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Abstract

Accuracy arguments for the core tenets of Bayesian epistemology
differ mainly in the conditions they place on the legitimate ways of
measuring the inaccuracy of our credences. The best existing argu-
ments rely on three conditions: Continuity, Additivity, and Strict Pro-
priety. In this paper, I show how to strengthen the arguments based
on these conditions by showing that the central mathematical theorem
on which each depends goes through without assuming Additivity.

At the core of Bayesian epistemology lies a small number of fundamen-
tal credal principles. Probabilism tells you how your credences in logically
related propositions should relate to one another. Conditionalization tells
you how to update your credences in response to a specific sort of new
evidence, namely, evidence that makes you certain of a proposition. The
Principal Principle tells you how your credence about the objective chance
of an event should relate to your credence in that event. And, for objective
Bayesians, there are further principles that tell you how to set your prior
credences, that is, those you have before you incorporate your data.

The accuracy-first programme in epistemology seeks new foundations
for these central credal principles (Joyce, 1998; Greaves & Wallace, 2006;
Pettigrew, 2016a). The idea is straightforward. We adopt the orthodox
Bayesian assumption that your uncertain doxastic states can be represented
by assigning precise numerical credences to each proposition you consider.
By convention, your credence in a proposition is represented by a sin-
gle real number at least 0 and at most 1, which we take to measure how
strongly you believe that proposition. We then represent the whole doxas-
tic state by a credence function, which takes each proposition about which
you have a credal opinion and assigns to it your credence in that proposi-
tion. So far, that’s just the representational claim of orthodox Bayesianism.
Now for the distinctive claim of accuracy-first epistemology. It is a claim
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about what makes a credal state, represented by a credence function, better
or worse from the epistemic point of view. That is, it says what determines
the epistemic or cognitive value of a credal state. It says: a credal state is
better the more accurate it is; it is worse the more inaccurate it is. And
we might intuitively think of the inaccuracy of a credence function as how
far it lies from the ideal credence function, which is the one that assigns
maximal credence to each truth and minimal credence to each falsehood.
In accuracy-first epistemology, we formulate mathematically precise ways
of measuring this epistemic good. We then ask what principles a credence
function should have if it is to serve the goal of attaining that good; or,
perhaps better, what properties should it not have if it is to avoid being
suboptimal from the point of view of that good. And indeed we can find
arguments of exactly this sort for the various fundamental credal principles
of Bayesianism that we listed above.

Each of these arguments has the same form. Its first premise specifies
properties that an inaccuracy measure must have.1 Its second premise pro-
vides a bridge principle connecting inaccuracy with rationality. And its
third and final premise is a mathematical theorem that shows that, if we
apply the bridge principle from the second premise using an inaccuracy
measure that has the properties demanded by the first premise, it follows
that any credence function that violates the credal principle we seek to es-
tablish is irrational. We thus conclude that principle.

So, for instance, Jim Joyce lays down a series of properties that legit-
imate measures of inaccuracy must have: Structure, Extensionality, Nor-
mality, Dominance, Weak Convexity, and Symmetry (Joyce, 1998). He then
formulates his bridge principle that connects inaccuracy and rationality: it
says that a credence function is irrational if it is accuracy dominated; that
is, if there is an alternative that is guaranteed to be more accurate. Then he
proves a mathematical theorem to show that any credence function that is
not probabilistic is accuracy dominated. And he concludes Probabilism.

Similarly, Hilary Greaves and David Wallace lay down a single property
they take to be necessary for measure of inaccuracy (Greaves & Wallace,
2006): it is Strict Propriety, and it will play a central role in what follows.
Then they say that your updating plan is irrational if there is an alternative
that your prior credence function expects to be more accurate. And finally
they prove that updating rules that proceed by conditioning your prior on
your evidence, and only such rules, minimize expected inaccuracy from
the point of view of your prior. And they conclude Conditionalization.

In contrast, R. A. Briggs and I demanded not only Strict Propriety, but
also Continuity and Additivity. While Greaves and Wallace’s bridge prin-

1For various reasons, it’s become standard in accuracy-first epistemology to work with
measures of inaccuracy, rather than measures of accuracy. But there is no substantial dif-
ference: a measure of inaccuracy is simply the negative of a measure of accuracy, and vice
versa.
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ciple talks of the irrationality of your updating rule from the point of view
of your prior, the principle that Briggs and I used talks of the irrationality
of the combination of your prior and updating rule. It says that a prior and
updating rule taken together are irrational if there is an alternative prior
and an alternative updating rule that, when taken together, are more ac-
curate than your prior and your updating rule taken together. And they
show that any combination in which the updating rule does not proceed
by applying Bayes’ Rule to the prior is rendered irrational by this bridge
principle (Briggs & Pettigrew, 2020).

My argument for the Principal Principle demanded the same three prop-
erties: Additivity, Continuity, and Strict Propriety. The bridge principle: a
credence function is irrational if there is an alternative that every possible
objective chance function expects to be better. And the mathematical theo-
rem says that there is such an alternative for every credence function that
violates the Principal Principle (Pettigrew, 2013).

Finally, my argument for the Principle of Indifference assumed two dif-
ferent properties: Egalitarianism and Rendering Indifference Immodest.
And the bridge principle said that a credence function is irrational if there
is an alternative whose worst-case inaccuracy is lower than the worst-case
inaccuracy of the original one. And I showed that the only credence func-
tion that is not irrational by these lights is the uniform distribution, which
is exactly what the Principle of Indifference demands (Pettigrew, 2016b).

Now, an argument is only as strong as its premises are plausible. In
this paper, I’d like to consider the first premise in each of these arguments.
In these first premises, we lay down what we will demand of an inaccu-
racy measure. My aim is to take the current best version of this premise
and improve it by making it less demanding. There are really eight sets of
conditions offered in the literature:

(I) In his 1998 argument for Probabilism, Joyce imposes six conditions on
measures of inaccuracy: Structure, Extensionality, Normality, Domi-
nance, Weak Convexity, and Symmetry (Joyce, 1998).

(II) In his 2009 argument for a restricted version of Probabilism, he im-
poses just two: Truth-Directedness and Coherent Admissibility (Joyce,
2009).

(III) In their 2006 argument for Conditionalization, Greaves and Wallace
impose just one: Strict Propriety (Greaves & Wallace, 2006).

(IV) In their 2009 argument for Probabilism, Predd, et al. impose three:
Continuity, Additivity, and Strict Propriety. These are also the three
conditions imposed in my argument for the Principal Principle, and
the argument for Conditionalization that Briggs and I offer (Predd
et al., 2009; Pettigrew, 2013; Briggs & Pettigrew, 2020).
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(V) In our 2010 arguments for Probablism and Conditionalization, Leit-
geb and I considered three different sets of conditions: for our pur-
poses, the important condition is Global Normality and Dominance,
which entails Additivity, the condition we seek to excise here (Leitgeb
& Pettigrew, 2010).

(VI) In my 2014 argument for the Principle of Indifference, I imposed two
conditions: the inaccuracy measures must be egalitarian and they
must render indifference immodest (Pettigrew, 2016b).

(VII) In their 2016 argument, D’Agostino and Sinigaglia impose five: One-
Dimensional Value-Sensitivity, Sub-Vector Consistency, Monotonic Order-
Sensitivity, Permutation Invariance, and Replication Invariance (D’Agostino
& Dardanoni, 2009; D’Agostino & Sinigaglia, 2010).

(VIII) In his 1982 paper, Lindley argued not for Probabilism itself, but for
a weaker principle. He did not assume, as we have, that credences
are measured on a scale from 0 to 1, nor that 0 is the minimum and
1 is the maximum. Instead, he made few assumptions about the
scale on which credences are measured, he imposed some reason-
ably weak conditions on measures of the inaccuracy of credences,
and then showed that those credal assignments that are not accuracy-
dominated are precisely those that can be transformed into proba-
bilistic credence functions using a particular transformation. How-
ever, while Lindley’s conditions are weaker than some of the others
listed here, they nonetheless include Additivity (Lindley, 1982).

There is a lot to be said about the relationships between these different sets
of necessary conditions for inaccuracy measures, but that’s not my purpose
here. Here, I want to take what I think are the best accuracy-first argu-
ments for Probabilism, Conditionalization, and the Principal Principle and
improve them by weakening the demands they make of inaccuracy mea-
sures in their first premises. That is, I want to show that those arguments go
through for a wider range of inaccuracy measures than we’ve previously
allowed. As I will explain below, I take those best arguments to be the
ones based on Predd, et al.’s set of conditions: Strict Propriety, Continuity,
and Additivity. I will strengthen those arguments by showing that they go
through if we impose only Strict Propriety and Continuity. We do not need
to impose the condition of Additivity, which says roughly that the inaccu-
racy of a whole credence function should be the sum of the inaccuracies of
the credences that it assigns. That is, we can strengthen those arguments
by weakening their first premise.

Why should this interest us? After all, Joyce as well as D’Agostino &
Sinigaglia have offered arguments for Probabilism that don’t assume Ad-
ditivity. True, but Patrick Maher (2002) has raised serious worries about
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Joyce’s 1999 characterization, and I have built on those (Pettigrew, 2016a,
Section 3.1); and Joyce’s 2009 characterization applies only to credence func-
tions defined over a partition, and not those defined on a full algebra, so
while its premises are weak, so is its conclusion. D’Agostino & Sinigaglia
do not assume Additivity, but their characterization does entail it, and the
Sub-Vector Consistency requirement they impose is implausibly strong for
the same reason that Additivity is implausibly strong. And, similarly, the
Global Normality and Dominance condition that Leitgeb and I assumed
entails Additivity, and so is implausibly strong for the same reason. And,
as noted above, Lindley explicitly assumes Additivity. This suggests that
the best existing accuracy-first argument for Probabilism is the one based
on Predd, et al.’s results, which assumes Additivity, Strict Propriety, and
Continuity. So there is reason to show that Probabilism follows from Strict
Propriety and Continuity alone.

What about the Principal Principle? Well, the only existing accuracy-
first argument for that is my 2013 argument, and that assumed Additivity,
Strict Propriety, and Continuity. So, again, there is reason to show that the
principle follows from Strict Propriety and Continuity alone.

What about Conditionalization? Here, Greaves and Wallace have of-
fered an argument for Conditionalization based on Strict Propriety alone—
it does not assume Additivity, nor even Continuity. True, but their result
applies to a very specific case, namely, one in which (i) you know ahead of
time the partition from which your evidence will come, (ii) you know that
you will learn a proposition iff it is true, and (iii) you form a plan for how
you will respond should you learn a particular proposition from that par-
tition. In contrast, the result that Briggs and I offered can be generalized to
cover many more cases than just this. As we will see, it can be generalized
to establish what I will call the Weak Reflection Principle, which entails the
restricted version of Conditionalization that Greaves and Wallace consider.
So, there is reason to excise Additivity from the assumptions that Briggs
and I made. However, as we will see, our argument assumes additivity in
two guises: first, it demands that we measure the inaccuracy of an individ-
ual credence function using an inaccuracy measure that satisfies Additiv-
ity; second, it assumes we obtain the inaccuracy of a combination of prior
and updating rule by adding the inaccuracy of the prior to the inaccuracy
of the updating rule. We will see how to remove the first assumption of
additivity, but not the second. That must await future work.

1 Predd, et al’s conditions

In this section, I describe Predd, et al.’s set of conditions—the ones we num-
bered (IV) in our list above. This will furnish us with statements of Strict
Propriety and Continuity, the assumptions we’ll use in our new arguments
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for Probabilism, the Principal Principle, and Conditionalization; and it will
also introduce us to Additivity, the assumption that we’re dropping from
the existing best arguments for these conclusions. We will explain the prob-
lems with Additivity in Section 2 below.

First, let’s lay out the framework in which we’re working:

• We write W for the set of possible worlds. We assume W is finite.2

SoW = {w1, . . . , wn}.

• We write F for the full algebra of propositions built overW . That is,
F is the set of all subsets ofW .

• We write C for the set of credence functions defined on F . That is, C
is the set of functions c : F → [0, 1].

• We write P for the set of probabilistic credence functions defined on
F . That is, p is in P iff p is in C and (i) p(>) = 1, and (ii) p(A ∨ B) =
p(A) + p(B) when A and B are mutually exclusive, i.e., when there is
no possible world at which A and B are both true.

• Given a credence function c, we write ci for the credence that c assigns
to world wi.

• We write wi for the ideal credence function on F at world wi. That is,
for X in F ,

wi(X) =

{
1 if X is true at wi
0 if X is false at wi

So, in particular wi(wj) = wi
j = 1 if i = j and 0 if i 6= j.

• An inaccuracy measure is a function I : C ×W → [0, ∞]. For c in C
and wi inW , I(c, i) is the inaccuracy of c at world wi.

Here are the three properties that Predd, et al. demand of inaccuracy mea-
sures.

Continuity For each world wi, I(c, i) is a continuous function
of c.

Additivity For each X in F , there is a scoring rule sX : {0, 1} ×
[0, 1]→ [0, ∞] such that, for all c in C and wi inW ,

I(c, i) = ∑
X∈F

sX(wi(X), c(X))

We say that the scoring rules sX for each X in F generate I.

2For consideration of the infinite case, see (Kelley, ms).
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Additivity says that the inaccuracy of a credence function is the sum of the
inaccuracies of the individual credences it assigns.

Strict Propriety For all p inP , ∑n
i=1 piI(c, i) is minimized uniquely,

as a function of c, at c = p.

That is, for all p in P and c 6= p in C,

n

∑
i=1

piI(p, i) <
n

∑
i=1

piI(c, i)

Strict Propriety says that each probabilistic credence function should expect
itself to be most accurate.3

A few examples of inaccuracy measures:

• Brier score B(c, i) = ∑X∈F (wi(X)− c(X))2

• Log score L(c, i) = − log ci

• Enhanced log score L?(c, i) = ∑X∈F
(
−wi(X) log c(X) + c(X)

)
• Absolute value score A(c, i) = ∑X∈F |wi(X)− c(X)|

• Logsumexp score

LSE(c, i) = − log(1 + ∑
X∈F

ec(X)) +
∑X∈F (wi(X)− c(X))ec(X)

1 + ∑X∈F ec(X)

Then:

Continuity Additivity Strict Propriety
B X X X
L X × ×
L? X X X
A X X ×

LSE X × X

Some notes:
3A quick remark: We sometimes assume that the inaccuracy measure I satisfies Additiv-

ity, and then assume that the individual scoring rules sX that generate I satisfy Continuity
and Strict Propriety, rather than assuming that I itself satisfies those conditions. The fol-
lowing fact shows that this makes no difference. We say that sX is continuous if sX(1, x) and
sX(0, x) are continuous functions of x. We say that sX is strictly proper if, for any 0 ≤ p ≤ 1,
psX(1, x) + (1− p)sX(0, x) is minimized, as a function of x, at x = p. Now, suppose I is
additive with I(c, i) = ∑X∈F sX(wi(X), c(X)). Then

(i) I is continuous iff each sX is continuous.

(ii) I is strictly proper iff each sX is strictly proper.
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• The Brier score is additive. It is generated by using the quadratic
scoring rule q for every proposition, where

– q(1, x) = (1− x)2;

– q(0, x) = x2.

Since q is continuous and strictly proper, so is B.

• The log score is not additive and it is not strictly proper. A cre-
dence function that assigns credence 1 to each world dominates any
credence function that assigns less than credence 1 to each world.
The log score is however strictly P-proper: that is, for all p in P ,
∑i piL(q, i) is minimized uniquely, among credence functions q in P ,
at q = p.

• The enhanced log score is additive. It is generated using the enhanced
logarithmic scoring rule l? for every proposition, where

– l?(1, x) = − log x + x;

– l?(0, x) = x.

Since l is continuous and strictly proper, so is L?.

• The absolute value score is additive. It is generated by using the ab-
solute scoring rule a for every proposition, where

– a(1, x) = 1− x;

– a(0, x) = x.

But a is not strictly proper. If p < 1
2 , then pa(1, x) + (1− p)a(0, x) =

p(1− x) + (1− p)x is minimized at x = 0; if p > 1
2 , it is minimized at

x = 1; if p = 1
2 , it is minimized at any 0 ≤ x ≤ 1. So A is not strictly

proper either.

• The logsumexp score is strictly proper and continuous, but it is not
additive. This shows that assuming Strict Propriety and Continuity,
as we do below, is strictly weaker than assuming Strict Propriety, Ad-
ditivity, and Continuity. Lewis & Fallis (2019) give another example
of an inaccuracy measure that satisfies Strict Propriety and Continu-
ity, but not Additivity: they call it the Asymmetric Spherical Rule.

My concern in this paper is to strengthen the accuracy-first arguments
for Probabilism, the Principal Principle, and Conditionalization based on
Continuity + Additivity + Strict Propriety by showing that they go through
if we assume only Continuity + Strict Propriety. Thus, for instance, they go
through for the logsumexp score defined above and Lewis and Fallis’ asym-
metic spherical rule as well as the Brier and enhanced log scores. Of course,
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weakening the premises of an argument always strengthens it. So there
seems good reason to note this fact regardless of your view of Additivity.
Nonetheless, in the next section, I explain why you might be suspicious of
Additivity. Then, in Section 3, I give the arguments for Probabilism, the
Principal Principle, and Conditionalization without appealing to it. In sec-
tion 4, I conclude. The Appendix contains the proofs of all the theorems on
which these arguments are based.

2 Why Additivity?

I should begin by pointing out that, while I appealed to Predd, et al.’s
mathematical results in my presentation of the accuracy dominance argu-
ment for Probabilism in Accuracy and the Laws of Credence, those authors
weren’t themselves working in the accuracy-first framework (Pettigrew,
2016a). What we are calling inaccuracy measures are for them loss func-
tions; and in the context of loss functions, the Additivity assumption is
perfectly natural—providing the loss is stated in units of some commodity
in which your utility is linear, the total loss to which your credence function
is subject is the sum of the individual losses to which your credences are
subject. But what about the accuracy-first framework? Is Additivity still
so natural there?4 Some claim it is not: Kotzen (2018, 778) claims that, by
assuming Additivity, we rule out certain plausible ways of measuring in-
accuracy “more or less by fiat”; and, as I mentioned above, Lewis & Fallis
(2019) describe a continuous and strictly proper inaccuracy measure that
seems reasonable, but note that it is not additive.

On the other hand, I wrote:

[S]umming the inaccuracy of individual credences to give the
total inaccuracy of a credence function is the natural thing to do
(Pettigrew, 2016a, 49).

My reason? Your credence function is not a single, unified doxastic state,
but rather merely the motley agglomeration of all of your individual credal
doxastic states. We might mistakenly think of a credence function as uni-
fied because we represent it by a single mathematical object, but mathe-
matical functions are anyway just collections of assignments of values to
arguments. Or so I argued.

However, while this may be so, it does not entail that there are not fea-
tures of a credal state that partly determine its accuracy but which cannot
be captured by looking only at the credences individually—we might call
these global features of the credence function. For instance, we might think
that, at a world at which two propositions A and B have the same truth

4Those already convinced that Additivity is at least somewhat questionable might skip
this section without loss.
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value, it is more accurate to have equal credence in A and in B than to have
different credences in them. After all, the ideal credence function will have
the same credence in them, namely, 1 in both or 0 in both. And perhaps
resembling the ideal credence function in this respect gets you closer to it,
and therefore more accurate. But having the same credence in A and in
B is a global feature of a credence function. To determine whether or not
a credence function has it, you can’t just look at the credences it assigns
individually.

However, interestingly, while this is indeed a global feature of a cre-
dence function, some additive inaccuracy measures will in fact reward it.
Take the Brier score, for instance. If A and B are both true, then the inaccu-
racy of assigning credences a and b to them respectively is (1− a)2 + (1−
b)2. But it’s easy to see that, if a 6= b, then assigning their average, 1

2 a + 1
2 b,

to both is more accurate. Since (1− x)2 is a strictly convex function of x,

(1− a)2 + (1− b)2 >

(
1−

(
1
2

a +
1
2

b
))2

+

(
1−

(
1
2

a +
1
2

b
))2

Similarly, if A and B are both false,

a2 + b2 >

(
1
2

a +
1
2

b
)2

+

(
1
2

a +
1
2

b
)2

So, if we measure inaccuracy using the Brier score, which is additive, hav-
ing the global property in question—that is, assigning equal credences to A
and B when A and B are either both true or both false—improves accuracy.

In Accuracy and the Laws of Credence, I argued that we should simply as-
sume that, for any global feature of a credence function that we consider
relevant to accuracy, it must be possible to capture it using additive mea-
sures along the lines just sketched.

Just as some hold that risk aversion phenomena in practical de-
cision theory are best understood as the result of doing some-
thing other than maximizing expected utility—minimizing re-
gret, for instance, or maximizing the quantity favoured by one
of the many non-expected utility theories—and not as having a
concave utility function, so any sensitivity to global features of
credence functions ought to be understood either as following
from their local features or as following from the adoption of an
alternative decision principle and not as having a non-additive
inaccuracy measure. (Pettigrew, 2016a, 51)

But why? Why think that this is true? I imagined that this follows from
the fact that credence functions are not unified entities. I assumed that this
warrants a defeasible assumption in favour of additivity. That assumption
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could be defeated if we were to find a global feature we wished to reward
but which could not be rewarded by additive measures. But no such feature
has presented itself.

Perhaps. But even if we grant the move from the disunified nature of
credence functions to this defeasible assumption in favour of additivity,
such a defeasible assumption is a flimsy basis for an argument, particularly
since we have not systematically investigated the sorts of global features
we might consider relevant to accuracy, and so have rather sparse evidence
that there is no defeater to be found. As we showed above, we can explain
why one particular global feature is conducive to accuracy, namely, having
the same credence in two propositions that have the same truth value. And
indeed you can view the accuracy dominance argument for Probabilism
as furnishing us with another example. After all, Probabilism makes two
demands of a credence function. The first is local: the credence function
should assign maximal credence to a tautology and minimal credence to a
contradiction. The second is global: the credence it assigns to a disjunction
of mutually exclusive propositions should be the sum of the credences it
assigns to the disjuncts. To tell whether a credence function satisfies this
latter condition, you must look at the relationships between the credences
it assigns. However, the fact that you can run the accuracy dominance ar-
gument for Probabilism using additive inaccuracy measures like the Brier
score shows that you can show that this global feature of a credence func-
tion is conducive to accuracy without building into your inaccuracy mea-
sure that it should be rewarded explicitly. Indeed, that is one of the remark-
able features of de Finetti’s original proof, which is the ultimate source of
Predd, et al.’s theorem. But that’s about it. Those are the only two global
features of credence functions we’ve succeeded in capturing using additive
inaccuracy measures.

So, in the end, to the extent that there still exists doubt that we have
considered all global features of credence functions that are relevant to their
accuracy and showed how their relevance can be captured by additive inac-
curacy measures, there still exists doubt over Additivity. And while there
still exists doubt over Additivity, removing that assumption from the ar-
guments for Probabilism, the Principal Principle, and Conditionalization
strengthens them.

3 The arguments without additivity

Let me begin this section by spelling out the arguments we wish to give.
Then I’ll move on to explaining and proving the theorems to which they
appeal. As I noted above, each argument has the same form:

(NC) Necessary conditions on being a legitimate inaccuracy measure.
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(BP) Accuracy-rationality bridge principle.

(MT) Mathematical theorem.

Therefore,

(PR) Principle of Rationality

The first component will be the same in each argument that we give. We
will assume only that inaccuracy measures satisfy Continuity and Strict
Propriety. But the accuracy-rationality principles will differ from case to
case. In the remainder of this section, I’ll state each principle for which
we’re arguing and then the bridge principle to which we’ll appeal in that
argument.

To state some of the principles of credal rationality, we need some mod-
erately technical notions. I’ll lay them out here. Suppose X is a set of
credence functions. Then:

• X is convex if it is closed under taking mixtures.

That is, for any c, c′ in X and any 0 ≤ λ ≤ 1, λc + (1− λ)c′ is also in
X .

• X is closed if it is closed under taking limits.

That is, for any infinite sequence c1, c2, . . . of credence functions in X
that tends to c in the limit, c is in X .5

• The convex hull of X is the smallest convex set that contains X . We
write it X+.

That is, if Z is convex and X ⊆ Z , then X+ ⊆ Z .

• The closed convex hull of X is the smallest closed set that contains the
convex hull of X . We write it cl(X+).

Thus, if Z is closed and X+ ⊆ Z , then cl(X+) ⊆ Z .

As well as clarifying the technical notions just presented, I also want to
flag that these arguments appeal to a notion of possibility at various points:
in setting up the framework, we have already talked of possible worlds
and algebras built on those worlds; in accuracy dominance arguments for
Probabilism, we will quantify over possible worlds; in the accuracy domi-
nance argument for Conditionalization we quantify over possible worlds,
but also over possible future credence functions that you currently endorse;

5We say that c1, c2, . . . tends to c in the limit—written limn→∞ cn = c—if

(∀ε > 0)(∃n)(∀m > n)(∀X ∈ F )[|cm(X)− c(X)| < ε]
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in expected inaccuracy arguments like Greaves and Wallace’s argument
for Conditionalization, we will sum over inaccuracies at possible worlds
weighted by credences in those worlds to give expectations; and in chance
dominance arguments for the Principal Principle, we’ll quantify over pos-
sible objective chance functions. What is the notion of possibility at play
here? Joyce (1998) takes it to be logical possibility; Pettigrew (2020) takes
it to be something like epistemic possibility. It is beyond the scope of this
essay to argue for one or the other in detail, so I will leave the notion as
a placeholder. But my own preference is for epistemic possibility. What
makes it irrational to violate Probabilism, for instance, is that there is an-
other credence function that is more accurate than yours at all epistemically
possible worlds—that is, you can tell from the inside, so to speak, that this
alternative is better than yours because the only worlds you need to con-
sider are those you consider possible.

3.1 The argument for Probabilism

Here’s Probabilism:

Probabilism Your credence function at each time during your
epistemic life should be probabilistic.

That is, if c is your credence function at a given time, then we
should have:

(i) c(>) = 1;

(ii) c(A ∨ B) = c(A) + c(B) for mutually exclusive A and B.

And here’s the bridge principle: a credence function is irrational if there’s
another that is guaranteed to be more accurate; that is, if it is accuracy
dominated. That is:

Worldly Dominance If there is c? such that, for all possible
worlds wi, I(c?, i) < I(c, i), then c is irrational.

Thus, to move from the claim that an inaccuracy measure must satisfy Con-
tinuity and Strict Propriety, together with Worldly Dominance, to Probabil-
ism, we need the following theorem:

Theorem 1 Suppose I is continuous and strictly proper. If c is not in P , there is
c? in P , such that I(c?, i) < I(c, i) for all wi inW .

We prove that in the Appendix.

13



3.2 The argument for the Principal Principle

The Principal Principle is usually stated as follows, where, for any prob-
ability function ch, Cch is the proposition that says that ch is the objective
chance function:6

Principal Principle If Cch is in F and c(Cch) > 0, then, for all A
in F , we should have

c(A|Cch) = ch(A)

The version we’ll consider here is more general than this version. And
indeed, the more general version entails the usual version.

Generalized Principal Principle Suppose A is the set of pos-
sible objective chance functions. Then your credence function
should be in the closed convex hull of A.

Thus, for instance, if all the possible objective chance functions consider A
and B equally likely, your credence function should consider them equally
likely; and if all the possible objective chance functions consider A more
likely than B, then you should consider A at least as likely as B; and if all
the possible objective chance functions consider A to be between 30% and
70% likely, then you should not assign credence 0.8 to A; and so on.

Suppose ch is a possible objective chance function and Cch is in F . And
suppose further that ch is not a self-undermining chance function. That is,
it is certain that it gives the chances. That is, ch(Cch) = 1. Then, if you
satisfy the Generalized Principal Principle, then c(A|Cch) = ch(A).7

So that’s the version of the Principal Principle that we’ll consider. And
here’s the bridge principle: a credence function is irrational if there is an-
other that is guaranteed to have greater expected accuracy from the point
of view of the objective chance function. That is:

Chance Dominance If there is c? such that, for all possible
chance functions ch, ∑i chiI(c?, i) < ∑i chiI(c, i), then c is ir-
rational.

Thus, to move from the claim that an inaccuracy measure must satisfy Con-
tinuity and Strict Propriety, together with Chance Dominance, to the Gen-
eralized Principal Principle, we need the following theorem:

6This formulation follows Ned Hall’s (Hall, 2004). It differs somewhat from David
Lewis’ original formulation (Lewis, 1980). For one thing, it does not require a notion of
admissible evidence. Lewis’ version requires that, if E is admissible for A, then we should
have c(A|chance of A is r & E) = r. Hall’s version entails that, for any E, c(A|Cch & E) =
ch(A|E).

7To see this, note that having this property is closed under taking mixtures and taking
limits.
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Theorem 2 Suppose I is continuous and strictly proper. If c is not in cl(A+),
there is c? in cl(A+), such that ∑i chiI(c?, i) < ∑i chiI(c, i), for all ch in A.

Again, we prove this in the Appendix.
What’s more, Theorem 2 allows us to improve not only my argument

for the Principal Principle, but also my argument for linear pooling as the
correct method of probabilistic judgment aggregation (Pettigrew, 2019a).
In that argument, I appealed to the following bridge principle: if we have
a group of individuals with probabilistic credence functions c1, . . . , cm, and
we wish to find a credence function that aggregates them, then we should
not pick an aggregate c if there is an alternative c? such that each member
of the group expects c? to be more accurate than they expect c to be. I
assumed that inaccuracy measures satisfy Additivity, Continuity, and Strict
Propriety. And I showed that, if you use an aggregation method other than
linear pooling, then there will be an alternative aggregate that everyone
expects to be better; but if you use linear pooling, there won’t be. Armed
with Theorem 2, we obtain the same result assuming only Continuity and
Strict Propriety, and thereby strengthen my original argument.

3.3 The argument for Conditionalization and the Weak Reflec-
tion Principle

The version of Conditionalization for which Greaves and Wallace as well
as Briggs and I argue is this:

Plan Conditionalization Suppose your prior is c0 and you know
that your evidence will come from a partition E1, . . . , Em. And
suppose you will learn a particular cell of this partition iff it is
true. And suppose you plan to adopt credence function ck in
response to evidence Ek. Then, for all Ek with c0(Ek) > 0, and
for all X in F , we should have

ck(X) = c0(X|Ek) =
c0(XEk)

c0(Ek)

That is, you should plan to update by applying Bayes’ Rule to your prior.
As we mentioned above, we won’t argue for Plan Conditionalization di-

rectly. Rather, we’ll argue for a more general principle of rationality called
the Weak Reflection Principle; and we’ll show that it entails Plan Condi-
tionalization (Pettigrew, ta).

Weak Reflection Principle SupposeR = {c1, . . . , cm} is the set
of possible future credence functions you endorse. Then your
current credence function should be in the convex hull ofR.
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Here’s the idea behind this principle. A lot might happen between now
and tomorrow. You might see new sights, think new thoughts; you might
forget things you know today, take mind-altering drugs that enhance or
impair your thinking; and so on. So perhaps there is a set of credence
functions any one of which you think you might have tomorrow. Some
of those you’ll endorse—perhaps those you’d adopt if you saw certain new
things, or enhanced your cognition in various ways. And some of them
you’ll disavow—perhaps those that you’d adopt if you were to forget cer-
tain things, or were to impair your cognition in some way. The Weak Re-
flection Principle asks you to separate out the wheat from the chaff, and
once you’ve identified the ones you endorse, it tells you that your current
credence function should lie within the convex hull of those future ones.

Now, suppose that you are in the situation that Plan Conditionaliza-
tion covers. That is, (i) you know that you will receive evidence from the
partition E1, . . . , Em, (ii) you will learn Ek iff Ek is true, and (iii) you form a
plan for how to respond to these different possible pieces of evidence—you
will adopt c1 if you learn E1, c2 if you learn E2, and so on. Thus, the pos-
sible future credence functions that you endorse are c1, . . . , cm, for they are
the possible outcomes of a plan that you have made and which you know
covers all the bases. Then, by the Weak Reflection Principle, c0 should be
in the convex hull of c1, . . . , cm. Then, if ck(Ek) = 1 and c0(Ek) > 0, then
ck(X) = c0(X|Ek), as Plan Conditionalization requires. After all, by the
Weak Reflection Principle, there are 0 ≤ λ1, . . . , λm ≤ 1 with ∑m

i=1 λi = 1
such that c0(X) = ∑m

i=1 λici(X) for all X in F . What’s more, by assumption,
ci(Ek) = 1 if i = k and ci(Ek) = 0 if i 6= k. So, ci(XEk) = ci(X) if i = k and
ci(XEk) = 0 if i 6= k. So,

c0(X|Ek) =
∑m

i=1 λici(XEk)

∑m
i=1 λici(Ek)

=
λkck(XEk)

λkck(Ek)
= ck(X)

as required.
However, the Weak Reflection Principle applies in many other situa-

tions beyond those imagined by Plan Conditionalization. For instance,
suppose you know you’ll receive evidence from E1, . . . , Em, but, while these
propositions are mutually exclusive, they do not exhaust the logical space.
Then, again, if you plan to adopt ck upon learning Ek, and ck(Ek) = 1 and
c0(Ek) > 0, then the Weak Reflection Principle says that you should plan
so that ck(X) = c0(X|Ek). That follows from the working at the end of the
previous paragraph. Or suppose your evidence is not perfectly reliable. So
it’s not certain that you’ll learn Ek iff Ek is true. Then, again, if you plan to
adopt ck upon learning Ek, and ck(Ek) = 1 and c0(Ek) > 0, then the Weak
Reflection Principle says that you should plan so that ck(X) = c0(X|Ek).
Again, this follows from the working above. What’s more, suppose you
know you’ll receive evidence from E1, . . . , Em, but you don’t make a deter-
ministic plan. Perhaps you plan as follows: If I learn E1, then I’ll adopt c1
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or I’ll adopt c′1; if I learn E2, then I’ll adopt c2 or I’ll adopt c′2; and so on.
Then Plan Conditionalization no longer applies. But the Weak Reflection
Principle does. It constrains your plans. It says that your current credence
function should be in the convex hull of c1, c′1, c2, c′2, . . . , cm, c′m (Pettigrew,
2019b).

So that’s the Weak Reflection Principle. Now for the bridge principle
we use to establish it: it is irrational for you to have a prior credence func-
tion and a set of possible future credence functions you endorse if there is
some alternative prior and, for each possible future credence function you
endorse, an alternative to that, such that the sum of the inaccuracy of your
prior and the inaccuracy of one of the possible future credence functions
you endorse is always greater than the inaccuracy of the alternative prior
and the corresponding alternative possible future credence function. That
is:

Diachronic Worldly Dominance Suppose c0 is your current
credence function and c1, . . . , cm are the possible future credence
functions you endorse. Then if there are c?0 , c?1 , . . . , c?m such that,
for each 1 ≤ k ≤ m and all wi inW ,

I(c?0 , i) + I(c?k , i) < I(c0, i) + I(ck, i)

then you are irrational.

Thus, to move from the claim that an inaccuracy measure must satisfy Con-
tinuity and Strict Propriety, together with Diachronic Worldly Dominance,
to the Weak Reflection Principle, we need the following theorem:

Theorem 3 Suppose I is continuous and strictly proper. If c0 is not in {c1, . . . , cn}+,
then there are c?0 , c?1 , . . . , c?n such that, for all wi inW ,

I(c?0 , i) + I(c?k , i) < I(c0, i) + I(ck, i)

We prove this in the appendix. Note, however, as we mentioned above:
while our new proof removes one way in which an additivity enters into
the argument that Briggs and I gave, it doesn’t remove another. We still take
the inaccuracy of your prior and your posterior, taken together, to be the
sum of the inaccuracy of your prior and the inaccuracy of your posterior. It
must await future work to explore whether that assumption might also be
removed.

4 Conclusion

Accuracy arguments for the core Bayesian tenets differ mainly in the con-
ditions they place on the legitimate inaccuracy measures. The best existing
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arguments rely on Predd, et al.’s conditions: Continuity, Additivity, and
Strict Propriety. In this paper, I showed how to strengthen each argument
based on these by showing that the central mathematical theorem on which
it depends goes through without assuming Additivity.

5 Appendix: The proofs

5.1 Theorems 1 and 2

As will be obvious to anyone familiar with the proof strategy in (Predd
et al., 2009), many of the ideas used here are adapted from that paper, and
those in turn are adapted from insights in (Savage, 1971). Predd, et al.
proceed by proving a connection between additive and continuous strictly
proper inaccuracy measures, on the one hand, and a sort of divergence
between credence functions, on the other. A divergence from one credence
function defined on F to another is a function D : C × C → [0, ∞] such that

(i) if c 6= c′, then D(c, c′) > 0,

(ii) if c = c′, then D(c, c′) = 0.

That is, the divergence from one credence function to another is always
positive, while the divergence from a credence function to itself is always
zero.

Given a continuous scoring rule sX, Predd, et al. define the following
function for 0 ≤ x ≤ 1:

ϕX(x) := −xsX(1, x)− (1− x)sX(0, x)

And then, given an additive and continuous strictly proper inaccuracy mea-
sure I that is generated by continuous strictly proper scoring rules sX for
X in F , they define a divergence as follows:

D(c, c′) = ∑
X∈F

ϕX(c(X))− ∑
X∈F

ϕX(c′(X))− ∑
X∈F

ϕ′X(c
′(X))(c(X)− c′(X))

They show that this is a species of divergence known as a Bregman diver-
gence. What’s more, using a representation theorem due to Savage (1971),
they show that, for any wi inW and c in C, D(wi, c) = I(c, i). That is, the
divergence from the ideal credence function at a world to a given credence
function is the inaccuracy of the given credence function at that world.
Having established this, Predd, et al. can then appeal to various proper-
ties of Bregman divergences to establish their dominance result.

In our proofs, since we do not assume Additivity, it is not so straight-
forward to construct a Bregman divergence from our inaccuracy measures.
Instead, we construct a restricted divergence, which gives the divergence
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from a probabilistic credence function to any credence function. We say
that it is restricted because it doesn’t say how to measure the divergence
from a non-probabilistic credence function to another credence function.
That is, our divergence is defined on P × C, not on C × C. As a result, the
function we define is not a Bregman divergence. And, as a result of that,
we must prove for ourselves that it has the properties needed to establish
the various theorems that have previously been proved using the Bregman
divergences that Predd, et al. construct from additive inaccuracy measures.
The following lemma defines this restricted divergence and describes four
properties it boasts.

Lemma 4 Suppose I is a strictly proper inaccuracy measure. Then define DI :
P × C → [0, ∞] as follows:

DI(p, c) := ∑
i

piI(c, i)−∑
i

piI(p, i)

Then:

(i) DI is a divergence. That is, DI(p, c) ≥ 0 for all p in P and c in C with
equality iff p = c.

(ii) DI(wi, c) = I(c, i), for all 1 ≤ i ≤ n.

(iii) DI is strictly convex in its first argument. That is, for all p, q in P and c in
C and for all 0 ≤ λ ≤ 1,

DI(λp + (1− λ)q, c) < λDI(p, c) + (1− λ)DI(q, c)

(iv) DI(p, c) ≥ DI(p, q) +DI(q, c) iff ∑n
i=1(pi − qi)(I(c, i)− I(q, i)) ≥ 0

Proof of Lemma 4.

(i) I is strictly proper. So:

(a) if c 6= p, ∑i piI(p, i) < ∑i piI(c, i); and,
(b) if c = p, ∑i piI(p, i) = ∑i piI(c, i).

So, DI(p, c) = ∑i piI(c, i)−∑i piI(p, i) ≥ 0 with equality iff c = p.

(ii) DI(wi, c) =

0× I(c, 1) + . . .+

0× I(c, i− 1) + 1× I(c, i) + 0× I(c, i + 1) + . . .+

0× I(c, n)−
0× I(wi, 1)− . . .−

0× I(wi, i− 1)− 1× I(wi, i)− 0× I(wi, i + 1)− . . .−
0× I(wi, n) = I(c, i)

since I(wi, i) = 0.
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(iii) Suppose p and q are in P , and suppose 0 < λ < 1. Then let r =
λp + (1 − λ)q. Then, since ∑i piI(c, i) is uniquely minimized, as a
function of c, at c = p, and ∑i qiI(c, i) is uniquely minimized, as a
function of c, at c = q, we have

∑
i

piI(p, i) < ∑
i

piI(r, i)

∑
i

qiI(q, i) < ∑
i

qiI(r, i)

Thus

λ[−∑i piI(p, i)] + (1− λ)[−∑i qiI(q, i)] >

λ[−∑i piI(r, i)] + (1− λ)[−∑i qiI(r, i)] =

−∑i riI(r, i)

Now, adding

λ ∑i piI(c, i) + (1− λ)∑i qiI(c, i) =

∑i(λpi + (1− λ)qi)I(c, i) = ∑i riI(c, i)

to both sides gives

λ[∑i piI(c, i)−∑i piI(p, i)]+

(1− λ)[∑i qiI(c, i)−∑i qiI(q, i)] >

∑i riI(c, i)−∑i riI(r, i)

That is,

λDI(p, c) + (1− λ)DI(q, c) > DI(r, c) = DI(λp + (1− λ)q, c)

as required.

(iv) DI(p, c)−DI(p, q)−DI(q, c) =

[∑i piI(c, i)−∑i piI(p, i)]−
[∑i piI(q, i)−∑i piI(p, i)]−

[∑i qiI(c, i)−∑i qiI(q, i)] =

∑i(pi − qi)(I(c, i)− I(q, i))

as required. 2

Lemma 5 Suppose I is a continuous strictly proper inaccuracy measure. Suppose
X is a closed convex subset of P . And suppose c is not in X . Then there is q in X
such that
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(i) DI(q, c) < DI(p, c) for all p 6= q in X .

(ii) For all p in X ,
n

∑
i=1

(pi − qi)(I(c, i)− I(q, i)) ≥ 0

(iii) For all p in X ,
DI(p, c) ≥ DI(p, q) +DI(q, c)

Proof of Lemma 5. Suppose c is not in X . Then, since X is a closed convex
set and since Lemma 4(iii) shows that DI is strictly convex in its first place,
there is a unique q in X that minimizes DI(x, c) as a function of x. So, as (i)
requires, DI(q, c) < DI(p, c) for all p 6= q in X .

We now turn to proving (ii). We begin by observing that, since p, q are
in P , since P is convex, and since DI(x, c) is minimized uniquely at x = q,
if 0 < ε < 1, then

1
ε
[DI(εp + (1− ε)q, c)−DI(q, c)] > 0

Expanding that, we get
1
ε [∑i(εpi + (1− ε)qi)I(c, i)−

∑i(εpi + (1− ε)qi)I(εp + (1− ε)q, i)−
∑i qiI(c, i) + ∑i qiI(q, i)] > 0

So
1
ε [∑i(qi + ε(pi − qi))I(c, i)−

∑i(qi + ε(pi − qi))I(εp + (1− ε)q, i)−
∑i qiI(c, i) + ∑i qiI(q, i)] > 0

So

∑i(pi − qi)(I(c, i)− I(εp + (1− ε)q), i)+
1
ε [∑i qiI(q, i)−∑i qiI(εp + (1− ε)q, i)] > 0

Now, since I is strictly proper,

1
ε
[∑

i
qiI(q, i)−∑

i
qiI(εp + (1− ε)q, i)] < 0

So, for all ε > 0,

∑
i
(pi − qi)(I(c, i)− I(εp + (1− ε)q, i) > 0

So, since I is continuous

∑
i
(pi − qi)(I(c, i)− I(q, i)) ≥ 0
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which is what we wanted to show.
We now briefly sketch an alternative proof of (ii) that is available if DI

is not only continuous in its first argument, but also differentiable in that
argument. As before, we begin by observing that, since p, q are in P , since
P is convex, and since DI(x, c) is minimized uniquely at x = q, then, for
all 0 < ε < 1,

DI(εp + (1− ε)q, c)−DI(q, c)
ε

> 0

And so
DI(q + ε(p− q), c)−DI(q, c)

ε
> 0

And so, if it exists,

lim
ε→0

DI(q + ε(p− q), c)−DI(q, c)
ε

≥ 0

But, if it exists, the left-hand side is just the directional derivative of DI(q, c)
with respect to q and relative to the vector p − q.8 And we know from a
foundational result about directional derivatives that

lim
ε→0

DI(q + ε(p− q), c)−DI(q, c)
ε

= ∇DI(q, c) · (p− q)

(See (Rudin, 1976, 217).) But we can also show that

∂

∂qk
DI(q, c) = I(c, k)− I(q, k)

After all,

∂

∂qk
DI(q, c) =

∂

∂qk

(
∑

i
qiI(c, i)−∑

i
qiI(q, i)

)
=

I(c, k)−
(
I(q, k)−∑

i
qi

∂

∂qk
I(q, i)

)
= I(c, k)− I(q, k)

since I is strictly proper and therefore

∑
i

qi
∂

∂qk
I(q, i) = 0

for all k. So

∇DI(q, c) · (p− q) =

∑
i
(I(c, i)− I(q, i))(pi − qi) = DI(p, c)−DI(p, q)−DI(q, c)

8Thanks to Jason Konek, who introduced me to the mathematics of directional deriva-
tives in a slightly different context.
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as required, giving us (ii).
And finally, (iii) follows immediately from (ii) and Lemma 4(iv). 2

Finally, this allows us to prove Theorems 1 and 2.

Proof of Theorem 1. Suppose c is not in P . Then, by Lemma 5, there is c? in
P such that, for all p in P ,

DI(p, c) ≥ DI(p, c?) +DI(c?, c)

So, in particular, since each wi is in P ,

DI(wi, c) ≥ DI(wi, c?) +DI(c?, c)

But, since c? is in P and c is not, c? 6= c, and since Lemma 4(i) shows that
DI is a divergence, DI(c?, c) > 0. So

DI(wi, c) > DI(wi, c?)

So, by Lemma 4(ii), for all wi inW ,

I(c, i) = DI(wi, c) > DI(wi, c?) = I(c?, i)

as required. 2

Proof of Theorem 2. Suppose c is not in cl(A+). Then, by Lemma 5, there is
c? such that, for all p in cl(A+),

DI(p, c) ≥ DI(p, c?) +DI(c?, c)

So, in particular, since each possible chance function ch is in cl(A+),

DI(ch, c) ≥ DI(ch, c?) +DI(c?, c)

But, since c? is in cl(A+) and c is not, c? 6= c, and since Lemma 4(i) shows
that DI is a divergence, DI(c?, c) > 0. So,

DI(ch, c) > DI(ch, c?)

Now,

• DI(ch, c) = ∑i chiI(c, i)−∑i chiI(ch, i)

• DI(ch, c?) = ∑i chiI(c?, i)−∑i chiI(ch, i),

so
∑

i
chiI(c, i) > ∑

i
chiI(c?, i)

as required. 2
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5.2 Proof of Theorem 3

To prove Theorem 3, we need a divergence not between one credence func-
tion and another, but between a sequence of m + 1 credence functions and
another sequence of m + 1 credence functions. We create that in the natural
way. That is, given p0, p1, . . . , pm in P and c0, c1, . . . , cm in C, the divergence
from the former sequence to the latter is just the sum of the divergences
from p0 to c0, p1 to c1, and so on. Thus:

Corollary 6 Suppose I is a strictly proper inaccuracy measure. Then define DI :
Pm+1 × Cm+1 → [0, ∞] as follows:

DI((p0, p1, . . . , pm), (c0, c1, . . . , cm)) :=
m

∑
k=0

n

∑
i=1

(
pk

i I(c
k, i)−∑

i
pk

i I(pk, i)

)

Then:

(i) DI is a divergence.

(ii) DI((wi, c1, . . . , ck−1, wi, ck+1, . . . , cm), (c0, c1, . . . , cm)) = I(c0, i)+I(ck, i),
for all 1 ≤ k ≤ m and 1 ≤ i ≤ n.

(iii) DI is strictly convex in its first argument.

Proof of Corollary 6. These follow immediately from Lemma 4. 2

Corollary 7 Suppose I is a continuous strictly proper inaccuracy measure. Sup-
pose X is a closed convex subset of Pm+1. And suppose (c0, c1, . . . , cm) is not in
X . Then there is (q0, q1, . . . , qm) in X such that

(i) ∑m
k=0 DI(qk, ck) < ∑m

k=0 DI(pk, ck) for all (p0, p1, . . . , pm) 6= (q0, q1, . . . , qm)
in X .

(ii) For all (p0, p1, . . . , pm) in X ,

m

∑
k=0

(
n

∑
i=1

(pk
i − qk

i )(I(c
k, i)− I(qk, i))

)
≥ 0

(iii) For all (p0, p1, . . . , pm) in X ,

m

∑
k=0

DI(pk, ck) ≥
m

∑
k=0

DI(pk, qk) +
m

∑
k=0

DI(qk, ck)

Proof of Corollary 7. The proof strategy is exactly as for Lemma 5. 2

To prove Theorem 3, we now need just one more result:
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Lemma 8 Given c0, c1, . . . , cm in P , let

X = {(wi, c1, . . . , ck−1, wi, ck+1, . . . , cm) : wi ∈ W & 1 ≤ k ≤ m}

Then,

(i) X+ ⊆ Pm+1.

(ii) If c0 is not in the convex hull of c1, . . . , cm, then (c0, c1, . . . , cm) is not in
X+.

Proof of Lemma 8. P is closed under taking mixtures, which gives us (i). We
prove (ii) by proving the contrapositive. Suppose (c0, c1, . . . , cm) is in X+.
Then there are 0 ≤ λi,k ≤ 1 such that ∑n

i=1 ∑m
k=1 λi,k = 1 and

(c0, c1, . . . , cm) =
n

∑
i=1

m

∑
k=1

λi,k(wi, c1, . . . , ck−1, wi, ck+1, . . . , cm)

Thus,

c0 =
n

∑
i=1

m

∑
k=1

λi,kwi

and

ck =
n

∑
i=1

λi,kwi +
n

∑
i=1

∑
l 6=k

λi,lck

So (
n

∑
i=1

λi,k

)
ck =

n

∑
i=1

λi,kwi

So let λk = ∑n
i=1 λi,k. Then, for 1 ≤ k ≤ m,

λkck =
n

∑
i=1

λi,kwi

And thus
m

∑
k=1

λkck =
m

∑
k=1

n

∑
i=1

λi,kwi = c0

as required. 2

Now we can turn to the proof of Theorem 3.

Proof of Theorem 3. If c0 is not in the convex hull of c1, . . . , cm, then (c0, c1, . . . , cm)
is not in X+. Thus, by Lemma 7, there is (q0, q1, . . . , qm) such that, for all
(p0, p1, . . . , pm) in X+,

DI((p0, p1, . . . , pm), (q0, q1, . . . , qm)) < DI((p0, p1, . . . , pm), (c0, c1, . . . , cm))
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In particular, for wi inW and 1 ≤ k ≤ m,

DI((wi, c1, . . . , ck−1, wi, ck+1, . . . , cm), (q0, q1, . . . , qm)) <
DI((wi, c1, . . . , ck−1, wi, ck+1, . . . , cm), (c0, c1, . . . , cm))

But

I(q0, i) + I(qk, i)
= DI(wi, q0) +DI(wi, qk)

≤ DI((wi, c1, . . . , ck−1, wi, ck+1, . . . , cm), (q0, q1, . . . , qm))
< DI((wi, c1, . . . , ck−1, wi, ck+1, . . . , cm), (c0, c1, . . . , cm))

= DI(wi, c0) +DI(wi, ck)
= I(c0, i) + I(ck, i)

as required. 2
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