Comments on Carl Wagner’s Jeffrey Conditioning
and External Bayesianity

Stephen Petersen
Niagara University

steve@stevepetersen.net

May 1, 2008

In “Jeffrey conditioning and external Bayesianity”, Carl Wagner provides further
support from mathematical elegance for what he calls the uniformity rule: namely,
that Bayesians should represent “identical learning” by sameness of odds ratios across
atomic events. Put another way, if something prompts both you and me to change our
subjective probabilities, and as a result we learn the same thing, then it must be that for
each atomic event, our subjective odds have expanded or shrunk by the same factor.

In particular, Wagner argues, suppose n of us have our own probability mass func-
tions (pmfs) over some probability space, and we are seeking to pool this n-tuple of
pmfs into one (as a compromise among our views, or summary of them, or whatever).
Suppose further that as we are about to pool our pmfs, we all share the same prompt for
probability revision. Should we pool our pmfs first, and then revise based on this new
learning, or vice-versa? Intuitively such a question should be the least of our concerns.
That is, we should prefer a pooling operator where this order doesn’t matter; our pool-
ing should commute with the probability revision. Wagner shows our chosen pooling
operator will commute with some likelihood revision if and only if it commutes with
Jeffrey conditioning, when parameterized as the uniformity rule would dictate.

The math looks good to me. (Whether because it is good, or because I'm not an
adequate judge, I leave to you.) In my comments on the paper I’ll instead focus on
providing context for this result, first by summarizing some of the other mathematical
elegance Wagner has adduced in favor of his uniformity rule, and then by sketching the
philosophical motivations and issues behind the mathematics.

1 Mathematical considerations

Ensuring external Bayesianity is just one of the advantages behind the uniformity rule.
The key result, which goes back to Field (1978), is that when the “input factor” of
probability revision is represented by the ratios of new to old evidential odds, then
Jeffrey conditioning will be commutative; learning one thing and then another will not
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result in a different final pmf than learning the same things in the reverse order. This
is emphatically not the case when “identical learning” is taken to mean coming to the
same posterior probabilities for evidential events. Thus the uniformity rule rescues
the plausibility of Jeffrey conditioning, which in turn allows for revising based on
uncertain evidence, and thus also for the possibility of reversing one’s learning should
such evidence later be undermined.

Wagner modestly fails to emphasize the extensive work he has already done build-
ing on this main idea. Wagner (2002) extended Field’s result from finite samples spaces
to infinite ones with countable partitions, and Wagner (2003) ties this result more ex-
plicitly to his uniformity rule. That paper also argues (in conjunction with other papers
of his) that the uniformity rule can help solve the historical old evidence problem—the
problem of how to allow a hypothesis to gain credence not because of new evidence,
but because we newly learn that it implies old evidence. Wagner shows that Jeffrey’s
suggestion to reconstruct a pre-evidential “ur-distribution” can be modified to allow for
uncertain revision, if we do it a la the uniformity rule (this time changing new condi-
tional probabilities with identical odds ratios). Thus we needn’t be concerned whether
we revise the uncertain evidence or the explanatory relation first. All along Wagner
has shown that rival representations of identical learning, such as relevance quotients
or probability differences, will not give the same results as neatly.

One final mathematical consideration to which Wagner has pointed me is worth
special note. Chan and Darwiche (2002) have suggested the following nice metric for
probability measures on a finite sample space Q:

q() . q(o)
(@) 2088 ()

CD(p,q) = logmax
0weEQ

This metric is closely related to the odds ratios 3, ,(A : B) between events A, B € 2 (Q)
in the revision from p to g:

Bgp(A:B) = Zi

The definition of CD(p, q) above gives

CD(p,q) = log

maxgeoq(®)/p(o)
ming e q(@')/p(@’)

= log max
g w,0'cQ q(@")

(
- w%?gglogﬁqvp({w} H{o'})



(This last step is not trivial, but not hard.) As a result, when identical learning is taken to
be sameness of odds ratios, any two probability measures undergoing identical learning
will move the same CD-distance. This fails to hold of relative entropy measures like
the Kullback-Leibler divergence (which is not properly a metric anyway).!

2 Philosophical hesitations

As Wagner is well aware, there remains a reasonable philosophical dispute over the
notion of identical learning and the attendant appropriateness of Jeffrey conditioning—
despite this pile of mathematical elegance. I can give here only an overview of the
issue.

Let’s start with the problem that Daniel Garber raised for Field’s initial proposal
of using odds ratios for learning. Garber (1980) points out that learning by odds ratios
cannot be a way to represent learning by sensory experience, since otherwise repeat-
ing the same uncertain sensory experience over and over will, by repeatedly applying
the same odds ratios, drive your probabilities toward certainty. Wagner (2002) holds
that we should therefore divorce identical learning from sense experiences; “we learn
nothing new from repeated glances and so all [odds ratios] beyond the first are equal to
one” (p. 276).

This notion brings counterintuitive results, though, it seems—as an example from
Doring (1999) points out. Suppose I give a very high prior probability that some shirt
is blue, and you give a very low one. We then get an identical glimpse at the shirt under
a neon light, and it looks the same shade of bluish-green to both of us. My posterior
for the shirt’s blueness should be lower, while yours should be higher. But then, since
our odds ratios clearly differ, we did not (by the uniformity rule) undergo identical
learning. In a sense perhaps this is right, but in another sense—one naturally wedded
to our similarity of sensory experience—this seems clearly wrong.

Part of the temptation of odds ratios is in its factoring out of differing priors, mea-
suring only the change both distributions undergo when learning. But these examples
seem to show that in an important sense priors are quite relevant to whether one un-
dergoes “identical learning” a la the uniformity rule. Put metaphorically, one way to
neglect your starting place is to measure only how far you moved; another is to look
only at the force that’s pushing you. These can come apart—if, for example, you can
weigh different amounts. Field evidently hoped that factoring out priors in the former
sense (that of the uniformity rule) was the same as factoring out priors in the latter sense
(that of looking only at physical sensory stimuli, independent of background beliefs).
This hope, it seems, is fruitless.

Sometimes, on the other hand, tying a learning experience to priors works in our
favor, and may even be a plausible way to read sensory experience. Consider this worry
from Brian Skyrms about updating on uncertain evidence: if I catch a dim fleeting
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glimpse of a crow, and thereby assign it a relatively low probability of its being black,
then it seems by updating on this uncertainty I can thereby disconfirm my hypothesis
that all crows are black. In general, Skyrms says, “I could disconfirm lots of theories
just by running around at night” (quoted in Lange (2000), p. 397). Marc Lange suggests
that if “the raven looks about the way that any dusky colored object would be expected
to look under those conditions” (p. 397), then we should perhaps instead think of this
sensory experience as only slightly inflating the prior odds that the particular crow
would be black—as opposed to the comparably large odds ratio change resulting from
getting a good look. If so, the uniformity rule looks appropriate.

Here is a similar example from Daniel Osherson, in Osherson (2002). Suppose
some experience of a patch of sky brings my subjective probability for rain from .5 to
.7. Now suppose that before this glimpse I first hear a weather report that brings my
probability for rain down to .3. If after looking at the sky I still go to .7, Osherson says
I must thereby have had a different (more rain-like) sensory experience. Here Osherson
seems insistent on measuring sensory experience by something like odds ratios.

It is also not obvious that we should seek commutativity when updating on uncer-
tain evidence. In an example from Roger Rosencrantz,

Consider a child who has just knocked over a jar of paint and is wondering
whether he is going to get spanked. In one scenario, a parental scowl is
followed by good natured laughing, while, in the other, these responses
occur in the opposite sequence! (Rosenkrantz (1981), 3.6-2, as quoted in
Lange (2000) p. 396.)

Lange dismisses this case—since it’s classical Bayesian conditioning, he says, rather
than revision on uncertain evidence, of course it will commute; it only appears not to
because they are not the same pieces of evidence received in different order. One piece
of evidence is a scowl transforming into laughter, and the other piece of evidence a
laugh transforming to a scowl.

This answer strikes me as overly simple, though; first, it’s not obvious this is a
case of classical conditioning; perhaps the spanking probability revision is based on
the probability that the parent is angry, for which facial expressions give uncertain evi-
dence. Second, assuming that a video of one such parental transformation could be the
reverse video of the other, then clearly they could be seen as the same sensory experi-
ences in a different order—think of the stills at 30 FPS or higher. The motivation for
calling the differently-ordered conjunctions of such impressions different experiences
seems mostly to come from the fact that when the conjunction appears in one order, it
nudges posterior spanking probability in a different direction than when taken in the
opposite order. This can be done of course; Skyrms showed we can always get the
results of Jeffrey conditioning by enriching the sample space enough to do classical
Bayesian conditioning. The question is one of how plausible it is to admit such points
into our sample space.

In many cases of course it seems clear we do want to maintain commutativity, and
without so enriching the sample space. Take for example the Doring case in which my
final estimated probability of where an explosion originated in an airplane depends on
the order in which I notice the rows of seats left intact (p. S383). Here it seems clear
we should not say “seeing row of seats x then y is a different piece of evidence from



seeing row y then x.” Instead we’d better darn well hope that these individual pieces of
evidence commute with our revisions under uncertainty.

In the end, it may simply be that sometimes the order of sensory experience mat-
ters (as in the parents’ reaction to spilling paint) and sometimes it doesn’t (as in the
airplane seats); sometimes by “learning the same” we mean “coming to attribute the
same posterior probability to observation sentences” (as when we see the cloth in neon
light) and sometimes we mean “having our probability distributions disturbed the same
amount” (as by the crows). I suspect the problem is in the variability in specifying
the sample space, and that such ad hockery will continue to haunt us at least until we
manage to revive a protocol-sentence-like notion of observation that is independent of
background theory. (I further suspect such a notion cannot be revived.)
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