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It is not uncommon to open an analytic philosophy paper written dur-
ing the past century and find logical symbols and mathematical notation
among the prose. Sometimes these are used rather lightly, perhaps in set-
ting out the logical form of an argument; sometimes they play a more cen-
tral role, perhaps stating a mathematical theorem that features as a key
premise in the argument. Why do analytic philosophers do this? They
study the nature of knowledge and beauty and truth, the analysis of lan-
guage, the most just way to organise our society, the best way to live our
lives, the existence of God, the fundamental nature of reality, among many
other things. How do such formal, mathematical methods help them to
investigate these questions? In this chapter, I’d like to persuade you that
they help in many different ways. They allow us to analyse and scrutinise
philosophical theses and arguments, perhaps disambiguating a premise or
conclusion that is unclear in its natural language formulation, perhaps ren-
dering the argument in a particular logic and thereby either allowing us
to identify missing premises, assumptions that have been smuggled in,
or even fallacies that the argument commits, or else assuring us that the
conclusion truly follows only from the assumptions explicitly stated and
does not require anything further (§1-4). They sometimes allow us to es-
tablish that, while we would like our account of some topic of interest to
boast a range different features, it is in fact mathematically impossible for
an account to have all of those features at once, and so we must settle for
second-best; and indeed they sometimes help us investigate the options for
second-best (§5). They sometimes allow us to discover new arguments for
our conclusions, and in particular better arguments that appeal to weaker,
more plausible assumptions in their premises; sometimes this is because
we can appeal to a surprising and powerful mathematical theorem to boost
those seemingly weak premises to establish a powerful conclusion (§8), and
sometimes it is because we can use computer software to search the space
of possible arguments for our conclusions to find ones that assume less than
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we’ve been assuming so far (§1). They sometimes allow us to run computer
simulations of idealised mathematical models of the situations that our ar-
guments treat to see exactly what sort of consequences we should expect
to follow from the claims we make about those situations (§7). Sometimes
they help us to better understand a phenomenon, perhaps by showing that
it shares a mathematical structure with another phenomenon, sometimes
by giving an idealised model of it (§6). And sometimes they are neces-
sary even to represent the phenomenon with which our arguments are con-
cerned (§2-3).

In short: the uses of logical and mathematical methods in philosophy
are multifarious. And so too are the areas in philosophy that deploy these
methods. In this chapter alone, my examples draw from philosophical
discussions of democratic theory, the existence of God, the foundations of
mathematics, the oppression of minority groups, and the epistemology of
uncertain belief, and the semantics of natural language. Let’s get started.

1 Deductive arguments in philosophy

Two of the most familiar uses of formal methods in philosophy are the use
of formal logic and probability theory to study reasoning. Let’s take them
in turn.

Early in our philosophical education, we learn to wrangle arguments
into a list of premises followed by the conclusion that those premises seek
to establish. We also learn how to symbolise those premises and the conclu-
sion in propositional logic and first-order logic.1 Later, we might learn how
to translate into logics that have more expressive power, such as temporal,
modal, epistemic, or deontic logic, as well as the first- and higher-order
versions of these. Why do we do this?

There are two reasons to formalise an argument. First, rendering propo-
sitions in their logical form goes some way to making them precise enough
for us to scrutinise them; second, considering the logical relationships be-
tween the premises and between the premises and the conclusion goes
some way to revealing the inferential power of the argument.

An elegant example of both of these comes from St Thomas Aquinas’
argument for the existence of God in the third of his Five Ways. Here is a
crucial step of the argument:

[I]f everything is possible not to be, then at one time there was
nothing in reality. (As translated in (Anders, 2012).)

It is natural to render the argument of this sentence in first-order logical
form as follows, where Cx symbolises x is contingent and Ext symbolises x

1Introductions to formal logic include (Priest, 2001; Hodges, 2001; Restall, 2004; Magnus
et al., 2019).
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exists at t.

(TW1) ∀x(Cx → ∃t¬Ext)

Therefore,

(TWC) ∃t∀x(Cx → ¬Ext)

But this argument form is invalid. There are countermodels in which the
premise is true and the conclusion false. We might, for instance, let the
domain of quantification be the set of natural numbers (that is, 0, 1, 2, 3,
. . . ), let the extension of C be the whole domain, and let E be the relation
that one number bears to another if the first is greater than the second.
Then (TW1) is true: for all natural numbers, there is a natural number that
is greater than it. But the conclusion is false: there is no natural number
that is greater than all others.

By formalising the argument in this way, we learn something of its in-
ferential force. But it’s important not to overstate what we learn. When
we discover that a given argument is not logically valid when formalised
in a particular logic, we do not thereby learn that the premises of the orig-
inal argument do not support its conclusion. We simply learn that they do
not guarantee the conclusion in virtue of their logical form as represented
in that logic. It’s possible that they do guarantee the conclusion in virtue
of their logical form as represented in another logic—for instance, an ar-
gument whose translation into propositional logic is invalid might have a
translation into first-order logic that is valid. And it’s possible that they do
not guarantee the conclusion in virtue of their logical form in any logic, but
nonetheless do support the conclusion in some weaker way—for instance,
they might make it likely to be true, for instance.

Nonetheless, formalisation is a powerful tool. We might use it to dis-
cover what premises we’d have to add to an argument in order to make it
logically valid in that logic, and then ask whether they are plausible. Or we
might consider countermodels of the logical form of the argument when it
is translated into its most natural logic to understand how the world would
have to be for the premises to be true and the conclusion false. So, for in-
stance, we might be inspired by the natural numbers countermodel to the
formalization of Aquinas’s argument from above to describe a universe in
which Aquinas’ original premise is true but his conclusion is false.

Formalisation requires us to render the premises and conclusion of our
argument in logical form. In the previous example, that was straightfor-
ward and a means to the end of analysing the argument’s inferential strength.
But sometimes the formalization itself is illuminating. Take, for instance, a
different argument for the existence of God. This time, St Anselm’s on-
tological argument from his Proslogion. The American philosopher David
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Lewis (1970) analyses the argument into four premises and a conclusion.
Here’s the third premise:

(OA3) Something exists in the understanding than which nothing greater is
possible.

He formalizes this premise along with the other three. They all involve
quantification over things, but also modal notions, such as possibility. So it
might seem most natural to formalize it in modal logic. But Lewis thinks
it is more perspicuous to formalise the argument using quantification over
possible worlds, which in any case is a standard way of giving the meaning
of modal notions. However, while he manages this easily for the other three
premises, when he tries to do it for (OA3), he realises that this premise
is ambiguous. That is, we can make it precise using quantification over
possible worlds in two different ways.

Here’s the first:

(OA3∗1) There is an understandable thing x such that there is no world w and
thing y such that y is greater at w than x is at the actual world.

If we render (OA3) in this way, then, when combined with his formaliza-
tions of the other premises, the argument is valid. But the premise under-
stood in this way is implausible. Why should we think that there is any
understandable thing that is at its very best in the actual world?

Here’s the second reading of (OA3):

(OA3∗2) There is an understandable thing x and a possible world v such that
there is no world w and thing y such that y is greater at w than x is at
v.

If we disambiguate (OA3) in this way, the premise is much more plausible.
It is plausible that there is an understandable thing that, in the possible
world in which it is at its best, is better than anything else at any other
world. But, when combined with the formalizations of the other premises,
the argument is invalid.

By excavating the logical form of St Anselm’s argument using quantifi-
cation over possible worlds, David Lewis unearthed an ambiguity in one
of the premises. Until we resolve that ambiguity, we’ve no way to assess
whether the argument is valid or invalid, sound or unsound. And indeed
when Lewis does the work of disambiguating the premise, he discovers
that the argument must fail in one way or the other: with (OA3∗1), it is valid
but unsound; with (OA3∗2), it is invalid, but sound.

So, formalising an argument can bring greater precision to the claims
that constitute it, help identify the commitments of the argument, identify
missing premises, and evaluate the inferential power of the argument.
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It can also put your argument into the form where we can investi-
gate it using a theorem prover, which is a piece of computer software that
assists with some aspect of logical reasoning.2 For instance, a theorem
prover might search for a deduction from your premises to your conclu-
sion, or even from some weaker set of premises to your conclusion, thereby
strengthening your argument. Or, it might search for countermodels of the
argument to show it’s invalid, or for models of your premises to ensure that
they’re consistent. Different theorem provers specialise in finding proofs or
models in different logics. They have been used in philosophy to help un-
derstand the Austrian logician Kurt Gödel’s formulation of the ontological
argument for the existence of God. Gödel didn’t publish his proof himself,
but showed it to the American logician Dana Scott, who fixed an inconsis-
tency in Gödel’s original premises (Gödel, 2004; Scott, 2004). Of course, if
we’re working in a logic that is complex enough that the great Gödel didn’t
spot an inconsistency, we might be worried that Scott’s alternative premises
are also inconsistent. Using a theorem prover called Nitpick, Benzmüller &
Paleo (2014) discovered a model for those premises, showing that they are
consistent. And then they used two further theorem provers, LEO-II and
Satallax, to show that the theorem does not require the strong background
modal logic S5, which Gödel used, but only the much weaker system KB.

Branden Fitelson (2013) has also used the theorem provers paradox,
vampire, prover9, and otter to strengthen a well-known argument by
showing that much weaker premises are required. The argument is Allan
Gibbard’s Collapse Theorem (Gibbard, 1981). Gibbard showed that, from
certain assumptions about the indicative conditional (i.e., the natural lan-
guage connective in sentences of the form If A is true, then B is true), we
can show that it must be logically equivalent to the material conditional
(i.e., the logical connective symbolised as A → B). But the assumptions
are quite strong and it seems we can escape the undesirable conclusion by
rejecting some of them. However, Fitelson shows that a much weaker set
of assumptions ensures the same collapse result. There’s no easy escape!

2 Probabilistic arguments in philosophy

Not all arguments seek to establish their conclusion definitively on the ba-
sis of their premises. Some seek only to make the conclusion likely. Formal
logic is usually not the best way to study these arguments. It is often better
to turn to the theory of probability. Staying in the philosophy of religion,
let’s consider an example.3 Given the physical laws that govern our uni-
verse, there is a rather narrow range of values within which the fundamen-

2For an introduction to theorem provers and automated reasoning, see (Portoraro, 2019).
For the original manifesto arguing for their use in philosophy, see (Fitelson & Zalta, 2007).

3For an introductory overview of this argument, see (Friederich, 2018).
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tal constants must lie if the universe is to be hospitable to life. Let’s symbol-
ise that fact as F, for fine-tuning. But of course there is life. Let’s symbolise
that fact as L. Some philosophers wish to appeal to the conjunction LF to
argue that God exists, which we’ll symbolise as G. The argument proceeds
via two probabilistic claims. The first is that, given F, L is very unlikely
given ¬G. That’s because, given F, there is a much larger range of values
for the fundamental constants on which the universe doesn’t support life
than on which it does, and if God doesn’t exist, any value is as likely as any
other. The second claim is that, given F, L is very likely given G. That’s
because God presumably wants to create a universe that supports life, and
is able to do what They want and so able to set the fundamental constants
within the range that makes life possible.

I’ll formalise this argument using the Bayesian approach.4 The core
Bayesian assumption is that we can measure the strength of someone’s be-
lief in each proposition they consider using a real number from 0 to 1—we
call this strength of belief their credence in A. We record a person’s cre-
dences in their credence function. If P is their credence function and A is a
proposition they consider, P(A) is their credence in A. If P(A) = 1, then
the person has maximal credence in A; if P(A) = 0, they have minimal
credence in A. What’s more, P(A|B) gives their conditional credence in A
given B. The Bayesian assumes that a rational person’s credence function
P is a probability function. That is, P has the following properties:

(PA1a) If > is a tautology, P(>) = 1;

(PA1b) If ⊥ is a contradiction, P(⊥) = 0;

(PA2) If A and B are propositions, P(A ∨ B) = P(A) + P(B)− P(AB).

Various results follow from this—I’ll mention just a couple:

(i) If A entails B, then P(A) ≤ P(B). For instance, P(A) ≤ P(A∨ B) and
P(AB) ≤ P(A).

(ii) If A and B are logically equivalent, then P(A) = P(B).

(iii) If A and B are logically inconsistent, then P(A ∨ B) = P(A) + P(B).
For instance, P(A) + P(¬A) = 1, so P(A) = 0.5 if you think A is as
likely as not.

What’s more, Bayesianism demands that a rational person’s conditional
credences are related to their unconditional credences by the so-called ratio
formula:

4Introductions to Bayesianism and Bayesian epistemology include (Talbott, 2008; Titel-
baum, ???; Easwaran, ???). The approach is named in honour of Reverend Thomas Bayes,
the eighteenth century English Presbyterian minister who first stated its central result,
Bayes’ Theorem, which we will meet below.
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(RF) P(A|B) = P(AB)
P(B) , provided P(B) > 0.

The most famous consequence of this is Bayes’ Theorem, which underpins
nearly all applications of Bayesian epistemology:

P(A|B) = P(A)P(B|A)

P(B)
=

P(A)P(B|A)

P(A)P(B|A) + P(¬A)P(B|¬A)

And, the final piece in the Bayesian jigsaw: the rule for updating your cre-
dences when new evidence comes in, which is sometimes called Bayes’ Rule
or Bayesian Conditionalization:

(BC) If P is your credence function at one time, P′ is your credence function
at a later time, and E is the strongest evidence you obtain between
those times, then, for all propositions A, P′(A) = P(A|E).

That is, your later unconditional credence in A should be your earlier con-
ditional credence in A given E.

Before we move on to apply this framework, note that this is a case in
which formal methods are required just to represent the phenomenon of
interest, namely, a person’s degrees of belief, let alone to investigate them.
Each credence is represented by assigning a real number, itself a mathe-
matical object, to a proposition. It is important to note that, while we are
familiar with real numbers from high school, and while we use them to rep-
resent distances, weights, and so on throughout our everyday life, a lot of
work is required in the background to ensure that such a representation is
legitimate. This is the subject matter of measurement theory, which provides
the foundations for representing quantities numerically (Tal, 2020, Section
3).

With all of this in hand, we can now formalise the probabilistic part of
the fine-tuning argument from above:

(FT1) P(L|¬GF) is low

(FT2) P(L|GF) is high

Therefore, by (FT2) and (FT3),

(FTC) P(G|LF) is high.

We can then note that LF is true, and conclude that your credence in G
should be high. Now, we might resist the argument by denying (FT1) or
(FT2), but there is another objection to it: it is probabilistically invalid. The
problem is that it is possible to have a probability function with the prop-
erties demanded by (FT1-2) that does not have the property demanded by
the conclusion (FTC); so (FTC) does not follow from (FT1-2).
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Essentially, this argument commits a version of what is sometimes called
the base rate fallacy (Kahneman & Tversky, 1973; Bar-Hillel, 1980). The clas-
sic example of this fallacy occurs when you test positive for a rather un-
usual disease using a slightly imperfect test, and you become very confi-
dent that you have the disease on this basis. When you do this, you ignore
the fact that the disease is very rare, which means that you are much more
likely to be one of the healthy people who get a false positive test than you
are to be one of the sick people who get a true positive test. The fine-tuning
argument fails in the same way. Suppose that, given F, you just think that
it’s very unlikely that God exists. So, P(G|F) is very low. Then P(L|¬GF)
might be low and P(L|GF) might be high, but P(G|LF) is still low. We can
see this by using Bayes’ Theorem, which tells us that

P(G|LF) =
P(G|F)P(L|GF)

P(G|F)P(L|GF) + P(¬G|F)P(L|¬GF)

Suppose, for instance, that

• P(G|F) = 0.1%,

• P(L|GF) = 99%, and

• P(L|¬GF) = 1%.

Then P(G|LF) ≈ 10%.
So, the Bayesian method of rendering arguments using subjective prob-

abilities or credences allows us to assess their inferential power, and iden-
tify fallacies in reasoning.

3 Probabilistic arguments in science

Of course, philosophers do not only scrutinise their own arguments. In
the philosophical study of academic disciplines like science, mathematics,
psychology, history, etc. we are interested in evaluating the inferences that
the practitioners of those disciplines use. And Bayesian methods can help
here as well. Let’s take a famous example from the philosophy of science.

A central question that arises in the philosophy of any science is what
evidence confirms which hypotheses. The French philosopher Jean Nicod
(1924) proposed the following principle, which identifies one type of evi-
dence that confirms one sort of hypothesis:

(NC) Observing something that has property R and property B confirms
the hypothesis that all Rs are Bs.

In symbols, RaBa confirms ∀x(Rx → Bx).
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However, the German philosopher Carl Hempel (1945) identified an un-
welcome consequence of (NC) when it is combined with the following
plausible claim:

(EC) If E confirms H, and H is logically equivalent to H′, then E confirms
H′.

First, note that ∀x(Rx → Bx) is logically equivalent to ∀x(¬Bx → ¬Rx).
Then note that, by (NC), ¬Ra¬Ba confirms ∀x(¬Bx → ¬Rx). And finally
combine these and note that, by the (EC), ¬Ra¬Ba confirms ∀x(Rx → Bx).
And this, Hempel thought, must be wrong.

To illustrate the problem, he gave a famous example, which gives the
problem its standard name, the paradox of the ravens. Let Rx symbolise x
is a raven and let Bx symbolise x is black. In this case, (NC) tells us that
seeing a black raven confirms that all ravens are black, which seems right.
It also tells us that seeing a non-black non-raven confirms that all non-black
things are non-ravens. And that also seems right. But, because the latter
hypothesis is logically equivalent to the former, the (EC) tells us that seeing
a non-black non-raven confirms that all ravens are black. Thus, when I see
my red shoes, I confirm that all ravens are black; similarly when I see a
yellow banana, a green leaf, and a scarlet ibis. And that seems wrong.

To state this paradox, it was helpful to use a little formal logic. But
to solve it, we turn to the probability theory that we introduced in the
previous section. The Bayesian solution to Hempel’s paradox was given
originally by the Polish logician Janina Hosiasson-Lindenbaum (1940). Us-
ing probability theory to explicate the notion of confirmation, and also to
measure its strength, Hosiasson-Lindenbaum showed that, on reasonable
assumptions, seeing a non-black non-raven does indeed confirm that all
ravens are black, but only to a very small degree; while seeing a black raven
confirms that all ravens are black to a much greater degree. Her solution
thereby retains (NC) and (EC), but takes the sting out of their apparently
paradoxical consequence. As we’ll see, however, Hosiasson-Lindenbaum’s
approach also entails that seeing a black nonraven disconfirms the hypoth-
esis that all ravens are black, and that creates a new paradox. We’ll then
meet Susanna Rinard’s (2014) version of the Bayesian approach, which
builds on Hosiasson-Lindenbaum’s to solve this.

Probabilities were used early in the philosophy of science to understand
the notion of confirmation. The Bayesian account is simple: evidence E
confirms hypothesis H just in case P(H|E) > P(H), where again P(H)
measures your confidence in H and P(H|E) measures your confidence in
H given E. That is, evidence confirms a hypothesis when the evidence
raises the probability of the hypothesis. What’s more, we can measure how
strongly it confirms the hypothesis by looking at how much it raises the
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probability. Now, recall Bayes’ Theorem:

P(H|E) = P(H)
P(E|H)

P(E)

Together with the Bayesian account of confirmation just given, it follows
that E confirms H just in case P(E|H) > P(E), and how strongly E confirms
H is determined by how much greater P(E|H) is than P(E).

To see how Hosiasson-Lindenbaum’s solution works, let’s set out the
relevant probabilities before and after we condition on H.

X P(X) P(X|H)
RaBa a p

Ra¬Ba b q
¬RaBa c r
¬Ra¬Ba d s

What we want: first, RaBa confirms H reasonably strongly; second, ¬Ra¬Ba
confirms H only very weakly. As we’ve just seen, we’ll get this just in case

P(RaBa|H)

P(RaBa)
� P(¬Ra¬Ba|H)

P(¬Ra¬Ba)
> 1

That is,
p
a
� s

d
> 1.

The usual Bayesian solution that follows Hosiasson-Lindenbaum’s lead,
arranges this by making four assumptions:

(a) Learning H lowers your probability for observing a non-black raven
to zero. That is, P(Ra¬Ba|H) = 0. That is, q = 0.

(b) Learning that all ravens are black wouldn’t change how likely it is
you’ll observe a raven. That is, P(Ra|H) = P(Ra). That is, p + q =
a + b.

(c) Learning that all ravens are black wouldn’t change how likely it is
you’ll observe something non-black. That is, P(¬Ba|H) = P(¬Ba).
That is, q + s = b + d.

(d) You’re much less likely to pick a raven than something that isn’t black.
That is, P(Ra)� P(¬Ba). That is, a + b� b + d.

So, by (a-c), p = a + b and s = b + d. So

P(RaBa|H)

P(RaBa)
=

p
a
=

a + b
a

and
P(¬Ra¬Ba|H)

P(¬Ra¬Ba)
=

s
d
=

b + d
d
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And by (d), a� d, so

P(RaBa|H)

P(RaBa)
=

a + b
a
� b + d

d
=

P(¬Ra¬Ba|H)

P(¬Ra¬Ba)
> 1

And this is exactly what we wanted. However, (a-c) also entail something
less welcome: since p+ q+ r+ s = 1 = a+ b+ c+ d, (a-c) give us, (a+ b)+
r + (b + d) = a + b + c + d, and so r = c− b < c. That is, P(¬RaBa|H) <
P(¬RaBa). So P(H|¬RaBa) < P(H). So observing something black that
isn’t a raven disconfirms the hypothesis that all ravens are black. Oh dear!

Fortunately, the American philosopher Susanna Rinard (2014) provides
a way out. She retains (a), (b), and (d) from above, but she strengthens (c)
as follows:

(c1) Learning that all ravens are black wouldn’t change how likely it is
you’ll observe something black that isn’t a raven. That is, P(¬RaBa|H) =
P(¬RaBa). That is, r = c.

(c2) Learning that all ravens are black wouldn’t change how likely it is
you’ll observe something non-black that isn’t a raven. That is, P(¬Ra¬Ba|H) =
P(¬Ra¬Ba). That is, s = d.

This then gives us:

P(RaBa|H)

P(RaBa)
=

p
a
=

a + b
a

and
P(¬Ra¬Ba|H)

P(¬Ra¬Ba)
=

s
d
=

d
d
= 1

So RaBa confirms H, ¬Ra¬Ba neither confirms nor disconfirms H, and so
RaBa confirms H more strongly than ¬Ra¬Ba does. And, what’s more,
P(¬RaBa|H) = P(¬RaBa). Notice, of course, that this solution violates
(NC), since ¬Ra¬Ba does not confirm H and therefore does not confirm
∀x(¬Bx → ¬Rx). But perhaps this is an advantage. After all, it accords
with our intuitive judgment.

So, rendering arguments using probabilities helps us to understand and
justify reasoning that scientists routinely use, just as it helps us analyse and
critique philosophical reasoning. In this way, it contributes to the episte-
mology of science.5

4 Deductive arguments in mathematics

Nowadays, philosophers use formal logic most often to analyse their own
arguments. But the logic that we know as first-order logic was introduced
by the German mathematician and philosopher Gottlob Frege in 1879 to

5For more on the Bayesian reconstruction of scientific reasoning, as well as some of the
problems it faces, see (Earman, 1992; Sprenger & Hartmann, 2019).
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investigate reasoning in mathematics (Frege, 1879). Like many mathemati-
cians in the eighteenth and nineteenth centuries, Frege wanted to set his
subject on a firmer foundation by expunging geometrical intuitions from
its reasoning. To do this, Frege created a formal language in which to write
mathematics, as well as a set of simple, mechanically-applicable rules for
deriving one sentence in this language from others. Frege thought that
these rules of inference should be used one after the other, starting with
the assumptions of a theorem and ending with the theorem itself, to create
an unimpeachable chain of reasoning that would guarantee for us that no
geometrical intuition had slipped into the proof. Frege hoped that, by for-
malising mathematical arguments in this new language, we would become
more certain that their conclusions genuinely follow from their premises.

However, around the turn of the century, a new threat to the founda-
tions of mathematics emerged. How do we know our mathematical as-
sumptions are consistent? Who is to say that, when we start with those
assumptions and follow these unimpeachable chains of mathematical rea-
soning, we might not end up with a contradiction? These concerns led the
great German mathematician David Hilbert to seek a new way to improve
the epistemology of mathematics by establishing the consistency of its as-
sumptions (Zach, 2019). And Frege’s approach of mechanising mathemat-
ical reasoning was the perfect tool. The idea was that, since formal deduc-
tive systems of logic are specified so precisely, they are in fact mathematical
objects in their own right. Hilbert therefore proposed to prove mathemat-
ically that there could be no chain of steps in a formal system of proof like
Frege’s that starts with the assumptions of some part of mathematics, such
as geometry or arithmetic or real analysis, and ends in a contradiction.

It turned out, however, that Hilbert’s project was doomed by one of the
most powerful pieces of mathematics that has been used as a formal tool
to answer a philosophical question. This is the pair of incompleteness the-
orems due to the Austrian logician Kurt Gödel (1931). The second of these
shows that any mathematical theory with enough expressive power to for-
mulate arithmetic cannot prove its own consistency. The upshot is that,
in order to prove the consistency of any significant mathematical theory,
you need to assume something stronger than the theory itself. And this
undermines the epistemic benefits that Hilbert wanted to gain from such a
proof.6

With Gödel’s theorems, we meet our first no-go theorem. Such results
form an important species of formal method, and we’ll meet another in the
next section. They show that we can’t always get what we want. Specifi-
cally, they take a list of desiderata, and they show mathematically that they
are not jointly satisfiable. Gödel’s second incompleteness theorem showed

6For an overview of Gödel’s results and their effect on Hilbert’s program, see (Zach,
2019; Raatikainen, 2020).
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that Hilbert could not have what he wanted. He could not have a con-
sistency proof for a significant part of mathematics that assumes less than
what was already assumed in that part of mathematics. So he could not es-
tablish that the part of mathematics was risk-free without already assuming
it was risk-free.

5 The Condorcet paradox and Arrow’s theorem

One of the early pioneers of mathematical methods in philosophy was the
French Enlightenment philosopher, the Marquis de Condorcet. We will
meet his greater achievement in the next section, but first let’s consider
what is sometimes called the Condorcet paradox (de Condorcet, 1785).

The Condorcet paradox belongs to the theory of voting. In its most
general form that theory concerns situations in which we have a group of
people, each with their individual preferences over a range of options, and
we want to identify the group’s preferences over those options. The group
might comprise all the voting-age citizens in a country, or all the members
of a hiring committee, or just a group of friends deciding what to do to-
gether on a Saturday afternoon. The options might be policy proposals on
a referendum ballot, or candidates for a job, or a range of board games. A
voting method takes the preferences of individuals, each of which we rep-
resent by an ordering over the options, and spits out the preferences of the
group, which we also represent by an ordering over the options. A popu-
lar method is majority voting. This takes the group to prefer one option to
another just in case the majority of individuals in the group prefer the first
to the second.

Condorcet’s paradox shows that majority voting leads to problems. Sup-
pose there are three job candidates—Amira, Benedict, and Cyra—and three
people on the appointment panel—Prija, Quentin, and Roko. These are the
panellists’ preferences:

First Second Third
Prija A B C

Quentin C A B
Roko B C A

Then, according to majority voting, the panel prefers A to B because Priya
and Quentin do, it prefers B to C because Prija and Roko do, and it prefers
C to A because Quentin and Roko do. That is, the group’s preferences
are cyclical. There is no first, no second, and no third. Each candidate is
preferred to the other two. And indeed the group preference order is in-
transitive: A is preferred to B, B is preferred to C, and C is preferred to A,
but A is not preferred to itself. Something has gone badly wrong. In the
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terminology of voting theory, majority rule violates the conditions of Unre-
stricted Domain and Social Order. Together, they say that, if the individuals’
orderings are weak orderings, then the voting method should spit out a
weak ordering.7

Now, majority rule is a very common method for aggregating the dif-
ferent opinions of individuals to generate the group’s opinions. But it isn’t
the only one. Perhaps there is another method that avoids this problem.
And of course there are many. But it turns out that every alternative faces
its own problem. This is the upshot of Kenneth Arrow’s startling impossi-
bility theorem (Arrow, 1951). Like Gödel’s incompleteness theorem, it is a
no-go result. Where Gödel’s result showed that Hilbert’s project of proving
the consistency of a part of mathematics using proof theory cannot provide
the epistemic benefits Hilbert hoped for, Arrow’s theorem shows that there
can be no voting method that has all of the features we would like it to
have.

What are these features? Unrestricted Domain and Social Order furnish
the first two, and there are three more. First, No Dictator says that there
should be no individual in the group such that, whatever preferences the
other members of the group have, the group ordering will always match
that individual’s ordering. Second, Weak Pareto says that, if all members of
the group prefer one option to another, then the group does. And third,
Independence of Irrelevant Alternatives says that the order in which the group
places to options should be determined entirely by the orders in which each
individual places those two options, and should not be affected by the or-
der in which the individuals place any other options. Arrow’s theorem
states that there is no voting method that has all five properties.

This is a remarkable result. Of course, you might not agree that each of
the properties is desirable, in which case it will have little bite. But if you
do think they’re desirable, Arrow’s theorem tells you that your democratic
system must be flawed. Presumably some conditions are less crucial to a
democratic system, and violations of those might not be fatal to a democ-
racy, but it will nonetheless not be perfect.

Another remarkable feature of Arrow’s theorem is its generality. While
I introduced it by talking of individual people and their preferences over
different options, the mathematical result itself simply concerns the prop-
erties of functions that take a sequence of orderings over a range of things
and return a single ordering over those things. As a result, it has been
applied well outside the boundaries of voting theory. For instance, Samir
Okasha (2011) has used Arrow’s theorem to investigate Thomas Kuhn’s
claim that there is no algorithm by which to choose a scientific theory on
the basis of theoretical virtues like simplicity, explanatory power, and uni-

7A binary relation � is a weak ordering if it is reflexive (for all a, a � a) and transitive (for
all a, b, c, if a � b and b � c, then a � c).
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fication (Kuhn, 1969). In this application of Arrow’s theorem, the options
are the scientific theories in question, while the voters are the theoretical
virtues. Each virtue orders the theories by how well they exhibit that virtue.
Arrow’s theorem then shows that there is no algorithm that takes these or-
derings and returns an aggregate ordering of the theories that satisfies the
relevant versions of the five properties we described above. Kuhn’s claim
is therefore supported if those five properties are indeed features we would
want to see in an algorithm for theory choice.

Arrow’s theorem therefore reveals one of the most powerful features of
mathematical methods; a feature that has long been appreciated by mathe-
maticians themselves. A general mathematical result will often have many
different interesting applications, some of them well beyond the original
area for which the result was conceived. In mathematics, group theory,
which has its origins in number theory and geometry, is applied now in
physics and in musical theory. Here, a result devised in the analysis of
democratic systems illuminates our understanding of scientific theory choice.

6 The Ship of State and the Condorcet Jury Theorem

In the Republic Book VI (488), Socrates conjures a fictional scene aboard a
ship.

Picture a shipmaster in height and strength surpassing all oth-
ers on the ship [...] Conceive the sailors to be wrangling with
one another for control of the helm, each claiming that it is his
right to steer though he has never learned the art and cannot
point out his teacher or any time when he studied it.

So begins the famous ‘ship of state’ analogy, which compares navigating
a ship with running a state. Socrates uses it to persuade his interlocu-
tor that ships—and, by analogy, states—will always be run better by ex-
perts like the shipmaster than by the inexpert sailors, who have none of the
knowledge and experience required to do the job effectively. In his more
famous contribution to democratic theorising—the Condorcet jury theorem,
introduced in the same remarkable essay in which he formulated the Con-
dorcet paradox—Condorcet rebuts Plato’s strong universal claim (de Con-
dorcet, 1785).

To introduce this result, imagine a magician with a trick coin. Unlike a
normal fair coin, this coin is more likely to land heads than to land tails on
any given toss—for the sake of definiteness, let’s say it’s 53% likely to land
heads on any given toss. Like a normal fair coin, the outcome of each toss
is independent of the outcome of all the others. Our magician now starts
tossing the coin. Intuitively, the longer they toss the coin, the more likely it
is that the majority of the tosses will land heads. And indeed we can prove
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this using probability theory. Indeed, after not very many tosses at all, it’s
extremely likely that the majority of tosses will have landed heads. After
100 tosses, it’s about 70% likely, 300 tosses it’s about 80% likely, and by 500
tosses, it’s almost 90% likely. What’s more, it will approach 100% as the
number of tosses grows and grows.

Condorcet’s jury theorem uses exactly this mathematics, but applies it
not to tosses of a biased coin, but to the judgments of slightly reliable mem-
bers of a population. Suppose we are interested in the answer to a question.
The question is yes/no, and the matter is factual, so there’s a right and a
wrong answer. Suppose we will try to answer this question by asking each
person in our population what they think, and taking whatever is the ma-
jority opinion. And suppose that each of these people is more likely to be
right than wrong about the question. Indeed, let’s suppose that each has
exactly the same chance of getting the answer right—for the sake of def-
initeness, let’s say they’re 53% likely to get it right. And suppose that a
given individual getting the answer right is independent of every other in-
dividual getting it right. Then, Condorcet proved, just as the chance of the
majority of tosses landing heads increases as the coin is tossed more and
more times, similarly, the chance of the majority opinion of this group of
individuals being right increases as more and more individuals are added
to the group. And just as the probability of the coin landing heads on a ma-
jority of tosses approaches certainty as the number of tosses increases, so
the probability of the majority opinion being correct approaches certainty
as the size of the population increases.

How does Condorcet’s jury theorem tell against Plato’s ship of state ar-
gument? Well, Plato assumes that a small number of experts—in the anal-
ogy, the shipmaster—will always be more likely to make decisions bene-
ficial to the state than a large group of non-experts—in the analogy, the
motley group of sailors. Condorcet’s theorem shows this is not necessarily
the case. The result is, I think, best seen as a ‘how possibly’ result. Plato
rejects or ignores the possibility that the multitude on the ship of state who
do not have any high level of maritime expertise could, collectively, handle
the ship better than the single expert shipmaster. Condorcet shows how
this is in fact possible. He doesn’t, of course, claim that it is actually the
case. After all, his theorem has no empirical assumptions about how reli-
able members of a society are, nor about the independence of their opin-
ions. But he shows a way that the world might be in which a moderately
large number of non-experts can, collectively, be more reliable than a small
number of experts.

One attractive feature of formal methods in philosophy is that they
readily invite constructive extensions, developments, and strengthenings
of earlier arguments, rather than encouraging the hunt for the devastating
objection. And the history of Condorcet’s result since it was rediscovered
in the twentieth century has been an inspiring example of that. Condorcet’s
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own assumptions are very strong, and it’s unlikely any society is exactly as
he describes: there will surely be some variation in the reliability of individ-
uals; their opinions are surely not completely independent; and so on. So
the question arises: under what more realistic conditions do Condorcet’s
conclusions, or conclusions similarly optimistic about collective wisdom,
still hold? And, thanks to a huge literature that has grown up around those
results, we now know many many such conditions and their relationship
to these conclusions (Estlund, 1994; Kanazawa, 1998; List & Goodin, 2001;
Dietrich & Spiekermann, 2013).

7 Modelling intersectionality

So we use a ‘how possibly’ result to rebut an argument that relies on deny-
ing that something is possible. Here’s another example—I introduce it be-
cause it uses a different formal method, namely, computer simulation. A
prominent thesis in social theory says that there are specific disadvantages
suffered by individuals who belong to two or more disadvantaged groups,
and that these disadvantages are not accounted for fully by pointing to
their membership of those two groups taken individually. For example,
Black women in America are disadvantaged in ways that we can’t account
for by looking only at the ways in which Black people in general are disad-
vantaged, and the ways in which women in general are disadvantaged. We
might call this the intersectionality thesis. One central objection to this thesis
turns on a claim of impossibility: there is no way to design an empirical
test of the intersectionality thesis in any specific social case.

In recent work, Cailin O’Connor, Liam Kofi Bright, and Justin Bruner
respond to that objection by formulating a series of such empirical tests
(O’Connor et al., 2019). And they do that using an interesting formal method.
Whereas Condorcet appealed to an analytic mathematical result—that is,
one established by proof—O’Connor, et al. use the increasingly popular,
powerful, and flexible method of computer simulation. They approach the
problem by providing a model of a society in which individuals bargain
with one another for some finite resource. In the model, the individuals
are divided according to two features: gender and race.8 These individuals
bargain with one another in two separate domains, such as the marketplace
and the workplace; and, for each of these two domains, only one of the
two identities is salient for interactions—perhaps gender identity is salient
in the marketplace, while racial identity is salient in the workplace. They
then use computer simulations to find out how the favoured bargaining
strategies of individuals of different identities evolve over time, given cer-
tain assumptions about what determines how those strategies change from

8For ease of modelling, they assume that there are only members of two genders and
two races in the population, though that isn’t essential to the final result.
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one time to the next, and to find out what amounts of resource individuals
from different groups receive. They claim that certain assumptions about
how these strategies evolve account for intersectional disadvantage.

On the most minimal version of their assumptions, an individual’s favoured
bargaining strategy changes based purely on their previous strategy’s suc-
cess. Running the simulation with this assumption, we see that members
of the intersectional group can be disadvantaged in acquiring this resource
simply because the intersectional group is small. On a more moderate ver-
sion of the assumptions, an individual’s favoured strategy is determined
not only by past success but by learning from the success of others, but only
others with the same identity. Again, intersectional disadvantage arises,
and this time it’s more pronounced. They consider a number of further as-
sumptions about the evolution of strategies and describe the consequences
for intersectional disadvantage.

What results is a series of empirically testable predictions. If A, B, and
C are the social forces driving intersectional disadvantage, we’d expect to
see P; if D, E, and F are the social forces, we’d expect to see Q; and so on.
We can now test the hypothesis that only A, B, and C are the relevant so-
cial forces that drive intersectional disadvantage by testing whether P. If we
find that P doesn’t hold, we might take the hypothesis to be refuted. And
similarly for the hypothesis that only D, E, and F are driving such disad-
vantage. Thus, the formal methods used by O’Connor, et al. have provided
a range of hypotheses that make the intersectionality thesis precise enough
to be tested.9 And, what’s more, they have shown that we can generate
testable hypotheses concerning the forces that govern a complex system
like our society using computer simulations, which allow us to draw out
predictions from hypotheses that we would not be capable of drawing out
using analytical mathematical methods.

8 Logical rocket boosters

Sometimes, the results of applying formal methods in philosophy can look
almost like magic. This can happen when we use powerful mathematical
results as logical ‘rocket boosters’ that take our formalised philosophical
assumptions and boost them to a conclusion that seems to lie very far from
the starting point. To illustrate this, I’ll draw from my own area of research,
namely, accuracy-first epistemology (Joyce, 1998; Greaves & Wallace, 2006;
Pettigrew, 2016).

Above, I introduced Bayesian epistemology, in which we represent a
person’s beliefs by their credence function and assume that a rational per-
son’s credence function is a probability function. The first claim here is a

9For an earlier application of formal methods to explicate the intersectionality thesis, see
(Bright et al., 2016).
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modelling claim—it tells us that we can faithfully represent degrees of be-
lief as numerical credences. The second claim is normative—it tells us what
rationality requires of our beliefs represented as credences. What allows us
to make this second normative claim? Why does rationality require that
my credence in a proposition A and my credence in its negation ¬A sum
to my credence in A ∨ ¬A, for instance, as Bayesianism demands?

Accuracy-first epistemology answers this by showing that I’ll go wrong
in a particular way if my credences aren’t probabilities; and, moreover,
I won’t go wrong in that way if they are. The central philosophical as-
sumption of this argument is veritism, which says that my credences are
better, epistemically speaking, the more accurate they are, where a higher
credence in a true proposition is more accurate than a lower one, while a
lower credence in a false proposition is more accurate than a higher one. In
accuracy-first epistemology, we introduce numerical measures of accuracy
to measure how well a credence function is doing, epistemically speaking,
according to veritism. Now, of course, there are very many numerical mea-
sures of accuracy that will satisfy veritism as I’ve just stated it. Are we
allowed to use any of them? Accuracy-first epistemology says no. It says
that there is some restricted class of legitimate numerical measures of accu-
racy.

According to the most popular current characterization of these legit-
imate accuracy measures, they are all and only the strictly proper ones,
where a measure of accuracy is strictly proper if each probabilistic credence
function expects itself to be most accurate. Why is this the correct charac-
terization? Very briefly, here’s an argument adapted from Jim Joyce (2009).
For each probability function P, there is some evidence E you might ob-
tain such that the only rational response to E is to adopt P—in particular,
you might learn that P is the probability function that records the objective
chances. Now, if P were to expect some other credence function Q to be
at least as accurate is it expects itself to be, it would be rational to ditch
P in favour of Q. But in that case P could never be rationally required of
anyone. So: accuracy measures must be strictly proper.

Let’s grant Joyce’s argument. Now, from the assumption that our accu-
racy measure is strictly proper, we can establish the so-called accuracy dom-
inance theorem (Savage, 1971; Predd et al., 2009; Pettigrew, ms): if a credence
function Q is not a probability function, there is an alternative probabilistic
credence function P that is more accurate than Q however the world turns
out. This is the flaw that accuracy-first epistemology identifies for any cre-
dence function that violates the probability axioms. And it’s possible to
prove the converse, which says that no probabilistic credence function suf-
fers this flaw.

The proof of this result uses reasonably sophisticated mathematical ma-
chinery. One version of it goes via a representation theorem that shows
that, to each strictly proper inaccuracy measure, there corresponds a mathe-
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matical object called a Bregman divergence, and then draws on the already-
known mathematical properties of Bregman divergences (Bregman, 1967;
Savage, 1971; Predd et al., 2009).

I won’t say more about the philosophical virtues of this argument. What
I want to highlight instead is the boost given to the philosophical premises
by appealing to the mathematics that goes into the dominance theorem.
From Joyce’s assumption that every probabilistic credence function might
at some point be rationally required, this result shows us that no non-
probabilistic credence function is ever rationally permissible. That’s a big
logical leap. What warrants it is a series of powerful mathematical results.

9 Summing up

Inevitably, I’ve had the space to mention only a handful of examples of
how formal methods have been used in philosophy. However, I hope to
have covered the many roles that formal methods might play in philoso-
phy: they help us make our premises and our conclusions precise; they
allow us to analyse the inferential strength of our arguments, and improve
those arguments; they can provide models of the phenomenon we study,
and they allow us to investigate those phenomena by proving results about
those models or by simulating the evolution of those models over time,
sometimes revealing important and counterintuitive features of them. In
many ways, then, formal methods are simply a natural extension of the
method of analytic philosophy itself, which also seeks to make our philo-
sophical thinking precise and rigorous, to make our arguments as strong as
possible, and to give us a picture of the part of the world we think about
that is clear enough that we can explore its features reliably.
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