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Abstract

A decision theory is self-recommending if, when you ask it which decision theory
you should use, it considers itself to be among the permissible options. I show that
many alternatives to expected utility theory are not self-recommending, and I argue that
this tells against them.
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It is our lot to face decisions when we have no certainty about which option from among
those available to us will lead to the best outcome. Uncertain about the day’s weather, you
must choose whether or not to wear a raincoat when you leave your house; uncertain about
what it would help them most to hear, I must choose what to say to a friend who is going
through a bad time; and uncertain what effect different approaches will have, a parent must
choose how to raise their child. How are we to make such choices? It is the task of decision
theory to provide an answer. And philosophers, economists, and psychologists have met
this remit by developing a slew of rival theories of rational decision. Expected utility theory
is the most well known and widely used, but there are many alternatives available, and we
will meet a good few in the course of this paper.

Which of these theories should you use? You might argue for a particular decision theory
directly in a number of ways. You might note that it agrees with your intuitive verdict about
a specific decision problem that you describe, while its rivals don’t; or you might note that
your favoured theory has a formal feature that you find intuitively desirable, while its rivals
lack that feature. But there is another natural approach, and it has the advantage that it
avoids such appeals to our intuitive judgments. It begins with the observation that a decision
theory is an account of rational means-ends reasoning: agnostic about whether your ends
are good or bad, desirable or undesirable, benevolent or malign, it purports to tell you the
rational way to pick between different possible means to the ends you in fact have. Granted
this, it seems natural to assess a decision theory by asking how well it performs in the role
of getting you those ends. The only problem with this approach is that, in order to assess
a decision theory or anything else as a means to your ends, we need an account of which
means to your ends it is rational to use. And without a decision theory, we don’t have that.

Yet all is not lost, for this line of thinking nonetheless furnishes us with a test we can
conduct on a theory of decision-making, and while it might not tell in favour of the theory if
it passes, it seems to tell against it if it fails. We can ask of the theory: If I were to use you not
only to make my normal day-to-day decisions, but also to make the higher-order decision
about which decision theory to use, would you recommend yourself? If it would, we call it
self-recommending; if it wouldn’t, we call it self-undermining. I claim that no self-undermining
decision theory can be correct. This is not to say that a self-recommending theory is thereby
adequate—the theory that says that any available option is rationally permissible is self-
recommending, but it is not correct. Nonetheless, we can use this test to winnow the list of
candidate decision theories, removing those that fail it.

Below, I describe a number of putative decision theories and conduct this test on them.
As we will see, many of the most popular rivals to expected utility theory are not self-
recommending. In Section 2, we will see that Savage’s formulation of expected utility theory
is self-recommending; Section 3 shows that Lara Buchak’s risk-weighted expected utility the-
ory is self-undermining, while Section 4 shows that nearly all the putative decision theories
for imprecise credence are self-undermining; in Section 5, we will see that many decision the-
ories designed for use under Knightian uncertainty are self-recommending. In ??, I motivate
the test further, and I respond to certain objections to my claim that an adequate decision
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theory must be self-recommending.

1 Why is it bad to be self-undermining?

Before we meet those results, let me say more about why a decision theory should be self-
recommending. And to do that, let me begin by expanding on the ways I enumerated above
in which we might adjudicate between such theories. There are three: (i) adequacy to specific
intuitions; (ii) adequacy to general intuitions; and (iii) by-their-fruits considerations. (If you
are already convinced that self-undermining decision theories should be rejected, you can
skip to Section 2 without loss.)

On the first, we describe a decision problem, elicit our intuitive reaction to it, and find
in favour of decision theories that agree with that reaction and against those that disagree
with it. When we appeal to the Allais preferences to motivate a risk-sensitive alternative to
expected utility theory, we do this (Allais, 1953; Buchak, 2022). Intuitively, it is rationally per-
missible to have the Allais preferences; expected utility theory says it isn’t, but risk-weighted
expected utility theory says it is.

On the second, we describe a general feature that a decision theory might have, elicit
our intuitive reaction to it, and find in favour of decision theories that boast it and against
those that don’t. When we note that risk-weighted expected utility theory does not satisfy
the so-called Independence Axiom of decision theory, but expected utility theory does, and
argue in favour of the latter on that basis, we do this (von Neumann & Morgenstern, 1947).

Finally, the third way to adjudicate between two decision theories. One problem with
the previous two ways, both of which appeal to our intuitions, is that they are apt to lead
us to a stalemate. For you, perhaps, the intuition that the Allais preferences are rational is
stronger than your intuition that the Independence Axiom is true; for me, perhaps, it’s the
other way around. And indeed the tension might be internal: perhaps you feel the intuitive
pull of both, but you can’t determine which is stronger.

How are we to resolve such disagreements? We need some uncontested ground on which
we might stand to arbitrate. We might hope that all parties to the dispute agree that we adopt
a decision theory in order to get as much of what we want as we can. And so we might hope
to agree to settle the dispute between our decision theories by looking at how well they serve
that purpose. That is, we might hope to assess our principles of means-end reasoning—for
that is all a decision theory really is—by asking how well they perform as means to our ends.
As the gospel of Matthew has it, ye shall know them by their fruits.

The classic examples of this approach are what I will call exploitability arguments, which
include money pump and diachronic incoherence arguments (Gustafsson, 2022). Consider
Maximin, which says that you should pick from among the options whose worst-case out-
come is best (Wald, 1945). It is often pointed out that this decision theory is diachronically
incoherent. That is, there are certain pairs of decisions you might face such that, if you were
to choose using Maximin in both cases, then you would end up picking a particular pair of
options, one from each decision problem, when there was an alternative pair, one from each
decision problem, that would result in greater total utility for sure—in the jargon of decision
theory, the alternative pair of options strongly dominates the pair that Maximin requires you
to choose; that is, the alternative pair is strictly better no matter what. For instance, suppose
you first face a decision problem with two options: the first option gives utility 1 for sure,
while the second gives utility 3 if it will rain tomorrow and utility 0 otherwise. Maximin will
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tell you to choose the sure thing. Next, suppose you face another decision problem with two
options: again, the first gives utility 1 for sure, while the second gives utility 0 if it will rain
tomorrow and utility 3 otherwise. Maximin again demands the sure thing. However, if you
had instead chosen the second option in both cases, rather than the sure thing, you would
have ended up with utility 3 + 0 = 3 if it were to rain tomorrow, and 0 + 3 = 3 otherwise.
So, the argument goes, Maximin is a bad theory of means-end rationality because, in certain
situations, it leads you to make choices that don’t get you as close to your ends as other
choices would have. And note: this doesn’t beg the question against Maximin, since that
decision theory deems strongly dominated options impermissible.

Other examples are easy to come by:

• The Money Pump Argument for Non-Cyclical Preferences (Gustafsson, 2022) Suppose you
strictly prefer B to A, C to B, and A to C. So you have cyclical preferences, A ≺ B ≺
C ≺ A. Then I begin by offering you a choice between A and B. In line with your
preferences, you choose B. Then I offer you a choice between sticking with B or paying
a small amount to swap to C. In line with your preferences, you choose to swap. Then,
finally, I offer you a choice between sticking with C or paying a small amount to swap
to A. In line with your preferences, you choose to swap. You are then left with A
less the money you paid for the two swaps, when you could have ended up with A
simply by choosing that when offered the initial choice between A and B. So there is
an alternative sequence of choices you might have made that dominates the one you
did make.

• The Diachronic Incoherence Argument for Exponential Discounting (Strotz, 1955) Suppose
you discount the future using a discount function that isn’t exponential. Then there
will be a pair of options A and B such that you strictly prefer A to B at one time, but
then prefer B to A at a later time. So I first offer you a choice between A or B at the
earlier time. In line with your preferences at that time, you choose A. Then, at the later
time, I offer you the option to swap from B to A for a small price. In line with your
preferences, you choose to swap. Again, if you’d simply chosen A at the earlier time,
you would have been better off for sure.

I want to persuade you there is a problem with this sort of argument. What’s more,
if we try to fix it, it leads to the sort of argument I will present in this paper. Take the
diachronic incoherence argument against Maximin, for instance. It identifies a very specific
sort of situation in which that decision theory leads to an outcome that is bad even by its
own lights. It specifies a particular pair of decision problems you might face in sequence,
and it shows that, if you do, Maximin will lead you to choose a strongly dominated sequence
of options. But the argument speaks only of this specific sequence of decision problems, or
at most others structurally like it. It says nothing about how well Maximin performs in other
situations, when faced with other sequences of decision problems. It does not rule out the
possibility that, whatever vices the decision theory displays when faced with that pair of
decision problems, or others structurally like it, it displays virtues when faced with other
decision problems, and those virtues outweigh the vices. Poor performance in a particular
situation is not usually reason to abandon a tool, since it might compensate by performing
well in other situations. Yet that is exactly what the diachronic coherence argument—as well
as other exploitability arguments—asks us to do.
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So, if we wish to evaluate decision theories by their performance when faced with de-
cision problems, we have to make precise exactly how we weigh performance in some sit-
uations against performance in other situations to determine whether one compensates for
the other. How do we do that? Well, that is exactly the sort of question a decision theory is
supposed to answer. It takes in the performance of different options in different situations
and weighs those against each other to determine which are optimal. So, to ensure that we
are not begging the question against a decision theory, we must use it—the very decision
theory we are judging—to judge whether it is the best tool we can use when we are trying
to optimise our utility. That is, we must ask whether it is self-recommending.

That’s one way we might motivate the test for decision theories that I will explore in this
paper. Here’s another. It’s just a straightforward argument that self-undermining decision
theories cannot be correct. A decision theory categorises available options into those that
are rationally permissible for a particular agent and those that are rationally impermissible
for that agent. Now suppose the decision theory is correct: that is, the options it declares
permissible are indeed exactly those that are permissible for the agent. But one of its decla-
rations is that using it is itself impermissible—that’s what makes it self-undermining. Now,
how could it ever be rationally impermissible to use a decision theory that gives the correct
verdicts about rational permissibility? Surely it couldn’t! And if that’s so, then the decision
theory cannot be correct, and we have a contradiction.

Now, perhaps you might reply that it could be impermissible to use a decision theory
that gives the correct verdicts if that decision theory were so complex and computationally
demanding that it lay beyond the agent’s cognitive capacities—not much good using some-
thing that gives the right verdicts every time if you can never discover what verdicts it gives.
But that is not the case we are considering here. Indeed, we will assume explicitly that, if I
use a decision theory when I face a particular decision problem, I will pick one of the options
it deems rationally permissible.

So, in conclusion: it can never be irrational for an ideal agent to use the correct account
of rationality to make their decisions, and so a self-undermining decision theory cannot give
the correct account of rationality.

Before we move on, let me point to another advantage of my approach over the ex-
ploitability arguments. Such an argument always describes a sequence of decision problems
and shows that, when you use the decision theory to face each problem in that sequence,
you will choose a sequence of options that is dominated by another—that is, you will end
up diachronically incoherent. But some philosophers don’t think diachronic incoherence is a
marker of irrationality. For instance, they think that each of the decisions in the sequence is
made by a different self or timeslice, and a collection of selves or timeslices losing money for
sure is no indication of the irrationality of any of those individuals, and perhaps not even
an indication that the agent of which they are parts is irrational.1 But I needn’t worry about
that. My arguments show that, even when there is only a single decision problem in play,
certain decision theories fail to recommend themselves.

1David Christensen (1991) argues that the standard diachronic betting argument in favour of Bayesian con-
ditionalization fails for this reason.
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2 Expected utility theory

2.1 What is decision theory?

What is a decision theory? Informally, it is a theory that tells you what to choose when faced
with a decision problem. What, then, is a decision problem? Informally, it’s a collection of
options that are available for you to choose. More formally, for our purposes here, you begin
with a set of possible states of the world. These states are jointly exhaustive and pairwise
exclusive, so that the world must be exactly one of these ways—as it is sometimes said, the
states of the world partition the logical space. Each option in the decision problem is defined
by giving its utility at each state of the world, which measures how much you value being
in that state of the world having chosen that option. So if S is the set of states of the world,
O is the set of options defined on S that are available in this decision problem, and if o is in
O and s is in S , then o(s) is a real number that gives the utility of picking option o when the
state of the world is s. So, in the decision whether to take your raincoat, the states might be
Rain and Not Rain, and the options might be Take the raincoat and Leave the raincoat, and the
utility of taking the raincoat at the state where it rains might be 3, so that Take(Rain) = 3,
while leaving the raincoat at that state might be −1, so that Leave(Rain) = −1.

Having said what a decision problem is, let me return to the question of what a decision
theory is. For our purposes here, it is a function. As input, it takes a decision problem and
possibly some of your attitudes, such as your credences, if you have them, or your attitudes
to risk, if you have those. As output, it returns a subset of the options available in the
decision problem. This subset is the set of options that it deems rationally permissible for
someone who faces that decision problem and has those attitudes.

2.2 What is expected utility theory?

Let’s see this at work in the case of standard expected utility theory.2 I’ll introduce a simple
example here and deploy it throughout the paper to illustrate different decision theories.
Suppose that I have been experiencing various medical symptoms, and my doctor is sure I
have one of two illnesses, but they’re unsure which one. Two treatments are available. If
I take Medicine 1 and it’s Illness 1, I’ll be almost completely cured, but if it’s Illness 2, the
treatment will have no effect. If I take Medicine 2, and it’s Illness 1, I’ll become worse, but if
it’s Illness 2, I’ll be completely cured. The following table shows my utilities for each option
at each state of the world, where 3 is my current level of utility:

i1 i2
m1 9 3
m2 0 10

So each row corresponds to an option—the two medicines, m1 and m2—and each column
corresponds to a state of the world—the two possible illnesses, i1 and i2. In what follows,
we’ll often denote a decision with these payouts by the quadruple (9, 3; 0, 10). After listening
to the doctor’s reasoning, I’m 40% confident I have Illness 1 and 60% confident I have Ilness

2For the cognoscenti, the version I’ll present here is of the sort described by Savage (1954), in which it is
assumed that the options are independent of the states of the world. This assumption is dropped in the evidential
decision theory of Jeffrey (1965) and the causal decision theory of Stalnaker (1972 [1981]); Gibbard & Harper
(1978); Joyce (1999).
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2. According to expected utility, I should decide which treatment to undertake by maximis-
ing expected utility from the point of view of my credence function, which I denote P. The
expected utility of m1 is

ExpP(m1) = P(i1)m1(i1) + P(i2)m1(i2) = (0.4 × 9) + (0.6 × 3) = 5.4

while the expected utility of T2 is

ExpP(m2) = P(i1)m2(i1) + P(i2)m2(i2) = (0.4 × 0) + (0.6 × 10) = 6

So, according to expected utility theory, I should begin Treatment 2.
In general, suppose S = (s1, . . . , sn) are the states of the world, P is a credence function

that assigns a probability to each of those states, and o is an option defined over those states.3

Then the expected utility of o from the point of view of P is:

ExpP(o) = P(s1)o(s1) + . . . + P(sn)o(sn)

That is, it is the sum of the probability-weighted utilities of the option at the different states
of the world. We can then state the decision theory:

Expected Utility TheoryP (EUP) Given an option o in O, o is impermissible iff
there is an alternative option o′ in O such that ExpP(O) < ExpP(O

′).

2.3 Is expected utility theory self-recommending?

Now, suppose we wish to ask expected utility theory whether it would recommend itself. To
do this, we must describe a decision problem in which expected utility theory and its rivals
are the options, and the states of the world specify which decision problem you will face
using your chosen decision theory, along with enough information to determine how much
utility you’ll obtain from using a particular decision theory when faced with that decision
problem. I’ll call this our meta decision problem, and I’ll call the states of the world on which
the options are defined the meta states of the world. Given a particular decision theory, and
given whichever of your attitudes it needs to give a verdict, the utility of using it with those
attitudes at one of these meta states of the world is the utility it obtains for you at that state
of the world; that is, it is the utility, at that state of the world, of whichever option from the
decision problem the decision theory tells you to choose given your attitudes.

To keep things simple, we’ll assume you know you’ll face a decision problem in which
there are exactly two states of the world, s1 and s2, and exactly two options, o1 and o2. That
is, you’ll face a decision problem with two options, o1 and o2, each defined on two states of
the world, s1 and s2. We’ll write this (a, b; c, d), where a is the utility of o1 at s1, b is the utility
of o1 at s2, c is the utility of o2 at s1, and d is the utility of o2 at s2. Like Savage, we’ll assume
that utilities are bounded above and below, and we’ll measure utility on a scale on which 0
is the lowest possible utility and 1 is the highest. So 0 ≤ a, b, c, d ≤ 1. Each meta state of
the world in our meta decision problem will specify which of these decision problems you’ll
face.

In order to determine what utility a decision theory has when faced with such a decision
problem, we clearly need to specify which of the original states of the world we’re in—i.e. s1

3Throughout, we assume that P is a probability function, so that P(s1) + . . . + P(sn) = 1.
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or s2. But in fact this is not enough. After all, a decision theory only tells you which options
are permissible, and there might be more than one. For instance, in the binary decisions on
which we’re focusing here, if o1 and o2 have the same expected utility from the point of view
of P, then EUP says both are permissible. So our meta states of the world must specify not
only the decision problem you’ll face and the state of the world you’re in, but also the option
you’ll in fact choose if you may choose either. Let t1 be the proposition that, in the case of
a tie, you’ll choose option o1, and let t2 be the proposition that, in the case of a tie, you’ll
choose o2.

So a meta state of the world has the following form:〈
(a, b; c, d), si, tj

〉
It is a triple consisting of a decision problem (a, b; c, d), a state of the world si, and a tie-
breaker result tj. And the utility of EUP at such a state of the world is:

• a, if either ExpP(o2) < ExpP(o1) and i = 1, or ExpP(o2) = ExpP(o1), i = 1, and j = 1;

• b, if either ExpP(o2) < ExpP(o1) and i = 2 or ExpP(o2) = ExpP(o1), i = 2, and j = 1.

• c, if either ExpP(o1) < ExpP(o2) and i = 1 or ExpP(o2) = ExpP(o1), i = 1, and j = 2.

• d, if either ExpP(o1) < ExpP(o2) and i = 2 or ExpP(o2) = ExpP(o1), i = 2, and j = 2.

In order to ask EUP whether it recommends itself, we need to extend the probability
function P, which assigns credences only to the states of the world, to a credence function
P⋆, which assigns credences to the meta states of the world. We’ll assume that, according to
P⋆, which decision problem you’ll face is independent of the original states of the world and
both are independent of the tie-breaker proposition. Your credences in the original states
remain the same: P⋆(s1) = P(s1) = p and P⋆(s2) = P(s2) = 1 − p. However you’ll in fact
break a tie should you face one, your current credences that you’ll break them one way or
the another are P⋆(t1) = t and P⋆(t2) = 1 − t. And we’ll assume you pick a measure µ
over the possible decision problems D of the form (a, b; c, d)—we’ll let D be the set of all
such decision problems. We write P⋆

µ,t for this probabilistic credence function. So, if D′ is a
measurable subset of D, then, for instance,

P⋆
µ,t(D ∈ D′& s1 & t1) = t × p × µ(D ∈ D′)

Then, given a decision theory DT, the expected utility of DT from the point of view of P and
µ is:

ExpP⋆
µ,t
(DT) =

2

∑
i=1

2

∑
j=1

P(si)P⋆
µ,t(tj)

∫
D

DT(D, tj)(si) dµ

where DT(D, tj) is the option that DT would lead you to choose if faced with decision prob-
lem D and if the tie-breaker proposition were tj, and DT(D, tj)(si) is the utility of this option
at state si. Then it’s reasonably easy to see that EUP is self-recommending for any µ. After
all,

ExpP⋆
µ,t
(EUP(D, tj)) ≥ ExpP⋆

µ,t
(DT(D, tj))
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for any decision theory DT. So

ExpPµ(EUP) =
2

∑
i=1

2

∑
j=1

P(si)P⋆
µ,t(tj)

∫
D

EUP(D, tj)(si) dµ

=
2

∑
j=1

P⋆
µ,t(tj)

∫
D

2

∑
i=1

P(si)EUP(D, tj)(si) dµ

=
2

∑
j=1

P⋆
µ,t(tj)

∫
D

ExpP(EUP, tj) dµ

≥
2

∑
j=1

P⋆
µ,t(tj)

∫
D

ExpP(DT, tj) dµ

=
2

∑
j=1

P⋆
µ,t(tj)

∫
D

2

∑
i=1

P(si)DT(D, tj)(si) dµ

=
2

∑
i=1

2

∑
j=1

P(si)P⋆
µ,t(tj)

∫
D

DT(D, tj)(si) dµ

= ExpPµ(DT)

So:

Theorem 1. For any P, µ, and t, EUP is permissible by the lights of EUP⋆
µ,t

.

So expected utility theory is self-recommending.
Indeed, in Figure 1, we plot, for p = 0.1, 0.2, . . . , 0.8, 0.9, the expected utility, from the

point of view of a probability function that assigns p to s1 and 1 − p to s2, of using expected
utility theory with a probability function that assigns q to s1 and 1 − q to s2 as your decision
rule, when you know you’ll face a decision problem of the form (a, b; c, d) for 0 ≤ a, b, c, d ≤
1, and you place a uniform distribution over these possible decision problems. As you can
see from the figure, the expected utility from the point of view of p of using expected utility
theory with q is maximal for p = q.

It is worth noting that this reasoning only holds for Savage’s (1954) version of expected
utility theory, in which the states of the world are independent of the options chosen. It is
a further question whether the causal or evidential versions of expected utility theory are
self-undermining in the current sense. I leave that for future work.

3 Decision theories that are sensitive to risk

For individuals whose beliefs are represented by precise credences, expected utility theory is
not the only normative decision theory that has been proposed (Buchak, 2022). In response
to the so-called Allais paradox, decision theorists have presented a range of alternatives that
permit individuals to combine their credences with their attitudes to risk in certain ways in
order to make decisions (Kahneman & Tversky, 1979; Machina, 1982; Quiggin, 1982). In this
section, I’ll consider Lara Buchak’s risk-weighted expected utility theory (Buchak, 2013).
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Figure 1: For p = 0.1, 0.2, . . . , 0.8, 0.9, we plot Expp(EUq), for 0 ≤ q ≤ 1.

3.1 What is risk-weighted expected utility theory?

It’s difficult to say precisely what it means to be risk-averse or risk-inclined or risk-neutral
without assuming a particular theory of the phenomenon, but speaking roughly we might
say this: you are risk-averse if, in the evaluation of an option, you give greater weight to the
utilities it will obtain for you in its worst-case outcomes and less weight to the utilities it will
obtain for you in its best-case outcomes than expected utility theory tells you to give; you’re
risk-inclined if you give greater weight to the best-case outcomes and less to the worst-case
than expected utility theory requires; and you’re risk-neutral if you give exactly the weights
that expected utility theory suggests.

So, for instance, suppose that your utility is linear in some commodity—money or choco-
late or the number of happy years of life lived, for instance. That is, acquiring a particu-
lar quantity of that commodity—a dollar, a chocolate bar, a happy year of life, perhaps—
increases your utility by the same amount regardless of how much of that commodity you
already have. And now suppose I offer you 1 unit of that commodity for sure, or a fair coin
toss that gives you 3 units if the coin lands heads or 0 units if it lands tails. Then expected
utility theory will require you to take the coin toss, since its expected utility is greater than
the sure thing; but a risk-averse individual might take the sure thing because, in the eval-
uation of the coin toss, they don’t give equal weight to both outcomes, as expected utility
theory tells you to do, and instead give greater weight to the worst-case outcome in which
you receive 0 units and less to the best-case outcome in which you receive 3 units.

To see how Lara Buchak’s risk-weighted expected utility theory (henceforth, REU) tells
you to weight the different outcomes of the different options available in a decision problem
in order to choose between them, let’s first see how expected utility theory (EUT) does it.
EUT tells you that the value of an option o, defined on finitely many states of the world,
s1, . . . , sn, is its expected utility:

ExpP(o) = P(s1)o(s1) + . . . + P(sn)o(sn)

But note that, if we order the states of the world by their utilities, so that o(si1) ≤ . . . ≤ o(sin),
then we can also write this as follows:

10



ExpP(o) = P(si1 ∨ . . . ∨ sin)o(si1)+

P(si2 ∨ . . . ∨ sin)[o(si2)− o(si1)]+

P(si3 ∨ . . . ∨ sin)[o(si3)− o(si1)] + . . .

. . .+

P(sin−1 ∨ sin)[o(sin−1)− o(sin−2)]+

P(sin)[o(sin)− o(sin−1)]

That is, the expected utility of o is obtained as follows: first, take the smallest possible utility
that o will obtain for you—that is, o(si1)—and weight it by the probability that o will obtain
at least that for you—that is, P(si1 ∨ . . . ∨ sin), which is obviously 1; next, add to this the
difference between the smallest possible utility and the next smallest possible utility—that
is, o(si2)—and weight that difference by the probability that o will obtain at least that next
smallest possible utility—that is, P(si2 ∨ . . . ∨ sin); and then carry on in this way until you
reach the greatest possible utility that o will obtain for you.

The risk-weighted expected utility of o is then given in almost exactly the same way,
except that the weights are given not by the probabilities, but by the probabilities skewed
by a risk function R that represents your attitudes to risk. R takes probabilities in [0, 1] and
returns new weights in [0, 1]. We assume R is a strictly increasing, continuous function with
R(0) = 0 and R(1) = 1. Then the risk-weighted expected utility of option o is given as
follows:

RExpP(o) = R(P(si1 ∨ . . . ∨ sin))o(si1)+

R(P(si2 ∨ . . . ∨ sin))[o(si2)− o(si1)]+

R(P(si3 ∨ . . . ∨ sin))[o(si3)− o(si1)] + . . .

. . .+

R(P(sin−1 ∨ sin))[o(sin−1)− o(sin−2)]+

R(P(sin))[o(sin)− o(sin−1)]

Risk-Weighted Expected Utility TheoryR,P (REUR,P) Given an option o in O, o
is impermissible iff there is an alternative option o′ in O such that RExpR,P(o) <
RExpR,P(o

′).

To illustrate, return to the example of the sure thing versus the coin toss from above.
Suppose the utility you assign to having n units of the commodity in question is n. So,
using the notation from the previous section, we can describe the decision problem like this:
(1, 1; 0, 3). And suppose P(s1) = P(s2) = 0.5, and R(p) = p2. Then the risk-weighted
expected utility of option o1 is:

RExpP,R(o1) = 1 + R(0.5)[1 − 1] = 1 + (0.25 × 0) = 1

And for option o2 it is:

RExpP,R(o2) = 0 + R(0.5)[3 − 0] = 0 + (0.25 × 3) = 0.75

11



So if your risk function is R(p) = p2, then you should take the sure thing in that case.4

In general, if R is convex, then it gives rise to risk-averse behaviour; if R is concave, it
gives risk-inclined behaviour; and if R is simply the identity function, so that R(p) = p, then
the risk-weighted expected utility of an option is simply its expected utility, and so REU
agrees with EU, and we say that it gives rise to risk-neutral behaviour.

3.2 Is risk-weighted expected utility theory self-recommending?

So much for what the theory says. Now we must ask what it thinks of its own performance.
We assume that our decision-maker knows that they will face a binary decision problem of
the form: (a, b; c, d), where 0 ≤ a, b, c, d,≤ 1. Given an instance of Buchak’s theory, deter-
mined by a credence function P and a risk function R, does that version recommend itself?
That is, given the meta decision problem in which the meta states of the world have the form,〈
(a, b; c, d), si, tj

〉
, and in which the options are all the available decision theories, and given

a version of Buchak’s theory, which decision theory or theories does it deem permissible,
and does it include itself among them? I’m afraid the answer to the latter question is that it
doesn’t.

The version of Buchak’s theory that I laid out above, which is the version that she presents
herself, is formulated for decision problems in which the options are defined over only
finitely many states of the world. But there are clearly continuum-many different meta states
of the world. So, we need a version that is formulated for such decision problems. Fortu-
nately, the natural generalization of Buchak’s theory can be given by analogy with the gen-
eralization that Quiggin gives of his own rank-dependent utility theory (Quiggin, 1982).5

Suppose that the utilities offered by a particular option o are bounded above by U1 and
below by U0. And, for U0 ≤ u ≤ U1, let o > u be the proposition that says that the utility of
o is greater than u. That is, it is the proposition that is true at exactly those states s such that
o(s) > u. Then the expected utility of o from the point of view of P is equal to the following:

ExpP(o) = U0 +
∫ U1

u=U0

P(o > u) du

And the risk-weighted expected utility of o is defined as follows:

RExpR,P(o) = U0 +
∫ U1

u=U0

R(P(o > u)) du

As before, we’ll assume that the three components of the meta state—the decision prob-
lem you’ll face, the original state of the world, and the tie-breaker proposition—are all inde-
pendent. Then, we fix your probability function P over s1 and s2, which assigns P(s1) = p
and P(s2) = 1 − p, and your measure µ over the possible values of a, b, c, d, and we combine

4Note that, for this reason, REU with R(p) = p2 is diachronically incoherent. In Section 1, we saw that, faced
with (1, 1; 0, 3) and (1, 1; 3, 0), Maximin requires you to choose (1, 1) then (1, 1), but (0, 3) then (3, 0) strongly
dominates it. We can see now that, if P(s1) = P(s2) = 0.5, then REU with P and R(p) = p2 requires the same.
And indeed, for all risk functions R, if R(p) ̸= p for some p, then there is P such that REU with P and R is
diachronically incoherent.

5Thanks to Kenny Easwaran for pointing me to this. Quiggin’s theory stands to Buchak’s theory as the von
Neumann-Morgenstern theory stands to Savage’s; that is, it assumes that the probabilities are given exoge-
nously, as objective chances, perhaps, while Buchak’s assumes they are given endogenously, as the individual’s
credences.
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Figure 2: For m = 0.5, 0.7, 1, 1.5, 2, we plot Rm(p) = pm for 0 ≤ p ≤ 1.

them as before to give P⋆
µ,s. Now we consider two risk functions, R and R′. We ask: what is

the risk-weighted expected utility of maximising risk-weighted expected utility with R′ and
P from the point of view of R and P⋆

µ,s? And: for which R is there some alternative R′ such
that

RExpR,P⋆
µ,s
(REUR′,P) > RExpR,P⋆

µ,s
(REUR,P)

Figure 3 gives some answers. In it, we let p = 0.3 and write Rm for the risk function Rm(p) =
pm. Then, for m = 0.5, 0.7, 1, 1.5, 2, we plot

RExpRm,P⋆
µ,s
(REURk ,P)− RExpRm,P⋆

µ,s
(REURm,P)

That is, we plot the extent to which Rm judges Rk to perform better than it judges itself to
perform. In Figure 2, we plot these risk functions themselves.

Let’s work through the lessons of Figure 3:

• R1 represents risk-neutrality. Risk-weighted expected utility with risk function R1 is
just expected utility theory. Since expected utility theory is self-recommending, as we
saw in Section 2, it is no surprise that R1 takes no other risk function to perform better
than it takes itself to perform.

• R0.5 and R0.7 both represent risk-seeking attitudes. Indeed, for any 0 < m < 1, Rm
is risk-seeking. The lower m, the more weight it requires you to place on the best-
case outcome, and the more risk-seeking it is. R0.5 takes Rm to perform better than
it takes itself to perform for 0.5 < m < 1.1; R0.7 takes Rm to outperform itself for
0.7 < m < 1.03. So each takes less extremely risk-seeking attitudes to perform better;
and each takes R1, or expected utility theory, to do better.

• R1.5 and R2 both represent risk-averse attitudes. Indeed, for any 1 < m, Rm is risk-
averse. The greater m, the more weight it requires you to place on the worst-case
outcome, and the more risk-averse it is. R2 takes Rm to perform better for 1.2 < k < 2;
R1.5 takes Rm to outperform itself for 1.05 < m < 1.5. So each takes less extremely
risk-averse attitudes to perform better; and neither takes R1, or expected utility theory,
to do better.

The upshot: Buchak’s theory is not self-recommending in general. There are risk functions
R that the theory permits such that REU with R is not self-recommending. But perhaps there
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Figure 3: Let p = 0.3. Then, for m = 0.5, 0.7, 1, 1.5, 2, we plot RExpRm ,P⋆
µ,s
(REURk ,P)− RExpRm ,P⋆

µ,s
(REURm ,P) over

the range 0.4 ≤ k ≤ 2.1.

are risk functions other than R1 that, in combination with REU, give a self-recommending
theory? If there were, this would raise an interesting possibility: REU in general is self-
defeating; but there could be a more restrictive version, which limits the permissible risk
functions an agent may use, and each instance of that version might be self-recommending.
That is, it’s possible that this argument doesn’t rule out REU, but rather limits the permissible
risk functions. It’s possible. I have no proof that this isn’t true. But I do know that, for
m = 0.5, 0.6, . . . , 0.9 and for m = 1.1, 1.2, . . . , 2, REU with Rm is not self-recommending.

3.3 Going further

Two assumptions stand out in what I said in the previous section: the assumption that we
have a uniform distribution over the possible decision problems we might face; and the
assumption that our risk function takes the form Rm(p) = pm for some m. Because of the
computational complexity of calculating RExpRm,P⋆

µ,s
(REURk ,P), it’s difficult to see how things

go in general when we remove those assumptions. So, in this section, I’ll mention some
results that hold when you know a little more about the decision problem you’ll face. In
particular, I’ll assume you know you’ll face the decision whether or not to pay a particular
price for a bet that pays out a single unit of utility if we’re in state s1 and nothing if we’re in
state s2. Let t be the price in question, given in units of utility. Then the decision problem
has the form (0, 0; 1 − t,−t). The first option, on which you refuse to pay price t for the bet,
gives you 0 in both states; the second option, on which you do pay t, gives you 1 − t in state
s1, since you win 1, but you paid t in the first place, and −t in state s2, since you win nothing
and paid t.

First, let’s consider a risk function that doesn’t have the form Rm(p) = pm. Here’s a
family of such functions, some of which are illustrated in Figure 4:

R†
n(p) =

pn

pn + (1 − p)n

Then we can see from Figures 5 to 8 that, for many values of n and for µ the uniform dis-
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Figure 4: For n = 0.5, 1, 2, 3, we plot R†
n(p) for 0 ≤ p ≤ 1.

tribution over t, R†
n does not recommend itself. Indeed, we encounter again the same phe-

nomenon we saw in the previous section:

• R†
1(p) = p, and so risk-weighted expected utility theory with that risk function is just

expected utility theory, and so it recommends itself;

• R†
0.5 recommends R†

n for 0.5 < n; that is, it recommends risk functions that are closer to
the neutral risk function R†

1; and

• R†
2 recommends R†

n for n < 2; that is, it too recommends risk functions that are closer
to R†

1; and similarly for R†
3.

Next, we return to using risk functions of the form Rm(p) = pm, but this time we use beta
distributions over the price t you might pay for the bet. Figure 9 plots some of the probability
density functions of the different beta distributions we’ll consider. Figure 10 shows that REU
with R2 prefers REU with R2.1 over itself for a number of different beta distributions.

4 Decision theories for imprecise credences

4.1 What are imprecise credences?

In both expected utility theory and Buchak’s risk-weighted alternative, we represent an in-
dividual as assigning precise credences to the various states of the world. But some philoso-
phers, computer scientists, and engineers think that we do better to model individuals as
having imprecise credences instead (Walley, 1991; Bradley, 2016). There are many ways to
do this, but one of the most well-known ways is to represent an individual’s doxastic state
not by a single credence function, which assigns to each state of the world a single numerical
measure of their confidence in that state, but by a set of such credence functions. So, if the
states of the world are just s1 and s2, as they have been in the examples we’ve been consid-
ering, we would represent you by a set of probability functions defined on those two states.
Following van Fraassen (1990), we call this set your representor.

Even within this single proposal, there are multiple ways in which we might interpret
the formalism. Here’s a natural one: your actual credal state is indeterminate and the cre-
dence functions in your representor are its legitimate precisifications. What is determinately
true of your credence function is just whatever is true of all the credence functions in your
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Figure 5: This plots RExpR†
0.5,P⋆

µ,s
(REUR†

k ,P) −
RExpR†

0.5,P⋆
µ,s
(REUR†

0.5,P) for p = 0.2, µ the uniform
distribution, s chosen arbitrarily, and 0 ≤ k ≤ 1.

Figure 6: This plots RExpR†
1 ,P⋆

µ,s
(REUR†

k ,P) −
RExpR†

1 ,P⋆
µ,s
(REUR†

1 ,P) for p = 0.2, µ the uniform
distribution, s chosen arbitrarily, and 0.5 ≤ k ≤ 1.5.

Figure 7: This plots RExpR†
2 ,P⋆

µ,s
(REUR†

k ,P) −
RExpR†

2 ,P⋆
µ,s
(REUR†

2 ,P) for p = 0.2, µ the uniform
distribution, s chosen arbitrarily, and 1.5 ≤ k ≤ 2.5.

Figure 8: This plots RExpR†
3 ,P⋆

µ,s
(REUR†

k ,P) −
RExpR†

3 ,P⋆
µ,s
(REUR†

3 ,P) for p = 0.2, µ the uniform
distribution, s chosen arbitrarily, and 2.5 ≤ k ≤ 3.5.

Figure 9: This plots the probability density functions for B(0.5, 3), B(1, 3), B(2, 3), and B(3, 3).
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Figure 10: For β = 1, 2, 3, this plots RExpR2,P⋆
B(α,β),s

(REUR2.1,P) − RExpR2,P⋆
B(α,β),s

(REUR2,P) for p = 0.3, s chosen

arbitrarily, and 0.5 ≤ α ≤ 3.

representor. So, for instance, it might be determinately true that your credence that it will
rain is greater than 80% but for no value greater than 80% is it determinately true that it is
your credence in rain. That would be true if your representor were the set of all probability
functions that assign to rain a credence greater than 80%.

In this section, we’ll again consider only decision problems in which there are two op-
tions, o1 and o2, and each option is defined on only two states of the world, s1 and s2. And
we’ll assume that your imprecise credences have a particular form; we’ll assume your rep-
resentor is determined by a pair of probabilities 0 ≤ p ≤ q ≤ 1 as follows, where we write
(r, 1 − r) for the probability function that assigns r to s1 and 1 − r to s2:

P[p,q] = {(r, 1 − r) : p ≤ r ≤ q}

That is, it is determinately true that your credence in s1 is at least p and at most q, but nothing
more specific is determinately true of it.

4.2 What are the decision theories for imprecise credences?

If we represent our decision-maker’s doxastic state in this way, what are the possible decision
theories they might adopt? I’ll try to give a reasonably comprehensive account of what
has been proposed.6 From an informal survey of those who favour this approach, it seems
that E-Admissibility and Maximality are the most popular. Unfortunately, they’re not self-
recommending. Indeed, among the decision theories for imprecise credences I consider here,
only one is self-recommending for any representor of the form, P[p,q]; and, what’s more,
according to that decision theory, an individual with such a representor should behave as if
she had precise credences, and in particular, the precise credences that sit at the midpoint of
her representor.

Midpoint Expected Utility Theory[p,q] (MEU[p,q] or EU p+q
2

) Given an option o in

6My inventory relies heavily on (Bradley, 2016), (Weatherson, 1998), and an impromptu tutorial by XXX.
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O, o is impermissible iff there is an alternative option o′ in O such that Exp p+q
2
(o) <

Exp p+q
2
(o′).

This is not popular among those who favour imprecise credences because, for all practical
purposes, having imprecise credences and using this rule is indistinguishable from having
certain precise ones and using expected utility theory. However, it follows immediately from
Theorem 1 that it is self-recommending, since it is simply a version of expected utility theory.

Next, we define a string of theories that appeal to the minimal and maximal expected
utility of an option assigned by credences in the representor. To state them succinctly, let’s
say:

lo = min
P∈P

ExpP(o) and mo = max
P∈P

ExpP(o)

Global Dominance[p,q] (GD[p,q]) Given an option o in O, o is impermissible iff
there is an alternative option o′ in O such that uo < lo′ .

Γ-Maximin[p,q] (ΓMaximin[p,q]) Given an option o in O, o is impermissible iff
there is an alternative option o′ in O such that lo < lo′ .

Γ-Maxi[p,q] (ΓMaxi[p,q]) Given an option o in O, o is impermissible iff there is an
alternative option o′ in O such that:

(i) lo < lo′ and uo < uo′ ,
(ii) lo < lo′ and uo = uo′ ,

(iii) lo = lo′ and uo < uo′ .

Global Dominance is very permissive: an option is only ruled out if there’s an alternative
such that every expected utility that the alternative receives from a probability function in
the representor is higher than every expected utility that original option receives from a
probability function in the representor, and that’s a lot to ask. Γ-Maximin is a risk-averse
decision rule, focussing only on the minimal expected utility that options receive from prob-
ability functions in the representor. And Γ-Maxi says that an option is ruled out if there’s an
alternative with better minimal and maximal expected utilities.

Finally, here are two decision theories that are based on a supervaluationist interpretation
of the representor: that is, they rule out options on the grounds that all probability functions
in the representor would rule them out.

E-Admissibility[p,q] (EAd[p,q]) Given an option o in O, o is impermissible iff, for
all P in P, there is o′ in O such that,

ExpP(o) < ExpP(o
′)

Maximality[p,q] (Maximality[p,q]) Given an option o in O, o is impermissible iff
there is o′ in O such that, for all P in P,

ExpP(o) < ExpP(o
′)

They differ only in the order of the quantifiers. E-Admissibility rules out an option if it is
determinately the case that there is a better alternative, while Maximality rules it out if there
is an alternative that is determinately better. Usually, Maximality is more permissive than
E-Admissibility, since it requires more to rule something out. But in the cases that concern
us, where there are just two options available in our decision problems, they coincide.
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4.3 Are these theories self-recommending?

Of the theories described in the previous section—Midpoint Expected Utility, Global Domi-
nance, Γ-Maximin, Γ-Maxi, Maximality, and E-Admissibility—only the first is self-recommending.

As before, we focus on the case in which you know the decision problem you’ll will have
the form (a, b; c, d), for 0 ≤ a, b, c, d ≤ 1. Let’s assume your representor is P[p,q]. That is, it
contains all and only the probability functions P, with P(s1) = r and P(s2) = 1 − r, where
p ≤ r ≤ q. Now let’s extend this representor to a new representor P⋆ that is defined over the
meta states of the world. As before, we’ll assume that the decision problem you’ll face, the
state of the world, and the tie-breaker proposition are all independent of one another. And
we’ll assume that the credences in s1 and s2 cover the same range as in P. We’ll assume the
credences in the tie-breaker propositions lie within a particular range [t, t′], though it turns
out that it won’t matter which range we choose. And we’ll assume that our credences over
the various decision problems are given by the uniform distribution µ. So

P⋆
µ,[t,t′] = {P⋆

µ,s : t ≤ s ≤ t′}

where, recall from above, for any measurable subset D′ of D, then

P⋆
µ,s(D ∈ D′ & s1 & t1) = s × p × µ(D ∈ D′)

Let’s now work through the decision theories enumerated in the previous section.

4.3.1 Midpoint Expected Utility

It is clear that Midpoint Expected Utility is self-recommending, since it is just a version of
expected utility theory, which we saw above is self-recommending.

4.3.2 Global Dominance

To see that Global Dominance is sometimes not self-recommending, consider Figure 11.
There, we plot four functions. For each representor P[p,q] with 0 ≤ p ≤ 0.4, q = 1, and s
taking any value from 0 to 1 inclusive, we plot: (i) Expp,s(MEU[p,q]), (ii) Expq,s(MEU[p,q]),
(iii) Expp,s(GD[p,q]), (iv) Expq,s(GD[p,q]). Here, for a decision theory DT, Expp,s(DT) is the
expectation of its utility from the point of view of the probability function P⋆

µ,s in P⋆
µ,[t,t′] such

that
P(s1) = p P(s2) = 1 − p P(t1) = s P(t2) = 1 − s

Now, you’ll notice that we don’t actually specify s in this figure. The reason is that the ex-
pectation is the same for any s. What the figure shows is that, for 0 ≤ p ≤ 0.25 and q = 1, the
maximum expected utility of Global Dominance (the red line of dots) with representor P[p,q]
lies below the minimum expected utility of Midpoint Expected Utility (the blue line of dots)
with the same representor. And so the decision theory of Global Dominance declares itself
impermissible. And indeed this is true of representors of other forms as well, such as P[0.1,0.9].
However, as we also see, this isn’t always the case: for p = 0 and q greater than 0.3, for in-
stance, the maximum expected utility of Global Dominance exceeds the minimum expected
utility of Midpoint Expected Utility. Of course, that doesn’t show that Global Dominance is
self-recommending for those representors, since there might be a different decision theory
whose minimum exceeds its maximum for those; but it does show that Midpoint Expected
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Figure 11: This plots Expp,s(MEU[p,q]), Expq,s(MEU[p,q]), Expp,s(GD[p,q]), Expp,s(GD[p,q]), for 0 ≤ p ≤ 0.4, q = 1,
and any value of s between 0 and 1.

Figure 12: This plots Expp,s(MEU[p,q]), Expq,s(MEU[p,q]), Expp,s(ΓMaximin[p,q]), Expp,s(ΓMaximin[p,q]), for p =

0, 0 ≤ q ≤ 1, and any value of s between 0 and 1.

Utility doesn’t witness Global Dominance’s failure to self-recommend in those cases. But the
important upshot is that there is some reasonably substantial class of representors for which
Global Dominance is not self-recommending.

4.3.3 Γ-Maximin

To see that Γ-Maximin is sometimes not self-recommending, consider Figure 12. There, as
for Global Dominance, we plot four functions. For each representor P[p,q] with p = 0 and
0 ≤ q ≤ 1, we plot: (i) Expp,s(MEU[p,q]), (ii) Expq,s(MEU[p,q]), (iii) Expp,s(ΓMaximin[p,q]),
(iv) Expq,s(ΓMaximin[p,q]). As before, the value of s makes no difference. As we can see,
for all the representors of this form, Γ-Maximin is not self-recommending. The minimum
expected value of Γ-Maximin is plotted as the red dots, while the minimum expected value
of Midpoint Expected Utility is plotted as the yellow dots, and the latter always exceed the
former. What’s more, there are other representors not of this form for which Γ-Maximin is
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Figure 13: This plots Expp,s(MEU[p,q]), Expq,s(MEU[p,q]), Expp,s(ΓMaxi[p,q]), Expp,s(ΓMaxi[p,q]), for p = 0, 0 ≤
q ≤ 1, and any value of s between 0 and 1.

not self-recommending: P[0.1,0.3] is an example.

4.3.4 Γ-Maxi

Our strategy for Γ-Maxi is exactly the same as for Global Dominance and Γ-Maximin. Fig-
ure 13 is the relevant figure. For all the representors of this form, Γ-Maxi is not self-recommending.
The minimum expected utility of Γ-Maxi is given by the red dots, and the minimum expected
utility of Midpoint Expected Utility is given by the yellow ones; and the maximum expected
utility of Γ-Maxi is given by the green dots, while the maximum expected utility of Midpoint
Expected Utility is given by the blue ones. And again there are other representors for which
Γ-Maxi is not self-recommending: again, P[0.1,0.3] is an instance.

4.3.5 E-Admissibility

The same strategy applies to E-Admissibility as well. Figures 14 to 17 shows how Midpoint
Expected Utility and E-Admissibility compare for representors of the form P[p,q], where p =
0, 0.25, 0.5, 0.75, and p ≤ 1. Note that the range covered by the x-axis is different for each
plot.

For all representors pictured, E-Admissibility is not self-recommending. The expected
utility of E-Admissibility from the point of view of p is less than the expected utility of
Midpoint Expected Utility from that point of view; and similarly for q; and therefore also for
any p ≤ r ≤ q. So every probability function in the representor, judges Midpoint Expected
Utility better than E-Admissibility. So E-Admissibility is not self-recommending.

4.3.6 Maximality

Finally, Maximality. Here, we don’t need a new figure. After all, when faced with binary
decision problems, E-Admissibility and Maximality always rule the same options permis-
sible. So Figures 14 to 17 give the expected utilities of using that decision theory. And,
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Figure 14: This plots Expp,s(MEUp,q),
Expq,s(MEUp,q), Expp,s(EAdp,q), Expp,s(EAdp,q),
for p = 0, 0 ≤ q ≤ 1, and any value of s between 0
and 1.

Figure 15: This plots Expp,s(MEUp,q),
Expq,s(MEUp,q), Expp,s(EAdp,q), Expp,s(EAdp,q),
for p = 0.25, 0.25 ≤ q ≤ 1, and any value of s between
0 and 1.

Figure 16: This plots Expp,s(MEUp,q),
Expq,s(MEUp,q), Expp,s(EAdp,q), Expp,s(EAdp,q),
for p = 0.5, 0.5 ≤ q ≤ 1, and any value of s between 0
and 1.

Figure 17: This plots Expp,s(MEUp,q),
Expq,s(MEUp,q), Expp,s(EAdp,q), Expp,s(EAdp,q),
for p = 0.75, 0.75 ≤ q ≤ 1, and any value of s between
0 and 1.

what’s more, it shows that Maximality is not self-recommending, for there is a decision the-
ory, namely, Midpoint Expected Utility, that every probability function in the representor
expects to outperform Maximality.

4.4 Going further

Two notable assumptions from this section are that the decision problems we might face will
have just two options, and that those options will be defined on just two states of the world.
While the computational complexity prevents us from giving fully general answers when
we lift these restrictions, we can offer some results.

First, suppose we know we will face a decision problem of the following form:

s1 s2 s3

o1 a b c
o2 d e f

which we might write as (a, b, c; d, e, f ). Then, consider the following representor:

P = {λP + (1 − λ)P′ : 0 ≤ λ ≤ 1}

where P and P′ are probability functions defined on the three states s1, s2, s3 as follows:

s1 s2 s3

P 0.1 0.2 0.7
P′ 0.3 0.2 0.5
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Then each of the decision rules other than Midpoint Expected Utility prefers to use Midpoint
Expected Utility with P to using itself with P. That is, the minimal expected utility of Γ-
Maximin with P is less than the minimal expected utility of Midpoint Expected Utility with
P, each probability function in P expects Midpoint Expected Utility with P to perform better
as a decision theory than it expects E-Admissibility or Maximality to perform, and so on.

Second, suppose we know we will face a decision problem of the following form:

s1 s2

o1 a b
o2 c d
o3 e f

where we might write (a, b; c, d; e, f ). Then consider the following representor:

P = {λP + (1 − λ)P′ : 0 ≤ λ ≤ 1}

where P and P′ are probability functions defined on the three states s1 and s2 as follows:

s1 s2

P 0.3 0.7
P′ 0.6 0.4

Then again each of the decision rules other than Midpoint Expected Utility prefers to use
Midpoint Expected Utility with P to using itself with P. An interesting side note: when there
are three options, E-Admissibility and Maximality are no longer equivalent, for there can be
decision problems in which each probability function in the representor expects the second
or third option to be better than the first, but it’s not the case that each probability function
expects the second to be better than the first and it’s not the case that each expects the third
to be better than the first. And it turns out that, given the representor we’ve just described,
Maximality actually prefers E-Admissibility to itself, and each prefers Midpoint Expected
Utility to itself: that is, every probability function in the representor expects you do to better
by using E-Admissibility than by using Maximality.

The results of this section are troubling for those who would represent our doxastic state
using a set of probability functions instead of a single one. It is often pointed out that Γ-
Maximin is diachronically incoherent. But, as I argued above, such an objection has little bite.
What tells much more strongly against the view is that each of the existing decision theories
for imprecise probabilities judge Midpoint Expected Utility to be better as a means to your
ends than they judge themselves to be. That is, by their own lights, they are impermissible.

5 Decision theories for total ignorance

The final set of decision theories I will consider were developed initially at the Cowles Com-
mission in Chicago in the 1950s by a group of young researchers who would go on to make
significant contributions in other areas of their subjects: the mathematicians Abraham Wald
and John Milnor, and the economists Leonard Hurwicz and Kenneth Arrow. They were in-
terested in how we should make decisions in those situations in which our uncertainty is so
profound that we are unable to assign probabilities, even subjective ones; that is, situations
of so-called Knightian uncertainty. Here are three of the decision rules they formulated:
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Maximin Given an option o in O, o is impermissible iff there is an alternative
option o′ in O such that

min
s∈S

o(s) < min
s∈S

o′(s)

Maximax Given an option o in O, o is impermissible iff there is an alternative
option o′ in O such that

max
s∈S

o(s) < max
s∈S

o′(s)

Hurwicz Criterionλ Given an option o in O, o is impermissible iff there is an
alternative option o′ in O such that

λ max
s∈S

o(s) + (1 − λ)min
s∈S

o(s) < λ max
s∈S

o′(s) + (1 − λ)min
s∈S

o′(s)

where 0 ≤ λ ≤ 1.

Note that:

• Hurwicz0 Criterion = Maximin

• Hurwicz1 Criterion = Maximax

Now we can ask whether these decision theories are self-recommending or not. It will turn
out that all of them are.

I will consider Maximin first, and pretty much the same reasoning can be applied to
Maximax and any version of the Hurwicz Criterion. As above, we’ll consider any two-
state, two-option decision problem in which the utilities of the options are bounded above
and below. So we’re considering any decision problem of the form (a, b; c, d), where 0 <
a, b, c, d < 1. Now suppose that we know we’ll face such a decision problem in the future,
but we don’t know which. Then let us ask, from the point of view of Maximin itself, how
Maximin will perform if used to make this decision. To do this, we begin by asking what
is the lowest utility it might obtain for us? And we note that it is 0, since we might face a
decision of the form (0, b; 0, d). But then we note that the same is true of any decision theory:
if you might face (0, b; 0, d) at state s1, then your decision theory will obtain for you 0 for
sure. And so Maximin is permissible by its own lights—that is, it is self-recommending.

However, we’re not done, for we know that Maximin has a different flaw. It permits
options that are weakly dominated by others. For instance, faced with (0, 1

2 ; 0, 1) it permits
us to choose the first option when the second weakly dominates it. Indeed, this fact makes
it rather less impressive that it is self-recommending. After all, one way in which a decision
theory can ensure that it is self-recommending is to be very permissive—if it doesn’t rule
much out, it won’t rule itself out. This is why it is surprising that expected utility theory is
self-recommending, but Global Dominance isn’t. Expected utility theory is quite strict, while
Global Dominance is quite lenient. Nonetheless, we can easily tweak Maximin to avoid this
flaw:

Maximin+ Given an option o in O, o is impermissible iff there is an alternative
option o′ in O such that

(i) mins∈S o(s) < mins∈S o′(s), or

(ii) o(s) ≤ o′(s) for all s in S , and o(s) < o′(s) for some s in S .
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And now we can ask whether this less permissive variant, Maximin+, is self-recommending.
Again, the answer is yes. As before, Maximin+, like all decision theories, gives utility 0 in
the worst-case scenario. But what’s more, Maximin+ isn’t weakly dominated. Suppose, for
a contradiction, that it is. Then there is a decision theory DT such that

Maximin+(⟨(a, b; c, d), si, tj⟩) ≤ DT(⟨(a, b; c, d), si, tj⟩)

for all meta states, with strict inequality for some. Then take one of the meta states for which
strict inequality holds, so that

Maximin+(⟨(a∗, b∗; c∗, d∗), si∗ , tj∗⟩) < DT(⟨(a∗, b∗; c∗, d∗), si∗ , tj∗⟩)

Then, for i = 1, 2,

Maximin+(⟨(a∗, b∗; c∗, d∗), si, tj∗⟩) < DT(⟨(a∗, b∗; c∗, d∗), si, tj∗⟩)

with inequality for i = i∗. But then whichever option Maximin+ chooses when faced with
decision problem (a∗, b∗; c∗, d∗) and tie-breaker tj∗ , it is weakly dominated by whichever
option DT chooses. But that’s a contradiction.

So Maximin+ does not permit weakly dominated options, and it is self-recommending.
By similar reasoning, we can tweak Maximax in the same way to avoid weakly dominated
options, and the tweaked version will also be self-recommending. And the same goes for
the Hurwiczλ criterion.

6 Antecedents to this approach

In Section 1, I noted that exploitability and money pump arguments are among the philo-
sophical antecedents to my approach here; but there are also formal antecedents, and I will
describe them here.

The approach is inspired ultimately by I. J. Good’s approach to the question of whether
we should accept free evidence (Good, 1967). Suppose you are offered some free evidence.
Suppose further that you know that, if you accept that evidence, you’ll respond to it as the
Bayesian demands by conditioning on it. And suppose yet further that you know you’ll
face a decision after receiving that evidence, you know exactly what the decision is, and
you know you’ll choose from the options available by maximising expected utility from the
perspective of whichever credences you have at that time. Then, Good shows, from the
perspective of your current credences, you maximise expected utility by taking the evidence
and choosing in line with your new updated credences; refusing the evidence and choosing
in line with your current credences has at most the same expected utility, and for some
decision problems, the inequality is strict.

Peter M. Brown (1976) then repurposes this result to show that, if you know what deci-
sion problem you’ll face, and you know you’ll receive new evidence, you expect yourself to
do at least as well by conditioning on that evidence than by responding in any other way,
and for some decision problems you might face, you expect yourself to do better.

Mark Schervish (1989) significantly generalises this approach, and Ben Levinstein (2017)
provides a philosophical gloss. Most importantly, they remove the assumption that you
know which decision problem you’ll face. Instead, they assume that you place a probability
distribution over various possibilities. They assume that you know you’ll face a decision of
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the form (0, t; 1 − t, 0), where 0 ≤ t ≤ 1, and you place a probability distribution over the
value of t. As with Good’s and Brown’s arguments, however, they retain the assumption
that you’ll choose using expected utility theory. They use this to measure how much utility
a particular credence can be expected to obtain for you given a particular way the world is.
In this way, Schervish and Levinstein provide a way to score credences, and they show that
the scores they generate in this way are the strictly proper scores that are used in judgment
elicitation (Savage, 1971) and epistemic utility theory (Predd et al., 2009; Pettigrew, 2016).

Later, Catrin Campbell-Moore and Bernhard Salow (ta) applied this technique under the
assumption that we choose using risk-weighted expected utility theory and Jason Konek
(2019) applied it in the framework of imprecise credences. In that branch of the literature,
we fix the decision theory and use it to provide a way of scoring how well our credences
perform when they are fed into it. In the approach I have been pursuing here, we fix the
credences and use the approach to assess the decision theories into which we feed them.

7 Conclusion

If we attempt to adjudicate between decision theories by appealing to our intuitions about
what rationality requires, we are often led to a stalemate. One way to avoid that is to ask
how well the decision theories perform as means to our ends. But we need a theory of
means-ends rationality in order to judge that. So we ask each decision theory: would you
recommend yourself to me as a good means to acquiring my ends? In this paper, I have
shown that many rivals to expected utility theory answer this question in the negative: they
are not self-recommending; they are self-undermining. I submit that this rules out those
theories as accounts of means-ends rationality.
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