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Abstract

How should your opinion change in response to the opinion of
an epistemic peer? We show that the pooling rule known as “upco”
is the unique answer satisfying some natural desiderata. If your re-
vised opinion will influence your opinions on other matters by Jef-
frey conditionalization, then upco is the only standard pooling rule
that ensures the order in which peers are consulted makes no differ-
ence. Popular proposals like linear pooling, geometric pooling, and
harmonic pooling cannot boast the same. In fact, no alternative to
upco can if it possesses four minimal properties which these propos-
als share.

Suppose you are 40% confident that Candidate X will win in the upcom-
ing election. Then you read a column projecting 80%. If you and the colum-
nist are equally well informed and competent on this topic, how should
you revise your opinion in light of theirs? Should you perhaps split the
difference, arriving at 60%?

Plenty has been written on this topic.1 Much less studied, however, is
the question what comes next. Once you’ve updated your opinion about
Candidate X, how should your other opinions change to accommodate this
new view? For example, how should you revise your expectations about
other candidates running for other seats? Or your confidence that your
preferred party will win a majority?

A natural response is: by Jeffrey conditionalizing (Jeffrey, 1965).2 When
your probability for a proposition E changes from P(E) to P′(E) = x, Jef-
frey conditionalization adjusts your other opinions as follows:3

P′(H) = P(H | E) · x + P(H | E) · (1− x).

In our example, E is the proposition that Candidate X will win their elec-
tion, and H is any other proposition, e.g. that your party will win a majority.

1For some background see Dietrich and List (2016), Easwaran et al. (2016), Elga (2007),
Christensen (2007, 2009), and Kelly (2010).

2See Wagner (2011) and Easwaran et al. (2016) for some prior discussion of this proposal.
3That is, you retain your credences in H conditional on E and on E, and you use your

new unconditional credences in E and E, together with the Law of Total Probability, to
calculate your new credence in H.
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If you split the difference with the columnist, then x = .6. So you plug this
number into Jeffrey’s equation and, together with your existing opinions
about H given E and given E, it determines your new probability P′(H)
that your party will win a majority.

Now suppose you read a different column, about another candidate
running for a different seat. In light of the opinion expressed there, you up-
date your confidence in the relevant proposition F to some new probability
P′′(F) = y. Then you apply Jeffrey conditionalization again, to update your
opinions on other matters accordingly:

P′′(H) = P′(H | F) · y + P′(H | F) · (1− y).

A natural thought now is that the order shouldn’t matter here. Which col-
umn you read first is irrelevant. Either way, you have the same total infor-
mation in the end, so your ultimate opinions should be the same.

This requirement is known as commutativity, and we will show that it
strongly favours one particular way of merging your 40% with the colum-
nist’s 80%. Rather than splitting the difference to give 60%, you should use
another formula: “upco”, also known as “multiplicative pooling.” Given
some neutral assumptions, this is the only way of combining probabili-
ties that ensures Jeffrey conditionalization delivers the same final result,
no matter which opinion you encounter first. And the difference between
upco and difference-splitting can be striking: upco combines 40% and 80%
to give a new credence of about 73%, rather than 60%.

But let’s first address the elephant in the room: why not simply condi-
tionalize? You’ve learned that the columnist is 80% confident X will win,
so shouldn’t you just conditionalize on the fact that they hold that opinion?
Well, you should, if you can. But the “just conditionalize” answer still isn’t
fully satisfactory, for two reasons.

First, it’s incomplete. After all, you may not have the prior credences,
conditional and unconditional, that conditionalizing requires. Perhaps you
just haven’t given the columnist’s opinion and its evidential weight much
thought until now. Second, even if you have the relevant priors, the compu-
tations needed to conditionalize can be very demanding, especially if you
are using Bayes’ Theorem for a large partition. It’s much easier to apply a
simple formula like splitting the difference, and then Jeffrey conditionalize
on the result. Indeed, this corresponds to a natural and intuitive way to
break the problem up into two pieces: (i) how should I revise my opinion
about Candidate X’s prospects, and (ii) how should my other views change
in light of the first change?

What’s more, this two step analysis is actually equivalent to condition-
alization in many cases. Suppose the columnist’s opinion about Candidate
X is only relevant to other matters insofar as it’s relevant to whether X wins
or not. More precisely, suppose that conditional on X winning, other mat-
ters are independent of the columnist’s opinion (and likewise conditional
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on X not winning). Then, revising all your opinions by conditionalization is
equivalent to the two step process of first revising your opinion about E by
conditionalization, and then revising your remaining opinions by Jeffrey
conditionalization.4

For multiple reasons then, we would like to know how your opinion
about Candidate X might be combined with the columnist’s, such that the
result can be sensibly plugged into Jeffrey conditionalization. We’ll show
that one way of performing this combination is uniquely privileged.

1 Upco Ensures Jeffrey Pooling is Commutative

Splitting the difference between two opinions is known as linear pooling.
The formula is just the familiar arithmetic mean:

P′(E) =
P(E) + Q(E)

2
,

where P(E) is your prior opinion about E, before reading any columns,
and Q(E) is the columnist’s probability. In our example P(E) = 0.4 and
Q(E) = 0.8, so P′(E) = 0.6.

But we’ll see that commutativity instead favours upco, also known as
multiplicative pooling:

P′(E) =
P(E)Q(E)

P(E)Q(E) + P(E)Q(E)
. (1)

If P(E) = 0.4 and Q(E) = 0.8, then P′(E) ≈ 0.73, significantly larger than
the 0.6 recommended by linear pooling.

These two formulas are examples of pooling rules, functions that take
two probabilities P(E) and Q(E) and return a new probability P′(E). Two
more examples come from the other notions of ‘mean’ included in the clas-
sical trio of Pythagorean means: the geometric and harmonic means.5 And
there are many more pooling rules, too many to name.

4Formally, if the partition {E, E} screens off H from E∗, and we let x = P(E | E∗), then
P(H | E∗) = P(H | E) · x + P(H | E) · (1− x).

5The geometric mean of two numbers a and b is
√

ab. But it often happens that
√

ab
and

√
(1− a)(1− b) don’t add up to 1, even though a and b are probabilities. So geometric

pooling includes a normalizing factor:

P′(E) =
√

P(E)Q(E)√
P(E)Q(E) +

√
P(E)Q(E)

.

Like upco, geometric pooling is undefined when P(E) = 1 and Q(E) = 0, or vice versa. In
our example, P′(E) ≈ .62, quite close to linear pooling.

The harmonic mean of a and b is 2/(1/a + 1/b). But again, this needs a normalizing
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Our question is how these various rules behave when coupled with Jef-
frey conditionalization. Suppose we begin with P, fix some pooling rule
f , and use the following two-step procedure for responding to Q’s opinion
about E.

Jeffrey Pooling:

Step 1. Apply pooling rule f to P(E) and Q(E) to obtain P′(E):

P′(E) = f (P(E), Q(E)).

Step 2. Revise all other credences by Jeffrey conditionalization:

P′(H) = P(H | E) P′(E) + P(H | E) (1− P′(E)).

We will call this Jeffrey pooling P with Q on E using f . But that’s a mouthful,
so we’ll often leave some of these parameters implicit when context per-
mits. We’ll say that f ensures Jeffrey pooling commutes if, for any P, Q, and
R, Jeffrey pooling P with Q on E and then Jeffrey pooling the result with
R on F, has the same final result as Jeffrey pooling P with R on F and then
Jeffrey pooling the result with Q on E.

Upco ensures that Jeffrey pooling commutes, as long as the necessary
operations are defined. Zeros can gum up the works in two ways. First,
if P(E) = 1 and Q(E) = 0 or vice versa, then Step 1 fails: upco cannot be
applied, because its denominator is 0. Second, the conditional probabilities
used in Step 2 need to be defined, so P(E) cannot be either 0 or 1. For a
subsequent update on F to have defined conditional probabilities as well,
we also need the updated probability of F to be non-extreme.

To avoid these difficulties, we will temporarilty make the simplifying
assumption that P is regular, i.e. that it assigns positive probability to EF,
EF, EF, and EF. This ensures no problematic zeros arise when Jeffrey pool-
ing on E and then F, or vice versa. In the Appendix we show that this as-
sumption can be dropped; the result we are about to present holds when-
ever the relevant Jeffrey pooling operations are defined, even if P is not
regular.

If P is regular, then upco is sufficient to make Jeffrey pooling commu-
tative. We attribute this result to Field (1978) for reasons that will become
clear in Section 3.

Theorem 1 (Field). Upco ensures that Jeffrey pooling commutes for any regular
P, and any Q and R.

factor when working with probabilities:

P′(E) =
2/[1/P(E) + 1/Q(E)]

2/[1/P(E) + 1/Q(E)] + 2/[1/P(E) + 1/Q(E)]
.

If either P(E) or Q(E) is zero, this quantity is undefined, but we can stipulate that the
harmonic pool is 0 in this case. In our example, P′(E) = .64, close again to linear pooling.
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In the Appendix we generalize this result to pooling over countable parti-
tions, i.e. to cases where we don’t just hear Q’s opinion about E, but about
every element in a countable partition.

2 Only Upco Ensures Jeffrey Pooling is Commutative

While upco ensures that Jeffrey pooling commutes, linear pooling doesn’t;
nor do geometric and harmonic pooling. Indeed, among the pooling rules
that boast four plausible properties—properties the four rules just named
all share—upco is the only one that ensures this. As we will indicate in the
course of introducing these properties, we don’t think they will be desirable
in all situations. But we do claim that they are desirable in a great many
important ones. And in those cases, upco is the only rule that delivers.

The first property is monotonicity: if we fix Q(E) = 1/2, then as P(E)
increases, so does P′(E). This is a familiar feature of linear pooling, and
upco has it too.6 Notice that this is also a feature of conditionalization in
many cases. For any proposition Q, conditionalization sets P′(E) = P(E |
Q), which Bayes’ theorem renders

P′(E) =
P(E)P(Q | E)

P(Q | E)P(E) + P(Q | E)P(E)
.

If the likelihood terms P(Q | E) and P(Q | E) stay fixed as P(E) changes,
then P′(E) increases with P(E).7

The second property our argument will rely on is uniformity preserva-
tion: if P(E) = Q(E) = 1/2, then P′(E) = 1/2 too. Crudely put, two empty
heads are no better than one. A bit less crudely, if neither party has an
opinion about the question at hand, then combining their opinions doesn’t
change this. There are conceivable cases where this feature would be un-
desirable. For example, the fact that both parties are so far ignorant about
a question could indicate a conspiracy to keep everyone in the dark. But
such cases are the exception rather than the rule.

Third is continuity: in nearly all cases, if we fix Q(E) and let P(E) ap-
proach a value c, then the pool of c and Q(E) should be the limit of the
pools of P(E) and Q(E) as P(E) approaches c. Nearly all? Yes, because
we have to ensure that all of the pools just mentioned are defined. So we
restrict to cases in which, as P(E) approaches c, the pool of P(E) and Q(E)
is always defined, and the pool of c and Q(E) is as well.

To illustrate continuity, fix Q(E) = 1/2 and consider what happens in
linear pooling as P(E) decreases to 0. As P(E) gets smaller, the value of

6In fact this property holds for any fixed value of Q(E) other than 0 and 1. But we only
need the minimal assumption that it holds for Q(E) = 1/2.

7The derivative with respect to p of (pq1)/(pq1 + (1− p)q2) is positive if q1, q2 > 0.
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P′(E) gets closer and closer to 1/4. And, indeed, that is the value P′(E)
takes when P(E) finally does reach 0. There is no sudden jump in the value
of P′(E) when P(E) finally hits 0.

As with uniformity preservation, there are conceivable cases where this
feature would not be appropriate. These might arise if we were to think
that some probabilities have a particular significance. For instance, a Lock-
ean might think there is a probabilistic threshold beyond which you count
as believing the proposition to which you assign the probability, but below
which you don’t. And they might think that sudden change in doxastic sta-
tus should be reflected in our pooling operator—perhaps your probability
gains more weight when it suddenly becomes a belief. We’ll assume this
isn’t the case.

Our fourth property is symmetry: swapping the values of P(E) and
Q(E) makes no difference to P′(E). This is perhaps the most restrictive fea-
ture, since exceptions are commonplace. When one party is more compe-
tent or better informed than the other, it matters who holds which opinion.
Frequently we will want to give more “weight” to P(E) than to Q(E), or
vice versa, in which case exchanging their values should make a difference.

But our argument only concerns cases where this is not so: cases where
the two parties’ opinions should be given equal weight.8 We are only con-
cerned with cases where the two parties are equally competent and well
informed on the topic. Or, perhaps one of them lacks on one of these di-
mensions but excels along the other, in such a way that their overall relia-
bility is the same.

Upco would not be appropriate for cases where one party’s opinion
should carry more weight, and we would not want to defend it there. There
are asymmetrically weighted versions of the various pooling rules we’ve
mentioned, which may be appropriate to such cases. But we won’t address
these cases here. If we can show that upco is specially suited when symme-
try is appropriate, that will be a significant step forward. Not to mention a
strong indicator that a weighted version of upco would be the way to go in
asymmetric cases.

Finally, there’s an assumption implicit in the very idea of a pooling rule,
which we should pause to examine. Since a pooling rule is a function of
P(E) and Q(E) and nothing else, we are assuming from the outset that P(E)
and Q(E) are the only factors relevant to P′(E). But other of P’s opinions
could be relevant, such as their opinion about what evidence Q(E) is based
on. Even the fact that it’s an opinion about the proposition E, and not some
other proposition, could be relevant. Someone might be competent on the
topic of E but incompetent on the topic of F. In which case you might apply
one formula when faced with their opinion about E, but use another should

8See Elga (2007) for a defense of the idea that the views of peers should be given equal
weight; see Fitelson and Jehle (2009) for some formal background on articulating the view.
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they opine about F.
So there is a tacit fifth assumption here, which we might call extensional-

ity. By assuming extensionality, however, we are not assuming that there is
one pooling rule appropriate to all circumstances, regardless of your back-
ground beliefs or the content of the question under discussion. On the
contrary, different rules will be suited to different circumstances (Pettigrew
and Weisberg, manuscript). But the question we are asking is: which rules
are suited to circumstances where the above four conditions hold, Jeffrey
conditionalization is appropriate, and the order in which sources are con-
sulted should not matter.

In answer to this question, we offer the following result.

Theorem 2. Among the monotonic, continuous, uniformity preserving, and sym-
metric pooling rules, only upco ensures that Jeffrey pooling commutes for any reg-
ular P, and any Q and R.

As we noted in connection with Theorem 1, upco ensures Jeffrey pooling
commutes even when P is not regular, provided the relevant operations are
defined. But Theorem 2 tells us no other pooling rule can claim this feature,
even if we restrict our attention to regular P.

It’s important to appreciate what this result does not say: it does not tell
us that rules like linear pooling never commute. It is possible to get lucky
with linear pooling and encounter two sources where the order doesn’t
matter. For example, suppose Q already agrees with P about E, and R
agrees with P about F. Then, linear pooling will keep P’s opinion fixed
throughout. Whichever order they encounter Q and R in, their opinion at
the end will be the same as when they started. But Theorem 2 tells us this
can’t be counted on to hold generally; only upco is commutative regardless
of the particulars of P, Q, and R.

It’s also important to recognize that there are cases where the order
should matter. For example, imagine you’re interviewing pundits instead
of reading pre-written opinion columns. And pundit Q can be counted on
for a serious opinion if you consult them first, but they’ll be so insulted if
you talk to R first that they’ll lose their cool and adopt wild views. Then it
really matters what order you hear their opinions in.

But again, we do not mean to argue that upco is always the best rule.
It’s not!9 Rather, we aim to show that upco is the only rule that will serve
in all cases where the assumptions we’ve laid out are reasonable. And one
of those assumptions is that the order shouldn’t matter.

That completes our argument for upco. We now turn to locating The-
orems 1 and 2 in the context of existing work on Jeffrey conditionalization

9Pettigrew and Weisberg (manuscript) show how to use pooling rules to effectively con-
ditionalize on the evidence behind someone else’s opinions. Which pooling rules do this
best depends on the circumstances, and on the kind of opinion being shared.
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and commutativity. In Section 3, we show a surprising and illuminating
connection with an early result due to Field (1978). Then, in Section 4, we
explain how Wagner’s (2002) theorems relate.

3 Testimony of the Senses

Field (1978) was the first to identify conditions that make Jeffrey condi-
tionalization commutative. How does his discovery fit with our results,
especially Theorem 1?

Field discusses cases where sensory experience, rather than another
person’s opinion, prompts the shift from P(E) to P′(E). He assumes that
each experience has an associated proposition E and number β ≥ 0, where
β reflects how strongly the experience speaks in favour of E.10

Field’s proposal is that we should respond to sense experience by the
following two-step procedure.

Field Updating:

Step 1. Update from P(E) to P′(E) using β as follows:

P′(E) =
β · P(E)

β · P(E) + P(E)
. (2)

Step 2. Update other credences by Jeffrey conditionalization:

P′(H) = P(H | E) P′(E) + P(H | E) (1− P′(E)).

We will call this procedure Field updating on (E, β). Field shows that his
procedure is commutative: Field updating on (E, β1) and then (F, β2) has
the same result as Field updating on (F, β2) followed by (E, β1).

This may sound familiar. And if you squint, you might see that Field’s
Equation (2) is actually the same as upco’s Equation (1). It’s just that β is
on the odds scale from 0 to ∞, rather than the probability scale from 0 to 1.
To convert from odds to probabilities, we can divide through by β + 1, in
both the numerator and the denominator:

P′(E) =
β

β+1 · P(E)
β

β+1 · P(E) + 1
β+1 P(E)

. (3)

And this is the same as Equation (1), where Q’s probabilities are Q(E) =
β/(β + 1) and Q(E) = 1/(β + 1).

10Field actually uses a log scaled version of β, which he labels α. He then reformulates Jef-
frey conditionalization using exponentials, to invert the logs. We’ve removed these scaling
features to make the connection with upco more transparent.
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So, formally speaking, Field updating is the same thing as Jeffrey pool-
ing with upco. And Theorem 1 is just a restatement of Field’s classic result.

This formal parallel suggests two helpful heuristics for thinking about
Field’s way of responding to sensory experience.

First, we might think of Equation (3) as pooling your prior opinion with
a “naive” opinion proposed by your sensory system. Notice that, when
P(E) = P(E), Equation (3) delivers P′(E) = β/(β + 1). So if you have no
prior opinion about E, you will defer to your sensory system’s proposal,
β/(β + 1). We can thus think of β as the odds your sensory system recom-
mends based on the experience alone, absent any prior information.

However, when you do have a prior opinion about E, the naive rec-
ommendation has to be merged with it. Field’s proposal is to use upco to
combine the naive recommendation with your prior opinion, which makes
updates commutative under Jeffrey conditionalization. Indeed, Theorem 2
shows that Field’s proposal is the only way to do this using a monotonic,
continuous, uniformity preserving, and symmetric pooling rule.

A second way of understanding Field’s proposal exploits a formal anal-
ogy between upco and Bayes’ theorem. Notice that Equation (3) just is
Bayes’ theorem, if we think of the β terms not as unconditional probabili-
ties, but as likelihoods. That is, imagine we are calculating P′(E) = P(E | E∗)
for some proposition E∗. If the likelihoods are P(E∗ | E) = β/(β + 1) and
P(E∗ | E) = 1/(β + 1), then Equation (3) is just Bayes’ theorem.

What is the proposition E∗ here? Let E∗ describe all epistemically rele-
vant features of the experience prompting the update. The original motiva-
tion for Jeffrey conditionalization was that you may not be able to represent
E∗ at the doxastic level—or maybe you can, but you don’t have any priors
involving E∗, because it’s too subtle or specific. So you can’t conditionalize,
because P(E | E∗) is undefined.

But we can extend P to a compatible distribution P+ that does encom-
pass E∗, by stipulating

P+(E∗ | E) = β/(β + 1),

P+(E∗ | E) = 1/(β + 1).

Then Equation (3) becomes conditionalization via Bayes’ theorem:

P′(E) =
P+(E)P+(E∗ | E)

P+(E)P+(E∗ | E) + P+(E)P+(E∗ | E)
.

So this interpretation conceives of Field’s proposal as conditionalizing on
the ineffable but epistemically essential qualities of sensory experience, by
relying on the sensory system to do the effing and the expecting—i.e. to
represent the experience’s epistemically relevant features, and supply the
likelihood values Bayes’ theorem requires.
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P

P′1

P′2

P′′1

P′′2

P′1(E
)/P′1(E

)

P(E)
/P(E)

= BE
1

J. cond. on E

P ′
2 (F)/P ′

2 (F)P(F)/P(F) = B F
2

J. cond. on F

P′′1 (F)/P′′1 (F)
P′1(F)/P′1(F)

= BF
1

J. cond. on F

P′′2 (E)/P′′2 (E)
P′2(E)/P′2(E)

= BE
2

J. cond. on E

Figure 1: The context for Wagner’s Theorems 3 and 4

4 Wagner’s Theorems

There’s also an important connection between our Theorem 2 and a classic
result about Jeffrey conditionalization due to Wagner (2002).

Wagner analyzes Jeffrey conditionalization in terms of “Bayes factors.”
When we update a probability distribution from P to P′, the Bayes factor of
E is the ratio of its new odds to its old odds:

P′(E)/P′(E)
P(E)/P(E)

.

Crudely put, Wagner’s insight is that Jeffrey conditionalization commutes
when, and pretty much only when, the Bayes factors are consistent regard-
less of the order. This needs some explaining.

Suppose two agents begin with the same prior distribution, P. Then
they update as in Figure 1. That is, one does a Jeffrey conditionalization
update on E that yields a Bayes factor of BE

1 , followed by another on F that
yields a Bayes factor of BF

1 . The second agent starts with a Jeffrey condition-
alization update on F that yields the Bayes factor BF

2 , then does a second on
E that yields the Bayes factor BE

2 . At the end of this process, we label their
posteriors P′′1 and P′′2 , respectively.

Wagner’s first result is that the two agents will end up with the same
ultimate posterior if the Bayes factors for their respective E updates are the
same, and likewise for their F updates. As before we will assume regularity
to ensure everything is well defined.11

Theorem 3 (Wagner). In the schema of Figure 1, if P is regular, then BE
1 = BE

2
and BF

1 = BF
2 imply P′′1 = P′′2 .

11Wagner uses a milder assumption than regularity, but for simplicity we’ll continue to
assume P is regular.
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Loosely speaking, Bayes factor “consistency” is sufficient for Jeffrey condi-
tionalization updates to commute.

Field updating produces exactly this sort of consistency. We can verify
with a bit of algebra that a given input value β always yields the same
Bayes factor. In fact, solving for β in Equation (2) we find that β just is the
Bayes factor:

β =
P′(E)/P′(E)
P(E)/P(E)

.

So we can think of Field’s Theorem 1 as a corollary of Wagner’s Theorem 3.
But, crucially for us here, Wagner also shows that this kind of Bayes

factor consistency is necessary for commutativity, in almost every case. Ex-
ceptions are possible, for example if E and F are the same proposition. But
our regularity assumption precludes this since EF can’t have positive prob-
ability if E = F. In fact, regularity suffices to rule out all exceptions.12

Theorem 4 (Wagner). In the schema of Figure 1, if P is regular then P′′1 = P′′2
implies BE

1 = BE
2 and BF

1 = BF
2 .

Does this theorem mean that only Field’s Equation (2) can make Jeffrey
conditionalization commute? No, other rules can also consistently yield
the same Bayes factor for the same value of β.

One silly example is the “stubborn” rule, which just ignores β and al-
ways keeps P′(E) = P(E). Substituting this rule into Step 1 of Field updat-
ing makes the Bayes factor 1 for all updates. And, trivially, updating this
way is commutative: if you never change your mind, the order in which
you encounter various sensory experiences won’t make any difference to
your final opinion.

A less trivial example—call it “upsidedownco”—replaces Field’s Equa-
tion (2) with

P′(E) =
P(E)

P(E) + β · P(E)
.

Doing a bit of algebra to isolate β, we find that this implies

1
β
=

P′(E)/P′(E)
P(E)/P(E)

.

So the same value of β always results in the same Bayes factor. By Theo-
rem 3 then, this variation on Field updating is also commutative.

However, both of these alternate rules violate the conditions we laid
out in Section 2. Specifically, they violate symmetry. The stubborn rule
is plainly not symmetric, since it privileges P(E) and neglects the β pro-
posed by experience entirely. And upsidedownco increases P′(E) as P(E)
increases, yet decreases P′(E) as β increases.

12Wagner shows that a weaker assumption will do, but again we’ll continue to assume
regularity for simplicity.
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So Wagner’s Theorem 4 is not, by itself, enough to secure Field’s pro-
posed Equation (2). Or, returning now to the social interpretation of upco
and Equation (1), Wagner’s result doesn’t secure our Theorem 2. But with
the help of further conditions like symmetry, we can rule out alternatives
like the stubborn rule and upsidedownco. And this is exactly how our
proof of Theorem 2 proceeds. We pick up where Wagner’s result leaves off,
using the four conditions of Section 2 to rule out any option but upco.

5 Conclusion

No way of combining probabilities is best for all purposes. For some pur-
poses, there are even impossibility results showing that no pooling rule will
get you everything you want.13 But for some purposes, we can identify a
single pooling operator that is the only one that will do. If your purpose is
to combine your probability with an epistemic peer’s and Jeffrey condition-
alize on the result, and you want to be assured of commutativity, then upco
is the only monotonic, continuous, uniformity preserving, and symmetric
game in town.

6 Appendix: Theorems & Proofs

Here we generalize and prove Theorems 1, 2 and 4. We don’t prove The-
orem 3, proving Theorem 1 directly instead, for simplicity. Readers inter-
ested in a proof of Theorem 3 can consult Wagner (2002, Theorem 3.1).

6.1 Pooling Operators

In the main text we discussed pooling rules, which take the probabilities
assigned by P and Q to the elements of a two-cell partition {E, E}, and
return probabilities defined over that same partition. For partitions of more
than two elements, we need to extend this definition.

Definition 1 (Pooling operator). A pooling operator takes a countable partition
E and two probability functions P and Q defined on an agenda that includes E,
and returns a partial probability function 〈PQ〉E defined just on E.

13Aczél and Wagner (1980) and McConway (1981) formulated two properties and showed
that only linear pooling boasts both: Eventwise Independence says that the pool’s probabil-
ity for a proposition is a function only of the individuals’ probabilities for that proposition,
while Unanimity Preservation says that, when all the individuals assign the same prob-
ability to a proposition, the pool assigns that too. But then Laddaga (1977) and Lehrer
and Wagner (1983) noted that linear pooling does not boast the property of Independence
Preservation, which says that, when all the individuals take two propositions to be inde-
pendent, the pool should too. Together, these results provide an impossibility theorem: no
pooling operator satisfies Eventwise Independence, Unanimity Preservation, and Indepen-
dence Preservation.
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Upco generalizes to countable partitions in the obvious way.

Definition 2 (Upco on countable partitions). Suppose E = {Ei} is a countable
partition, and P and Q are probability functions defined on an agenda that includes
E. Suppose further that P(Ei), Q(Ei) > 0 for at least one element Ei of E. Then
the upco of P and Q over E, denoted 〈PQ〉UE , assigns to each Ei

〈PQ〉UE (Ei) =
P(Ei)Q(Ei)

∑j P(Ej)Q(Ej)
.

Notice that upco is undefined if there is no Ei such that P(Ei), Q(Ei) > 0.
That is, upco is defined only when P and Q have overlapping support on E.
The support of a probability function on a partition is the set of those events
from that partition to which it assigns positive probability. In symbols, we
write suppE(P) = {Ei ∈ E : P(Ei) > 0}. In this notation, 〈PQ〉UE is defined
just in case suppE(P) ∩ suppE(Q) 6= ∅. What’s more, when it is defined,
the support of the upco of P and Q is the intersection of their individual
supports. More formally,

suppE(〈PQ〉UE ) = suppE(P) ∩ suppE(Q).

We now extend the definition of Jeffrey pooling to countable partitions,
and introduce more compact notation.

Definition 3 (Jeffrey pooling). Let E be a countable partition, and let P and Q
be probability functions such that (i) 〈PQ〉E is defined and (ii) suppE(〈PQ〉E) ⊆
suppE(P). The Jeffrey pool of P and Q on E, denoted ⟪PQ⟫E, is the probability
function defined by

⟪PQ⟫E(−) = ∑
Ei∈suppE(P)

P(− | Ei)〈PQ〉E(Ei).

Note that the restriction suppE(〈PQ〉E) ⊆ suppE(P) is required to ensure
P(− | Ei) is defined for every Ei where 〈PQ〉E is positive. This ensures that
⟪PQ⟫E is well defined and a probability function.

Notice that, since the support of the upco of P and Q is the overlap of
their individual supports, this condition is automatically satisfied if upco of
P and Q is defined: suppE(〈PQ〉UE ) = suppE(P) ∩ suppE(Q) ⊆ suppE(P).
So, if 〈PQ〉E is defined, so is ⟪PQ⟫E.

6.2 Field’s Sufficiency Theorem

In generalizing Theorem 1 to countable partitions, we’ll also relax our reg-
ularity assumption from the main text to something weaker. Throughout,
E and F are countable partitions, and EF = {EiFj : Ei ∈ E, Fj ∈ F} is their
product. We assume P is defined on EF, Q is defined on E, and R is defined
on F.

13



Definition 4 (Compatible). P, Q, and R are compatible if there is Ei in E and
Fi in F such that P(EiFj), Q(Ei), R(Fj) > 0.

This condition specifies exactly when ⟪⟪PQ⟫UE R⟫UF and ⟪⟪PR⟫UF Q⟫UE are
well-defined probability functions.

Proposition 5. ⟪⟪PQ⟫UE R⟫UF and ⟪⟪PR⟫UF Q⟫UE are well-defined probability func-
tions iff P, Q, and R are compatible.

To prove this, we need the following useful lemma:

Lemma 6. If 〈PQ〉UE and 〈PR〉UF are defined,

(i) suppF(⟪PQ⟫UE ) = {Fj ∈ F : (∃Ei ∈ E)[P(FjEi), Q(Ei) > 0]},

(ii) suppE(⟪PR⟫UF ) = {Ei ∈ E : (∃Fj ∈ F)[P(FjEi), R(Fj) > 0]}.

Proof. We prove (i); the proof of (ii) is identical, mutatis mutandis.

⟪PQ⟫UE (Fj) = ∑
Ei∈suppE(P)

P(Fj | Ei)〈PQ〉UE (Ei)

= ∑
Ei∈suppE(P)

P(FjEi)

P(Ei)

P(Ei)Q(Ei)

∑Ek∈E P(Ek)Q(Ek)

= ∑
Ei∈suppE(P)

P(FjEi)Q(Ei)

∑Ek∈E P(Ek)Q(Ek)
.

And this is positive iff there is Ei in suppE(P) such that P(FjEi), Q(Ei) > 0,
which holds iff there is Ei such that P(FjEi), Q(Ei) > 0. �

Return now to the proof of Proposition 5.

Proof. Again, we prove (i). ⟪⟪PQ⟫UE R⟫UF is a well-defined probability func-
tion iff

(a) suppE(P) ∩ suppE(Q) 6= ∅, so that 〈PQ〉UE and therefore ⟪PQ⟫UF are
defined, and

(b) suppF(⟪PQ⟫UE ) ∩ suppF(R) 6= ∅, so that 〈⟪PQ⟫UE R〉UF and therefore
⟪⟪PQ⟫UE R⟫UF are defined.

By Lemma 6(i), suppF(⟪PQ⟫UE ) ∩ suppF(R) 6= ∅ iff there is Ei in E and Fj
in F such that P(FjEi), Q(Ei), R(Fj) > 0; that is, iff P, Q, R are compatible.
And, if P, Q, R are compatible, then suppE(P) ∩ suppE(Q) 6= ∅. The result
follows. �
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Above, we defined the support of P over E to be the set of elements
Ei from E such that P assigns positive probability to Ei. Now we defined
the support of P, Q, and R over E and F to be the set of pairs of elements,
Ei from E and Fj from F, such that P assigns positive probability to their
conjunction, Q assigns positive probability to Ei, and R assigns positive
probability to Fj. That is,

suppE,F(P, Q, R) = {(Ei, Fj) : Ei ∈ E, Fj ∈ F, P(EiFj), Q(Ei), R(Fj) > 0}.

So we can restate Proposition 5 as follows: ⟪⟪PQ⟫UE R⟫UF and ⟪⟪PR⟫UF Q⟫UE
are well-defined probability functions iff suppE,F(P, Q, R) 6= ∅. We will
use this notion towards the end of the proof of Theorem 7.

We now state and prove the general version of Theorem 1: upco suffices
to make Jeffrey pooling commutative, given compatible priors.

Theorem 7 (Field). If ⟪⟪PQ⟫UE R⟫UF and ⟪⟪PR⟫UF Q⟫UE are well-defined, then

⟪⟪PQ⟫UE R⟫UF = ⟪⟪PR⟫UF Q⟫UE .

Proof. We will drop the superscript and write ⟪⟪PQ⟫UE R⟫UF as ⟪⟪PQ⟫ER⟫F
throughout. In the subscripts on the summation operators, we write i ∈ E
to abbreviate Ei ∈ E, i ∈ PE to abbreviate Ei ∈ suppE(P), i ∈ (⟪PR⟫F)E to
abbreviate Ei ∈ suppE(⟪PR⟫F), and so on.

We reduce ⟪⟪PQ⟫ER⟫F to terms involving just P, Q, and R as follows.

⟪⟪PQ⟫ER⟫F(H) = ∑
j∈(⟪PQ⟫E)F

⟪PQ⟫E(H | Fj)〈⟪PQ⟫ER〉F(Fj)

= ∑
j∈(⟪PQ⟫E)F

⟪PQ⟫E(HFj)

⟪PQ⟫E(Fj)

⟪PQ⟫E(Fj)R(Fj)

∑l∈F⟪PQ⟫E(Fl)R(Fl)

= ∑
j∈(⟪PQ⟫E)F

R(Fj)

∑l∈F⟪PQ⟫E(Fl)R(Fl)
∑

i∈PE

P(HFj | Ei)〈PQ〉E(Ei)

=
∑j∈(⟪PQ⟫E)F

R(Fj)∑i∈PE
P(HFjEi)Q(Ei)

[∑l∈F⟪PQ⟫E(Fl)R(Fl)] [∑k∈E P(Ek)Q(Ek)]

=
∑i∈PE,j∈(⟪PQ⟫E)F

P(HFjEi)Q(Ei)R(Fj)

[∑l∈F⟪PQ⟫E(Fl)R(Fl)] [∑k∈E P(Ek)Q(Ek)]

=
∑i∈PE,j∈(⟪PQ⟫E)F

P(HFjEi)Q(Ei)R(Fj)[
∑l∈F R(Fl)∑m∈PE

P(FlEm)
Q(Em)

∑n∈E P(En)Q(En)

]
[∑k∈E P(Ek)Q(Ek)]

=
∑i∈PE,j∈(⟪PQ⟫E)F

P(HFjEi)Q(Ei)R(Fj)

∑m∈PE,l∈F P(FlEm)Q(Em)R(Fl)

=
∑i∈PE,j∈(⟪PQ⟫E)F

P(HFjEi)Q(Ei)R(Fj)

∑m∈PE,l∈PF
P(FlEm)Q(Em)R(Fl)

=
∑(Ei ,Fj)∈suppE,F(P,Q,R) P(HFjEi)Q(Ei)R(Fj)

∑m∈PE,l∈PF
P(FlEm)Q(Em)R(Fl)

.
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Since, if P(HFjEi)Q(Ei)R(Fj) > 0, then P(EiFj), Q(Ei), R(Fj) > 0, so (Ei, Fj) ∈
suppE,F(P, Q, R).

But a parallel analysis of ⟪⟪PR⟫FQ⟫E gives

⟪⟪PR⟫FQ⟫E(H) =
∑(Ei ,Fj)∈suppE,F(P,Q,R) P(HFjEi)Q(Ei)R(Fj)

∑m∈PE,l∈PF
P(FlEm)Q(Em)R(Fl)

.

So, ⟪⟪PQ⟫ER⟫F = ⟪⟪PR⟫FQ⟫E, as desired. �

6.3 Wagner’s Necessity Theorem

Wagner identifies an almost necessary condition for Jeffrey conditionaliza-
tion updates to commute. Note that here we are concerned with Jeffrey con-
ditionalization in general: the shift from P(Ei) to P′(Ei) needn’t be driven
by a pooling rule, it could be prompted by anything. Wagner’s theorem
concerns any transition from P to P′ that can be described in terms of Jef-
frey’s formula.

Definition 5 (Jeffrey conditionalization). We say that P comes from P′ by Jef-
frey conditionalization on the partition E if suppE(P′) ⊆ suppE(P) and

P′(−) = ∑
Ei∈suppE(P′)

P(− | Ei)P′(Ei).

We will assume that P is regular on EF; Wagner assumes something
weaker, but we need the result only for regular P. Informally, the result says
that, for Jeffrey updates of a regular prior to commute, the Bayes factors on
each partition must match.

Theorem 8 (Wagner). Let E and F be countable partitions such that P is regular
on EF. Let P′1 come from P by Jeffrey conditionalization on E, P′2 from P by Jeffrey
conditionalization on F, P′′1 from P′1 by Jeffrey conditionalization on F, and P′′2
from P′2 by Jeffrey conditionalization on E. If P′′1 = P′′2 , then

P′1(Ei1)/P′1(Ei2)

P(Ei1)/P(Ei2)
=

P′′2 (Ei1)/P′′2 (Ei2)

P′2(Ei1)/P′2(Ei2)
,

P′′1 (Fj1)/P′′1 (Fj2)

P′1(Fj1)/P′1(Fj2)
=

P′2(Fj1)/P′2(Fj2)

P(Fj1)/P(Fj2)
,

for all Ei1 , Ei2 in suppE(P), and all Fj1 , Fj2 in suppF(P).

Proof. By the rigidity of Jeffrey conditionalization, for all i, j:

P′1(EiFj) = P′1(Ei)P′1(Fj | Ei) = P′1(Ei)P(Fj | Ei),

P′1(EiFj) = P′1(Fj)P′1(Ei | Fj) = P′1(Fj)P′′1 (Ei | Fj),

P′2(EiFj) = P′2(Fj)P′2(Ei | Fj) = P′2(Fj)P(Ei | Fj),

P′2(EiFj) = P′2(Ei)P′2(Fj | Ei) = P′2(Ei)P′′2 (Fj | Ei).
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Coupling the first two equations, and the last two, we get:

P′1(Ei)P(Fj | Ei) = P′1(Fj)P′′1 (Ei | Fj), (4)

P′2(Ei)P′′2 (Fj | Ei) = P′2(Fj)P(Ei | Fj). (5)

Now take any Ei1 , Ei2 in E and Fj in F. Using Equation (4), we can analyze
our first Bayes factor as follows:

P′1(Ei1)/P′1(Ei2)

P(Ei1)/P(Ei2)
=

P′1(Fj)P′′1 (Ei1 | Fj)/P(Fj | Ei1)

P′1(Fj)P′′1 (Ei2 | Fj)/P(Fj | Ei2)

/
P(Ei1)

P(Ei2)

=
P′′1 (Ei1 Fj)

P′′1 (Ei2 Fj)

P(Fj | Ei2)

P(Fj | Ei1)

P(Ei2)

P(Ei2)

=
P′′1 (Ei1 Fj)

P′′1 (Ei2 Fj)

P(Ei2 Fj)

P(Ei1 Fj)
.

Parallel reasoning with Equation (5) gives:

P′′2 (Ei1)/P′′2 (Ei2)

P′2(Ei1)/P′2(Ei2)
=

P′′2 (Ei1 Fj)

P′′2 (Ei2 Fj)

P(Ei2 Fj)

P(Ei1 Fj)
.

So the Bayes factors over E are identical. The identity of the Bayes factors
over F follows similarly. �

6.4 Our Theorem

Here we use Wagner’s theorem to show the general form of Theorem 2:
upco is the only monotonic, uniformity preserving, continuous, symmetric,
and extensional pooling operator capable of ensuring that Jeffrey pooling
commutes.

Our strategy: first prove that any pooling operator with these features,
and which ensures Jeffrey pooling commutes for regular probability func-
tions, must agree with upco when the pooled functions are regular. Then
we’ll appeal to continuity to show that any pooling operator that agrees
with upco on the regular functions agrees with upco everywhere it’s de-
fined.

We begin by defining terms:

Definition 6 (Uniform). A distribution P is uniform over E if P(Ei1) = P(Ei2)
for all Ei1 , Ei2 in E.

Definition 7 (Uniformity preservation). A pooling operator is uniformity pre-
serving if 〈PQ〉E is uniform over E whenever P and Q are uniform over E.

Notice that we must set the infinite case aside now, because uniform distri-
butions don’t exist over countably infinite partitions.
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Definition 8 (Monotonicity). A pooling operator is monotone if, when P is uni-
form over E, Q(Ei) < R(Ei) implies 〈PQ〉E(Ei) < 〈PR〉E(Ei).

Note that this is a very restricted form of monotonicity, since it only con-
cerns the case where one argument is uniform.

Definition 9 (Symmetry). A pooling operator is symmetric if 〈PQ〉E = 〈QP〉E
for all P, Q, and E.

Definition 10 (Continuity). A pooling operator is continuous if

lim
n→∞
〈PnQ〉E = 〈( lim

n→∞
Pn)Q〉E,

whenever 〈PnQ〉E is defined for each n and 〈(limn→∞ Pn)Q〉E is defined.

The restriction avoids ruling out operators like geometric pooling and upco
from the get go, since there are sequences P1, P2, . . . such that 〈Pi, Q〉UE is
defined for each i, but 〈(limn→∞ Pn)Q〉UE is not defined.

Definition 11 (Extensionality). A pooling operator is extensional if, given par-
titions E and F of equal size, P(Ei) = R(Fi) and Q(Ei) = S(Fi) for all i imply
〈PQ〉E(Ei) = 〈RS〉F(Fi) for all i.

The main work in establishing the theorem of this section is showing
that the pooling operator must treat uniform distributions as “neutral.”
That is, pooling any distribution with a uniform distribution just returns
the original distribution. We now use the conditions just defined, together
with commutativity for Jeffrey pooling, to derive this feature in the case in
which the function pooled with the uniform one is regular.

Lemma 9. Suppose that ⟪⟪PQ⟫ER⟫F = ⟪⟪PR⟫FQ⟫E for any finite partitions
E and F such that P, Q, and R are regular. Then, if the pooling operator is uni-
formity preserving, monotonic, symmetric, continuous, and extensional, it must
treat uniform distributions as neutral. That is, for P uniform over E and Q regular
on E, 〈PQ〉E(Ei) = Q(Ei).

Proof. Let E = {Ei} and F = {Fj} be finite partitions of size n, let Q be
uniform over E, and let R be positive for every element of F. Define P as
follows, where 0 < ε < 1/(n− 1):

P(EiFj) =

{
1
n −

n−1
n ε if i = j,

1
n ε if i 6= j.

Since P is positive for every EiFj, it is Wagnerian. Moreover, P(Ei) = 1/n =
P(Fj), so P is also uniform over E and over F. Note for later that

P(Ei | Fj) =

{
1− (n− 1)ε if i = j,
ε if i 6= j.
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P, Q, and R are regular, so Theorem 8 gives the following Bayes factor
identity for all Ei1 , Ei2 :

⟪PQ⟫E(Ei1)

⟪PQ⟫E(Ei2)

/
P(Ei1)

P(Ei2)
=
⟪⟪PR⟫FQ⟫E(Ei1)

⟪⟪PR⟫FQ⟫E(Ei2)

/⟪PR⟫F(Ei1)

⟪PR⟫F(Ei2)
. (6)

Since P is uniform over E, the denominator on the left is 1. And since Q is
also uniform over E, uniformity preservation implies that the numerator is
also 1. Also, ⟪⟪PR⟫FQ⟫E(Ei) = 〈⟪PR⟫FQ〉E(Ei) for all i by the definition of
Jeffrey pooling. So Equation (6) reduces to

〈⟪PR⟫FQ〉E(Ei1)

〈⟪PR⟫FQ〉E(Ei2)
=
⟪PR⟫F(Ei1)

⟪PR⟫F(Ei2)
.

Since this holds for all Ei1 , Ei2 , the distributions 〈⟪PR⟫FQ〉E and ⟪PR⟫F have
the same relative proportions over E, hence must actually be the same dis-
tribution. That is, for all i:

〈⟪PR⟫FQ〉E(Ei) = ⟪PR⟫F(Ei).

Using symmetry to move Q to the left, and then substituting P for Q on
grounds of extensionality, this becomes:

〈P⟪PR⟫F〉E(Ei) = ⟪PR⟫F(Ei). (7)

Now, by definition the right hand side, is:

⟪PR⟫F(Ei) = ∑
j

P(Ei | Fj)〈PR〉F(Fj)

= (1− (n− 1)ε)〈PR〉F(Fi) + ε ∑
j 6=i
〈PR〉F(Fj).

So in the limit as ε goes to 0, ⟪PR⟫F assigns over E the same values 〈PR〉F
assigns over F. Let S be this distribution that ⟪PR⟫F approaches, i.e. S is a
copy over E of the assignments 〈PR〉F makes over F:

S(Ei) = 〈PR〉F(Fi),

for all i. By continuity we have for all i:

lim
ε→0
〈P⟪PR⟫F〉E(Ei) = 〈P lim

ε→0
⟪PR⟫F〉E(Ei) = 〈PS〉E(Ei) = 〈PR〉F(Fi).

The last identity here is the one we need.
Now suppose for a contradiction that 〈PR〉F(Fj) 6= R(Fj) for some Fj.

Then there must be an Fk for which 〈PR〉F(Fk) < R(Fk). Since S copies
〈PR〉F, this implies S(Ek) < R(Fk). Thus we have:

S(Ek) < R(Fk),
〈PS〉E(Ek) = 〈PR〉F(Fk).
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And this contradicts monotonicity. By extensionality, the partition doesn’t
matter, since P is uniform over both E and F. So increasing the kth value of
the non-uniform input should increase the corresponding output.

This shows that 〈PR〉F(Fj) = R(Fj) for all j, when P is uniform and R
is all positive on F. What if R assigns some zeros? We can always find a
positive R′ as close to R as we like. And we’ve shown that 〈PR′〉F(Fj) =
R′(Fj) for all j, so continuity delivers 〈PR〉F(Fj) = R(Fj) as well. �

We now show that only upco has the five features defined above, and
makes Jeffrey pooling commutative.

Theorem 10. Suppose that ⟪⟪PQ⟫ER⟫F = ⟪⟪PR⟫FQ⟫E for any finite partitions
E and F and any compatible P, Q, and R. Then, if the pooling operator is unifor-
mity preserving, monotonic, symmetric, continuous, and extensional, it must be
upco.

Proof. We begin by proving that, if ⟪⟪PQ⟫ER⟫F = ⟪⟪PR⟫FQ⟫E for all regu-
lar P, Q, and R, then the pooling operator must agree with upco on regular
functions. Then we show that any continuous operator that agrees with
upco on the regular functions must be upco.

Let E and F be finite partitions of size n, and define P as in the proof of
Lemma 9. Let Q and R be positive everywhere on E, and let R′ mimic on F
the distribution of R on E, i.e. R′(Fi) = R(Ei) for all i.

P, Q, and R′ are regular, so by Theorem 8 Equation (6) holds, with R′

in place of R. By Lemma 9, 〈PQ〉E(Ei) = Q(Ei) for all i, so in this case
Equation (6) reduces to

〈Q⟪PR′⟫F〉E(Ei1)

〈Q⟪PR′⟫F〉E(Ei2)
=

Q(Ei1)

Q(Ei2)

⟪PR′⟫F(Ei1)

⟪PR′⟫F(Ei2)
. (8)

But

⟪PR′⟫F(Ei) = ∑
j

P(Ei | Fj)〈PR′〉F(Fj)

= (1− (n− 1)ε)〈PR′〉F(Fi) + ε ∑
j 6=i
〈PR′〉F(Fj).

So
lim
ε→0
⟪PR′⟫F(Ei) = 〈PR′〉F(Fi) = R′(Fi) = R(Ei).

Thus, by continuity and Equation (8):

〈QR〉E(Ei1)

〈QR〉E(Ei2)
=

Q(Ei1)

Q(Ei2)

R(Ei1)

R(Ei2)
.

Now observe that this is the same ratio delivered by upco:

〈QR〉UE (Ei1)

〈QR〉UE (Ei2)
=

Q(Ei1)R(Ei1)/ ∑k Q(Ek)R(Ek)

Q(Ei2)R(Ei2)/ ∑k Q(Ek)R(Ek)
=

Q(Ei1)R(Ei1)

Q(Ei2)R(Ei2)
.
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So 〈QR〉E and 〈QR〉UE have the same relative proportions, hence must be
the same distribution.

This shows 〈PQ〉E = 〈PQ〉UE if P and Q are strictly positive on E.
Finally, suppose one or other or both of P and Q is not regular, but

〈⟪PQ⟫E〉UE is defined. Then there are sequences P1, P2, . . . and Q1, Q2, . . . of
regular probability functions such that limn→∞ Pn = P and limn→∞ Qn =
Q. And so, by symmetry and continuity,

〈PQ〉E = 〈 lim
n→∞

Pn, lim
n→∞

Qn〉E = lim
n→∞
〈PnQn〉E

= lim
n→∞
〈PnQn〉UE = 〈 lim

n→∞
Pn, lim

n→∞
Qn〉UE = 〈PQ〉UE .

This completes the proof. �
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