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ABSTRACT

The propensity interpretation of fitness (PIF) is commonly taken to be subject to a set

of simple counterexamples. We argue that three of the most important of these are

not counterexamples to the PIF itself, but only to the traditional mathematical

model of this propensity: fitness as expected number of offspring. They fail to

demonstrate that a new mathematical model of the PIF could not succeed where

this older model fails. We then propose a new formalization of the PIF that

avoids these (and other) counterexamples. By producing a counterexample-free model

of the PIF, we call into question one of the primary motivations for adopting the

statisticalist interpretation of fitness. In addition, this new model has the benefit of

being more closely allied with contemporary mathematical biology than the traditional

model of the PIF.
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1 Introduction

The propensity interpretation of fitness (PIF) was introduced in the late 1970s

with two articles, one by Robert Brandon ([1978]) and the other by Susan

Finsen (née Mills) and John Beatty ([1979]). These papers, among other

things, provided a solution to what has since come to be known as the ‘tau-

tology problem’: if fitness is defined in terms of actual evolutionary outcomes,

fitness cannot then causally explain these outcomes—the ‘survival of the

fittest’ reduces to ‘the survival of those that survive’. These papers proposed

that fitness (or, in Brandon’s terminology, ‘adaptedness’) is a probabilistic

propensity to produce offspring. Each organism, that is, is taken to have a

disposition to produce certain numbers of offspring, with differing probabil-

ities associated with each possible offspring number. If the fitness of an indi-

vidual organism is traceable to this propensity, then it is clear that the

tautology problem is solved. The fittest organisms will, indeed, tend to survive

more often than their less fit counterparts, just as a sturdier glass will tend to

break less often than a fragile one.

Fitness, however, fills more roles than merely the prevention of tautology.

Most models of evolutionary change employ fitness as a scalar numerical

value, comparable between organisms. In addition to providing a rank order-

ing of the organisms in a population—which can justify claims like ‘a is fitter

than b’—these fitness values are utilized by models such as those in population

genetics to predict the future evolutionary trajectory of a given population.

The PIF, then, has traditionally been presented alongside a mathematical

model which can serve to translate this probability distribution into a single,

privileged measure on the distribution. The primary such mathematical model

of the PIF, introduced by Brandon, has defined fitness as an organism’s ex-

pected or average number of offspring, weighted by the associated probabil-

ities. He described this formally as

AðO, EÞ ¼
X

PðQOE
i ÞQ

OE
i , ð1Þ

where each QOE
i is a possible number of offspring and PðQOE

i Þ is the probabil-

ity of that number of offspring being realized. As mentioned above, Brandon

used the term ‘adaptedness’ for fitness and AðO, EÞ should thus be read as ‘the
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adaptedness (i.e. fitness) of organism O in environment E’. This is the stand-

ard model of the PIF, and it is shared across most major presentations of the

PIF, including those of Mills and Beatty ([1979]), Beatty and Finsen ([1989]),

Brandon ([1990]), and Sober ([2001]).

1.1 The ‘Generality Problem’

When the PIF was introduced, Brandon also saw that it could be useful for the

solution of another problem in the philosophy of biology, one which we will

call here the ‘generality problem’. One area of work in the philosophy of

biology has endeavored to theorize at a very abstract level about the process

of evolution by natural selection—we might, consistent with similar termin-

ology in the philosophy of physics, call this the study of the ‘foundations’ of

evolutionary theory. Explanations of evolution at this level do not focus on

particular episodes of natural selection, but rather on what it is that is

common to every instance of natural selection, across every environment,

system of heredity, unit of selection, and so on where natural selection

might be instantiated.

Returning to Brandon, in the same paper in which the PIF is introduced, he

introduces the following as a ‘law of nature’ (which he would later call the

principle of natural selection (Brandon [1990], p. 11):

If a is better adapted than b in environment E, then (probably) a

will have more (sufficiently similar) offspring than b in E. (Brandon

[1978], p. 187)

He argues that it is this law, or something like it, that is presupposed by all

general explanations of natural selection, including the three traditional

Lewontin conditions for evolution by natural selection: variation, heritability,

and fitness differences (Lewontin [1970]).

It is thus crucial to the understanding of philosophical work such as this

that we provide a definition of what Brandon calls ‘better adapted’ and which

many other authors, including Bouchard and Rosenberg ([2004]), call ‘fitter’.

That is, we need a notion of fitness that is capable of serving in the phrase ‘a is

fitter than b’ in every evolutionary system in which a statement like Brandon’s

principle of natural selection (PNS) holds true. This is what we will call the

generality problem: the problem of producing a notion of fitness which may be

correctly applied in explanations that encompass all possible evolutionary

systems.

The generality problem does not only appear in the context of these unre-

stricted, general principles of natural selection, however. Indeed, were this its

only use, it would be a matter of debate whether such a notion of fitness were

really necessary at all, as some authors have constructed frameworks for
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natural selection on which a PNS like that deployed by Brandon is not neces-

sary.1 The reason why the generality problem is so important is that it is also

central to the debate over the causal structure of natural selection, fitness, and

genetic drift—the debate between the ‘statisticalists’ and ‘causalists’.

When, for example, Abrams ([2007], p. 670) proposes as an ‘elaboration of

the PIF’ that ‘if there are individual-level probabilities which are in some sense

causal, natural selection and drift are causal in the same sense’, and Walsh

([2010], p. 168) argues in response that ‘fitness distribution explains but does

not cause population change’, these authors are not arguing over the causal

forces present in some particular biological population. Rather, they are

asking us to consider what the appropriate interpretation of evolutionary

theory is, again, in every circumstance in which it applies. Does fitness reflect

a causal property in all cases? Or is it merely a method of bookkeeping, a

subjective tally of objective organismic lives and deaths? Again, it seems that a

prerequisite for this debate is to find a concept of fitness and a mathematical

model of that concept which apply in all cases—to find, that is, a solution to

the generality problem.

And the generality problem is not exclusive to the philosophical domain.

Lewontin proposes his ‘three principles’ for describing evolution, the second

of these is that ‘[d]ifferent phenotypes have different rates of survival and

reproduction in different environments (differential fitness)’ (Lewontin

[1970], p. 1). This invocation of ‘differential fitness’ is not relativized to any

specific biological population, or even any specific model of fitness. Later

work in mathematical biology has attempted to rigorize this notion of general

fitness. Metz et al. ([1992], p. 198) argue that

[. . .] the biomathematical literature of the last 10–20 years reflects the

implicit acceptance of a common evolutionary framework, the core idea

being that there exists a unique general fitness measure that concisely

summarizes the overall time course of potential invasions by initially rare

mutant phenotypes.

The model of fitness that we will propose here, as we will see later, extends

this work of Metz et al. to the level of the fitness of individuals and draws out

its philosophical implications, unifying the philosophical and biological

approaches to the generality problem.

One obvious objection to this project is that it is not clear that we require a

general concept of fitness to solve the generality problem. Several authors have

endeavored to construct theories of natural selection that make no reference to

fitness. Prominent among these is the work of Millstein, who notes that ‘se-

lection requires differences in abilities to survive and reproduce’. She goes on

1 The most prominent recent approach which discards the PNS is the spatial framework of

Godfrey-Smith ([2009]).
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to say that some would term these ‘ “fitness differences”—I avoid the term to

prevent entanglement in disputes over the definition of fitness’ ([2006], p. 643).

Elsewhere, she defines selection in general as a ‘discriminate sampling process

whereby physical differences between organisms are causally relevant to dif-

ferences in reproductive success’ (Millstein [2006], p. 640), substituting caus-

ally relevant physical differences in place of fitness differences. If such a

definition of selection will suffice, why do we need to produce a general

model of fitness at all?

We claim that this picture of selection is perfectly reasonable, but

only insofar as it smuggles in an implicit reference to a concept of fitness.

It’s clear that not just any physical difference, or even any physical difference

that’s causally connected to survival and reproduction, will suffice for

being counted as taking part in selection. Each individual mammal, for ex-

ample, has a unique pattern of hair follicles, and if hair is causally relevant to

survival in some species, then a fortiori the pattern of individual hairs is as

well. But it does not therefore follow that there is a selective difference between

each pair of individuals that is due to their follicle pattern difference. We thus

need some way to cash out selection in terms of relevant physical differences

between organisms. The causal connection of a physical difference with

survival and reproduction works as a basic criterion of relevance, but (as we

have seen) seems to occasionally include irrelevant features. Furthermore,

the numerical quantification of selection—surely an important task for

biology—requires a notion that can differentiate just how relevant a given

physical difference is to selection. The elaboration of this measure (quantify-

ing how relevant a given physical difference is to an individual’s reproductive

success) will, we argue, just consist in the elaboration of a model of individual

fitness.

Finally, one more approach to the generality problem should be men-

tioned here. The ‘statisticalist interpretation’, as the position of Walsh,

Ariew, Matthen, Lewens, and others has come to be known, attempts to

solve this problem by replacing the PIF with an interpretation of fitness as a

set of facts about the statistical distribution of evolutionary outcomes. Walsh,

for example, states that ‘what it is for a change in relative trait frequencies to

constitute selection (or drift) is merely for it to be susceptible to a certain

kind of statistical description’ ([2007], p. 282).2 As we will now see, one

of the primary reasons for adopting such a position is that there does not

exist an account of the PIF that is free of counterexamples. By producing

such an account here, we therefore substantially weaken a key motivation

2 See Matthen and Ariew ([2002]), Walsh et al. ([2002]), Krimbas ([2004]), Brunnander ([2006]),

Walsh ([2007]), Ariew and Ernst ([2009]) and Walsh ([2010]) for other works in the statisticalist

program.
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for adopting the statisticalist position along with their solution to the gener-

ality problem.

1.2 Counterexamples to the PIF

In addition to offering their own solution, the statisticalists (as well as some

reluctant yet honest propensity theorists) have offered several counterexam-

ples that purport to demonstrate that the PIF is not in fact suitable as an

answer to the generality problem. It is notable, as an aside, that were the PIF

not taken to offer us a solution to the generality problem, a counterexample to

it that showed a particular population or set of populations to which it did not

apply would be neither surprising nor germane. Biologists model the fitnesses

of organisms in specific kinds of populations (with a particular genetic system,

population size, and so on) in different ways throughout the biological litera-

ture. But given that the PIF does claim to offer a solution to the generality

problem, these putative counterexamples are taken to constitute a significant

problem for the PIF.

Before turning to these counterexamples, however, we would like to high-

light one key distinction that is frequently overlooked. The distinction is that

between the PIF as a philosophical position or an ‘interpretation’ in a broad

sense—the claim that the fitness of an organism is traceable to the probability

distribution over its possible numbers of offspring produced—and the math-

ematical model which reduces that propensity to a scalar value (which we will

henceforth call a ‘model of’ the propensity), as expressed, for example, by

Brandon’s Equation (1). Importantly, all the counterexamples raised against

the PIF are counterexamples to the mathematical model. They demonstrate

that the fitness of an organism can change without the fitness value determined

by Equation (1) changing. This point will be vital when we turn to describing

the different ways in which we can respond to these counterexamples. The

three most devastating such issues that have been raised are the moments

problem, the delayed selection problem, and the timing of offspring problem.

Let’s consider them briefly in turn.

1.2.1 The moments problem

Brandon’s equation computes the weighted average of O’s possible

offspring. But individual fitness, it turns out, is sensitive not only to the aver-

age number of possible offspring but also to higher moments of the possible

offspring distribution, such as variance, skew, and so on. As Beatty and

Finsen ([1989]), among others, have pointed out, if two organisms have the

same average number of possible offspring, but one of them has a higher
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variance in possible offspring, the higher-variance organism will be less fit,

ceteris paribus.

In light of this realization, Brandon modified his equation, introducing a

correction factor intended to compensate for the effects of the higher moments

(Brandon [1990]):

A�ðO, EÞ ¼
X

PðQOE
i ÞQ

OE
i � f ðE, �2Þ: ð2Þ

Brandon has the new element in the equation, f ðE, �2Þ, ‘denote some func-

tion of the variance in offspring number for a given type, �2, and of the pattern

of variation’ ([1990], p. 20).

This new formalization of the PIF treats it not as a single equation, but as

an equation schema describing a ‘family’ of models: the exact nature of the

propensity in a given case can only be specified once the details of the popu-

lation are determined. This solution to the problem of the higher moments has

two shortcomings. First, it is not obvious that, if this is the best model of the

PIF, the PIF still offers a solution to the generality problem. Brandon has

traded a single equation for an infinite disjunction of equations, and it is not

clear that such an infinite disjunction can, for example, tell us anything about

(or feature in) the general causal structure of natural selection and genetic

drift. Second, Brandon’s proposed solution does not achieve the desired gen-

erality: the following counterexamples emerged, which show that there is more

to fitness than expected number of offspring corrected for the effects of the

higher moments.

1.2.2 The delayed selection problem

The QOE
i are possible numbers of offspring. But there are many biological

situations in which offspring production is not a good correlate for fitness.

Consider the classic case of the grandchildless mutation found in the some

species of the fruit fly Drosophila (Crow and Kimura [1956]). This mutation

has no effect on the number of offspring produced, but it causes all of an

organism’s offspring to be sterile—that is, it has a major effect on grandoff-

spring production. This is a counterexample to any measure of fitness founded

solely on offspring production. We might attempt to solve this problem simply

by modifying the PIF to be based on an expected number of grandoffspring

instead of offspring. This would solve the problem of the grandchildless gene,

but other species have mutations that end in sterility not one or two, but

dozens of generations later (Ahmed and Hodgkin [2000]). This is not so read-

ily fixable, since even if the PIF was based on the current maximal number of

generations necessary for all extant species, future evolution may increase or

decrease the required number of generations. Brandon, it seems, would have

to add a second correction factor to the infinite disjunction of equations,
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making its suitability as a solution to the generality problem even more

dubious.

1.2.3 Timing of reproduction

If two organisms have the same expected number of offspring, but one is

disposed to reproduce earlier, then it will be fitter, ceteris paribus. This, too,

is an effective counterexample to Equation (2), since timing of reproduction is

a component of fitness but can change independently of expected offspring

number. Brandon, again, could add a third correction factor, one for the

timing of offspring production. But this will only make it a poorer solution

to the generality problem.

1.3 The need for a new model

Thus, there are ample counterexamples to the mathematical models of the PIF

expressed by Equations (1) and (2). Three different ways of responding to

these counterexamples are obvious. We could (i) abandon the PIF and

adopt another solution to the generality problem; (ii) argue that the PIF

can be defended without a corresponding mathematical model; or (iii) look

for a more robust, counterexample-free model. If we choose the first option,

the statisticalist interpretation is the most obvious replacement for the PIF in

this context. It offers a solution to the generality problem by abstracting over

all causal details of the biological case at hand, and describing only the evo-

lutionary outcomes in terms of their statistical distribution.

Although the statistical response is not without merit, it has considerable

shortcomings. Defining selection and drift merely in terms of their

population-level outcomes runs the risk of obscuring the distinction between

selection and drift, as well as making trouble for the traditional ways in which

biologists understand these differing contributors to evolutionary change

(Millstein [2002]; Brandon and Ramsey [2007]; Millstein et al. [2009]). The

relationship between the various accounts of causation on offer and evolu-

tionary theory seems to produce prima facie evidence that drift and selection

are in fact causal, contra the statisticalist position (Reisman and Forber [2005];

Millstein [2006]; Forber and Reisman [2007]; Northcott [2010]). Perhaps most

worryingly, there seem to be instances where the statisticalist interpretation

simply gets the empirical data wrong, claiming that selection and drift cannot

be distinguished or that selection is not acting on a population, when in fact

the opposite is true (Brandon and Ramsey [2007]; Millstein [2008]). These

claims are all the subject of intense argument (see, for example, Lewens

[2010]; Walsh [2010]), but it is worth our while to investigate ways in which

a defender of the PIF could salvage the PIF’s basic insights.
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To understand and evaluate the other two possible responses to the counter-

examples, we must begin by returning to the important distinction we made

above between the PIF and the mathematical model of this propensity. The

counterexamples just described serve as counterexamples specifically to

Brandon’s mathematical models of the PIF as expected number of offspring

(possibly with a correction factor). In order, then, for them to serve as coun-

terexamples to the PIF itself, two additional premises are required: (i) the

formulation of a successful mathematical model of the PIF is required for

the project to go through, and (ii) Brandon’s original equation is either the

only or the best possible mathematical model of the PIF. It is open to the

defender of the PIF to reject either of these latent premises.

Perhaps the simplest way to reject the first premise would be to abandon the

search for a mathematical model of the PIF entirely. We would then focus on

the correctness of the PIF as a philosophical understanding of fitness, ignor-

ing—or leaving to the biologists—the matter of determining the precise math-

ematical details of how this interpretation of fitness might be formalized.

Alternatively, we could reject the second premise, and resume the search for

a new mathematical foundation for the PIF. It is this latter approach, we

believe, which stands the best chance of solving the generality problem

while saving the possibility of a causal interpretation of fitness, natural selec-

tion, and genetic drift.

We must, however, defend this choice. Why is it that the correct response

for a defender of the PIF is to continue the search for a mathematical model?

Might we not best interpret many of the arguments of the statisticalists as

proving to us that such a search is likely to be fruitless? We claim that it is not.

First and foremost, if a counterexample-free model of the PIF can be de-

veloped, this implies the tenability of the PIF-as-interpretation. While the

lack of a model does not imply the incoherence of the PIF, a

counterexample-free model shows that the PIF can be formalized in a clear

and explicit manner. And further, the development of models of the propen-

sity interpretation that are connected with biological practice can form a

bridge between philosophical theory and scientific practice. If we can craft a

model of the PIF that connects it with current work in biology, then the PIF—

which otherwise may seem esoteric and non-biological—can be shown to be

directly tied to contemporary evolutionary theory.

We argue that the lack of recognition of the complexity of the biological

world has been one of the key mistakes made by defenders of the PIF.

Beginning with expected number of offspring one generation into the future

and then adding a host of correction factors has been, as we have seen, an

ultimately fruitless path. We will instead discard this formulation and begin

afresh, offering a model that does indeed avoid these counterexamples, and

connects directly with the much more sophisticated mathematical models
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arising from cutting-edge mathematical biology. Our model can thus serve as

the new foundation for the PIF.

2 A New Formalization

Let us begin by carefully considering the structure of the PIF itself—that

which any mathematical model of it is intending to capture. (Henceforth,

when we refer to ‘the PIF’, we intend to denote the PIF-as-philosophical-

interpretation, not any particular model thereof.) We will begin with the

sketch offered by Ramsey’s ‘block fitness’ ([2006]), attempting to provide it

with some mathematical rigour. This formal structure, at this point in the

argument, is not intended to capture any specific mathematical model of the

PIF. That is, we are not yet offering our own model of the PIF. Rather, the

following is meant to give us a vocabulary in which any mathematical model

of the PIF might be phrased (including, as we will see later, Brandon’s original

Equation (1)). The formalism offered here will be quite general, containing far

more terms than are required by most models of the PIF. This would allow

one to formalize models of any complexity in these terms by simply ignoring

terms for elements not required for the model.

Consider an individual organism, o, in a given environment, E, with a given

genome, G.3 Over time, o may produce a population of offspring, o1
i . And

these, in turn, may produce offspring o2
i . We say may produce because, for

each organism (in each generation), there is a set of possible reproductive

outcomes for that organism’s life. These ways that organisms might live (or

‘possible lives’ for short4) might include dying early of malnutrition, being

preyed upon as a juvenile, or living to maturity and producing many offspring.

These possible lives reflect not just the overall reproductive output of an or-

ganism (as used in Brandon’s Equation (1)), but many other features besides,

such as the timing of offspring production. It is thus clear that mathematical

models of the PIF can, if we wish, rely on many more theoretical resources

than are utilized by standard formalizations such as Equations (1) and (2).

Let us return to the further development of our theoretical vocabulary.

Combining these possible lives over generational time leads to a set of ‘pos-

sible daughter populations’ of o:5 There are many such possible sets, each

containing all the descendants that o might produce in some set of

3 We do not intend a particularly restrictive definition of either ‘environment’ or ‘genome’ here.

Genome, for example, should be taken to include all heritable factors passed on from parent to

offspring, including epigenetic and behavioural transmission.
4 No particular modal ontology should be read into these ‘possible lives’. In fact, we believe—con-

sistent with the propensity interpretation—that these possible lives are best understood as the

manifestation of a probabilistic dispositional property over time, a propensity.
5 We should note here that these are not ‘populations’ in any sense familiar from population

genetics or ecology. A more appropriate term might be ‘lineage’, but we wish to avoid confusion

with several current theories of ‘lineage fitness’ (see below).
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circumstances. Call each of these possible daughter populations !i, and call

the totality of such possible daughter populations (the set containing all of

them) our sample space �.6

Now that we have our set of possible daughter populations, we need a way of

tracking how probable these various possibilities are. To do this, we define a

�-algebra and probability measure, F and Pr, over �, in the traditional way.

The details of this operation need not concern us here; this is the traditional

mathematical formalization that lets us assign probabilities to the elements of

our sample space. The probability Prð!iÞ assigned to each possible daughter

population is simply the probability that!i will be the actual daughter population

of o.7

This set of possible daughter populations along with their associated prob-

abilities clearly gives a very thorough picture of the ‘success’ of o: But we have

yet to offer a mathematical model of the PIF—merely a very precise, perhaps

unnecessarily large, mathematical vocabulary in which many various math-

ematical models of the PIF might be phrased. These raw sets of possibilities

and their associated probabilities cannot, for example, be directly compared to

produce a fitness rank ordering. The task of constructing our novel mathem-

atical model of the PIF from these elements, then, is the aim of the remainder

of this section. We are searching for the measure of individual fitness that can

be extracted from this expansive set of theoretical resources which is max-

imally sensitive to the features of the raw sets of possibilities, and therefore as

free as possible from the sorts of counterexamples articulated in Section 1.2.

As we discussed in Section 1, the traditional way of turning the raw sets of

possibilities and their associated probabilities into scalar values, expressed in the

original formulation of the propensity interpretation (Brandon [1978]; Mills and

Beatty [1979]), is the following: First, define a function �ð!, tÞ which computes

the size of some particular possible daughter population, !, at time t: Then,

fixing T as the time one generation into the future, we define individual fitness as

F ¼

Z
!2�

Prð!Þ � �ð!, TÞd!: ð3Þ

This is simply the continuous analogue of the weighted average. We multi-

ply the probability of each possible life by the size of the daughter population

for that outcome one generation in the future, and then integrate to obtain the

expected daughter-population size in the next generation. This is precisely

6 Equivalently, one could define � as the space of functions ! : R! R
n, which take a time

t 2 ½0,1Þ to a ‘state vector’ consisting of some finite number of real-valued degrees of freedom.

The ‘possible daughter population’ formulation, however, is more perspicuous, so we will use it

for the remainder of the discussion.
7 Note that the sample space � is uncountable, necessitating that we integrate with respect to the

probability measure Pr: See Appendix A for information on the size of �, as well as a proof that

� is well-behaved.
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equivalent to the result obtained by the traditional PIF, giving the same nu-

merical results as Equation (1). That is, this is just Brandon’s original formu-

lation of the PIF expressed in our new theoretical vocabulary.

As mentioned, however, this formulation is subject to many problems. First

and foremost, we need to remove the reliance of Equation (3) on T , and hence

on the daughter-population size only one generation into the future, to resolve

the delayed selection problem. A first attempt at removing this time-

dependence might lead us to compute something like the limit

F1 ¼ limT!1 F , computing individual fitness in the ‘infinite long run’. This

would assuredly accomplish our goal of capturing all causal influences which

might impact the future fate of an organism within a population.

There is, however, no guarantee that this infinite limit converges, is finite,

connects with biological practice, or in any way tracks other measures of

individual fitness. First and foremost, it seems quite likely that, in all cases,

F1 ¼ 0. If every possible daughter population of o goes extinct in the infinite

long run, then for every ! 2 �, limt!1 �ð!, tÞ ¼ 0, and thus F1 ¼ 0. On the

other hand, if some possible daughter populations do not go extinct, then it is

possible that the population dynamics at infinite time are so chaotic that the

limit in F1 does not converge to a stable value.

How, then, can we produce a long-run measure of individual fitness from �?

As it turns out, the problem of determining this function is equivalent to a

well-studied issue in demographics and mathematical biology: the asymptotic

behaviour of sequences of random, non-negative matrices. Results in this

theoretical arena (following Tuljapurkar and Orzack [1980]; Caswell [1989];

Tuljapurkar [1989], [1990]) can guarantee the existence of a limit much like

F1: (The details of this derivation may be found in Appendix A.) These results

allow us to define individual fitness instead as

F ¼ exp lim
t!1

1

t

Z
!2�

Prð!Þ � lnð�ð!, tÞÞd!

� �
: ð4Þ

Before we consider the peculiarities of this new model (such as its infinite

limit, logarithms/exponents, and factor of 1=t), let’s examine how it solves the

problems of extinction and chaotic future dynamics. We must enforce three

assumptions on the possible daughter populations and their associated pro-

babilities to guarantee that the limit in Equation (4) converges (Tuljapurkar

[1990], p. 25): (i) demographic weak ergodicity; (ii) that a random and stationary

process generates the Pr function; and (iii) that the logarithmic moment of

the growth rate is bounded. For the sake of brevity, we will pass over the

detailed mathematical characterization of these assumptions here.8 In short,

8 For demographic weak ergodicity, the reader may consult (Seneta [1981], pp. 80–91;

Tuljapurkar [1990], p. 17; Tuljapurkar and Orzack [1980], pp. 319–20; Cohen and Heyde
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demographic weak ergodicity assures that there exists some non-zero probabil-

ity of the population’s survival at all times, t, getting us around the extinction

problem mentioned above. While this assumption is biologically unrealistic, it is

quite common in mathematical demography, and can be dealt with either by

describing extinction as a threshold (that is, a population ‘goes extinct’ when its

size falls to less than some small value, n), or by introducing some random

environmental sampling variation into the model (see Keiding [1975]). A guar-

antee that the Pr function is generated by a stationary random process assures

that chaotic population dynamics are not permitted. (The boundedness of the

logarithmic moment of the growth rate is of purely technical interest.) In gen-

eral, however, we defer here to Cohen, who states that ‘under reasonable con-

ditions, which are likely to be satisfied in demographic applications, the

stochastic process and the matrices in Leslie form [the population analogue

of our individual daughter populations and probabilities] are such that the

limits in [Equation (4)] exist’ (Cohen [1979], p. 164).

These three conditions do, however, have biological significance for our

model. Most significantly, they imply that the selective pressures at work

are density-independent, and that the population dynamics are non-chaotic.

These are the most substantial limitations of our model and, because of this,

Equation (4) clearly cannot provide the PIF with a complete answer to the

generality problem. However, the necessary mathematical work to generalize

our derivation to cases of non-static environments and density dependence, as

well as chaotic population dynamics, has been published within a research

program known as adaptive dynamics, to which we will return shortly. We

omit it to simplify our derivation, as it relies on a hefty theoretical apparatus

which considerations of length and accessibility prevent us from presenting

here.9 Our Equation (4) is the density-independent, non-chaotic limit of this

more sophisticated work, and thus, given these restrictions, is equivalent to

this more general model. Further, and perhaps most importantly, all the

counterexamples that have been offered in the philosophical literature to

the traditional mathematical model of the PIF (Equation (3)) are resolved

by Equation (4).

Let us take stock. We have explicated the PIF itself via a very extensive

picture of the success of an organism, o, by considering all the possible daugh-

ter populations to which it might give rise, and we have then modeled this

[1985], p. 123). For a discussion of the stationarity and ergodicity requirements on the random

process, consult Tuljapurkar and Orzack ([1980]).
9 The interested reader is referred to Rand et al. ([1994]), Grant ([1997]), Caswell et al. ([2004]),

Caswell and Takada ([2004]) and Caswell ([2009]). Many of the most important conclusions for

individual fitness follow directly from Theorem 1 of Rand et al. ([1994], p. 271). See Benton and

Grant ([2000]) for a comparison of various approaches to fitness in population genetics and

adaptive dynamics.

A New Foundation for the PIF 863

 by guest on N
ovem

ber 9, 2013
http://bjps.oxfordjournals.org/

D
ow

nloaded from
 

http://bjps.oxfordjournals.org/
http://bjps.oxfordjournals.org/


propensity by defining a function, Equation (4), that successfully encapsulates

the behaviour of this sample space in the infinite limit.

But what does this function actually represent? Does it correspond to any

other known models of individual fitness and, if so, in what circumstances?

And what should we make of its peculiar mathematical features?

2.1 The new model and biological theory

Although Equation (4) was derived via a reflection on the philosophical thesis

of the PIF, we will now show that the same mathematical formula has been

independently derived within the field of mathematical biology. In fact, in

adaptive dynamics, a variation of this equation is argued to be the optimal

predictor of the fates of populations. We therefore suggest (and will attempt to

demonstrate in the remainder of this section) that Equation (4) is deeply con-

nected to biological theory and practice, and that with certain simplifying

assumptions, one can derive from Equation (4) many standard fitness meas-

ures. Thus, despite the fact that it may seem less connected to biological theory

and practice than the standard formulation of the PIF articulated by Brandon

([1978]), Equation (4) is much more closely connected with contemporary

biological theory and practice, and is sensitive to the advances in mathemat-

ical work that have occurred in the decades since Brandon first published his

attempt at providing a model of the PIF.

To explore the relationship between Equation (4) and other (recently de-

veloped as well as traditional) models of fitness, let’s begin with two different

models that are precisely equal to Equation (4). First, Equation (4) is equal to

a model of fitness known in mathematical biology as Tuljapurkar’s a, repla-

cing the population-level quantities in Tuljapurkar’s original function with

Equation (4)’s individual-level quantities. Indeed, many of his results have

been crucial to the derivation of our model here (Tuljapurkar and Orzack

[1980]; Tuljapurkar [1989], [1990]).10 Tuljapurkar’s intent in creating this

model of fitness was to produce an expanded notion of lifetime reproductive

success (LRS) which can apply to the general case of environments that vary

stochastically over time. Notably, Tuljapurkar’s a has proven to be a success-

ful measure of fitness in the wild. Cohen and Heyde ([1985]), for example, use

it to study the growth of breeding populations of striped bass in the Potomac

River. They determined that it provides a highly accurate determination of

average growth rate (while noisy data make estimation of other parameters

like variance more difficult).

This model has also appeared as one of the fundamental quantities in

the research programme known as adaptive dynamics, which we briefly

10 Technically, lnðF Þ ¼ a; see Appendix A for details.
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mentioned above. Adaptive dynamics endeavours to produce a highly general

notion of fitness applicable in many ecological contexts, based on two con-

siderations: (i) the modelling of populations in variable environments, and (ii)

the determination of fitness on the basis of invasion, consistent with much

work throughout evolutionary ecology. In one of the seminal articles of adap-

tive dynamics, titled ‘How Should We Define “Fitness” for General Ecological

Scenarios?’, Metz et al. note that ‘the long-run growth rate’ of a population in

their framework ‘can be defined as the limiting value, as (time) T approaches

infinity, of the quantityT�1fln NðTÞ
�� ��� ln Nð0Þ

�� ��g’ ([1992], p. 198). This quan-

tity, again, is precisely equivalent to our model.11 As we discussed earlier,

work in this field has also produced substantially more sophisticated models

which can be used to take account of both chaotic population dynamics and

density-dependent selection. Equation (4) is the density-independent,

non-chaotic limit of these more complex models.12

To connect Equation (4) to further biological models, we must introduce

some simplifying assumptions. First, if we assume that multigenerational ef-

fects are absent from the population, we may approximate Equation (4) by

taking its value at time T , one generation into the future. Assuming that

T � 1,13 we then remove the limit and factor of ð1=tÞ from Equation (4),

resulting in

F � exp

Z
!2�

Prð!Þ � lnð�ð!, TÞÞd!

� �
: ð5Þ

To further simplify Equation (5), we should note that it has the form of a

geometric mean. That is, the geometric mean of a function f ðxÞ applied to

some sample space X is defined as

GMðf ðxÞ, X Þ ¼ exp

Z
x2X

PrðxÞ � lnðf ðxÞÞdx

� �
,

and Equation (5) thus states that F � GMð�ð!, TÞ, �Þ:

Notably, the use of a geometric mean in fitness models in biology is by no

means a new concept (see Lewontin and Cohen [1969]; Boyce and Perrins

[1987]; Sober [2001]; Simons [2002]; Lee and Doughty [2003]). In particular,

however, given the prominence of this work in the philosophical community,

geometric mean fitness is discussed extensively by Gillespie ([1977]), in his

11 We omit the derivation here, as it is almost precisely identical—although phrased in a different

theoretical vocabulary—to the derivation of Tuljapurkar’s a presented in Appendix A.
12 Therefore, with arguments very similar to the ones provided here, these more complex models

also reduce to our model, Brandon’s model of the PIF, and the other standard biological fitness

measures we discuss below.
13 We also must assume that the function

R
!2�

Prð!Þ � lnð�ð!, tÞÞd! is continuous at T , so that

limt!T ð
R
!2�

Prð!Þ � lnð�ð!, tÞÞd!Þ ¼
R
!2�

Prð!Þ � lnð�ð!, T ÞÞd!. This should be true in effect-

ively all circumstances, particularly since we have already guaranteed non-chaotic population

dynamics.
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summary of his earlier work. Specific translation of his work into our arena is

difficult, as he is discussing the fitness of traits, rather than the fitness of

individual organisms (see below for more discussion of this point).

However, he notes that, in general, when we have stochasticity resulting

from ‘temporal fluctuations in the environment, for example, the best measure

of fitness turns out to be the geometric mean of the offspring number, aver-

aged over time’ (Gillespie [1977], p. 1011).14 He then establishes several results

using the series expansion of the geometric mean, to which we will now turn.

We know from standard results in statistics that the geometric mean can be

expressed as

lnðGMðX ÞÞ ¼ lnð �X Þ �
1

2 �X 2
M2ð �X Þ+

1

3 �X3
M3ð �X Þ � � � � ,

where �X is the arithmetic mean of the distribution X , and Mið �X Þ is the ith

central moment of the distribution X (i.e. its variance, skewness, kurtosis,

etc., for i ¼ 2, 3, 4, . . .) (Jean and Helms [1983]). Thus, we can see that when

the higher moments of a distribution are negligible (i.e. when effects of vari-

ance, skew, and so on can be neglected), GMðX Þ � �X : In these cases, we may

thus consider individual fitness as though it were defined in terms of an arith-

metic mean. We can therefore approximate Equation (5) by an arithmetic

mean, which gives us

F �

Z
!2�

Prð!Þ � �ð!, TÞd!: ð6Þ

Equation (6), then, is just Equation (3): We have reduced our new formu-

lation to that of the traditional model of the PIF with the aid of two relatively

plausible simplifying assumptions. (Of course, in the presence of the condi-

tions described in the various counterexamples to Equation (3) described

above, these simplifying assumptions do not hold.)

Several short-term measures of fitness are particularly common in the bio-

logical literature, as they are easy to estimate and can be derived from readily

available empirical data. The first is the net reproductive rate (or ratio), R0,

which is a common measure of the single-generation reproductive output of a

population (Murray and Gårding [1984]; Murray [1990]). LRS is the individ-

ual analogue of this population measure. It is well-known from the literature

on the original model of the PIF that Equation (6) is equal to the LRS, and

thus Equation (4) reduces to the LRS. Another quite common biological fit-

ness measure is the Malthusian parameter, the growth rate of a population

given an exponential growth model. Given the LRS, we may derive the

14 Gillespie probably has something like predictive accuracy in mind when he invokes the ‘best

measure of fitness’, but these details need not concern us here.

Charles H. Pence and Grant Ramsey866

 by guest on N
ovem

ber 9, 2013
http://bjps.oxfordjournals.org/

D
ow

nloaded from
 

http://bjps.oxfordjournals.org/
http://bjps.oxfordjournals.org/


(individual analogue of the) Malthusian parameter as well: r ¼ T�1 lnðF Þ

(Charlesworth [1970]; Denniston [1978]; Charlesworth [1980]; Murray [1990]).

To recap, then, our new model of the PIF as described by Equation (4) is

precisely equivalent to several advanced models of fitness and, with two plaus-

ible simplifying assumptions—(i) that multigenerational effects are absent, and

(ii) that effects of the higher moments are negligible—can be reduced to the

original model of the PIF as well as to the most commonly used biological

fitness measures (R0, LRS, and the Malthusian parameter). Our model thus

dovetails very tightly with contemporary work on the measurement of fitness in

biology.

3 Possible Objections to F

Now that we have seen that Equation (4) is closely connected with biological

theory and practice, let’s pause to consider some of the ways philosophers

might object to the model. We will, in the following section, then turn to the

question of whether it successfully dodges the counterexamples discussed in

Section 1.2. Our formulation is clearly a multigenerational or long-run meas-

ure of fitness. And this long-run measure of fitness makes extensive reference

to not merely the organism itself, but to the organism and all its possible

daughter populations—that is, our definition of fitness depends crucially on

the organism’s lineage. Both long-run and lineage fitness models have been

challenged in the past, and in this section we will show that our model is not

undermined by these challenges.

There is nothing novel about the concept of long-run fitness. In the philo-

sophical literature, the varying time scales required in definitions of fitness have

been discussed extensively by Ramsey ([2006]) and Abrams ([2009a]). In the

biological literature, two prior models of very-long-term fitness have been pro-

posed: Thoday’s definition of fitness as ‘the probability that [. . .] a unit of evo-

lution will survive for a given long period of time, such as 108 years’ ([1953],

p. 98), and Cooper’s definition of fitness as ‘expected time to extinction’ ([1984]).

Our new model is clearly not equivalent to either of these models and, we

will argue, neither of them can serve as a satisfactory answer to the generality

problem in the context of the PIF. To see why, let us first consider Thoday

([1953]). Thoday’s model simply sets a large future time (108 years) and cal-

culates the probability of the survival of a given organism’s lineage to that

point. The primary objection to a model like Thoday’s is simply that this

time-frame is entirely arbitrary. Why should daughter-population events at

time 108 � 1 years be included in an organism’s fitness, but events at time

108+1 years be ignored? It seems that no philosophically defensible answer

to this question can be found. It is for this reason that we have attempted to

include all possible future causal influences in the scope of our model. Further,
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should evolutionary dynamics be chaotic (a possibility introduced in the last

section), there is no guarantee that the probability to which Thoday refers will

even have a definite value.

Cooper’s ([1984]) definition of fitness as expected time to extinction suffers

from a different, but equally fatal flaw. The precise numerical expected time to

extinction of a given organism seems to have only a very loose relationship to

other more commonly used models of fitness. Expected time to extinction may

well be correlated with individual fitness, and one could obviously derive ex-

pected time to extinction from the theoretical resources offered by our set of

possible daughter populations. But for expected time to extinction to serve as

a fundamental model of fitness, this derivation would need to be reversible—

one would need to be able to derive other standard models of fitness (such as

those mentioned at the end of the last section) from expected time to extinc-

tion, which is impossible. Expected time to extinction thus solves the gener-

ality problem at the price of alienating the PIF from all other work on the

concept of fitness in both philosophy and biology. Given that our model does

not suffer from this flaw, we believe this price is too high.

Our model, despite being long term, is multigenerational in a different

manner than either of the models of Thoday and Cooper. Its time scale is

infinite, encompassing all possible future causal influences on organisms. At

the same time, it still reduces to other common short-term models of fitness. It

thus effectively avoids the problems that Thoday and Cooper fall prey to.

Finally, we will consider several other objections that have been raised

against both long-run and individual models of fitness.

3.1 Objection 1: Natural selection is short term

Brandon argues, referring to Thoday and Cooper’s long-term notions of fit-

ness, that ‘they fail to explain how the process of natural selection can be

sensitive to differences in long-term probabilities of surviving offspring’.

Selection, he notes, is

the diferential reproduction of phenotypes that is due to the differential

adaptedness of those phenotypes to a common environment. Evolution

results from this process if the phenotypic differences are heritable. How

could this process be sensitive to long-term probability (i.e. over many

generations) of surviving offspring? (Brandon [1990], p. 25)

Long-term notions of fitness are, that is, irrelevant to the process of natural

selection—since selection is short term, individual fitness must be short term

as well.

In response to this charge, Sober notes, quite correctly, that ‘the fact that

selection occurs one generation at a time does not mean that it is wrong to

define a quantity that describes a trait’s long-term expected fate’ (Sober [2001],
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p. 313).15 To consider a similar example, just because the half-life of a particular

sample of uranium may be defined in terms of its expected behaviour thousands

of years into the future, we need not say that this somehow means that radio-

active decay does not ‘act on’ the uranium ‘as it currently is’. Radioactive decay

has no more foresight than natural selection—and both may make reference to

future (or even possible future16) events.

One might reply that the behaviour of radioactive decay is somehow more

‘regular’ or ‘predictable’ than the behaviour of biological organisms, and that

therefore this analogy fails.17 But this isn’t the relevant feature of the analogy

(if, in fact, the behaviour of uranium is any more ‘regular’ than that of or-

ganisms, which is itself not obvious). The objection as argued by Brandon

seems to claim that it is a category mistake to include future events in the

definition of fitness, as selection acts only in the present. A half-life certainly

does make reference to future events for its definition, and radioactive decay

certainly acts only in the present. This facet of the analogy thus clearly holds.

This objection does not, therefore, challenge the coherence of our model.

More importantly, however, this objection misunderstands the purpose of

our model. We are attempting to produce a model of the PIF that forms a

successful solution to the generality problem. Solutions to the generality prob-

lem require casting an expansive net, including the extension of our model of

fitness to the long term. Other models of fitness will of course be useful in other

pragmatic contexts—the generality problem is often (or even usually) far from

our minds when we work on evolutionary systems. And our demonstration in

the last section that our model reduces, in the short term (and given several

other limiting assumptions), to several well-known biological models of fitness

can give us hope that this new model of the PIF can both provide a solution to

the generality problem and ground a theoretically unified picture of fitness.

3.2 Objection 2: Descendants are only minimally related to

ancestors

Another objection to long-term fitness is offered by Ramsey. He writes that

since, over time (for sexually reproducing species), the organisms constituting

the daughter population of some organism are related less and less to that

organism (a factor of 1
2

in the first generation, 1
4

in the next, and so on), the

long-term descendants of two organisms in a population may well be roughly

15 Similarly Abrams ([2009b], p. 751) argues that ‘since probabilities of long-term effects can be

derived from probabilities of short-term effects, the former are simply mathematical properties

of causes acting in the short term’.
16 If there had been only one molecule of uranium in the entire universe, that molecule would still

have the same half-life as the uranium which we know, even though this half-life could be

defined in terms of other possible (not actually existing) atoms of uranium.
17 We thank an anonymous reviewer for pointing out this possible reply.
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identically related to each of those ancestors. It is therefore a mistake to think

that the fitness of those two organisms somehow depends on the characteris-

tics of those descendants.

Two responses can be made to this objection. First, Ramsey is at this point

concerned with the operationalization of his notion of fitness. It is true that as

we move from the short term to the long term, we begin to consider organisms

that may be quite different than the original organism we intend to study. And

it also may be true that the precise fitness difference between two organisms

hinges upon an organism that we cannot measure, for it lies many generations

into the future. But we have already seen that in many relevant cases, the

long-term notion of fitness we describe here reduces to easily measurable

short-term fitness measures. Of course, these require simplifying assumptions,

and will therefore occasionally produce the wrong answers. In this case as in

many others, we must assess the common biological tradeoff between com-

plex, accurate biological models that are difficult to measure and simpler, less

accurate models that are more empirically tractable.

Second, another way of reading this objection would confuse an accurate

point about trait fitness with an inaccurate claim about individual fitness.

When we are considering the fitness of traits, Ariew and Lewontin (among

others) remind us that ‘the rate of reproduction by a genetic type is not the

same as the rate of reproduction of a genetic type’ ([2004], p. 352). In measur-

ing the long-term fitness of a trait, then, the genetic relatedness of those off-

spring with their ancestors is, in fact, a crucial point. If we lose track of this

relatedness, we run the risk of inflating the fitness of ancestral types (a mistake

which Ariew and Lewontin ascribe to Fisher).

In the case of individual fitness, on the other hand, such a worry does not

arise. Individual fitness, as we have explicated the picture provided by the

propensity interpretation, is concerned with the size of the daughter popula-

tion of a given individual. Membership in a given daughter population does

not come in degrees—one is either a descendant of a given organism or one is

not. If a given future organism is a descendant, then it is counted by our

model.18 While the ‘coefficient of relatedness’ of some arbitrary, distant des-

cendant to two members of the ancestral population may be both similar and

very small, this gives us no reason to think that the fitnesses of these two

ancestors will be equivalently similar. Effects of path dependence on the

daughter populations in the intervening generations, for example, may well

be quite significant.

18 Of course, there are manifold issues concerning individuality in evolutionary biology, and it thus

may not always clear when an ‘organism’ is to count as a ‘descendant’ (Godfrey-Smith [2009]).

Our model, however, suffers from this problem no more acutely than any other of the many

theories in evolutionary biology that require the counting of individuals.
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3.3 Objection 3: Evolutionary time scale is pragmatically

determined

Sober claims that we should wish to remain agnostic over whether we should

choose long-term or short-term measures of fitness. ‘Long-term fitness’, he

writes, ‘is a coherent concept that may be useful in the context of certain

problems; however, its coherence and desirability do not undermine the con-

cept of short-term fitness’ (Sober [2001], p. 313). In general, we agree. As noted

above, we have introduced our model with the intent of cementing the place of

the PIF (and, along with it, the causal interpretation of fitness, selection, and

drift) as one possible solution to the generality problem. But short-term pre-

dictions, as we have seen above in our discussion of the relationship of this

model to other biological definitions of fitness, can readily be derived from this

model under various plausible sets of limiting assumptions. Thus, we are fully

entitled to utilize these short-term predictions when they are needed. And as

we have already noted, the solution to the generality problem—an active issue

in the philosophy of biology—requires the model to take the long-term view.

3.4 Objection 4: Long-term fitness is lineage fitness

We claim to be setting out a model of individual or organismic fitness. Our

derivation, however, seems to traffic only in lineages or daughter populations.

Isn’t this model, then, in fact a model not of individual but of lineage fitness?

We should begin by noting that we do not intend to disparage the usefulness

of lineage fitness. Jost, who defines lineage fitness as ‘the number of descend-

ants weighted by their degree of relatedness with the ancestor of the lineage’

([2003], p. 331), has made a persuasive argument for lineage fitness and used it

effectively to analyze the emergence of altruism (although see Okasha ([2006])

for a criticism of this concept).

It is true, however, that the objection that Equation (4) represents lineage

fitness instead of organismic fitness would defeat our claim to be offering an

improved model of the PIF. But reading our model as a model of lineage

fitness misunderstands our work. Clearly, the possible future lineages of an

organism are one of the determinants of its fitness. But this is not equivalent to

the claim that lineages are the bearers of fitness. Our model, that is, is a model

of individual fitness that depends on lineage characteristics.

3.5 Objection 5: The theory of evolution by natural selection

fundamentally concerns trait fitness, not individual fitness

Our model is, as we have stated, a model of the fitness of individual organisms.

Organismic fitness plays important roles in parts of ecology and evolutionary
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biology, and is the concept of fitness underlying the PIF. On the other hand,

much of the active work of biologists, as well as many of the arguments of

philosophers, relies instead upon trait fitness. Furthermore, many counter-

examples have been raised against propensity-based models of trait fitness,

including critiques by Ariew and Lewontin ([2004]),19 and Krimbas ([2004]).20

One might be concerned, then, both that our model fails to respond ad-

equately to these other counterexamples present in the fitness literature, and

that our model fails to offer an account of the fitness of traits.

Trait fitness, however, is commonly understood in two different ways. First,

we have trait fitness as the average fitness of all individual organisms that bear

a given trait (Sober [2001]; Walsh et al. [2002]; Walsh [2003]). Second, we have

trait fitness as a prediction of future trait prevalence: the quantity that lets us

predict the frequency of a trait in the next generation given its current fre-

quency (Matthen and Ariew [2002]; Walsh [2003]). If the first of these two

definitions is adopted, then trait fitness is straightforwardly parasitic on indi-

vidual fitness, and a model of individual fitness must be provided to make

sense of the fitness of traits. If the second definition is adopted, however, then

we are dealing with quite a different quantity than the one modelled here.

Trait fitness in this second sense relies on individual fitness as well, but also

includes factors such as heritability. Thus, under either of the standard ways of

understanding trait fitness, individual fitness is in some sense foundational.

Trait fitness values are either directly derived from individual fitness values, or

individual fitness values are a component of trait fitness. Because of this, we

are justified in simply providing a model of individual fitness as the founda-

tional concept in the PIF.

4 Response to Counterexamples

In the first section, we examined three counterexamples to the traditional

model of the PIF as expected number of offspring. In this section, we will

show that our new model of the PIF, as represented by Equation (4), does not

fall prey to these counterexamples.

4.1 Timing of reproduction

If two organisms, O1 and O2, have the same expected number of offspring,

but O1 is disposed to reproduce earlier than O2, then it will be fitter, ceteris

paribus. The reason for this is that O1 (and presumably its offspring, if the

19 Ariew and Lewontin intend their critique to be targeted at ‘a scalar quantity [. . .] which then

predicts changes in the representation of types’ ([2004], p. 350).
20 Although he speaks occasionally of the fitness of individuals, Krimbas’s main concern is ‘the

absolute or Darwinian fitness of a certain genetic constitution of individuals of the same species

in a population’ ([2004], p. 190), clearly a notion of trait fitness.
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trait responsible for its different reproductive behaviour is heritable) will have a

shorter generation time. If both O1 and O2 have two offspring, but O1 has them

twice as early in life, then O1 will have twice as many descendants as O2 when

O2 finishes reproducing. If this is not a dramatic fitness difference, then nothing

is. Yet, if we measure the fitness of O1 and O2 with Equation (2), we arrive at

the same value. Thus, even the revised version of the original PIF does not take

this fitness difference into account. The reason for this is that the equation is a

function of possible lifetime reproductive success (LRS). That is, it merely

tallies the reproductive event outcomes of entire life histories without being

sensitive to other important properties of these life histories, such as the tem-

poral arrangement of reproductive events.

Equation (4), however, solves this problem. It might seem that the reason

that it does so is that the model is multigenerational. That it extends through a

large number of generations in determining fitness values. Although the multi-

generational nature of our model is important, what is crucial for solving the

timing of reproduction problem is that our model uses time instead of number

of generations to determine fitness. If the model was multigenerational but

used generations instead of time to determine fitness, then O1 and O2 would be

deemed equally fit, since they would both have the same number of grandoff-

spring, great-grandoffspring, and so on. But using time instead of generations

leads to a higher fitness value for O1 than O2: It is important, however, that the

right time scale is used. If O1 reproduces at the age of five and O2 at ten, then

defining fitness as the expected number of offspring at one year would mis-

takenly compute both of their fitness values to be zero. The time scale has to be

at least as large as the longest generation time for any individual whose fitness

is being compared, but it will regularly need to go far beyond a single gener-

ation. The fact that Equation (4) is based on an infinite limit clearly provides

us with a sufficiently large time scale to account for all possible variability in

reproductive timing.

4.2 Delayed selection

Not all offspring are created equal. Some will share the fertility of their par-

ents, whereas others will be infertile. The grandchildless (and other,

longer-term) mutations mentioned in the first section, which have been

found in Drosophila and other taxa, show that a single-generation time scale

is not sufficient to capture fitness. One might, however, think that the grand-

childless mutation does not necessitate a super-generational time scale.

Instead, one could attempt to preserve single-generational fitness by simply

discounting offspring based on their fertility—infertile offspring would not be

counted as offspring. This proposal, we argue, merely smuggles in a multigen-

erational time scale. Consider, for example, why it is that we must not count
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O’s infertile offspring. The correct answer to this, it seems, is that they will not

give O any grandoffspring. Thus, the choice to discount the fitness of infertile

offspring relies on fitness being multigenerational. Furthermore, both fertility

and viability affect fitness, and both come in degrees. Thus, not only would

infertile individuals have to be excluded, each offspring would have to be

assigned a weight, depending on its relative fertility and viability. But what

is the assignment of such a weight, but an assignment of fitness values to the

offspring? There are thus two reasons why the offspring-weighting proposal

fails. First, it defines fitness in terms of fitness. Second, it defines the fitness of

the offspring in terms of the grandoffspring, and so on, making it in fact

multigenerational.

Fortunately, Equation (4) is sensitive to these and similar mutations.

Determining the fitness of individuals via their descendant pool ‘at infinity’

allows us to incorporate the fact that not all descendants are created equal.

Our fitness model takes account of the unlimited variability of fertility and

viability, as the long-term descendant pool is sensitive to these factors.

4.3 The moments problem

As we saw in Section 1, fitness is a function of not only the first moment (i.e.

arithmetic mean) of the distribution of possible offspring, but the higher mo-

ments as well (variance, skew, and so on). This problem was not recognized in

the original formulation of the PIF, but was later recognized and solutions

were offered. The solution offered by Brandon ([1990]), as we saw (Equation

(2)), was to add a correction factor that would discount the fitness of individ-

uals based on the structure of the distribution of possible offspring. But this

solution was unsatisfying, since it merely offered ‘some’ unspecified function

of this distribution.

Our model, unlike previous models, solves the moments problem through

the introduction of a concrete, specific function, Equation (4). This function

solves the moments problem by virtue of its long time scale. To see why this

is the case, consider a simple example of two organisms, O1 and O2,

which reproduce asexually and clonally, and have discrete generations. Each

generation, the first organism and its descendants have Prð�ð!, TÞ ¼ 1Þ ¼ 1

(that is, the probability of having 1 offspring each generation is 1), and the

second organism and its descendants have Prð�ð!, TÞ ¼ 0Þ ¼ 0:5 and

Prð�ð!, TÞ ¼ 2Þ ¼ 0:5 (equal probability of having either 0 or 2 offspring).

Both O1 and O2 have the same expected number of offspring after one gen-

eration (namely, one), but O1 is fitter. To see why, consider what you would

expect the daughter population size of O1 to be as t!1: Since O1 has a

probability of 1 of having 1 offspring, the daughter population size will be one.

But O2, on the other hand, will not fare so well. The probability of the
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population going extinct will approach 1 as t!1, since extinction is all but

guaranteed in the long run: in each passing generation, each of O2 ’s descend-

ants runs a 50% risk of lineage extinction. Taking the long view, as does

Equation (4), correctly evinces the superior fitness of O1: We lack the space

to provide more examples of higher moments here (such as those presented in

Beatty and Finsen ([1989]) and Abrams ([2009b])), but they reveal themselves

in the long term as well.

5 Conclusion

There has long been a perception that the PIF is in dire straits. As we have

seen, it has from its earliest days purported to offer us a solution to the gen-

erality problem, yet the mathematical model of it commonly offered is subject

to a host of counterexamples. Many or even most real-world biological popu-

lations are subject to one of the difficulties described, making the PIF appear

to be an inadequate answer to the generality problem—and thus not able to

support the causal interpretation of fitness, selection, and drift against its

statisticalist opposition. Propensity theorists have tried to save the PIF by

amending its standard mathematical model with correction factors. These

amended versions have saved the PIF from counterexamples, however, only

by rendering it a poor solution to the generality problem. Furthermore, as the

statisticalists have eagerly pointed out, these proposed correction factors do

not seem to dodge all of the counterexamples. That is, there still has not been a

model of the PIF offered in the literature robust enough to withstand the full

array of philosophical difficulties with prior models.

As we argued in Section 1, however, all these counterexamples are problems

not with the PIF itself, but with the various mathematical models of it which

have been proposed. The opponents of the PIF have done nothing by way of

arguing that the extant mathematical models of the PIF are either the only or

the best ways to formalize this interpretation of fitness. We considered three

possible ways for a proponent of the PIF to respond. One could (i) jump ship

and embrace the statisticalist interpretation of fitness, selection, and drift (or

something like it); (ii) abandon the search for a mathematical model of the PIF

entirely; or (iii) craft a model of the PIF that can offer it a new mathematical

foundation. In this article, we have accomplished the third option. We have

constructed a model that retains the PIF’s purported ability to solve the gen-

erality problem without being subject to the counterexamples that have been

proposed against it.

We have not, notably, argued directly against the statisticalist position itself.

As we have argued above, the statisticalist position is not without difficulty,

and has been criticized on many fronts (Millstein [2002]; Brandon and Ramsey

[2007]; Millstein et al. [2009]; Northcott [2010]; Otsuka et al. [2011]; Ramsey
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[forthcoming]). One of the seemingly compelling arguments in its favour, how-

ever, is that it is not subject to the sorts of counterexamples that undermine the

PIF. Since we have provided a model of the PIF that avoids these counter-

examples (and, hence, have demonstrated that there is no reason to think that

the PIF cannot solve the generality problem), one of the main reasons for

adopting the statisticalist position has been called into question. The statistic-

alists, we suggest, would need to attempt to form counterexamples to this new

model, not the older formulation provided by Brandon ([1978]).

While this by no means resolves the debates over the role of fitness in evo-

lutionary theory—one could, even taking our model into account, still reject

the notion of fitness as a causal property—we hope that the presentation of a

mathematical model that resists the now-common counterexamples to the PIF

will allow for a more sophisticated debate over the nature of fitness, natural

selection, and genetic drift.

Appendix A: Derivation of Fitness Model

Begin with the set � of possible daughter populations of some individual, o, as

defined above. We noted that we define a �-algebra and probability measure,

F and Pr, over �, in the usual way. To do so, however, we must demonstrate

that � is sufficiently well-behaved that a probability measure may be defined

over it—one might plausibly think that this set is simply too large to be

suitable as a sample space. Consider our provisional definition (from footnote

6) of � as the space of functions from R�R
n. This set has cardinality

Nð�Þ ¼ 22@0 , which makes it impossible to establish a standard probability

measure over � in the normal manner—by exhibiting an isomorphism

between � and either R or ½0, 1�.

However, as demonstrated by Nelson ([1959]), we are able to define a stan-

dard �-algebra F and a Borel probability measure Pr over certain subsets of

this larger set. Namely, we can get what we need if we restrict our attention to

(i) continuous functions !; (ii) functions ! with only point discontinuities; or

(iii) functions ! with only jump discontinuities.

Although we would like to remain neutral on how the n-degrees of freedom

available in the state vectors at each time t might be parameterized, it doesn’t

appear out of the question to assume that the ! functions will have at worst

jump discontinuities. If this is the case, then the proofs in Nelson ([1959]) demon-

strate that a working probability measure can be reasonably defined over �:

With the sample space suitably defined, we may now derive our model. As

we did above, define �ðt,!Þ as the function that takes a particular point in the

sample space ! and a time t to the number of o’s progeny living at time t on

that outcome.
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Now return to the problem of constructing a long-term picture of organis-

mic fitness. We cannot evaluate the � function at time t ¼ 1, as we will obtain

(at least potentially) infinite values. We thus need to define some function of

the � values which will converge as t goes to 1: We know, however, as

stipulated above, that the � values are generated by a stationary random

process, that demographic weak ergodicity holds, and that the logarithmic

moment of vital rates is bounded. From this we may conclude (Tuljapurkar

[1989], pp. 233–4) that the following limit exists:

a ¼ lim
t!1

1

t
Ew lnð�ðtÞÞ, ð7Þ

with Ew an expectation value weighted by the probabilities given by our �

algebra as defined above, and removing the parameter ! from the � function

when it appears inside a mathematical expectation. If we take the exponent of

both sides of Equation (7), we arrive at

F ¼ exp lim
t!1

1

t
Ew lnð�ðtÞÞ

� �
: ð8Þ

This value F is, then, the value of fitness in our model: Equation (8) is equiva-

lent to Equation (4). It is precisely equal to the exponential of Tuljapurkar’s a

(that is, Equation (7) just is Tuljapurkar’s a), and therefore roughly equal (under

simplifying assumptions) to the net reproductive rate and related to the

Malthusian Parameter (r ¼ lnðF Þ=T , with T the generation time).
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