophical picture is thus one where Constructive Reasoning is characterized in terms of

two types of objects: classical truths, on one hand, and LP proofs—which represent classical math-

ematical proofs—on the other.

4.3 The Logical Foundations of Justification Classicism

In this section, we provide the logical foundations for a justification paradigm account of Classical

Reasoning. Recall that here, instead of the concept of proof over a classical theory of truth, we

make use of the concept of explicit justification over a classical theory of truth.

10
Artemov took this a step further by then using his explicit modal logic characterization of S4—and

thereby also of IPC and the BHK clauses—to show that LP can be embedded into arithmetic by making use
of proof predicates. This ultimately thus provides an account of BHK in terms of the well-known machinery
of specific arithmetical proofs.

11
Artemov’s account shows the ways in which Kolmogorov’s thinking in terms of problems diverged from

that of Heyting. Kolmogorov emphasized that (Kolmogorov, 1932, p. 153):

The fact that I have solved a problem is a purely subjective one of no general interest in itself.
Logical and mathematical problems, however, possess a special property of universal validity of
their solutions, that is, if I have solved a logical or a mathematical problem, then I can present
the solution in a commonly accepted way, and this solution must necessarily be recognized as
being correct, although this necessity is of a somewhat ideal nature since the reader is assumed
to have adequate qualification.

It is difficult to see how the checkability aspect of proofs would be represented purely propositionally. As we
discussed, we lose the potential for polysemy in the modal case.
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With the Gödel-Artemov foundations of constructivism in mind, it is not difficult to see that

logically a similar story holds in the Classical case:

CPC ↪ S5 ↪ JS5

That is, CPC embeds into S5 which can be realized in JS5. First, the argument that classical

tautologies embed into S5 has been well-known in the community for years (indeed, during the

author’s education the following was assigned as homework):

Theorem 4.3.1 CPC ⊢ F ⇔ S5 ⊢ F
∗

The relevant case to consider is just ¬¬F → F . The Gödel translation of this is □(□¬ □ ¬ □ F →

□F ). Indeed, ◊□F → □F is an S5 validity; rewritten, this is ¬□¬□F → □F . Necessitation and

distribution yields □¬ □ ¬ □ A → □ □ A. In S5 any number of modalities are equivalent, we get

□¬ □ ¬ □A→ □A. One more necessitation yields our desired result.

For ⇐, we observe that S5 axioms stripped of □ modalities are classical tautologies. We check

that if F → G and F are tautologies then G is as well.

Realization theorems for S5 were proved by Artemov-Kazakov-Shapiro (1999) Artemov et al.

(1999), Pacuit (2006) Pacuit (2006), Rubtsova (2006) Rubtsova (2006), and Fitting (2011) Fitting

(2011). Here we consider the following version of realization:

Theorem 4.3.2 S5 Realization

If S5 ⊢ F then JS5 ⊢ F
r
for a normal realization r.

The above furnishes the logical portions of our justification paradigm account of Classical Reason-

ing. That is, we have:

Classical Reasoning ↪ CPC ↪ S5 ↪ JS5

Here, instead of stopping after the first arrow and focusing on truth, we can look onward beyond

S5 knowledge to JS5. This then gives us a way of understanding our starting point, the idea

of Classical Reasoning, in terms of explicit justification. Just as Artemov with LP is able to
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provide a justification paradigm account of Constructive Reasoning, we suggest that a justification

paradigm account of non-Constructive Reasoning should be one centered upon the concept of

explicit justification.

Explicit Justification allows that if t is not a justification for F , then something is a justifi-

cation for that fact. The truth paradigm approach locates the main difference between classical

and constructive approaches in the theory of truth presupposed by the respective camps. The

justification paradigm approach locates this difference instead in the theory of justifications. In

the justification paradigm, for the Artemov-style constructivist, justifications are limited to proofs.

For the classicist, justifications include also those achieved through negative introspection, which

expresses a form of omniscience.

4.4 Another Route to Justification Classicism

There is another route by which we might provide a justification paradigm account of Classical

Reasoning. We do so by noting Melvin Fitting’s 1970 (Fitting, 1970, p. 530):

Theorem 4.4.1 CPC ⊢ F ⇔ S4 ⊢ F
∗
, for suitably defined Fitting Translation

∗
.

The translation Fitting uses is as follows:

Definition 4.4.2 Fitting Translation:

1. For atoms A, (A)∗ = □◊A;

2. For F
∗
and G

∗
,

(a) (¬F )∗ = □◊¬(F∗);

(b) (F ∧G)∗ = □◊((F∗) ∧ (G∗));

(c) (F ∨G)∗ = □◊((F∗) ∨ (G∗));

(d) (F → G)∗ = □◊((F∗) → (G∗)).
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This translation arose from Fitting’s dissertation Fitting (1969). His dissertation treated, among

other things, how Cohen’s independence results could be shown using Kripke models. Fitting

recounted the history of his development of the □◊-translation to the author in personal commu-

nication Fitting (2022):

It was known that no inner model (such as the constructible sets) could be used to

show the independence results. My idea was to look at Cohen forcing as if it were

constructing an inner model, but an inner model in an intuitionistic sense. Then one

could extract classical independence using the double negation embedding. It was

clear to many at the time that there was a connection between Cohen’s work and

intuitionistic logic. I did the details.

Now, in Cohen’s book, section 4 of chapter IV, he gives a construction in Lemma 4

that can be used to extract a classical model from his forcing construction. At some

point I realized that something much like that construction could be used to prove

a box diamond embedding for S4, corresponding to the double negation intuitionistic

embedding, and that led to my JSL paper Fitting (1970).

. . .

In Smullyan and Fitting (1996) [with former thesis advisor Smullyan], instead of using

intuitionistic logic, I used the modal logic S4, which I think presents things much more

clearly. The connection with classical logic is then via the box diamond embedding

(which is given a different proof in the book from the earlier semantic one).

Now, in providing this translation, Fitting articulates what we have called an epistemic paradigm

reading of Classical Reasoning. On this view, instead of the concept of the classical truth of F ,

we make use of “S4-knowledge that it is not the case that there is S4-knowledge of ¬F .” In other

words, classical truth is replaced with (S4)-knowledge of the consistency of F .

We can again make use of Theorem 4.2.2, Artemov’s S4/LP Realization Theorem, to take this

a step further to the justification paradigm. This then gives us a picture of Classical Reasoning in
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terms of Artemov’s concept of proof:

Classical Reasoning ↪ CPC ↪ S4 ↪ LP

Here the second arrow is by Fitting’s Theorem and the third is by the usual S4 Realization Theo-

rems.

Consider a tautology F . In the truth paradigm, reasoning about F is reasoning about F ’s truth.

In the Gödelian epistemic paradigm, we are reasoning about knowledge when we reason about F
G
,

where F
G
is the Gödel translation of F . In the Fitting style epistemic paradigm, we are reasoning

about knowledge of consistency when we reason about F
∗
. The Fitting-style justification paradigm

would translate, for example, the arbitrary atom A as:

□◊A

Or □¬ □ ¬A. We would then realize this as:

t ∶ ¬x¬A

We can read this as “there is a proof t that it is not the case that the proof variable x is a proof of

¬A.” In this sense, we can think of this as proof of consistency.

4.5 The Justification Paradigm and the Paradoxes of

Material Implication

It is well-known that Classical Propositional Calculus falls prey to the paradoxes of material im-

plication. Indeed, this is a problem for the truth paradigm generally as it is easy to see that

Intuitionistic Propositional Calculus also falls prey to some of those paradoxes. In this section, we

introduce seven such paradoxes that arise within CPC. We show which paradoxes still arise for IPC.



CHAPTER 4. JUSTIFICATION CLASSICISM 65

We discuss the criterion that this runs afoul of, the stay on topic principle, and its proposition-

ally based formal articulation in terms of the propositional-variable sharing principle. We propose

an alternative criterion, the justification variable sharing We then show that for any paradoxical

implication F → G, there is a realization r where the Gödel-translated formula [F∗ → G
∗]r is

provable in JS5.

We suggest that the truth paradigm’s focus on the propositional (specifically, non-modal—

explicit or otherwise) level of precision engenders paradoxes of material implication. These formulas

are problematic, broadly, because they fail to satisfy conditions of relevance. Mares gives the

example Mares (2020):

If the moon is made of green cheese, then it is raining in Equador or it is not raining

in Equador.

What goes wrong here? Mares explains Mares (2020):

[T]here is a formal principle that relevant logicians apply to force theorems and infer-

ences to “stay on topic”. This is the variable sharing principle. The variable sharing

principle says that no formula of the form A→ B can be proven in a relevance logic if

A and B do not have at least one propositional variable (sometimes called a proposi-

tion letter) in common and that no inference can be shown valid if the premises and

conclusion do not share at least one propositional variable.

One way of formally articulating the stay on topic principle is by the variable sharing principle.

Note that there are two principles here. There is the general principle that inferences stay on

topic and then there is the formal interpretation in terms of the variable sharing principle. We

will propose a justification paradigm formal interpretation of the stay on topic principle. But first,

there are a handful of examples of paradoxes of material implication:

1. B → (A ∨ ¬A);

2. A→ (B → A);
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3. ¬(A→ B) → A;

4. ¬A→ (A→ B);

5. ((A→ B) ∧ (C → D)) → ((A→ D) ∨ (C → B));

6. (A→ B) ∨ (B → C);

7. ((A ∧B) → C) → ((A→ C) ∨ (B → C)).

While particular logicians may disagree about the paradoxicality of some of these, it is not hard to

find those who take each particular one to be paradoxical. If we look to CPC as the paradigm formal

articulation of Classical Reasoning, it is implausible not to run into these paradoxes. Indeed, it is

precisely this feature of the truth paradigm—it’s focus on the propositional level of precision—that

seems responsible for philosophical logicians’ inquiry into subsystems of CPC. If instead we focus

on justification, we do not have this same problem.

Our strategy is to propose instead the justification sharing principle as a formal articulation of

the stay on topic principle. This is the following:

Justification Sharing Principle: Conditional inferences are on topic if the an-

tecedent and consequent share justification terms.

The following argument is a first attempt toward our goal. Indeed, it is easy to see that for an

arbitrary provable conditional, JS5 will connect the antecedent and consequent with a proof term.

Consider the following:

1. CPC ⊢ F → G

2. JS5 ⊢ F → G

3. JS5 ⊢ h ∶ (F → G), for some ground proof term h

4. JS5 ⊢ x ∶ F → (h ⋅ x) ∶ G
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The last step follows by standard JS5 reasoning using the application axiom. Now, the arbitrary

theorem:

x ∶ F → (h ⋅ x) ∶ G

will still violate the relevance logician’s principle of propositional variable sharing. It does not, how-

ever, violate the justification-approach account of relevance, the justification term sharing principle,

for the antecedent justification is a part of the consequent justification. We can read the above as:

If x is a very general reason to accept F , then a reason for which F → G is provable—

i.e., a ground term—applied to x is a reason for G.

Put another way, we would be misguided to focus on the fact that CPC proves conditionals that

tie together unrelated antecedents and consequents. Instead, we should note that it proves that

those pieces are related but only in the most general logical way. Explicit justification instead

explains the way in which relevance obtains. Our thesis is that the “if then” of non-Constructive

Reasoning is characterized not by the material implication F → G but by the explicit implication

t ∶ F → f(t) ∶ G.

What about cases of the paradoxes of material implication that arise in the more expressive

language of explicit modal logic? The problem with the argument we presented is that even in the

more expressive language of justification logic, the formulas F and G are still only at the level of

propositional precision. We want to be able to do more than just dress the outside of propositional

formulas. It can be proved that:

Theorem 4.5.1 If CPC ⊢ F → G, then for some realization r with shared justification variables,

JS5 ⊢ [F∗ → G
∗]r.

The reader will recall that the
∗
translation of F requires us to prefix a □ before every subformula

of F . By the definition of
∗
, we know that X

∗
will always begin with □. So, we write □F ′ for F∗

and □G′ for G∗, for appropriate S5 formulas F
′
and G

′
. The outermost box is always recoverable

using necessitation.

We need the following lemma:
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Lemma 4.5.2 If CPC ⊢ F → G, then S5 ⊢ F
′
→ G

′
.

We prove the above by contrapositive. We suppose that S5 ⊬ F
′
→ G

′
. Then there is an S5 model

M = {W,R,⊩} with a u ∈ W where u ⊮ F
′
→ G

′
. Without loss of generality, we assume that

M consists of one equivalence class, and hence for all atomic formulas p, □p is true everywhere

in M or □p is false everywhere in M. Note that since we are considering Gödel translations of

propositional formulas, each propositional letter occurs boxed.

Everywhere in F
′
→ G

′
, for each propositional variable p, we replace each boxed occurrence

of that variable □p with a fresh propositional letter p
′
. The resulting formula, F

′′
→ G

′′
, is an S5

formula with fresh propositional variables. We then collapse model M into the singleton S5 model

M′′
with W

′′
= {u}, preserving evaluations in u.

The following claim proves that F
′′
and G

′′
preserve their truth values in M′′

. This will mean

that F
′′
is true and G

′′
is false in M′′

, by our hypothesis for Lemma 4.5.2. [1] For each subformula

X
′′
of F

′′
→ G

′′
, and for each u ∈ M, u ⊩ X

′′
iff M′′

⊩ X
′′

We prove this by induction on

formula. In the atomic case when X = A, w ∈ M, w ⊩ A iff w ∈ M′′
w ⊩ A. This is because

each world at M has the same valuation of atoms and M′′
is the version of M collapsed into one

world.

The induction steps are straightforward. Stripping all boxes of F
′′
and G

′′
yields the purely

propositional formulas F
′′′
and G

′′′
with fresh propositional variables p

′
. We now need the following:

[2] For each subformula X
′′
of F

′′
→ G

′′
, M′′

⊩ X
′′
iff M′′

⊩ X
′′′

We prove this by induction on

X. If X is an atom then X
′′
= X

′′′
and so the lemma holds.

We look at two induction steps. Let X
′′
= Y

′′
→ Z

′′
. Then X

′′′
= Y

′′′
→ Z

′′′
. We assume the

lemma holds for the pairs Y
′′
and Y

′′′
and Z

′′
and Z

′′′
. Truth functionally, then, the lemma holds

for X
′′
and X

′′′
.

Let X
′′
= □(Y ′′). By induction hypothesis, we assume that the lemma holds for Y , hence

w ⊩ Y
′′
iff w ⊩ Y

′′′
. Because the model M′′

is a singleton model, w ⊩ φ iff w ⊩ □φ for any φ.

Since X
′′′
is □(Y ′′) stripped of □, X ′′′

= Y
′′′
. Therefore, w ⊩ □Y ′′ iff w ⊩ Y

′′
iff w ⊩ Y

′′′
, which

is X
′′′
. Hence, F

′′′
→ G

′′′
is false in M′′

and F
′′′
→ G

′′′
is not derivable in CPC. Since F

′′′
and G

′′′
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are just the original F and G with renamed propositional variables (p
′
instead of p, for each p),

F → G is not derivable in CPC either.

We have that if CPC ⊢ F → G, then S5 ⊢ F
′
→ G

′
. We take F

′
→ G

′
and realize it in JS5 in

an arbitrary way to get (F ′)r → (G′)r. So, JS5 ⊢ (F ′)r → (G′)r. By Constructive Necessitation,

JS5 ⊢ h ∶ ((F ′)r → (G′)r) for a ground term h. Since JS5 ⊢ h ∶ ((F ′)r → (G′)r), by application,

we have JS5 ⊢ x ∶ (F ′)r → [h ⋅ x] ∶ (G′)r, which is a normal realization of F
∗
→ G

∗
in JS5.

We have shown that if CPC ⊢ F → G, then for some realization r with shared justification

variables, JS5 ⊢ [F∗ → G
∗]r. This means that, for every classically provable conditional—

paradoxical or not—there is a proof of its normal realization with shared proof variables. This

shows that each paradoxical conditional of CPC can be realized in a non-paradoxical way in JS5.

4.6 Realization and Relevance

While the structure of relevance is not visible in propositional logic alone, when we move to the

language of explicit modal logic this deep structure manifests itself. Instead of looking to smaller

and smaller fragments of classical logic, we suggest that we turn toward more and more expressive

extensions of classical logic.

The way in which realization accounts for relevance has to do with the meaning of modality

in the explicit modal logic context. Traditionally, modality is read with a universal force; it is

necessary that F if F holds in all possible worlds. Kripke semantics reflects this intuition. While

this seems correct as an account of metaphysical necessity, necessity is said in many ways. The

explicit modal logic revolution turns the Kripkean paradigm on its head; here, a proof term has

an existential force. This was, indeed the sort of reading Gödel gave S4 modalities in his Gödel

(1933).

Since we deal with classical logic and S5, we extend Kolmogorov’s reading of implication as

functional dependency between antecedent and consequent beyond its original application.
12

We

12
Kolmogorov’s discussion is found in Kolmogorov ((1925) and Kolmogorov (1932). van Dalen discusses

Kolmogorov’s contribution in van Dalen (2004b). See also Došen for an overview of Orvlov’s early work on
relevance logic Došen (1992) in the context of the contemporaneous axiomatizations of intuitionistic logic.
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suggest only that the functional account of implication understood through the prism of realization

accounts for relevance connections in classical logic.

Consider the modal conditional □F → □G. If these modalities both have an existential sense,

we first get:

∃x “x proves F” → ∃y “y proves G”

It makes sense to then realize negative occurrences of modalities with proof variables standing for

general proof terms. But a proof in a negative position and a proof in a positive position have

different meaning. We convert this to ∀x(“x proves F” → ∃y “y proves G”). We then Skolemize

the existential quantifier to get:

∀x(“x proves F” → “f(x) proves G”)

where f(x) is a function of x.

The proposal of this chapter is that Skolemization is what ensures relevance. The formulas,

F and G can have nothing to do with one another in terms of propositional variables. But the

realization of □F → □G will connect (□F )r with (□G)r in terms of relevance because the first

modality is realized as an argument for the second.

For reasons of space, we limit our discussion to the first of the aforementioned paradoxes. It

should be clear to the reader how, with some effort, this analysis can be applied with its full power

generally to paradoxes of material implication. Consider B → (A ∨ ¬A). While propositions A

and B can be completely independent, the above is nonetheless easily provable in classical logic.

We return to Mares’ example Mares (2020):

The moon is made of green cheese. Therefore, either it is raining in Ecuador now or it

is not.

Indeed, what seems wrong with the above is that B can have nothing to do with A and ¬A.
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We begin by Gödel translating B → (A ∨ ¬A) into:

□(□B → □(□A ∨ □¬ □A))

This formula has different realizations in JS5. It suffices for our purposes to present one such

meaningful (normal) realization where the relevance connections of → are emphasized.

We begin by replacing the modalities in □B and in □A with proof variables:

□1(y ∶ B → □2(x ∶ A ∨ □3¬x ∶ A))

Modality 3 can be thought of as occurring by negative introspection. Hence, here we set r(□3) =?x:

□1(y ∶ B → □2(x ∶ A∨?x¬x ∶ A))

Since JS5 ⊢ B → (x ∶ A∨?x ∶ ¬x ∶ A), by constructive necessitation we have that there is a

ground term g such that:

JS5 ⊢ g ∶ [B → (x ∶ A∨?x ∶ ¬x ∶ A)]

Using an instance of application and modus ponens, we get:

JS5 ⊢ y ∶ B → (g ⋅ y) ∶ (x ∶ A∨?x ∶ ¬x ∶ A)

This only leaves:

□1[y ∶ B → (g ⋅ y) ∶ (x ∶ A∨?x ∶ ¬x ∶ A)]

Modality 1 is a final constructive necessitation on our whole formula, so we set r(□1) = h for some

ground term h. This yields:

h ∶ [y ∶ B → (g ⋅ y) ∶ (x ∶ A∨?x ∶ ¬x ∶ A)]



CHAPTER 4. JUSTIFICATION CLASSICISM 72

We can now return to Mares’ example:

We have a specific reason ((h)) to think that [if something provides a reason (y) for

the moon being made of green cheese, then there is a specific reason (f(y) = (g ⋅ y))

that (either something provides a reason (x) that it is raining in Ecuador or there is

a specific reason (?x) for which nothing provides a reason for (¬x) it being raining in

Ecuador)].

Now, in both the cases of:

B → (A ∨ ¬A)

and:

h ∶ [y ∶ B → (g ⋅ y) ∶ (x ∶ A∨ ?x ∶ ¬x ∶ A)]

we have violations of the propositional variable sharing principle. Indeed, our translation did not

change the propositional variables of our initial formula. In a deeper sense, however, h ∶ [y ∶ B →

(g ⋅ y) ∶ (x ∶ A∨?x ∶ ¬x ∶ A)] satisfies the desiderata of staying on topic.

Here the conditional connects a variable over reasons (y) and a specific reason g, to get (g ⋅ y).

Moreover, that specific reason takes into account the aforementioned variable. What is asserted

here is something about the structure of proof variables; they are genuinely general and range over

specific bits of evidence. The conditional says that if something justifies that the moon is made of

green cheese, then we really could build a specific justification dependent on that that supported

the claim that either something justifies that it is raining in Ecuador or that something provides

counterevidence to the claim that something justifies it is raining in Ecuador. Again, this is a claim

about the general structure of evidence, in this sense, justification logic provides a framework for

relevance.

4.7 Conclusions

In this chapter we have discussed the following taxonomy:
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Key Concept Language Logic

Truth Paradigm Constructivism Constructive Truth Propositional IPC
Truth Paradigm Classicism Platonistic Truth Propositional CPC

Epistemic Constructivism S4-Knowledge Modal S4

Fitting-Epistemic Classicism S4-Knowledge of Consistency Modal S4

Epistemic Classicism S5-Knowledge Modal S5

Justification Constructivism Proof Explicit Modal LP
Fitting-Justification Classicism Proof of Consistency Explicit Modal LP

Justification Classicism Explicit Justification Explicit Modal JS5

We focused on the comparison between the truth paradigm and the justification paradigm. We

asked: which could better account for the difference between Classical and Constructive Reason-

ing? Our answer was that the justification paradigm did, because the truth paradigm engenders

the paradoxes of material implication. We showed how, in the justification paradigm, any paradox-

ical conditional has an explicit and non-paradoxical counterpart. In other words, we recover the

elements of relevance that were hidden by the conditional’s initial formalization in CPC.

We put forth that paradoxicality arises in CPC because the language is not sensitive enough

to display the structure of relevance. We translate to S5 due to the natural reading of S5 as a

logic of knowledge and its connections with CPC, and then we populate occurrences of □ with

explicit modalities in order to reveal elements of relevance that were buried in the coarseness of

propositional language. We present this as an advantage of the justification paradigm over the

truth paradigm.
13

In what sense does the justification paradigm avoid the paradoxes of material implication if

JS5, for example, still proves those paradoxical conditionals? The justification paradigm avoids the

paradoxes insofar as for each such conditional, a Gödel interpreted and justification term Realized

13
The truth paradigm constructivist might point out that something of what they thought was philosoph-

ically important was lost in translation to the language of modal logic and then to explicit modal logic.
Intuitionistic Justification Logic (see Artemov and Iemhoff (2007) and Dashkov (2009)) is a promising can-
didate to account for both the truth paradigm constructivist’s desire for a constructive theory of truth and
our proposal that the justification paradigm can avoid paradoxes of material implication.
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formula could be found.

What was the aim of this chapter with respect to the articulation of the justification paradigm?

Consider the familiar picture:

Constructive Reasoning ↪ IPC ↪ S4 ↪ LP

Artemov’s contribution to the above was twofold. Of course, he provided the realization of S4 and

the arithmetical semantics for LP. Also, using the right side of the above to help understand the left,

he introduced a different account of what Constructive Reasoning itself had to do with. While the

technical background in the classical case has been in place for years, the interpretation of Classical

Reasoning itself in the justification paradigm has not. We aimed to provide this interpretation.

We consider one final question. In section 4.1, we introduced Negative Introspection as a part

of our interpretation of Classical Reasoning. But what role does Negative Introspection play?

5. If t is not an explicit justification of F , then there is an explicit justification that t is not an

explicit justification of F .

This is arguably an important part of the complete formulation of the Principle of Sufficient Reason,

the ancient philosophical thesis that everything has a reason.
14

Indeed, if something fails to be a

reason, the Principle of Sufficient Reason says there is a reason for why it fails in this way. This is

an omniscience principle in explicit modal logic. The thought here is that explicit justification—

understood as the classical counterpart to Artemov’s constructive proof, characterized by LP—is

far reaching. Even when an explicit justification fails, there is an explicit justification for why the

first one failed.

14
See Lovejoy (1963) for discussion of the Principle.



Chapter 5

Gödel’s Disjunction

5.1 Gödel’s Disjunction

In 1951 Kurt Gödel gave the 25
th

Josiah Willard Gibbs Lecture entitled “Some basic theorems

on the foundations of mathematics and their implications.”
1

Therein he argued for his famous

disjunction (Gödel, 1951, p. 310):

Either. . . the human mind (even within the realm of pure mathematics) infinitely sur-

passes the powers of any finite machine, or else there exist absolutely unsolvable dio-

phantine problems of the type specified.

Now, a diophantine problem—one that only accepts integer solutions—is precisely what is refer-

enced in Hilbert’s 10th problem. Both disjuncts, Gödel contended, were “decidedly opposed to

materialistic philosophy” (Gödel, 1951, p. 311). Further, he claimed the disjunction was inevitable

and a mathematically established fact (Gödel, 1951, p. 310).

Gödel’s Disjunction has been heavily discussed and expounded upon since 1951 (see, for exam-

ple, Lucas (1961), Penrose (1989), Penrose (1996), and Horsten and Welch (2016)). Before anything

is proved about the relation between human and machine capabilities and absolute unsolvability, we

have to make a decision about how our formal tools will relate to the philosophical notions employed

1
For historical information on this lecture, see George Boolos Boolos (1995b).

75
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in the disjunction. While both sides of the disjunction contain concepts wanting of elucidation (see

Shapiro (1998) and Shapiro (2016)), since Gödel preferred the first of his two disjuncts,
2
a natural

starting point is with the concept of the power of the human mind. For economy of communication,

we will gloss this as reason.
3

The primary way that human reason has been formally treated in this is as an operator.
4
Fur-

thermore, it has been ascribed the very specific properties of a system developed by Stewart Shapiro

Shapiro (1985) and William N. Reinhardt Reinhardt (1985). Peter Koellner, for example, discusses

that system in this context (see Koellner (2016), Koellner (2018a), and Koellner (2018b)). Shapiro’s

Epistemic Arithmetic, or EA, is just PA with a K axiom for the modal operator, a Necessitation

rule, the 4 axiom, and T. More simply, EA is PA extended with an S4 operator, as presented

in Definition 2.6.2, which we discuss in more detail in chapter 2. EA thus has the advantage of

containing a system already much employed in the study of knowledge and with well-known ties to

proof and intuitionistic logic.

While EA has been used fruitfully to study Gödel’s Disjunction, the operator approach more

generally is not without drawbacks. A standard objection to the treatment of modality as an

operator in this context has to do with interaction with quantifiers and arithmetical predicates.

Halbach, Leitgeb and Welch point out that with a predicate P (x) we can express, (Halbach et al.,

2003, p. 272):
5

∀x(P (x) → Pr(x))

where Pr(x) is the arithmetical predicate for Gödelian provability. If instead we have an operator O,

we sacrifice the ability to tightly treat connections between our epistemic feature and the provability

predicate in this way.

2
See Hao Wang (Wang, 1996, p. 185) for discussion.

3
The gloss of reason on the power of the human mind is only meant to be general enough to include the

glosses that Gödel uses including understanding (Gödel, 1951, p. 310), the workings of the mind (Gödel,
1951, p. 311), the passage of judgements and mathematical knowledge (Gödel, 1951, p. 322).

4
Most treatments of modality do so in this way, a notable exception being Johannes Stern’s Stern (2016).

5
See also Stern (2016) for extended discussion of predicate treatments of modality.
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Further, when we treat the epistemic feature as an operator we forsake the possibility that

diagonalization might teach us something new about the concept thus modelled. Consider, for

example, W.V.O. Quine’s discussion of Gödel’s first Incompleteness Theorem (Quine, 2018, p. 17):

Gödel’s discovery is not an antinomy but a veridical paradox. That there can be no

sound and complete deductive systematization of elementary number theory, much less

of pure mathematics generally, is true. It is decidedly paradoxical, in the sense that it

upsets crucial preconceptions. We used to think that mathematical truth consisted in

provability.

Like any veridical paradox, this is one we can get used to, thereby gradually sapping

its quality of paradox. But this one takes some sapping. And mathematical logicians

are at it, most assiduously.

The quality of paradox of Gödel’s First Incompleteness Theorem has to do with the role it played in

upsetting the hope of some for a sound and complete formal characterization of arithmetic. Luckily,

as Quine points out, the quality of paradox is diluted with time and understanding, and new fields

of inquiry are opened (Quine, 2018, p. 17). To return to our epistemic feature, if we treat it as an

operator, we shy away from the possibility of learning something about the formalized concept by

analyzing a provable Gödel sentence in this way.

The focus of this Chapter is not the cost of the operator approach but rather the potential

benefit of the alternative. But, because predicate treatments of modality in the arithmetical context

will allow us to prove Gödel sentences for those predicates, the modal properties we grant our

predicate will need to be limited. In section 5.2, we reason generally about the Gödel sentence

in extensions of arithmetic. It is here that we face a fork. Provided the arguably well-justified

normality assumptions, we can either disallow an epistemic consistency statement (represented

by the D axiom, propositionally: ¬ □ ⊥) or require one, and thereby limit other axioms (most

notably coreflection F → □F and its instance 4, □F → □ □ F ). In section 5.3, we discuss the

first option. We prove some logical properties of such a system, and then discuss advantages and

disadvantages of that system. In section 5.4, we examine the second possibility. We again introduce
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a paradigmatic example of such a system, explore some of its logical properties, and then mention

some philosophical motivation and criticism.

5.2 Extending Arithmetic

Shapiro’s Epistemic Arithmetic treats its epistemic feature as an operator. If we are to try the

alternate approach, we must ask: what sort of predicate style approaches are available to us? We

will make use of the language of arithmetic extended with a unary predicate □(x). While we use

the single symbol throughout, the specific properties we ascribe to □(x) will be clear from context.

For generality, sometimes we will reason in ways that do not essentially rely on first-order properties

of □(x) and accordingly simplify notation. This too will be clear from context.

We make use of the language outlined in Definition 2.6.1.

Lastly, we must emphasize that the topic of discussion is idealized human reason. Since we

are discussing idealized human reason, we can limit our consideration to normal modalities, ones

governed by the K axiom (□(F → G) → (□F → □G)) and Necessitation rule (that if ⊢ F then

⊢ □F ). The justification for K is that it encodes an attractive relation between reason and Modus

Ponens. The justification for Necessitation is that it encodes a form of soundness with respect

to the underlying arithmetic. The argument is that since whatever given system we work with

will extend arithmetic, Necessitation in that extension yields that arithmetically provable formulas

fall under the extension of □(x). Because we want to leave open the possibility for intuitionistic

interpretation of our arguments, we reason in intuitionistically admissible ways where possible.

We can now observe that because Robinson Arithmetic Q is sufficient for the fixed point lemma,

Q taken along with a KD4 unary predicate □(x) will be inconsistent.

Lemma 5.2.1 KD4 + Q is inconsistent.
6

It suffices to show that iKD4 + G ⊢ ⊥.

1. □⊥ → ⊥ - D.

6
Versions of this argument and some others here were originally developed in Peluce (2018).
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2. A→ ¬ □A - Half of G.

3. □(A→ ¬ □A) - Necessitation on 2.

4. □A→ □¬ □A - K reasoning on 3.

5. □A→ (□A ∧ □¬ □A) - Propositional reasoning on 4.

6. □A→ (□ □A ∧ □¬ □A) - 4 reasoning on 5.

7. □A→ □(□A ∧ ¬ □A) - K reasoning on 6.

8. □A→ □⊥ - 7.

9. □A→ ⊥ - 1 and 8.

10. ¬ □A - 9.

11. ¬ □A→ A - Other half of G.

12. A - Modus Ponens with 10 and 11.

13. □A - Necessitation on 12.

14. ⊥ - 10 and 13.

That the above should hold makes sense. The Hilbert-Bernays-Löb derivability conditions have

the modal properties of Necessitation, K and 4, respectively (see, for example, (Smith, 2013, p.

258)). Since D is the generalized version of the consistency statement ¬Pr[⊥] interpreting □ as

provability, by the Second Incompleteness Theorem, we should anticipate Lemma 5.2.1.

Just as we provided a general way of reasoning about the derivability conditions in Lemma

5.2.1, we can also prove a general (and intuitionistically admissible) version of Richard Montague’s

1962 Theorem that truth with only the properties of a T modality is not definable Montague (1962).

While his investigation is intended as a strengthening of Tarski’s Theorem and conducted in that

context, reasoning propositionally shows us that the argument—for the most part—requires only

very general modal reasoning.
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Lemma 5.2.2 KT + Q is inconsistent.

It suffices to show that iK + T + Necessitation + G ⊢ ⊥.

1. A→ ¬ □A - Half of G.

2. □(¬ □A→ A) - Other half of G with Necessitation.

3. □A→ A - T.

4. □(□A→ ¬ □A) - From 1 and 3 propositionally, with Necessitation.

5. □(□A→ (□A ∧ ¬ □A)) - From 4 by iK reasoning.

6. □¬ □A - From 5.

7. ¬ □A - T on 6.

8. □¬ □A→ □A - K reasoning on 2.

9. □A - Modus Ponens on 6 and 8.

10. ⊥ - 7 and 9.

A corollary of Lemmas 5.2.1 and 5.2.2, then, is that there is no interpretation of a predicate □(x)

with these properties in PA:

Corollary 5.2.3 There is no interpretation of □(x) in PA, where □(x) is understood explicitly as

a KD4 or KT predicate.

Assume that there were such an interpretation. By the fixed point lemma, we would be able

to construct a G = A ↔ ¬ □ [A] such that PA ⊢ A ↔ ¬ □ [A]. By Lemmas 5.2.1 and 5.2.2,

respectively, this would mean that PA ⊢ ⊥. But PA is not inconsistent. So, there is no such

interpretation in PA of □(x) as a KD4 or T predicate.

Corollary 5.2.4 There is no interpretation of □(x) in PA, where □(x) is understood explicitly as

an EA predicate.
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This follows from the above and the fact that EA contains both KD4 and KT.

Theorem 5.2.5 For every normal modal logic L, where LD4 ⊬ ⊥ or LT ⊬ ⊥, there is no A such

that L ⊢ A↔ ¬ □A

Using the proofs of Lemmas 5.2.1 and 5.2.2, we can see that if there were such an A, then

LD4 ⊢ ⊥ or LT ⊢ ⊥, respectively. This, however, would contradict our assumption that LD4 ⊬ ⊥

and LT ⊬ ⊥.

What is the upshot of this discussion? Provided that we are treating our modality as a predicate

we must look elsewhere than Epistemic Arithmetic. Since our system will prove a Gödel sentence for

our epistemic feature, we must be cautious when ascribing modal properties to that feature. Given

that we endorse K and Necessitation as accounting for the sort of idealization involved in thinking

of human reason in Gödel’s sense, the key decision has to do with the acceptance or rejection of the

consistency statement. In the following sections, we contrast two systems that differ in preciesly

this respect.

5.3 Conclusiveness

In his “Minds, Machines, And Mathematics,” David Chalmers puts forth a predicate-style extension

of arithmetic. Since we take K and Necessitation as our base, the characteristic feature in his system

is 4. As we will see, 4 is associated with conclusiveness in the literature. Before turning to this, let

us present Chalmers’ system making use of □(x) instead of B(x):

Definition 5.3.1

1. Axioms and rules of PA;

2. □[F → G] → (□[F ] → □[G]);

3. ⊢ F then ⊢ □[F ];

4. □[F ] → □[□[F ]].
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The first item is our classical arithmetical base. The second and third formalize the idealization

arguably built into the relevant sense of human reason. The fourth item is the 4 axiom. In the

context of knowledge, this is known as the KK axiom.

Lemma 5.2.1 tells us that we cannot add D, the consistency statement, ¬ □ [⊥], to Chalmers’

system. But we can strengthen our system in a different manner. To see just how we might do

so, let us take a brief detour to the intuitionistic context. The Intuitionistic Epistemic Logic of

Knowledge was introduced by Sergei Artemov and Tudor Protopopescu (2016) to treat the rela-

tionship between intuitionistic truth, knowledge, and classical truth Artemov and Protopopescu

(2016). It is the system presented in Definition 2.3.16. Observe that we need not posit Necessi-

tation for IEL’s modality □, since it will be derivable. While it is easy to see that □F → ¬¬F is

classically equivalent to □F → F , these come apart in the intuitionistic context. (4) is therefore

known as intuitionistic reflection. Given the characteristic IEL coreflection axiom F → □F intu-

itionistic reflection is equivalent to D, that is, ¬K⊥. Insofar as the reasoning in Lemma 5.2.1 is

intuitionistically admissible, we can see the following holds as well:

Corollary 5.3.2 IEL +G ⊢ ⊥

This follows from Lemma 5.2.1 and the observation that IEL contains iKD4.

Reasoning similarly, we continue that:

Corollary 5.3.3 There is no interpretation of □(x) in Heyting Arithmetic (HA), where □(x) is

understood explicitly as an IEL predicate.

If there were, then HA would prove a Gödel sentence for the predicate that interprets IEL’s modality.

We again reason from the fact that IEL contains (intuitionistic) KD4 and that HA ⊬ ⊥ to the

conclusion that there is no such interpretation is possible.

Given Corollary 5.3.3 of course there is also no such interpretation in PA. For Artemov and

Protopopescu’s Intuitionistic Epistemic Logic of Belief, however, things are different. The Intu-

itionistic Epistemic Logic of Belief, or IEL
−
, is simply the system introduced in Definition 2.3.15

without intuitionistic reflection (4). Insofar as this does not contain a version of (intuitionistic) D,
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it is natural to think we might be able to provide a predicate treatment of it in the arithmetical

context. Furthermore, coreflection has the 4 axiom as an instance, therefore a predicate treatment

of IEL
−
over PA will contain Chalmers’ system. Consider the extension of arithmetic, which we call

CoPA for Coreflective PA, from Definition 2.6.4 and its intuitionistic version, CoHA, presented in

Definition 2.6.5.

While systems like CoPA and CoHA have been considered in the literature, these have been exten-

sions CoHA. One close example is Nik Weaver’s system P Weaver (2013a) and Weaver (2013b).

The most striking way in which P is an extension of CoHA is that it contains as an axiom

□[F ∨G] → (□⌜F ⌝ ∨ □[G]), which Artemov and Protopopescu have shown is provable in neither

IEL nor IEL
−
(Artemov and Protopopescu, 2016, p. 282). Weaver’s axiomatization in (Weaver,

2013a, p. 4) also contains the Barcan formula, which may be questionable from the intuitionistic

perspective. We discuss this in 6.6.

What sort of properties does this system have? We begin by noting that the epistemic feature

of CoPA respects proof. That is, if t is the code of a proof of F in CoPA, then we will have

that □[F ]. By “proof” here we mean Gödelian proof ; we symbolize that t is a proof of F as

Proof (t, ⌜F ⌝). More specifically, this says that t encodes a finite sequence of axioms, formulas, and

rule applications thereon of our system.

Theorem 5.3.4 Cofactive Modality Respects Proof

For each t, CoPA ⊢ Proof (t, ⌜F ⌝) → □[F ]

Either Proof (t, ⌜F ⌝) is true or it is not. If Proof (t, ⌜F ⌝) is true, then it holds that t is a

code for a proof of F . But then CoPA ⊢ F . By CoPA’s derived Necessitation rule, it follows

that CoPA ⊢ □[F ], and so CoPA ⊢ Proof (t, ⌜F ⌝) → □[F ]. If Proof (t, ⌜F ⌝) is not true, then

¬Proof (t, ⌜F ⌝) is true. Because ¬Proof (t, ⌜F ⌝) is a provably primitive recursive formula, it follows

that CoPA ⊢ ¬Proof (t, ⌜F ⌝). For any G, then, CoPA ⊢ Proof (t, ⌜F ⌝) → G. Thus, CoPA ⊢

Proof (t, ⌜F ⌝) → □[F ].

Theorem 5.3.5 Provable Σ Completeness of Cofactive Modality

For each Σ sentence σ, CoPA ⊢ σ → □[σ]
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By Theorem 5.3.4, we know that CoPA ⊢ Proof (t, ⌜σ⌝) → □[σ]. Because it holds that CoPA ⊢

σ → Proof (t, ⌜σ⌝) (see, for instance, Boolos’ (Boolos, 1995a, p. 46-9)), we have that □(x) is Σ

complete.

Theorem 5.3.6 Fixed Point Lemma for Cofactive □

For some CoPA-formula G, it holds that CoPA ⊢ G↔ ¬ □ [G].

The General Fixed Point Lemma is provable in exactly the same way it is in PA. We then take

¬ □ (x) as a formula with one free variable to get the characteristic CoPA Gödel sentence.

We will now show that CoPA is consistent. We can see that this will hold because CoPA has an

interpretation in PA. Since Chalmers’ system is contained in CoPA, his system will be consistent

as well.

Definition 5.3.7 An arithmetical interpretation of CoPA in PA is a pair (P (x), ∗) in which P (x)

is an arithmetical predicate such that for any PA-formulas F and G it holds that:

1. PA ⊢ P [F → G] → (P [F ] → P [G])

2. PA ⊢ F → P [F ].

And
∗
is a mapping from the language of CoPA to that of PA such that:

3. F
∗
= F , for each □-free formula;

4.
∗
commutes with Boolean connectives and quantifiers;

5. (□[F ])∗ = P [F∗].

Lemma 5.3.8 CoPA has an interpretation in PA

Consider the predicate Form(x) defining formulas in arithmetic. It is easy to see that:

1. PA ⊢ Form[F → G] → (Form[F ] → Form[G])
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2. PA ⊢ F → Form[F ].

Thus interpreting P (x) as Form(x), we see that CoPA has an interpretation in PA.

Lemma 5.3.9 Let (P,∗ ) be an interpretation of CoPA in PA. For any CoPA-formula F , if CoPA ⊢

F then PA ⊢ F
∗
.

This is proved by induction on derivability in CoPA.

From the above it follows that:

Corollary 5.3.10 Consistency of CoPA

CoPA ⊬ ⊥

There are natural questions about the possibility of extending CoPA. Two candidate formulas

come to mind. Where Pr(x) is the Gödelian proof predicate, consider the following:

Pr[F ] → □[F ] (5.1)

or

□[F ] → Pr[F ] (5.2)

First, (5.1) is clearly consistent as it holds when □(x) is interpreted as Form(x). On the other hand

(5.2) would be less than ideal. From coreflection and (5.2), we get F → Pr[F ] for any F . Half of the

Gödel sentence for Pr(x), is ¬Pr[A] → A. Reasoning propositionally, we have ¬Pr[A] → Pr[A],

then ¬Pr[A] → (Pr[A] ∧ ¬Pr[A]), then ¬¬Pr[A]. The contrapositive of the other half of the

Gödel sentence is ¬¬Pr[A] → ¬A, we then have ¬A. By Necessitation, then, we have Pr[¬A],

and then Pr[¬A] ∧ Pr[A], and by K reasoning the provable internal inconsistency Pr[⊥].

Why would one consider a system like CoPA to represent idealized human reason? Well, in one

sense the axiom F → □[F ] and its instance □[F ] → □[□[F ]] certainly seem to represent a sort of

idealization. The question is thus: is this the sort of idealization we want?

There are standard objections to the 4 axiom from the earliest discussions of epistemic logic.

Jaakko Hintikka takes 4 to represent a sort of conclusivity of knowledge Hintikka (1962). He takes
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it to be a favorable condition when knowledge is understood as such, but emphasizes that this sense

of knowledge is perhaps too strong Hintikka (1970). In a much-quoted passage from “‘Knowing

That One Knows’ Reviewed,” Hintikka writes (Hintikka, 1970, pp. 148-9):

At this point, one might try a Popperian ploy and ask, in an appropriate tone of voice:

‘Why aim at conclusiveness in the first place? What philosophers and scientists should

aim at is new information, new knowledge, and for this purpose the very idea of a

“discussion-stopper” concept—such as the strong sense of knowledge in which the KK-

thesis holds was found to be—is not only useless but positively harmful.’ Basically,

I agree with the attitude thus expressed. In addition to being able to use all the

relevant deductive and inductive modes of reasoning, we scarcely also need a notion

“to seal up the conclusion to which ratiocination has brought me” (to use Cardinal

Newman’s words slightly out of their original context). Popper may even be right

in connecting philosophers’ preoccupation with the conclusiveness of one’s knowledge

with a quest of religious certainty rather than with a rational (scientific) quest of

information. The KK-thesis relied heavily on the requirement (suitably interpreted)

that our knowledge be conclusive. Now it certainly seems much more important to

find methods of continuing once’s quest of information and one’s dialogues with others

than ways of concluding them. The purpose which the strong sense of knowledge would

serve is indeed somewhat suspect.

The strength of 4 is also its weakness; it is far from obvious that reason, even with idealization,

should be governed by 4. A similar point can be made for the cofactive axiom in the classical

context.
7
We have that if F holds, then it falls within the grasp of the agent and if the agent does

not grasp F , then F fails. This presumes an excessive amount of confidence for even a picture of

idealized reason.

7
In the intuitionistic context, it has a well-justified meaning. The IEL formula F → KF says that if F

has an intuitionistic proof, then it is known. Bare knowledge, however, is not sufficient for a proof, take the
case of testimony from a trusted source. For this reason the converse does not hold generally.
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5.4 Consistency

The literature on non-Gödelian proof predicates offers plenty of examples of specific proof predicates

with built-in consistency. The system known as Doxastic Arithmetic (2018), or DA, considers

(normalized) consistent proof predicates in the general setting Peluce (2018). The axioms and

rules of DA are presented in Definition 2.6.6.

The first item on our list is self-explanatory. The second and third are idealization assumptions

shared with the system CoPA examined in section 5.3 (item (2) is listed, (3) is derivable). The

characteristic feature of Doxastic Arithmetic is ¬ □ [⊥], which, in the Gödelian context, reads “it

is not the case that a contradiction falls under the power of the human mind.” More colloquially,

this says that idealized reason is internally consistent.

At this point we are in the position to prove some properties of DA. First, as we saw with

CoPA, the □(x) of DA also respects proof.

Theorem 5.4.1 DA □ Respects Proof

For each t, DA ⊢ Proof (t, ⌜F ⌝) → □[F ]

The proof of this is similar to that of Theorem 5.3.4.

Theorem 5.4.2 Provable Σ Completeness of DA □

For each Σ sentence σ, DA ⊢ σ → □[σ]

By Theorem 5.4.1, DA ⊢ Proof (t, ⌜σ⌝) → □[σ] Since DA ⊢ σ → Proof (t, ⌜σ⌝), it follows that

□(x) is Σ complete.

Theorem 5.4.3 Fixed Point Lemma for DA □

For some DA-formula G, it holds that DA ⊢ G↔ ¬ □ [G].

The argument is the same as in Theorem 5.3.6.

We can also see that DA is consistent by the following argument. We begin by defining an

arithmetical interpretation
∗
of DA in PA.
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Definition 5.4.4 An arithmetical interpretation of DA in PA is a pair (B(x), ∗) in which B(x)

is an arithmetical predicate such that for any PA-formulas F and G it holds that:

1. PA ⊢ B[F → G] → (B[F ] → B[G])

2. PA ⊢ F then PA ⊢ B[F ]

3. PA ⊢ ¬B[⊥]

And
∗
is a mapping from the language of DA to that of PA such that:

4. F
∗
= F , for each □-free formula;

5.
∗
commutes with Boolean connectives and quantifiers;

6. (□[F ])∗ = B[F∗].

We are now in the position to prove that DA has an interpretation in PA and thereby see that

it is consistent.

Lemma 5.4.5 DA has an interpretation in PA.

Consider now one of the systems with non-Gödelian proof predicates. Examples include Sol

Feferman’s system F (see Feferman (1960) and Albert Visser’s Visser (1998), p. 173-8, esp. 174).

Feferman’s system has a predicate ∆(x) which satisfies the following:

1. PA ⊢ ∆[F → G] → (∆[F ] → ∆[G]);

2. PA ⊢ F then PA ⊢ ∆[F ];

3. PA ⊢ ¬∆[⊥].

Thus, interpreting B(x) as ∆(x), we see that DA in fact has an interpretation in PA.

Lemma 5.4.6 Let (B, ∗) be an interpretation of DA in PA. Then, for any DA-formula F , if

DA ⊢ F , then PA ⊢ F
∗
.
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By induction on derivability in DA.

With this, we can conclude the consistency of DA:

Corollary 5.4.7 Consistency of DA

DA ⊬ ⊥

An advantage of DA is that it underlies the class of arithmetical provability predicates with

built-in consistency. These systems are studied extensively in Visser (1998) and Shavrukov (1994).

Because DA is not tied down to any one specific arithmetic interpretation of □(x), it provides an

abstract and general way of reasoning about those systems. Following our previous discussion, we

examine two natural candidates for extension connecting □(x) with Gödelian provability:

Pr[F ] → □[F ] (5.3)

or

□[F ] → Pr[F ] (5.4)

We can see that here (5.3) makes the resulting version of DA inconsistent, because ⊢ ¬ □ [⊥] →

¬Pr[⊥] and⊢ ¬□[⊥] will yield that⊢ ¬Pr[⊥]. This would mean that the Gödelian consistency of

our extension of DA would be internally provable. By Gödel’s Second Incompleteness Theorem, this

would then yield the inconsistency of our reference system. On the other hand, (5.4) is consistent.

Both the Rosser and Feferman provability predicates satisfy (5.4), see Visser (1998).

How does DA fare as a formal characterization of idealized human reason? Allowing for Gödelian

uses of “perception,” let us turn to an illustrative passage and footnote of Gödel. In discussion of

his Second Incompleteness Theorem, Gödel argues (Gödel, 1951, p. 309):

For, [the Second Incompleteness Theorem]makes it impossible that someone should

set up a certain well-defined system of axioms and rules and consistently make the

following assertion about it: All of these axioms and rules I perceive (with mathematical
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certitude) to be correct, and moreover I believe that they contain all of mathematics. If

someone makes such a statement he contradicts himself. For if he perceives the axioms

under consideration to be correct, he also perceives (with the same certainty) that they

are consistent. Hence he has a mathematical insight not derivable from his axioms.

Gödel’s claim here would seem to straightforwardly preclude the possibility of attributing anything

like a consistency statement to formal representations of idealized human reason.

Gödel’s— at least in the 1951 lecture—diagnosis of the situation looks grim. While he does

allow for a sort of perception of consistency, he thinks it is only such that would “mean that the

human mind (in the realm of pure mathematics) is equivalent to a finite machine” (Gödel, 1951, p.

309-10). Let us briefly outline his argument. First, by “perception with mathematical certitude”,

Gödel has in mind consideration of axioms and rule applications all at once (Gödel, 1951, p. 309).

As we see above he ties this sort of perception with derivability. He reasons about a hypothetical

mathematically certain insight of consistency. He concludes that there could not be one because—

insofar as such an insight is, by hypothesis, mathematically certain—this would mean that that

insight was derivable or somehow grounded in a derivation, which it cannot be. For our purposes,

let us think of this as formal certitude.

In a footnote to the above quoted passage, Gödel contrasts a different possibility (Gödel, 1951,

p. 309):

11
If he only says “I believe I shall be able to perceive one [axiom] after the other to be

true” (where their number is supposed to be infinite), he does not contradict himself.

Gödel allows that reason perceive the correctness of axioms and rule applications one after the

other, but not all at once; insofar as he does allow for a sort of perception of correctness, he

makes room for one of consistency. The thought is emphasized, “I wish to point out that one may

conjecture the truth of a universal proposition (for example, that I shall be able to verify a certain

property for any integer given to me) and at the same time conjecture that no general proof for

this fact exists” (Gödel, 1951, p. 313).
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While the above might make us optimistic that Gödel allows for a way to save a sort of math-

ematical certitude of consistency, he quickly rids us of that hope. He first distinguishes between

mathematics proper—all true mathematical propositions—and subjective mathematics, by which

he means provable mathematics. He again gestures toward an inductive consistency, “[t]he assertion

[that all axioms and rule applications are correct] could at most be known with empirical certainty,

on the basis of a sufficient number of instances or by other inductive inferences” (Gödel, 1951, p.

309). It is this situation that would render the mind “equivalent to a finite machine.” He diagnoses

the mathematical aversion to such methods as “due to the very prejudice that mathematical objects

somehow have no real existence” and continues “If mathematics describes an objective world just

like physics, there is no reason why inductive methods should not be applied in mathematics just

the same as in physics” (Gödel, 1951, p. 313).

We can summarize Gödel’s argument as follows. The only possible types of certitude for consis-

tency perceptions are either formal and empirical. Empirical certitude, while attainable, falls short

of what we really want, and formal certitude is impossible. A plethora of questions will arise at

this point for the contemporary reader. What role do arguments for and proofs of the consistency

of arithmetic play?
8
Is the widespread conviction of consistency a mere conviction?

If we would ascribe some role other than that of mere empirical verification to these arguments

and proofs and think the widespread conviction of consistency is something more than a mere

conviction, it seems we must reject the 1951 claim that either consistency is grasped with formal

certitude, understood in Gödel’s sense, or consistency is merely an empirical certitude. The force

of arguments and proofs of consistency and the thought that our conviction is no mere conviction

push us to look for an ignored third between the formal and empirical alternatives. We search for

a mathematical certitude that is not formal in the sense that it is divorced from that which can

be carried out in a formal system and not inductive/empirical in the sense that mathematical and

empirical objects are simply different sorts of things. In the words of Rilke (Rilke, 1982, p. 161):

If only we too could discover a pure, contained,

8
Recently, see McCall (2014) and Artemov (2019).
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human place, our own strip of fruit-bearing soil

between river and rock.

While the claim that there is this ignored third is itself a philosophical claim that demands an

example of such an account—and this falls beyond the scope of this paper—Doxastic Arithmetic

can be seen as the system characteristic of the optimism that such an account is attainable.

5.5 Conclusions

In this Chapter we explored possibilities for formalization of human reason as a predicate in the

context of Gödel’s Disjunction as opposed to treating it as an operator, as is usually done. The

latter half of this Chapter was devoted to exploring the two broad options that arise for extending

a system of arithmetic with a normal modality epistemic feature treated as a predicate.

We began with an examination of the Gödel sentence in predicate extensions of arithmetic, in-

vestigating which sorts of extensions would lead straightforwardly to inconsistency. There were two

primary directions available to extend from a normalized modal predicate extension of arithmetic.

The first was to the system we called CoPA that extended PA with an IEL
−
style modal predicate.

The second was by extending arithmetic with a consistency predicate, in the direction of Doxastic

Arithmetic or DA. We discussed philosophical motivations for and criticisms of both possibilities.

We close with a final comparison of the merits of coreflection and the consistency axiom in the

context of a predicate style formalization of human reason. Hintikka argued that 4 was associated

with conclusiveness of reason; we pointed out that coreflection trumps 4 in this respect. On the

other hand, consistency was associated with the absence of a conflict internal to human reason

about arithmetic. While this may have merit, it is a view that demands further development. We

saw in Lemma 5.3.8 that CoPA has an interpretation with the predicate Form(x), and therefore

CoPA has a sigma interpretation. We can see also, however, that DA has no sigma interpretation.

Theorem 5.5.1

There is no interpretation of DA’s predicate □(x) as a sigma predicate.
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If there were a sigma interpretation of DA, then there is a sigma predicate S(x) that interprets

□(x). Since S(x) interprets DA’s □(x), the predicate S(x) has the properties of at least a KD

modality. But, by Theorem 5.4.2, DA ⊢ S[F ]] → S[S[F ]], and therefore S(x) would correspond

to a KD4 modality. By Lemma 5.2.1, this is impossible since PA ⊬ ⊥.

Where does this leave us in the choice between CoPA and DA? We can ask: is human reason

the sort of thing that could be characterized using a simple arithmetical predicate? While a full

answer to this question goes beyond the scope of this paper, it is prima facie implausible that so

mysterious a notion might be given so simple a voice.



Chapter 6

Brouwerian Arithmetic

6.1 Mannoury’s Challenge

Man does not know a sun and earth, but only an eye that sees the sun and a hand that

feels the earth. - Schopenhauer, (Schopenhauer, 1969, p. 3).

Beginning with his critiques of the use of logic in mathematics in his 1907 dissertation, L.E.J.

Brouwer was consistently hostile to the use of formal methods in mathematics. Brouwer writes

(Brouwer, 1907, p. 92):

[Logistics] can teach us nothing about the foundations of mathematics, because it re-

mains irrevocably separated from mathematics; on the contrary, in order to maintain

an existence on its own account, i.e., to safeguard itself against contradictions, it must

reject all its own special principles and acquiesce to be a faithful, automatic, steno-

graphic copy of the language of mathematics, which itself is not mathematics, but no

more than a defective expedient for men to communicate mathematics to each other

and to aid their memory for mathematics.

This thought is distilled in Brouwer’s first act of intuitionism, which is to “[separate] mathematics

from mathematical language and hence from the phenomena of language described by theoreti-

94
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cal logic, recognizing that intuitionistic mathematics is an essentially languageless activity of the

mind” (Brouwer, 1981, p. 6). Intuitionistic mathematics is completely separated from mathematical

language and essentially languageless, it is by its very nature independent of formal methods.

Nonetheless, we would be mistaken to say that Brouwer found no use for axiomatics. In

his dissertation and in 1912’s “Intuitionism and Formalism,” Brouwer allows that the axiomatic

method be used to aid memory and communicate with others (see (Brouwer, 1907, p. 73, 92, 97)

and (Brouwer, 1912, p. 128)). We should not understand this characterization pejoratively. Indeed,

Brouwer encouraged his student, Arend Heyting, to think axiomatically about intuitionism for his

dissertation (see, van Atten (2017) and (Moschovakis, 2009, p. 81)). He also valued Heyting’s

work on intuitionistic logic; Hao Wang reports that Brouwer found Heyting’s formalization of

intuitionistic reasoning more important than Gödel’s incompleteness theorems (Wang, 1987, p.

88).

In his 1956 Intuitionism: An Introduction, Heyting provides an articulation of the intuition-

istic view, “[E]ven in intuitionistic mathematics the finished part of a theory may be formalized.

[Though] . . . we can never be mathematically sure that the formal system expresses correctly our

mathematical thoughts” (Heyting, 1956, p. 4). Formalization is thus acceptable in some cases for

the intuitionist, though any such acceptance is at best tentative. This is given further elucidation in

Heyting’s 1962 distinction between the intuitionistically acceptable descriptive and non-admissible

creative functions of axioms (Heyting, 1962, p. 238).
1

The descriptive function uses axiomatics

to characterize an already present mathematical subject matter, that is, a subject matter that is

constructed or finished. The creative function, on the other hand, delivers its own mathematical

subject matter by means of consistency. Hence, while even though intuitionistic arithmetic can

never be fully captured in language, the axiomatics when used descriptively can be accepted, albeit

1
A view like this is endorsed also by A.N. Kolmogorov (Kolmogorov, (1925, p. 41):

The intuitionistic point of view is based on the assumption of a real significance of mathematical
propositions. Axioms forming the basis of mathematics are regarded as expressions of facts
that are given to us. This approach allows the formal method for studying mathematical
constructions as one of the possible methods. . .

Again, we see that the role of axioms is to characterize in some sense that which is already present.
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with a grain of salt (Heyting, 1956, p. 4).

Even if axiomatic reasoning is no substitute for real mathematical reasoning, the intuitionist

might take a given system to better or worse fulfill the descriptive function of the axiomatic method.

Contrast, for example, classical propositional logic and intuitionistic propositional logic. It is con-

sistent with the claim that neither CPC nor IPC provides a perfect characterization of propositional

intuitionistic reasoning that IPC better axiomatizes intuitionistic reasoning.

In 1927, twenty years after Brouwer’s dissertation, Gerrit Mannoury posed the challenge of

axiomatizing intuitionistic reasoning through the Dutch Mathematical Society.
2
For the purpose of

this study, we focus on arithmetic. Bringing with us the above information about the intuitionistic

role of the axiomatic method, we can make precise Mannoury’s Challenge:

Mannoury’s Challenge: Provide a descriptively adequate axiomatization of intu-

itionistic arithmetic.

In 1928, Heyting’s answer:

Heyting’s Response: Heyting Arithmetic (HA) is a descriptively adequate axioma-

tization of intuitionistic arithmetic.

won and was selected for the prize of the Dutch Mathematical Society van Atten (2017). Heyting’s

Response was viewed favorably by Brouwer, as the aforementioned report from Wang shows (see

(Wang, 1987, p. 88) and van Atten (2017)). The tradition has since made it clear that Heyting’s

is the accepted response to Mannoury’s Challenge. Indeed, one could not be faulted for simply

identifying intuitionistic arithmetic with Heyting Arithmetic.
3

We argue that Heyting Arithmetic should not enjoy the hegemony it currently does. To clarify

the reasons for which we should not simply accept Heyting’s as the solution to Mannoury’s Chal-

lenge, we should examine more closely the relation of Heyting Arithmetic to Peano Arithmetic.

2
See van Atten’s “The Development of Intuitionistic Logic,” for discussion van Atten (2017). For a quote

of the challenge explicitly, which was phrased in terms of set theory, see Troelstra’s (Troelstra, 1988, p. 2).
3
We focus on arithmetic because of its importance in the concept of twoity of the first act of intuitionism.

A natural next step would be to extend our study to analysis.



CHAPTER 6. BROUWERIAN ARITHMETIC 97

When intuitionistic arithmetic is formalized as HA and classical or platonistic arithmetic is taken

as Peano Arithmetic, (PA), the following will hold:

Classical Arithmetic proves F ⇏ Intuitionistic Arithmetic proves F (6.1)

The most famous examples of course include the intuitionistic failure of tertium non datur and

inter-definability of the quantifiers. Indeed, this is philosophically well-motivated. Here we have an

axiomatic marker of the difference between constructed and platonic objects. For example, in the

context of tertitum non datur, while platonic objects are already determined, constructive objects

are in a dynamic process of generation.

On the other hand, it is obvious that the following holds given we accept Heyting’s Response

to Mannoury’s Challenge:
4

Intuitionistic Arithmetic proves F ⇒ Classical Arithmetic proves F (6.2)

The above expresses a connection between constructive arithmetic and platonistic objects. If we

take intuitionistic arithmetic to be simply the theory of constructed arithmetical objects, then, inso-

far as constructed and platonistic objects share some properties, there is philosophical justification

for the above. Indeed, this seems correct as an account of the relation between constructive and

platonistic objects; while constructed and platonic objects are radically different sorts of objects,

they nonetheless share in some properties insofar as both are sorts of objects.

The tacit assumption above, however, seems to be that intuitionistic arithmetic is simply the

theory of constructed arithmetical objects. This assumption is incorrect as a characterization of

intuitionistic arithmetic and inuitionistic mathematics more generally. Heyting himself writes in

Intuitionism: An Introduction, (Heyting, 1956, p. 10):

In fact, mathematics, from the intuitionistic point of view, is a study of certain functions

4
Here the classical logician would say that the intuitionist has merely given the connectives a different

meaning. From the intuitionistic perspective, the classicist accepts falsehoods. The question we are concerned
with is whether, from the intuitionist’s perspective, they have built enough into their formal system.



CHAPTER 6. BROUWERIAN ARITHMETIC 98

of the human mind, and as such it is akin to [philosophy, history, and the social

sciences].

Put another way, to think that the only difference between platonic and intuitionistic arithmetic

has to do with the properties of arithmetical objects minimizes the role of process in intuitionistic

arithmetic. We need to account for, in Heyting’s terms, the arithmetical function of the mind.

In section 6.2, we discuss just what is required to account for the arithmetical process in

intuitionistic reasoning. The key feature here is the subject’s basic intuition of time, from which

they generate arithmetic. In section 6.3, we expand upon the interpretation of Heyting Arithmetic

as the arithmetic of constructed objects. We argue that while it is essential for formal systems

describing the mental process of constructing such objects to contain something like HA, such

a system does not exhaust an axiomatic description of the process of mental construction, and

therefore that we must somehow go beyond HA.

In section 6.4, we discuss one method of doing this, namely, the option of extending HA with an

operator to characterize the intuitionistic mental process. We argue that this method falls short of

expressibility desiderata. There are two we focus on. The first is the inability to straightforwardly

emulate second-order features. These sorts of worries have already been discussed in the context

of motivating predicate-style treatments of modality (see, for example Halbach et al. (2003)). The

second has to do with Brouwer’s claim that the set of mathematical theorems is denumerably

unfinished. Because of arithmetic’s central position in intuitionistic thinking, a formal presentation

of intuitionistic arithmetic should account for this. The operator approach makes good on neither

of these counts.

In section 6.5, we discuss an alternative method of extending HA. There are many ways of doing

so, but what they all have in common is the addition of a unary predicate to HA. Results of Gödel

and Montague limit the ways in which we can do this, but nonetheless, two main contenders emerge.

We argue that our preferred extension, Doxastic Heyting Arithmetic or DHA, best characterizes

the process of intuitionistic creation. DHA is the intuitionistic counterpart of the classical system,

Doxastic Arithmetic DA introduced in Peluce (2018) and Peluce (2020). In section 6.6, we provide
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Kripke models for DHA. We then show that DHA is a conservative extension of HA and discuss

some philosophical consequences of our proposal.

6.2 Brouwer’s Basic Intuition of Mathematics

It is not hard to find passages in Brouwer where the subject’s activity is of central importance

(see (Brouwer, 1912, p. 85-6), and (Brouwer, 1907, p. 53), for example).
5

We find in his 1907

dissertation the following (Brouwer, 1907, p. 61):

[W]e can call a priori only that one thing which is common to all mathematics and is

on the other hand sufficient to build up all mathematics, namely the intuition of the

many-oneness, the basic intuition of mathematics.

and (Brouwer, 1907, p. 70):

Mathematics develops out of its basic intuition in a self-multiplication guided by an

entirely free choice. The only synthetic judgements a priori generally are those obtained

as possibilities of mathematical constructions by virtue of the basic intuition of time,

or of many-one-ness

This basic intuition of time, here called many-one-ness, also known as twoity or bare-two-oneness, is

of central importance to arithmetic. Brouwer tells us more in his 1913 “Intuitionism and Formalism”

(Brouwer, 1912, p. 85):

[I]ntuitionism considers the falling apart of moments of life into qualitatively different

parts, to be reuinited only while remaining separated by time as the fundamental

phenomenon of the human intellect, passing by abstracting from its emotional content

into the fundamental phenomenon of mathematical thinking, the intuition of bare-two-

oneness.

5
See, for example, the discussion of the subject in Brouwer and Griss in Miriam Franchella’s “Philosophies

of Intuitionism: Why We Need Them,” (Franchella, 2007, p. 74-5).
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One notices the particularities of a given moment, and remarks upon its passing that it is different

from the next moment. When all emotional content and other qualities are stripped away from the

moments themselves, one is left with a bare-two-oneness. This process is iterated, while moments

are held in memory, to generate natural numbers. Addition of x and y is explained as counting

up to x, and then putting ordinals after x in a one-to-one correspondence with those invoked in

counting to y (Brouwer, 1907, p. 15). He understands multiplication as the repetition of the above

process and exponentiation as iterated multiplication (Brouwer, 1907, pp. 15-16).

While aspects of Brouwer’s view did change over time, the role of twoity reains central. In his

1948 “Consciousness, Philosophy, and Mathematics,” he writes (Brouwer, 1948, p. 480):

Consciousness in its deepest home seems to oscillate slowly, will-lessly, and reversibly

between stillness and sensation. And it seems that only the status of sensation allows

the initial phenomenon of the said transition. This initial phenomenon is a move of

time. By a move of time a present sensation gives way to another present sensation in

such a way that consciousness retains the former one as a past sensation, and moreover,

through this distinction between present and past, recedes from both and from stillness,

and becomes mind.

As mind it takes the function of a subject experiencing the present as well as the past

sensation as object. And by reiteration of this two-ity-phenomenon, the object can

extend to a world of sensations of motley plurality.

The role of twoity here goes beyond that of grounding arithmetic. Indeed, it is essential in the

Brouwerian development of mind and the world of sensations of motley plurality.

These passages demonstrate a long-lasting commitment to the central philosophical importance

of the intuition of twoity, and therefore also to that of the subject, in Brouwer’s thought. We have

already sketched arguments for the claim that HA does characterize the arithmetical process. The

above shows that not only is it essential to intuitionistic arithemtical reasoning that experience and

process be involved, but a very specific sort of experience is required, namely, that of the intuition

of twoity.
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We can put our task in another way. First, however, we need to supply a verb to characterize

the mental activity of the agent. While many verbs are used in such context (perceiving, thinking,

intuiting, for example), we suggest that we simply use thinking. Clearly what we are doing has

idealized away from the epistemic activities of empirical agents, indeed, van Atten writes, “Intu-

itionism is a theory not about any thinking subject but about a correctly thinking one. This means

that the object of study is what is intrinsic to the self-unfolding of the basic intuition, and therefore

only essential and no accidental features of the subject are studied. Limitations of time, memory,

attention and so on are abstracted from” (van Atten, 2004, p. 9).

What sort of formal feature could be used to represent a commitment to this sort of intuition?

Consider the propositional Brouwer-Heyting-Kolomogorov BHK clauses:

Definition 6.2.1 (BHK Semantics)

• A proof of F ∧G consists of a proof of F and a proof of G;

• A proof of F ∨G consists of a proof of F or a proof of G;

• A proof of F → G is a construction that, given a proof of F yields a proof of G;

• There is no proof of ⊥.

The above conditions provide a straightforward way for thinking about intuitionistic connectives.

While one might disagree with specific articulations of the above clauses, the general framework

has application in the intuitionistic context.

A question arises. Are the above conditions themselves (or something like them) enough to

express a commitment to Brouwerian intuition? We might indeed think that provided the correct

interpretation is given of the formalism, we do not need anything beyond the connectives them-

selves. We can find an argument to the effect that something like the above is sufficient, given the

correct interpretation, in Göran Sundholm’s “Implicit Epistemic Aspects of Constructive Logic”

(Sundholm, 1997, p. 194):

The systems of doxastic and epistemic logic are metamathematical formalisms designed

to express valid principles of reasoning concerning epistemic notions. The formalisms
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chosen, however, as simple extensions of propositional logic and the use of the propo-

sitional connectives K and B treats claims to knowledge and belief as if they were

propositions. . . .

In the Frege-like, contentual paradigm, on the other hand, knowledge claims are part

and parcel of the use of the system, but not in the form of propositional operators.

Owing to the presence of the assertion sign, one is able to express not just (interrelations

between) propositions, but actual assertions (“judgements”) with the propositions as

contents. An assertion, however, made through the utterance of a declarative sentence,

contains (implicit) claims, as to knowledge and truth, with respect to the content

expressed by the sentence in question.

It would be, for Sundholm, a mistake to add an epistemic feature for assertions; assertions are not

the sort of thing that could even be a content of an epistemic feature. Therefore, the argument

might go, the unmodified language is itself sufficient to express a commitment to the Brouwerian

process of thought.

But the word “epistemic,” is said in many ways. We require that our system describe constructed—

in our case, arithmetical—objects, and in this sense, any theory that is correct with respect to those

constructed objects will provide faithful epistemic content. But such a theory alone will not be

able to express something like:

The Brouwerian agent constructs that F and thinks that they construct that F

Claims involving this sort of reflection upon construction seem essential to intuitoinistic arithmetical

reasoning. Indeed, we saw that iteration of the intuition of twoity involves constructing elements

by subtracting away extraneous details, while simultaneously holding others in memory. The entire

process is fundamentally one in which the subject reflects upon the contents of their mind. For

this reason, something to the effect of the following seems required to account for a Brouwerian

arithmetic:

• A proof of MF requires a prior construction of F .
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An intuitionistic formal system ought to reflect that if there is a construction of F , then the agent

also thinks, again, in the idealized sense used by Brouwer, that F . The admission of such an

epistemic feature sets the groundwork for expressing the subject’s place in intuitionistic arithmetic,

and, more specifically, the intuition of twoity. Note that as of yet we have not said anything

about what that feature should look like, whether it should be a defined feature, a connective, or

a predicate.

6.3 The Arithmetic of Constructed Objects

Since its acceptance as a response to Mannoury’s Challenge, Heyting Arithmetic has held the claim

to being the formal intuitionistic arithmetic. We argued that, while HA characterizes the properties

of a constructed arithmetical objects, it fails to sufficiently differentiate formalized intuitionistic

reasoning from the theory of classical objects. In section 6.2, it became clear that what was

required was an epistemic feature to account for the Brouwerian subject to ultimately formally

account for the intuition of twoity. We provisionally called this feature M. One might argue that

we can expressM within HA as a defined predicate. This is different from the approach of Sundholm

that we examined insofar as a defined predicate would attach to codes and therefore allow for the

possibility of iteration. In this section, we show that a defined epistemic feature cannot do the

conceptual work required of M.

Heyting Arithmetic (HA) is the system presented in Definition 2.5.4.

Of course one might try to define the subject as an arithmetical predicate. To do so is to build up

the subject in terms of arithmetical portions of our system. There is a clear philosophical problem

with proceeding in this manner. Though a given defined predicate may encode attractive modal

properties, by hypothesis it would be a defined predicate. By not including a primitive symbol

for thought or intuition, one would suggest the priority of constructed objects over constructive

process. But, to allow that constructed objects be prior to the constructing subject simply gets

intuitionistic reasoning wrong. For this reason, the feature formalizing intuition or thought cannot

be a defined one; any such predicate features in too late to the picture of intuitionistic arithmetic.
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6.4 Extending HA with an Operator

We argued that Heyting’s Response to Mannoury’s Challenge was unsatisfactory insofar as it failed

to axiomatically account for intuitionistic process. More specifically, the Brouwerian subject was

conspicuously absent. We did not argue that HA goes wrong—indeed, it provides a valuable charac-

terization of constructed arithmetical objects—but only that it omits a key feature of intuitionistic

arithmetic. For this reason, we should preserve HA for its virtues and extend it where it is lacking.

A natural way to do so is with axioms governing an added epistemic feature.

We immediately face a choice. We can treat our epistemic feature as an operator or as a

predicate. To treat the epistemic feature as an operator is to add something to arithmetic that

functions like a traditional modal connective, in accordance with the received practice of epistemic

logic. Alternatively, if we treat our epistemic feature as a predicate, it will share more with the

arithmetical predicates Pr(x) and Form(x). In this section, we consider the first approach. We

argue that while it has the strengths that one would expect, it falls short in the intuitionistic,

specifically, Brouwerian, context.

A natural way of articulating the operator approach is by making use of an intuitionistic version

of Stewart Shapiro’s Epistemic Arithmetic EA Shapiro (1985). Shapiro’s EA is Peano Arithmetic

extended with an S4 operator. The version we will discuss we call Epistemic Heyting Arithmetic,

or EHA. Note that Shapiro’s EA was not itself created for this purpose. Instead, what we examine

here is the possibility of a repurposing of a system that conveniently exemplifies many desirable

properties in our context. EHA is presented in Definition 2.6.3.

Reading □F in our suggested interpretation as “our agent thinks that F ,” EHA proves both that

intuitionistic thought iterates and that a contradiction is not thought. These correspond to modal

axioms 4 (4 above) and D (as an instance of 3). In (3) we even have that if the intuitionistic agent

thinks that F , then F holds (constructively). (2) and (5) are the K axiom and necessitation rule,

respectively.

The following sort of objection can be raised to the operator approach generally. Halbach,

Leitgeb and Welch point out that the operator approach to modality more generally limits the ease
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with which we can express connections between that operator and predicates (Halbach et al., 2003,

p. 3). For example, while we can easily express the relation between an arithmetical predicate

Form(x) and the provability predicate Pr(x) as, say:

∀x(Pr(x) → Form(x)) (6.3)

we forsake the opportunity to emulate second-order features in our language with □ treated as a

propositional operator. This is because, of course, the formula F in □F is not the sort of object

that could fall under the scope of a first-order quantifier. In this vein, we also cannot express

that something—understood in terms of ∃x—is thought, or that the agent thinks that they think

something, and so on.

There is a more pressing objection to the idea of taking some such modal extension of arithmetic

as an account of Brouwerian arithmetic, however. In his notebooks, Brouwer claims that the totality

of mathematical theorems are a denumerably unfinished set van Atten (2017) (see also (van Atten,

2004, p. 7-8), for discussion). By this he means that the set of mathematical theorems is such that

(Brouwer, 1907, p. 82):

. . . we can never construct in a well-defined way more than a denumerable subset of

[that set], but when we have constructed such a subset, we can immediately deduce

from it, following some previously defined mathematical process, new elements which

are counted in the original set. But from a strictly mathematical point of view this set

does not exist as a whole . . .

Each time we try to delineate more than a denumerable subset of mathematical theorems our

circumscription leaves something out. For Brouwer the concept of mathematical theorem is inex-

haustible in a deep sense; the set of mathematical theorems is ever-resistant to to formal codification.

How do we characterize this feature of Brouwerian thought within a formal system of intuition-

istic arithmetic? If our response to Mannoury’s challenge is to take seriously the aim of descriptive

adequacy to Brouwerian thought, this seems to be a natural desiderata for such an account.

It is not uncommon to associate Gödel’s theorems, and thereby the Gödel sentence, with the
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classical counterpart of Brouwer’s denumerably unfinishedness of mathematical theorems (that is,

the inexhaustibility of mathematics).
6
Now, what meaning does Gödel sentence:

G↔ ¬Pr(⌜G⌝) (6.4)

have in the intuitionistic context? This says that if the agent has a construction of G then they

can get one of ¬Pr(⌜G⌝), and vice versa. Hence the agent cannot proceed to either a construction

of G or ¬G within the system.

Above we argued that, in the intuitionistic context, (6.4) expresses a state of the reasoner in

which they can decide neither G nor ¬G within the system. This seems a good candidate to express

the denumerably unfinishedness of formal theorems. In order to represent Brouwer’s remarks on

the denumerably unfinshedness of the set of mathematical theorems, however, we want a Gödel

sentence that is not tied to the notion of Gödelian proof or to any specific interpretation, for that

matter. Indeed, we want to be able to prove a version of Gödel’s Theorem in our system that is

not limited to some specific defined predicate. We want, for example, that it be provable that:

D ↔ ¬□D (6.5)

The above is not provable using the usual argument for the diagonal lemma as here □ is an

operator. Indeed, it is easy to see that adding (6.5) as an axiom to any system extending iT

(intuitionistic modal logic T) or iKD4 would render that system inconsistent. While investigating

Gödel phenomena is worthwhile in itself, it is especially pressing in the context of an intuitionistic

formal system for the reasons we have suggested. Because of this, then, the operator approach is

unsuited for a formal characterization of Brouwerian arithmetic.

6
See Gödel (Gödel, 1951, p. 305), (Gödel, 1931, p. 492), Hao Wang (Wang, 1996, p. 4), and Carlo

Cellucci (Cellucci, 1992, p. 116).
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6.5 Doxastic Heyting Arithmetic

To extend HA in such a way that our system provides a descriptively adequate characterization of

intuitionistic arithmetic, we are immediately faced with two options: we can treat the epistemic

feature as an operator or treat it as a predicate. In Section 6.4, we saw that the operator approach

failed importantly since a descriptively adequate characterization of intuitionistic arithmetic re-

quires an epistemic feature nuanced enough to allow for representation of the basic intuition of

twoity. We now present an answer to Mannoury’s Challenge. Our answer is Doxastic Heyting

Arithmetic or DHA, which we argue is a descriptively adequate axiomatic characterization of intu-

itoinistic arithmetic. We present and motivate the system, and then discuss some of its properties.

Before turning to DHA, we need to mention some of the history of predicate treatments of

modality. It is well known that the predicate approach has its own inherent limitations. Richard

Montague (Montague (1962), 1962), showed that no such treatment of a T modality (a normal

modal logic satisfying □F → F ) is possible as a predicate.
7
Since T is a sublogic of S4, there is no

predicate treatment of EHA in this sense.

It is a consequence of the second incompleteness theorem and the three derivability conditions

that there is no predicate treatment of a KD4 modality. This is straightforward when one observes

the connection between D and the internalized consistency statement for the Gödelian provability

predicate.

Given that the principle K and rule necessitation are both natural desiderata in an epistemic

feature for an idealized agent, we know that our epistemic feature cannot have both 4 and D.

Because of this, we face a choice between the two. We suggest now that the intuitionistically

preferable choice is D. We motivated this project generally by a desire that formal intuitionistic

arithmetic characterize the process of thought that is essential to intuitionistic arithmetic. We

argued that at the heart of a Brouwerian account of the process of intuitionistic arithmetical

thinking is the base intuition of twoity. This was the intuition that there are two moments, and

they are really different.

7
This result holds intuitionistically as well as an easy Corollary of Lemma 7, (Peluce, 2018, p. 277).
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We consider now a new language, extending the language of arithmetic with the predicate □(x),

as presented in Definition 2.6.1.

The question of this section is whether or not we should allow our □(x) to be governed by

a version of the D axiom. A positive argument that it should be governed by D is an argument

against allowing 4, then, insofar as the two are inconsistent given normality assumptions (again,

by reasoning parallel to the second incompleteness theorem).

Let us return to the intuition of twoity. Take two moments, 0 and 1. What would it be to say

that they are really different? Abbreviating s0 as 1, one might venture:

□(⌜0 ≠ 1⌝)8 (6.6)

In our interpretation, this reads “the agent thinks that 0 is not 1.” While this is a start, (6.6) is

not enough. The above leaves open the possibility that the agent also think that 0 is 1. To see

that this is so, one can observe that PA + K4
pred

—where this is a base of PA augmented with K4

rules and axioms governing an added predicate, □(x)—has models where this holds. We use PA

here because PA +X consistency entails HA +X consistency.

Theorem 6.5.1 PA + K4
pred

is consistent with □(⌜0 = 1⌝).

PA proves the axioms and rules of K4
pred

when □F is interpreted as Pr⌜F ⌝, hence K4pred holds

in each model of PA. Since PA ⊬ ¬Pr⌜⊥⌝, by Gödel’s completeness theorem PA + Pr⌜⊥⌝ has a

model. This, then, is a PA model of K4
pred + □(⌜0 = 1⌝).

The force of the intuition of twoity, however, does not seem to leave open the possibility that

the first moment be identical with the second. In the context of Brouwerian philosophy, this is akin

to saying that while most of the time when we take two moments and subtract all qualities from

them, we arrive at a bare twoity; sometimes we subtract all qualities from two moments and arrive

at equality. For this reason, we want a system that does not leave open the possibility of models

8
This is a necessitated case of an instantiation with x = 0 of the arithmetical axiom ∀x(s(x) ≠ 0), and

therefore clearly provable in such systems.
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in which □(⌜0 = 1⌝) hold. While (6.6) is important, we need to augment it as follows:

□(⌜0 ≠ 1⌝) ∧ ¬ □ (⌜0 = 1⌝) (6.7)

This—a genuine difference between two elements—is what seems required to provide a descriptively

adequate characterization of intuitionistic arithmetic. Note that the second conjunct is just another

way of writing D with the predicate □(x).

Given that we need ¬□ (⌜0 = 1⌝) to characterize the Brouwerian twoity, we cannot allow the

axiom 4 for reasons we have discussed. Therefore, we suggest the following answer to Mannoury’s

Challenge. Our system, Doxastic Heyting Arithmetic, or DHA, is presented in Definition 2.6.7.

This is the intuitionistic version of Doxastic Arithmetic, introduced in Peluce (2018) and Peluce

(2020). (1) is a base of HA.
9 (2) and (4) qualify □(x) as a normal predicate-style modality. Lastly,

(3) allows DHA to express Brouwerian twoity.

Observe now that the following can be proven of DHA:

Theorem 6.5.2 DHA ⊬ ⊥

It is already known that DA is consistent as it has an interpretation in PA (see (Peluce, 2018, p.

285)). Since DHA is a subsystem of DA, it too is consistent.

Next, we can observe that DHA proves in the usual way that:

Lemma 6.5.3 (Generalized Diagonal Lemma)

There is a D for which

DHA ⊢ D ↔ ¬ □ (⌜D⌝) (6.8)

By Gödelian reasoning we can prove a generalized version of Gödel’s first incompleteness the-

orem. The following is more general than Gödel’s proof because here we appeal to a predicate

without needing to specify some particular definition of that predicate.

9
As was mentioned, this assumes that HA adequately describes the temporal part of the Brouwerian

intuition, that it captures the part that is traditionally considered arithmetical. Provided a better account
of this, the system can be modified of course. We begin with HA now as it seems to best characterize the
temporal part of intuitionistic arithmetic.
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Theorem 6.5.4 Generalized Incompleteness

DHA ⊬ D

DHA ⊬ ¬D

Assume DHA ⊢ D. Then, by necessitation, DHA ⊢ □(⌜D⌝). By Lemma 6.5.3, DHA ⊢ ¬ □ (⌜D⌝),

but then DHA ⊢ 0 = 1. But by Theorem 6.5.2, DHA ⊬ ⊥.

We consider the case of DA (the intuitive classical version of DHA) and show that ¬D is not

derivable. The non-derivability result transfers to DHA since DHA is a subtheory of DA. Assume

DA ⊢ ¬D. By Lemma 6.5.3, DA ⊢ □(⌜D⌝). By necessitation, DA ⊢ □(⌜¬D⌝). Therefore,

DA ⊢ □(⌜D ∧ ¬D⌝). By DA’s D axiom—which here plays the role of Rosser’s trick Rosser (1936)—

we have that DA ⊢ ¬ □ (⌜D ∧ ¬D⌝), and therefore, if we assume DA ⊢ ¬D, then DA ⊢ 0 = 1.

Gödel’s second incompleteness theorem is often interpreted as saying that if a given theory can

express a sufficient amount of arithmetic and is consistent, then it cannot prove its own consistency

statement. We can observe that DA and DHA avoid Gödel’s second incompleteness theorem with

respect to □(x), insofar as DHA and DA prove their consistency statements in their doxastic form.

Corollary 6.5.5 We have both

DHA ⊢ ¬ □ (⌜0 = 1⌝) and DHA is consistent

and

DA ⊢ ¬ □ (⌜0 = 1⌝) and DA is consistent

This follows by the fact that DA is consistent (by Theorem 6.5.2) and that DHA and DA contain

their own consistency statements.

From the above we can see that there is a sense in which DHA (and DA) sidestep Gödel’s second

incompleteness theorem. The DA and DHA-consistency statements are provable. This is of course

not the Gödelian consistency statement. Indeed, it would be strange for the intuitionist to desire

that a marker of consistency be tied to a specific formal system. While in the general founda-

tional context, DHA’s consistency statement provides a method of working within the limitations
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of Gödel’s second incompleteness theorem, in the intuitionistic context it has a philosophically im-

portant meaning. Namely, as we have argued, it expresses that the first and second moments—and

more generally, all distinct moments—are thought by the agent to be genuinely different. We find

consistency of reasoning as a consequence of twoity and an intuitionistic expression of consistency

just as the intuition of twoity. Formal consistency follows because we have provided descriptively

adequate characterizations of twoity itself; Brouwerian twoity thus remains conceptually privileged

in our picture.

6.6 Kripke Models for DHA

In this section, we present Kripke models for DHA. A heuristic motivation for Kripke models of

intuitionistic logic is to think of them as representing stages of a Brouwerian subject’s development,

thereby presenting a representation of what the intuitionist has in mind to the classicist.
10

The

nodes of a Kripke DHA model (and HA model for that matter) are rather classical objects arranged

in such a way to provide a model-theoretic picture of DHA. As is well known, Kripke models for

HA make use of structures at nodes that are models of PA.
11

We begin by introducing DHA frames:

Definition 6.6.1 A DHA Frame ⟨W,≤, {Dw}, {Bw}, 0, s,+, ⋅,=⟩.

1. W is a countable set of worlds;

2. ≤ is a partial order on W ;

3. {Dw} is a collection of sets. Each Dw is associated with w ∈W where:

10
See van Dalen (van Dalen, 2004a, p. 164).

11
The Kreisel-Troelstra Theory of the Creating Subject (CS) brings a time parameter into the language

itself while, of course, DHA does not. See van Atten’s (van Atten, 2018, pp. 1588-1591) for an extended
overview of CS. The time parameter in CS provides a nice characterization of the process of construction.
DHA can characterize this process as well, not inside the language itself, but in the Kripke models for
DHA. One might, though, object that intuitionistic Kripke models are not characteristic of the step-by-
step construction of intuitionistic objects (see, for example (Shapiro, 2014, pp. 34-36)). The intuitionist
sympathizer, however, can concede this pointing out that these models are not intended to convince the
classicist of anything but rather are meant as an invitation for discussion of the philosophy at issue.
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(a) Dw is the domain of w;

(b) Each domain is denumerable;

(c) If w ≤ v, then Dw ⊆ Dv.

4. {Bw} is a collection of sets, where each Bw is associated with a w ∈W where:

(a) Bw ⊆ Dw;

(b) If w ≤ v, then Bw ⊆ Bv;

(c) For sentences F ∈ Lw, if DHA ⊢ F then ⌜F ⌝ ∈ Bw;

(d) ⌜0 = 1⌝ ∉ Bw;

(e) Where F,G ∈ Lw, if ⌜F → G⌝, ⌜F ⌝ ∈ Bw then ⌜G⌝ ∈ Bw.

5. 0 is a constant which may be regarded as a zero-place function, s is a one-place function, +

and ⋅ are a two-place functions on each Dw. Whenever one such function has a given value

in Dw, and w ≤ v, then it has that same value in Dv.

6. = is an identity relation on each Dw. For each identity t = t
′
in the language of Lw that

holds in Dw, if w ≤ v, then t = t
′
holds in Dv.

The domain of the frame, D is defined as the union of all Dw for w ∈W .

Definition 6.6.2 At each world w, we consider DHA in the language that includes all elements of

Dw as individual constants. Call this extended language Lw. Let Stw be the set of sentences in Lw.

DHA truth is defined for closed formulas of DHA as follows for w ∈W :

1. For closed terms t1 and t2 in the language of DHA, DHA ⊢ t1= t2 iff w ⊩ t1 = t2. In

particular, w ⊮ 0 = 1.
12

2. Standard conditions for intuitionistic first-order Kripke models:

(a) w ⊩ F ∧G iff w ⊩ F and w ⊩ G;

12
As we have shown in the previous Section, DHA is consistent.



CHAPTER 6. BROUWERIAN ARITHMETIC 113

(b) w ⊩ F ∨G iff w ⊩ F or w ⊩ G;

(c) w ⊩ F → G iff for all v where w ≤ v, either v ⊮ F or w ⊩ G;

(d) w ⊩ ¬F iff w ⊩ F → 0 = 1;

(e) w ⊩ ∀xF iff, for each v where w ≤ v and each c ∈ Dv we have that v ⊩ F (c);

(f) w ⊩ ∃xF (x) iff for some c ∈ Dw, w ⊩ F (c).

3. w ⊩ □(t) iff t ∈ Bw.

Definition 6.6.3 DHA Model

A DHA Model ⟨W,≤, {Dw}, 0, s,+, ⋅,=, {Bw},⊩⟩ is a DHA frame augmented with ⊩ such that

for each w ∈W , if DHA ⊢ F and F ∈ Stw, then w ⊩ F .

Definition 6.6.4 DHA Validity

A sentence F is DHA true in a model M if, for every w ∈W
M

it holds that w ⊩ F , which we

write M ⊨ F . We write M ⊨ Γ to mean that, where Γ is a set of sentences, each F ∈ Γ is true in

M. F is valid if it is true in every DHA model. We write this DHA ⊨ F and abbreviate it as ⊨ F .

Lemma 6.6.5 Hereditary Property: If w ⊩ F and w ≤ v, then v ⊩ F .

We prove this by induction on complexity of sentences. If F is the atom t1 = t2, then, if w ⊩ F

and w ≤ v, then v ⊩ F by Definition 6.6.1 clause 6.

For ∧, ∨, →, ∀, ∃ sentences, the argument is the standard argument in first-order intuitionistic

Kripke models.

Let F = □(c). If w ⊩ □(c), then c ∈ Bw. Since c ∈ Bw and w ≤ v, c ∈ Bv, by Definition 6.6.1

clause 4b. By Definition 6.6.2, it follows that v ⊩ □(c).

Theorem 6.6.6 Soundness

If DHA ⊢ φ then DHA ⊨ φ
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We prove this by induction on proof length. It is easy to see that the cases of HA axioms will

be covered by our definitions.

The DHA axioms □[F → G] → (□[F ] → □[G]) and ¬ □ (⌜0 = 1⌝) are special cases of the

conditional. In the first instance, a failure of DHA’s K axiom at w would require a case where

fore some v, where w ≤ v, v ⊩ □[F → G] and v ⊮ □[F ] → □[G]. Since v ⊩ □[F → G], by

Definition 6.6.2, we have that ⌜F → G⌝ ∈ Bv. If v ⊮ □[F ] → □[G], then for some x where v ≤ x,

it must hold that x ⊩ □[F ] and x ⊮ □[G]. Then, by Definition 6.6.2 again, we see that F ∈ Bx

and G ∉ Bx. By Definition 6.6.1, since v ≤ x, ⌜F → G⌝ ∈ Bx. But then ⌜F → G⌝, ⌜F ⌝ ∈ Bx but

⌜G⌝ ∉ Bx, which is impossible by Definition 6.6.1 clause 4e. The argument for DHA’s D axiom

should be obvious when we note that Definition 4d secures that for every world w, ⌜0 = 1⌝ ∉ Bw.

We now cover the case where φ follows by one of our rules. Recall that we have three rules:

modus ponens, universal generalization, and necessitation. What if F follows by modus ponens?

By induction hypothesis, ⊨ G→ φ and ⊨ G, we show that ⊨ φ. If ⊨ G→ φ and ⊨ G, then every

w will be such that w ⊩ G → φ and w ⊩ G. Take an arbitrary v in such a model. By the above,

every u where v ≤ u is such that u⊮ G or u⊩ φ, by Definition 6.6.2, clause 5. Since v is one such

u, and v ⊩ G, it follows that v ⊩ φ.

If φ = ∀xG(x) and follows by universal generalization, then it is provable thatG(a) for arbitrary

a ∈ D, the domain of the model. By induction hypothesis, we assume that ⊨ G(a) for arbitrary

a. Therefore, by Definition 6.6.2, any arbitrary w ⊩ ∀xG(x), hence in every DHA world w our

formula will hold.

If φ follows by necessitation, then φ = □⌜G⌝ and ⊨ G, by induction hypothesis. But then

⌜G⌝ ∈ Bw, for each world w, due to Definition 6.6.1. Hence, for each w ∈ W we have w ⊩ □⌜G⌝,

by Definition 6.6.2.

We now prove Completeness.

Theorem 6.6.7 Completeness

If DHA ⊨ φ then DHA ⊢ φ

In order to simplify our argument, we take DHA along with all instances of K for any F and G
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and any constants therein in any possible models. Observe that while we do account for new

constants—we have any future instance of K already—this extension of DHA remains within the

original language of DHA because K makes use only of Gödel numbers of formulas (as opposed to

the formulas themselves). Indeed, this is possible because □(x) is a predicate. This will not affect

our argument because, despite this additional assumption, the model we create in which w ⊮ φ

will still be a DHA model.

Definition 6.6.8 DHA Prime Theory

Γ is a DHA Prime Theory iff:

1. F ∈ Γ for all sentences F such that Γ ⊢ F in DHA;

2. F ∨G ∈ Γ iff F ∈ Γ or G ∈ Γ;

3. ∃xF (x) ∈ Γ iff for some constant c, F (c) ∈ Γ.

Note that we do not posit necessitation for Γ; we only have necessitation on DHA theorems. Clauses

2 and 3 secure the correct properties of disjunction and the existential quantifier.

Lemma 6.6.9 Deduction Theorem

DHA and DA enjoy the standard Deduction Theorem:

DHA ⊢ F → G⇔ DHA, F ⊢ G

This follows by the same argument used in Theorem 2.1.3.

Now, set of sentences S is consistent if it S ⊬ ⊥. Any consistent set of sentences extends to

a consistent DHA prime theory. Here we reproduce the proof of van Dalen (van Dalen, 2004a, p.

170) in our setting.

Lemma 6.6.10 Let φ be closed and in the language L, of DHA. If Γ ⊬ φ, then there is a prime

theory, Γ
′
, that extends Γ where Γ

′ ⊬ φ.
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We begin by extending the language L of DHA with a denumerable set of witness constants to L′.

We build up Γ
′
by creating a series of extensions of Γ0 where Γ0 ⊆ Γ1 ⊆ Γ2 . . . and taking Γ

′
to be

the union of all Γn. We do not need to add new axioms □⌜F → G⌝ → (□⌜F ⌝ → □⌜G⌝) for all new

formulas because, as we stipulated above, DHA already contains the necessary instances of K. We

ensure that Γ
′
extends Γ by setting that Γ0 is Γ. The standard argument shows that φ remains

unprovable in each Γk. We prove this by induction on Γk. In the base case, we know that Γ0 ⊬ φ

by hypothesis.

Following van Dalen (van Dalen, 2004a, p. 170), we consider the two cases in which k is odd or

k is even. If k is odd, then we find the first sentence ψ1 ∨ψ2 where Γk ⊢ ψ1 ∨ψ2 that we have not

treated. Since it could not be that both Γk, ψ1 ⊢ φ and Γk, ψ2 ⊢ φ, we set that Γk+1 is Γk ∪ {ψ1}

if Γk, ψ1 ⊬ φ, or Γk ∪ {ψ2} otherwise.

If k is even, we find the first existential sentence ∃xψ(x) where Γk ⊢ ∃xψ(x) in L′ that we

have not treated. Take the first new constant that is not in Γk, c, and set that Γk+1 is Γk ∪ {ψ(c)}.

Why does Γk+1 ⊬ φ? If Γk+1 ⊢ φ, then Γk ⊢ ψ(c) → φ, by the Deduction Theorem. Note that c

is a fresh constant. Therefore, the same derivation of ψ(c) → φ works when c is replaced by a fresh

variable y. That is, Γk ⊢ ψ(y) → φ. Universal generalization yields that Γk ⊢ ∀y(ψ(y) → φ). By

first-order intuitionistic reasoning, we get Γk ⊢ ∃yψ(y) → φ. We rename the bound variables from

Γk ⊢ ∃xψ(x) to get Γk ⊢ ∃yψ(y), and then derive φ in Γk. This contradicts our assumption that

Γk ⊬ φ.

We have seen that each successively generated Γk is such that Γk ⊬ φ. We now take the union

of all such Γk and define this as Γ
′
. We now show that Γ

′ ⊬ φ, that Γ
′
is a prime theory, and that

Γ
′
is closed under deduction.

First, we know that Γ
′ ⊬ φ, since if it did, there would a some Γk ⊢ φ which we showed above

was impossible. Second, we know that Γ
′
is a prime theory. Consider first a ψ1∨ψ2 ∈ Γ

′
. Either we

have that either ψ1 ∈ Γ0 or ψ2 ∈ Γ0, or not. In the first case, it follows that ψ1 ∈ Γ
′
or ψ2 ∈ Γ

′
. In

the second, there is a least number k where ψ1 ∨ ψ2 ∈ Γk. The disjunction will be treated at some

higher stage k ≤ h, so for some h, we have that ψ1 ∈ Γh+1 or ψ2 ∈ Γh+1, and therefore, ψ1 ∈ Γ
′
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or ψ2 ∈ Γ
′
. Next, take a given ∃xψ(x) ∈ Γ

′
. By similar reasoning, for some h and constant c, we

have that ψ(c) ∈ Γh+1 and therefore ψ(c) ∈ Γ
′
. Finally, we see that if Γ

′
⊢ ψ then ψ ∈ Γ

′
. This is

because if Γ
′
⊢ ψ then Γ

′
⊢ ψ ∨ ψ, and therefore, at some stage h, Γh+1 was defined as Γh ∪ {ψ}.

Now we construct a model where the root node r ⊩ Γ0 but r ⊮ φ. Without loss of generality, we

assume that all functional symbols in DHA (s,+, ⋅) are represented in predicate form (sp,+p, ⋅p)13,

assuming necessary postulates to ensure the functional behavior of our new predicates. For the

purposes of this proof, we consider DHA without functional symbols. We closely follow van Dalen

(van Dalen, 2004a, p. 170-1).

Lemma 6.6.11 Model Existence Lemma

If ⊬ φ, then there is a DHA Kripke model M with a root node r where r ⊮ φ.

We begin with our Γ0 as DHA and extend it to a prime theory Γ
′
such that Γ

′ ⊬ φ, following Lemma

6.6.10. Where L′ is the language of Γ′, take the set of constants of L′ and call that set D
′
. We define

a new denumerable family of sets of denumerable constants disjoint from D
′
as {cim∣0 ≤ i, 0 ≤ m},

from which we will draw to form new domains D
i
as {cim∣0 ≤ m}.

We take the finite sequences of natural numbers, including also the empty one which we write

as ⟨⟩. We are going to exploit the fact that the relation “initial segment of” is a partial order on

sequences of natural numbers, and that ⟨⟩ is in the root position.

We set that D(⟨⟩) is D
′
, the set of constants in L′. Then, for a k-long sequence of natural

numbers n⃗, the associated domain D(n⃗) will be D
′ ∪D0 ∪ . . . ∪Dk−1

.

Let L(n⃗) be the language resulting from extending L with the set of atoms At(n⃗) built up from

constants in D(n⃗). Observe that At(n⃗) includes formulas □(c) for constants of L(n⃗).

From the above, we now need to rebuild prime theories as follows, which will be the truth sets

associated with worlds in our construction. First, we define the prime theory Γ(⟨⟩) as Γ′. At Γ(⟨⟩)

the language is L′ and the domain is D
′
.

Recall, L(n⃗) is the language at n⃗. Indeed, the relevant part of L(n⃗) is the length, written ∣n⃗∣,

of n⃗. The language resulting from increasing the length of n⃗ by 1 we write L(∣n⃗∣ + 1).
13
For example, s(t) yielding the value t

′
becomes the predicate sp(t, t′). See Smorynski Smorynski (1973)

for an example.
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Assume that we have Γ(n⃗). We enumerate all pairs of sentences in L(∣n⃗∣ + 1) as ⟨σ0, τ0⟩,

⟨σ1, τ1⟩, . . . where the theory Γ(n⃗) and σi does not prove τi in the extended language L(∣n⃗∣ + 1),

for each i.

We now use Lemma 6.6.10 to extend each Γ(n⃗) ∪ {σi} where Γ(n⃗), σi ⊬ τi, to a prime theory.

This gives us Γ(n⃗, i) with Γ(n⃗, i) ⊬ τi, where both σi ∈ Γ(n⃗, i) and τi ∉ Γ(n⃗, i).

Lastly, we define B(n⃗) where B(n⃗) ⊆ D(n⃗). Since Γ(n⃗, i) is consistent and contains DHA, we

set that B(n⃗, i) consists of the Gödel numbers of each sentence F where Γ(n⃗, i) ⊢ □(F ).

We call the set of all n⃗ our worlds W . We now check that, for a given n⃗ that,

n⃗⊩ ψ ↔ Γ(n⃗) ⊢ ψ

If ψ is an equality, then the equivalence holds by Definition 6.6.1. Consider now the case where

ψ is □(c). By construction, Γ(n⃗) ⊢ □(c) iff c ∈ B(n⃗) iff n⃗⊩ □(c).

The other cases follow by standard reasoning on intuitionistic Kripke models.

Therefore, the root world Γ
′
is such that Γ

′
⊩ Γ but Γ

′ ⊮ φ. It is clear that this is a DHA

model insofar as we have our set of worlds; the indexes of our worlds are organized by the initial

segment relation which gives us ≤; we have our sets of domains associated with worlds and subsets

of those domains for {Bw}; and we have the standard arithmetical portion of the model.

From Lemma 6.6.11, we see that for Γ ⊬ φ, we can construct a Γ
′
where Γ

′
⊩ Γ but Γ

′ ⊮ φ.

We can observe that DHA does not prove the Barcan formula,

Lemma 6.6.12 DHA ⊬ ∀x □ F (x) → □[∀xF (x)]

We show that DA ⊬ the Barcan formula, and so DHA does not either. Note that the above is

schematic, we only aim to show that some instances are not provable. Consider the Barcan formula

where F (x) is interpreted as the Gödelian proof predicate Pr(x). Next, we let □(x) be interpreted

as a normalized Rosser proof predicate R. Our predicate R[F ] encodes that “there is an x that

is a proof of F and for all y ≤ x, that y is not a proof of F .” We know there is an interpretation

of □(x) as a normalized Rosser proof predicate, which we call the Rosser Interpretation, and that
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under that interpretation all DA principles are provable in PA by (Peluce, 2018, pp. 284-285) and

(Peluce, 2020, p. 11). Since under the Rosser interpretation, every formula provable in DA becomes

provable in PA, it now suffices to check that the Rosser translation of the Barcan formula is not

provable in DA. Consider the Rosser interpretation of the Barcan formula:

∀xR[¬Proof (x ,⊥)] → R[∀x¬Proof (x ,⊥)]]

We observe that this fails in the standard classical model of arithmetic N . The antecedent is thus

easily satisfied; for it says that for each x, we have an independent proof that that specific x is

not a proof of ⊥. The consequent is not satisfied, however, since the formula inside the brackets

is the Gödelian consistency statement and there is no Rosser proof of the Gödelian consistency

statement.

What happens in the case of DHA’s Gödel sentence D ↔ ¬ □ [D]? Since DHA ⊬ D, we first

take a DHA-model where a root world v has v ⊮ D. Call this model M1, where M1 = ⟨W1,≤1

, {Dw}1, 01, s1,+1, ⋅1,=1, {Bw}1,⊩1⟩. Then, since DHA ⊬ ¬D, we take another model with a set

of worlds disjoint from M1, in which at a root world w we have that w ⊮ ¬D. Let this be M2,

where M2 = ⟨W2,≤2, {Dw}2, 02, s2,+2, ⋅2,=2, {Bw}2,⊩2⟩.

We then build a new model M. We make use of a new world r as our root world below v and

w. We set r to be the standard model of PA. We build this new model M and set our worlds to

W = W1 ∪W2 ∪ {r}. We define our intuitionistic accessibility relation ≤ as the transitive closure

of ≤1 ∪ ≤2 ∪{r ≤ v} ∪ {r ≤ w}. The domain of Dr is the set of natural numbers. The domains of

our worlds, {Dw}, is defined by the following cases:

1. When w = r, Dr is the set of natural numbers.

2. When w ∈W1, Dw is as in M1.

3. When w ∈W2, Dw is as in M2.

Each of Dw contains Dr as its initial segment. Interpretations of 0, s,+, ⋅, on those fragments are

standard (which is determined by axioms of HA). This secures the required monotonicity conditions
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for M. We define Bw for w ∈ Wi as in Mi. We then define Br as the set of Gödel numbers of

formulas provable in DHA. We see, then, that M as defined is a DHA model.

Observe that r ⊮ D since r ≤ v and v ⊮ D and r ⊮ ¬D since r ≤ w and w ⊮ ¬D, though

r ⊩ D ↔ ¬ □ (⌜D⌝).

Lemma 6.6.13 DHA Disjunction Property

DHA ⊢ F ∨G ⇒ DHA ⊢ F or DHA ⊢ G

We prove this by contrapositive, we show that if DHA ⊬ F and DHA ⊬ G then DHA ⊬ F ∨G.

By Lemma 6.6.11, there is a model M1 with root node r where r ⊮ F and a model M2 with root

node s where s ⊮ G. We need to just show that there is a model M3 with root node t where

t⊮ F ∨G.

We use the usual construction to build M3 from disjoint M1, M2, and the root world t.

Notably, since t will be our root world, we preserve the partial order accessibility relations of the

original two models but add t before every other world in our new accessibility relation. Suppose

that t⊩ F ∨G. Then, by Definition 6.6.2, t⊩ F or t⊩ G. But, by Lemma 6.6.5, if t⊩ F , then

r ⊩ F and if t⊩ G then s⊩ G, contradicting our assumption.

Lemma 6.6.14 Existence Property for DHA

DHA ⊢ ∃xF (x) ⇒ DHA ⊢ F (t), for some term t

We prove this by contrapositive. That is, if DHA ⊬ F (t) for any term t, then DHA ⊬ ∃xF (x).

If DHA ⊬ F (ti), then there is a model Mi, for each ti, where ri ⊮ F (ti).

We now build a new model as we did in the proof of the Disjunction property. Take as our base

node the standard model of arithmetic N . Therein, suppose for every term t, N ⊮ F (t). We can

suppose this because if for some numeral n, N ⊩ F (n), then DHA ⊢ F (n) and DHA ⊢ ∃xF (x).

We then take the disjoint models for each Mi where ri ⊮ F (ti), and generate the new model in

the usual way by setting N below (in terms of the accessibility relation) every other world in the

new model but preserving their original accessibility relations. Suppose that N ⊩ ∃xF (x). Then,

by Lemma 6.6.5, each x is such that x⊩ ∃xF (x). But, then, by Definition 6.6.2, for each x there
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is a y where y ⊩ F (t) for some t. But this cannot be because for every new term we added to

extended models, we made sure that it was such that Mi ⊮ F (ti).

6.7 Conclusions

In this Chapter, we introduced and motivated Doxastic Heyting Arithmetic or DHA as an answer

to Mannoury’s challenge and a formal characterization of Brouwerian arithmetic. We have aimed

to axiomatically express the emphasis on mental process at the heart of the intuitonistic project.

We suggest that DHA takes seriously this view of intuitionistic arithmetic.

Recall that we argued that HA was best construed as the theory of constructed objects. A

natural question is: does DHA ascribe exactly the same properties to constructed objects as HA?

That is, is DHA a conservative extension of HA? We answer this in the affirmative:

Theorem 6.7.1 DHA is a conservative extension of HA

For F ∈ LHA, if DHA ⊢ F then HA ⊢ F .

By completeness of HA with respect to HA-models and DHA soundness with respect to DHA-

models, it suffices to show that if there is an MHA with r ∈ W and r ⊮ F , we can convert it into

a DHA-model M with r ∈W where r ⊮ F .

Let M be an HA-model in which HA-formula F fails. We define now a new model M′
by adding

a family of relations {Bw} for each world w in M. We begin by proving some auxiliary lemmas

about M′
and then show that M′

is a DHA-model in which the original HA-formula F fails. We use

the same worlds from M as our new domain in M′
. We also assume that our extended language

LDHA contains all domain elements from M as constants.

For any DHA-formula X, by its Rosser translation, X
R
we understand the result of substituting

all occurances of □[.] with R[.], where R is the normalized Rosser provability predicate. We define

Rosser translations by induction on X with (□[X])R = R[XR]. Note that this definition works for

formulas with Boolos brackets [.] and the corresponding X’s are not necessarily closed formulas.

It is immediate that X
R
is an HA-formula.
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For each world w, define Bw as the set of Gödel numbers of closed DHA formulas X such that

in M, w ⊩ R[XR].

Therefore, we define the truth value of a closed formula □[X] at w in M′
as follows:

w ⊩ □[X] ⇔ w ⊩ R[XR]

We note that our Bw’s are subsets of corresponding domains, are monotone up ≤, do not contain

⌜0 = 1⌝ because HA refutes R⌜0 = 1⌝, and that if ⌜F → G⌝ ∈ Bw and ⌜F ⌝ ∈ Bw then ⌜G⌝ ∈ Bw.

Note that for any HA formulas G, the truth values of G in M and M′
coincide.

Lemma 6.7.2 In M′
, w ⊩ X ↔ X

R
for each DHA formula X (where X is not necessarily

closed).

We prove this by induction on complexity of X.

If X is an HA-formula, then the Rosser translation of X just is X.

For the induction step corresponding to □(x), let X be a DHA-atom then X = □[Y ] for some

Y . We pick an interpretation of all free variables in Y . With this interpretation, we can regard Y

as a closed formula. We defined that for all w and all Y , w ⊩ □[Y ] ⇔ w ⊩ R[Y R]. So therefore,

this holds at our specific w with our Y and at every world accessible from w; hence, w ⊩ X ↔ X
R
.

The cases corresponding to HA-connectives and quantifiers are straightforward.

Lemma 6.7.3 M′
is a DHA-model.

This is immediate from Lemma 6.7.2. We note just that the induction axiom holds for DHA-formula

X since it is equivalent to X
R
, which is an HA-formula for which induction already holds in M.

Since for some world w in M, w ⊮ F and F is an HA-formula, w ⊬ F in M′
as well. Hence

we have shown that HA ⊮ F ⇒ DHA ⊮ F , for any HA formula F .

DHA embodies the aforementioned thesis that HA does not fall short as an answer to Mannoury’s

challenge in that it goes wrong. Indeed, Theorem 6.7.1 tells us that DHA does not ascribe any

properties to constructed objects that HA does not already. Despite this, DHA does allow us
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to disrupt the traditional connection between intuitionistic arithmetic—when it is identified with

HA—and classical arithmetic. Of course, every theorem of intuitionistic arithmetic as HA is also a

theorem of classical arithmetic. On the other hand, when we understand intuitionistic arithmetic

as DHA, a chasm between the axiomatization of the intuitionistic theory of mental construction

and the classical theory of platonic objects forms:

Intuitionistic Arithmetic proves F ⇏ Classical Arithmetic proves F

We do not get the above because we have ascribed some new property to constructed objects, but

instead, the above suggests that DHA accounts for the essentially epistemic character of Brouw-

erian arithmetic. This epistemic character—manifested through our doxastic predicate □(x)—is

not represented in HA (or PA, for that matter). And after all, how strange it would be if formal-

ized Brouwerian mental arithmetic could simply be extended so that its subject matter ended up

matching with that of classical arithmetic, which is in many ways the antithesis of an epistemic

ideology!

A classicist might object that Theorem 6.7.1 shows that we have just said with more theory what

we could have said with less. To this, the intuitionist might respond first that HA oversimplifies

and therefore obfuscates arithmetical construction by omitting the subject. They might continue,

however, that to include the subject only insofar as it is expressed as an arithmetical predicate in

HA is be to commit to a philosophical error; it is to grant priority to the constructed objects over

the subject and in effect pull the cart out of the horse.

We have argued that an axiomatic characterization of intuitionistic arithmetic ought thus to

disrupt the connection to classical arithmetic implied by Heyting’s response to Mannoury’s Chal-

lenge. We have posed one such system that we argue characterizes Brouwerian arithmetic better

than HA is able to. We, of course, leave open the possibility that some future system characterize

Brouwerian better than DHA; perhaps even such a possibility is to be expected given Brouwer’s

views on language. If nothing else, we still will have clarified the desiderata implicit in Man-

noury’s Challenge and contributed to the study of predicate-style modalities. While the latter
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is self-explanatory, the former contribution can be summed up as the claim that while epistemic

classical arithmetic presents an interesting and fruitful extension of classical arithmetic, epistemic

intuitionistic arithmetic is redundant in the sense that intuitionistic arithmetic already is and has

been deeply epistemic.
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