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Abstract
In a series of papers over the past twenty years, and in a new

book, Igor Douven has argued that Bayesians are too quick to reject
versions of inference to the best explanation that cannot be accom-
modated within their framework. In this paper, I survey Douven’s
worries and attempt to answer them using a series of pragmatic and
purely epistemic arguments that I take to show that Bayes’ Rule really
is the only correct way to respond to your evidence.

When we were ten years old, my friend Robert thought we saw a ghost.
We were sleeping over at his house. Before bedtime, I cleaned my teeth
and came back to his bedroom and we chatted before going to sleep. I
knew I’d left the bathroom empty. As we chatted, we saw a shadow pass
the door to our room on the way to the bathroom. His father, surely. Then
we saw the same shadow pass back again in the other direction. And then
it happened. A second shadow passed from the bathroom in the direction
of Robert’s parents’ bedroom. But how could that be? The bathroom was
empty when I’d left it. We’d seen one shadow pass and return. Whose was
the second shadow? I maintained we must have been distracted when his
mother’s shadow passed to go to the bathroom after his father. But Robert
concluded it must be a ghost, and he believes that to this day.

It’s natural to say that both Robert and I used inference to the best ex-
planation first to arrive at and then to justify our different conclusions. We
shared the same evidence: my report that the bathroom was empty when I
left it; the layout of the house; the second shadow moving away from the
bathroom. I thought the best explanation was that the shadow belonged
to Robert’s mother, and we’d simply missed her passing to go to the bath-
room; Robert favoured an explanation that posited ghosts.

At the name suggests, philosophers think of inference to the best expla-
nation as a rule of inference. Indeed, it is often listed as one of the three
species of inference: deduction, induction, and inference to the best expla-
nation, also known as abduction (Lipton, 2004; Douven, 2017, 2021).
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Inference to the best explanation (rule of inference)

From

(P1) E; and

(P2) H is the best explanation of E;

infer

(C) H

As such, it gives rise to a norm that governs our beliefs:

Inference to the best explanation (norm for beliefs)

If you believe (P1) and you believe (P2), you should believe (C).

But we can also think of inference to the best explanation as a norm that
governs how we change our degrees of belief or credences when we receive
new evidence:

Inference to the best explanation (norm for credences)

You should be more confident in better explanations of your
total evidence than in poorer ones.1

So, if H1 is a better explanation of E than H2, and if p is our prior credence
function and pE is our posterior after learning E, then pE(H1) should be
greater than pE(H2). We might even add that our posterior should track
the extent to which one hypothesis is better than another, so that if H1 is
a much better explanation than H2, then pE(H1) should be much greater
than pE(H2), while if H1 is only slightly better, then pE(H1) should only be
slightly greater than pE(H2).

Now of course there are other norms we take to govern our credences,
and they include norms that govern how to set our posterior given our
prior and our evidence. So we might worry that the explanationist norms
just sketched will conflict with them. The norms I have in mind are the
Bayesian ones. There are at least two, though we will meet a third later:

Probabilism Your credences at any given time should satisfy
the probability axioms.

That is, if your credence function p is defined on an algebra of
propositions F , then

(i) 0 ≤ p(X) ≤ 1 for all propositions X in F ;

1Though see Lange (2020) for a more nuanced understanding of how the explanatory
quality of hypotheses (or ‘loveliness’, as it has come to be called) relates to our posterior
credences in them.
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(ii) p(⊥) = 0 and p(>) = 1, where ⊥ is a contradiction and >
a tautology;

(iii) p(X ∨Y) = p(X) + p(Y)− p(XY) for all X, Y in F .

Bayes’ Rule When you receive new evidence, you should up-
date your credences by conditioning your prior credences on
your total evidence at that point.2

That is, if p is your prior, pE your posterior when your total
evidence is E, and p(E) > 0, then it ought to be that

pE(X) = pβ
E(X) := p(X|E) :=

p(XE)
p(E)

Given an updating rule α, we write pα
E, for the result of updating

prior p on evidence E using rule α. We write β for Bayes’ rule.
So pβ

E(X) is the result of updating p on E using Bayes’ Rule.

Now, it is common to point out that Bayes’ Theorem allows us to write
Bayes’ Rule in a couple of more useful ways:

Bayes’ Rule (combined with Bayes’ Theorem) If p(E) > 0, it
ought to be that

pE(X) = pβ
E(X) := p(X|E) = p(E|X)p(X)

p(E|X)p(X) + p(E|X)p(X)

And, more generally, if H1, . . . , Hn is a set of mutually exclusive
and exhaustive hypotheses, then it ought to be that

pE(Hi) = pβ
E(Hi) := p(Hi|E) =

p(E|Hi)p(Hi)

∑n
j=1 p(E|Hj)p(Hj)

So, if I entertain a set of hypotheses that form a partition, my posterior con-
fidence in each hypothesis is obtained by asking how likely the evidence is
given that hypothesis, weighting that by how likely I thought the hypothe-
sis was prior to receiving the evidence, and then normalizing the results.

Now, if H1 is a better explanation for E than H2, then Bayes’ Rule tells
us that

pE(H1) > pE(H2) iff p(E|H1)p(H1) > p(E|H2)p(H2)

So there are two straightforward ways to accommodate inference to the
best explanation within Bayesianism:

2In fact, one of the nice features of Bayes’ Rule is that you get the same result if you
update by conditioning on your total evidence or just on your new evidence. After all,
if q(X) = p(X|E), then q(X|F) = p(X|EF). But this is not true for the explanationist’s
rival updating rule ε, which we’ll describe below. So it will be easier to state all candidate
updating rules as operating on total evidence.
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(1) Set p(H1) > p(H2) and p(E|H1) ≈ p(E|H2). That is, assign a higher
unconditional prior to more explanatory hypotheses.

(2) Set p(E|H1) > p(E|H2) and p(H1) ≈ p(H2). That is, assign a higher
likelihood to the evidence conditional on the more explanatory hy-
pothesis.

Either of these might account for my conclusion or my friend Robert’s
when we saw that second shadow passing away from the bathroom that
night. It might have been that we roughly agreed on the likelihood of our
evidence given each hypothesis, but disagreed on the prior probability of
the hypothesis: Robert might just have been antecedently much more con-
fident that ghosts exist, and much less confident that we were distracted
enough to miss his mother’s shadow as she passed to go to the bathroom.
Or we might have both agreed that it is very unlikely that ghosts exist
and reasonably likely that we were distracted, but disagreed on how likely
each hypothesis made our evidence: Robert might just have thought that,
if ghosts were to exist, this is quite a likely way they’d show themselves.
Or, of course, it might be a bit of both.

In general, we can better accommodate some cases of inference to the
best explanation using (1), and some using (2), and some using a combi-
nation. You might, for instance, have two empirically equivalent hypothe-
ses, such as the realist’s hypothesis that the external world exists and is as
we perceive it to be (H1) and the sceptic’s hypothesis that our experience
of the external world is an illusion imposed on us by some powerful de-
ceivers trying to trick us into thinking that it is the way we perceive it to
be (H2). In that case, providing neither is stronger than the other, it’s plau-
sible that p(E|H1) = p(E|H2). Indeed, if both hypotheses entail E, then
p(E|H1) = 1 = p(E|H2). In that case, we can only ensure that one re-
ceives higher posterior probability than the other by assigning it higher
prior unconditional probability. So, if you want to use inference to the
best explanation to justify your higher posterior in realism, you’d better
set p(H1) > p(H2). That is, you must use (1).

But sometimes (1) won’t do. I set an urn in front of you that contains
three balls. I tell you that either two balls are violet and one green (H1)
or two balls are green and one violet (H2). You will draw a ball at ran-
dom, look at its colour, and update your credences in the two hypotheses
in the light of your evidence. So there are two possible pieces of evidence
you might receive: you might draw a violet ball (E1) or you might draw
a green one (E2). Intuitively, H1 explains E1 better than H2 does, while H2
explains E2 better than H1 does. So, the credal version of inference to the
best explanation demands that

pE1(H1) > pE1(H2) and pE2(H2) > pE2(H1)
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But we can’t ensure that only by setting p(H1) > p(H2) or p(H2) > p(H1).
Instead, we must set p(E1|H1) > p(E1|H2) and p(E2|H2) > p(E2|H1). In
fact, that seems reasonable anyway. Indeed, it is mandated by a norm that
is often added to Probabilism and Bayes’ Rule to give a slightly stronger
version of Bayesianism, namely, David Lewis’s Principal Principle (Lewis,
1980).

Principal Principle It ought to be the case that

p(X | the chance of X is r) = r

In the case we’re considering the Principal Principle demands:

p(E1|H1) = 2
3 p(E1|H2) = 1

3

p(E2|H1) = 1
3 p(E2|H2) = 2

3

If p(H1) = p(H2), then by Bayes’ Rule we have:

pE1(H1) > pE1(H2) and pE2(H2) > pE2(H1)

as we wished. And we obtained that using (2).
The upshot of the preceding discussion is that Bayesianism can accom-

modate much of what the credal version of inference to the best explanation
demands.3 And, as Jonathan Weisberg (2009) points out, it could go further
and mandate it if we were to embrace a less subjectivist and more objec-
tivist version of Bayesianism; one that limits the rational priors in such a
way that, whenever H1 better explains E than H2 does, p(H1|E) > p(H2|E).

Nonetheless, some think that this strategy does not go far enough. For
instance, think again about the mystery urn from above. If I have equal
priors in the two hypotheses about the colour distribution in the urn, and
if I update using Bayes’ Rule, here are my posteriors if I draw a violet ball:

pE1(H1) = pβ
E1
(H1) =

p(E1|H1)p(H1)

p(E1|H1)p(H1) + p(E1|H2)p(H2)
=

2
3

1
2

2
3

1
2 +

1
3

1
2

=
2
3

and

pE1(H2) = pβ
E1
(H2) =

p(E1|H2)p(H2)

p(E1|H1)p(H1) + p(E1|H2)p(H2)
=

1
3

1
2

2
3

1
2 +

1
3

1
2

=
1
3

So pE1(H1) > pE1(H2), as we hoped. But you might think that, while
Bayes’ Rule results in higher posterior confidence in H1 upon learning E1,

3For more detailed accounts that fit inference to the best explanation inside Bayesianism,
see (Okasha, 2000), (McGrew, 2003), and (Lipton, 2004). For an argument that it cannot fit
even with probabilism let alone Bayes’ Rule, see (Climenhaga, 2017).
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it doesn’t make that posterior confidence high enough. You might think
that, upon seeing the violet ball, you should be even more confident in
H1 than Bayes’ Rule mandates, and even less confident in H2. As I noted
above, Bayes’ Rule says that my posterior confidence in each hypothesis
from should be obtained by asking how likely the evidence is given that hy-
pothesis, weighting that by how likely I thought the hypothesis was prior
to receiving the evidence, and then normalizing the resulting credences.
You might think instead that I should ask how likely the evidence is given
the hypothesis, weight that by how likely I thought the hypothesis was
prior to learning the evidence, then add a little boost to that weighted likelihood
if the hypothesis is one of best explanations of the evidence, and then normalize.
That is, instead of updating by Bayes’ Rule, we should use the Explanation-
ist’s Rule, which we write as ε and which says that it ought to be the case
that:

pE1(H1) = pε
E1
(H1) :=

p(E1|H1)p(H1) + c
p(E1|H1)p(H1) + p(E1|H2)p(H2) + c

=
2
3

1
2 + c

2
3

1
2 +

1
3

1
2 + c

=
2 + 6c
3 + 6c

since H1 best explains E1, and

pE1(H2) = pε
E1
(H2) :=

p(E1|H2)p(H2)

p(E1|H1)p(H1) + p(E1|H2)p(H2) + c
=

1
3

1
2

2
3

1
2 +

1
3

1
2 + c

=
1

3 + 6c

since H2 does not best explain E1. So c > 0 is a boost that is awarded to the
best explanation over and above what is already given by Bayes’ Rule. If
c > 0, then the explanationist demands that

pE1(H1) = pε
E1
(H1) =

2 + 6c
3 + 6c

and pE1(H2) = pε
E1
(H2) =

1
3 + 6c

And
pε

E1
(H1) =

2 + 6c
3 + 6c

>
2
3
= pβ

E1
(H1)

and
pε

E1
(H2) =

1
3 + 6c

<
1
3
= pβ

E1
(H1)

which is exactly what this more extreme version of explanationism de-
mands, dissatisfied as it is with the boost given to H1 and the reduction
given to H2 by Bayesianism. In what follows, I will call this more extreme,
non-Bayesian version of explanationism simply explanationism, since the
less extreme version is simply Bayesianism.

The explanationist update rule we just described is a particular case of
the following rule, which van Fraassen (1989, Chapter 6) sketched in his
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early discussion of the tension between inference to the best explanation
and Bayesianism, and which Igor Douven (2013, 2021) has made precise
and explored in great detail:

Explanationist’s Rule If H1, . . . , Hn is a set of mutually exclu-
sive and exhaustive hypotheses, then it ought to be that

pE(Hi) = pε
E(Hi) :=

p(E|Hi)p(Hi) + f (Hi, E)
∑n

j=1
(

p(E|Hj)p(Hj) + f (Hi, E)
)

where f (Hi, E) gives a reward to Hi if it is one of the best expla-
nations on E from among H1, . . . , Hn.4

In Douven’s version of the rule, each time you apply it, there is some fixed
positive amount c of reward that we distribute evenly between the best
explanations of the total evidence gathered so far. So, if there are k best
explanations of E, then f (Hi, E) = c

k if Hi is among them, and f (Hi, E) = 0
if it is not.

As we’ve already seen, typically, pε
E 6= pβ

E. So Bayesianism conflicts
with this non-Bayesian version of explanationism. Which should we use?
That is the question that will engage us for the rest of the paper. And it is
a question of no small moment. Bayesianism is a central statistical tool in
contemporary science, from epidemiology to particle detection; but infer-
ence to the best explanation is often advertised as a central component of
the scientific method. If they do conflict and if we must choose one over
the other, there will be work to do.

Van Fraassen defended Bayesianism against this extreme version of ex-
planationism by appealing to David Lewis’ betting argument for Bayes’
Rule. Igor Douven has considered that argument, as well as other prag-
matic considerations and also accuracy-based arguments for Bayes’ Rule.
He thinks that none decisively establish Bayes’ Rule, and presents consid-
erations in favour of the non-Bayesian explanationist rule, at least in cer-
tain situations. His goal is to reject the dominance of Bayesianism, rather

4Recall: pE is your posterior when your total evidence is E, and pε
E is the posterior the

explanationist’s rule demands in that situation. We can now see why it is important to
specify that update rules go to work on the prior and the total evidence and not just the new
evidence. In our urn example, suppose you first draw a violet ball and replace it; you up-
date using the explanationist’s rule ε; next, you draw a green ball and replace it; you update
again using the explanationist’s rule ε. For the first update, your new evidence and total
evidence are the same—the first ball drawn is violet—and both are best explained by H1, so
that gets the boost. For your second update, your new evidence is that the second draw was
green: this is best explained by H2; so that would then get the boost all to itself. But your
total evidence is that the first draw was violet and the second was green: this is equally well
explained by both hypotheses; so they would share the boost equally between themselves.
So we get two different rules depending on whether they act on the new evidence or the
total evidence. That distinguishes the explanationist approach from the Bayesian one. The
explanationist rule that Douven considers is the one that acts on the total evidence, and that
is the version of the rule I’ll consider throughout.
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than to establish the dominance of explanationism. He allows that Bayes’
Rule may be the right way to go in certain situations, but sees no reason to
think it is always the right way to update. In the remainder of the paper,
I’ll consider Douven’s arguments, describe further arguments in favour of
Bayes’ Rule, some pragmatic and some purely epistemic. I’ll argue that
they provide compelling responses to Douven’s concerns. I conclude that
the dominance of Bayes’ Rule should continue.

1 Pragmatic arguments for Bayes’ Rule

I’ll start in this section with the argument for Bayes’ Rule to which van
Fraassen appealed when he first argued against non-Bayesian versions of
inference to the best explanation. I’ll then consider Igor Douven’s responses
to that argument, and that will lead me to introduce two further pragmatic
arguments for Bayes’ Rule.

1.1 Lewis’ sure loss argument for Bayes’ Rule

Van Fraassen took the sure loss argument for Bayes’ Rule from David Lewis,
who had presented it in a seminar at Princeton in the 1970s, but didn’t pub-
lish it himself until 1999 (Lewis, 1999). It’s a betting argument of the sort
that Frank Ramsey and Bruno de Finetti provided for probabilism (Ram-
sey, 1926 [1931]; de Finetti, 1937 [1980]). So it starts with the same basic
premise as those: if your credence in a proposition X is p, then for any
stake S, whether positive or negative and regardless how large, you are ra-
tionally required to accept any bet that gains you more than £(1− p)× S
if X is true and loses you less than £p× S if X is false. Lewis shows that,
if you do not plan to update by Bayes’ Rule, there is a series of bets each
of which your prior rationally requires you to accept and a series of bets
each of which your posterior requires you to accept that, taken together,
will lose you money for sure.5 Lewis contends that planning to update in a
way that makes you vulnerable to such a sure loss is irrational.

Igor Douven provides three responses to van Fraassen’s argument:

(1) First, he suggests that we can have the best of both worlds by setting
our priors in such a way that following Bayes’ Rule when we update
gives us posteriors that agree with the explanationist’s updating rule
but avoid the sure loss (Douven, 1999). We’ll consider this in Section
1.2.

(2) Second, he argues that, while it is certainly a consideration against
an updating rule that it renders you vulnerable to a sure loss, we
cannot conclude that it renders you irrational without considering

5R. A. Briggs (2009) gives a particularly clear presentation of the argument.
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whether there are considerations in its favour that compensate for
this flaw; and he argues that there are such considerations (Douven,
2013, 2021). This is the topic of Sections 1.4-1.6.

(3) Third, he suggests that we cannot establish any credal norm by pay-
ing attention only to pragmatic considerations. We must instead show
that there is an epistemic flaw in updating rules other than Bayes’
Rule (Douven, 2013; Douven & Wenmackers, 2017; Douven, 2021).
That will bring us to the accuracy arguments in Section 2, and their
extension into questions of social epistemology in Section 3 and choices
between different intellectual trajectories in Section 4.

1.2 Avoiding the sure loss

You are about to learn something. You know that it will be a proposition in
the partition E1, . . . , Em. You consider each of the mutually exclusive and
exhaustive hypotheses H1, . . . , Hn. I give you a prior p and an updating
rule α. Together, these determine, for each possible piece of evidence Ej,
a posterior credence function pα

Ej
that the rule α says you should adopt if

you learn Ei. Then it’s possible to pick an alternative prior q in such a way
that updating q on Ej using Bayes’ Rule β will agree with updating p on Ej

using α. That is, pα
Ej
= qβ

Ej
, for each possible piece of evidence Ej.

Here’s the trick: first, pick your alternative priors in the different possi-
ble pieces of evidence; that is, pick q(E1), . . . , q(Em); then set your alterna-
tive priors in the conjunctions of hypotheses with evidence as follows:

q(HiEj) = pα
Ej
(Hi)q(Ej)

That then completely determines your alternative prior credence function
q, and it’s easy to show that, defined in this way, q is a probability function.6

What’s more:

qβ
Ej
(Hi) = q(Hi|Ej) =

q(HiEj)

q(Ej)
=

pα
Ej
(Hi)p(Ej)

p(Ej)
= pα

Ej
(Hi)

as required. So, in particular, if p is the prior to which we wish to apply the
explanationist’s updating rule ε, we can pick an alternative prior q in such
a way that qβ

Ej
= pε

Ej
, for any possible piece of evidence Ej. Providing we

then use q as our prior, we can then update by Bayes’ Rule to pε
Ej
= qβ

Ej
and

thereby sidestep the sure loss argument against the explanationist.

6It suffices to show that
n

∑
i=1

m

∑
j=1

q(HiEj) =
n

∑
i=1

m

∑
j=1

pα
Ej
(Hi)q(Ej) =

m

∑
j=1

q(Ej)
n

∑
i=1

pα
Ej
(Hi) =

m

∑
j=1

q(Ej) = 1
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However, pushing down the lump in the carpet here just causes it to
pop up unwanted elsewhere. In this case, using this trick leads to a prior
that violates the Principal Principle, the extra norm of Bayesianism that we
met above.

Return once more to our urn and the case in which we draw just a single
ball. H1 says that the chance of drawing a violet ball is two-thirds, while H2
says the same for drawing a green ball. E1 is your evidence if you draw a
violet ball, and E2 is your evidence if you draw a green ball. The Principal
Principle demands that, if q is your prior, then

q(E1|H1) =
2
3
= q(E2|H2)

But according to the construction of the prior we’ve just described,

q(E1|H1) =
q(H1E1)

q(H1E1) + q(H1E2)
=

pε
E1
(H1)q(E1)

pε
E1
(H1)q(E1) + pε

E2
(H1)q(E2)

=

2+6c
3+6c q(E1)

2+6c
3+6c q(E1) +

1
3+6c q(E2)

=

(2 + 6c)q(E1)

(2 + 6c)q(E1) + q(E2)

and

q(E2|H2) =
q(H2E2)

q(H2E1) + q(H2E2)
=

pε
E2
(H2)q(E2)

pε
E1
(H2)q(E1) + pε

E2
(H2)q(E2)

=

2+6c
3+6c q(E2)

1
3+6c q(E1) +

2+6c
3+6c q(E2)

=

(2 + 6c)q(E2)

q(E1) + (2 + 6c)q(E2)

Now, if q satisfies the Principal Principle, then q(E1|H1) = 2
3 = q(E2|H2).

And if that’s the case, then it is easy to see from the equations we’ve just
set down that q(E1) = q(E2). But then, by those same equations,

q(E1|H1) =
2 + 6c
3 + 6c

and q(E2|H2) =
2 + 6c
3 + 6c

But then q(E1|H1) =
2
3 = q(E2|H2) only if c = 0. So q satisfies the Principal

Principle only if c = 0 and the explanationist’s rule is just Bayes’ Rule.
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So, if we want to give an extra boost to the best explanation of our total
evidence over and above what Bayes’ Rule already gives it, and we wish to
avoid Lewis’ sure loss argument against violations of Bayes’ Rule, we must
pick a prior that violates the Principal Principle. And while the Converse
Dutch Book Theorem ensures that there is no sure loss argument against
violations of the Principal Principle that satisfy probabilism, there is an ex-
pected loss argument against it (Pettigrew, 2020, Section 2.8). It turns on
the following fact: if you violate the Principal Principle, there is a set of
bets that your credences will require you to enter into such that, whatever
the objective chances are, those chances will expect you to lose money from
those bets.

Douven himself recognises that the prior he constructs to match with a
non-Bayesian updating rule might leave it vulnerable to some sort of bet-
ting argument. But he contends that such vulnerability is no threat to your
rationality. After all, you could see your sure loss or expected loss coming,
and simply refuse to enter into the final bet that locks you in to that loss
(Douven, 1999, S429-S434).

One problem with this response is that, if it works against the expected
loss argument for the Principal Principle, it also works against the sure loss
argument for probabilism, since the sure loss there is just as visible to the
person who violates probabilism as it is to the imagined bookie. However,
the real problem with Douven’s argument is that this ‘look before you leap’
strategy works against neither argument. Suppose that you satisfy proba-
bilism but violate the Principal Principle, which is what Douven’s strategy
requires of you. And suppose that, faced with a decision problem, ratio-
nality requires you to choose by maximizing expected utility. Then it turns
out that you should accept each bet offered in the expected loss argument
for the Principal Principle, since each maximises expected utility for you;
and this is true even if you take into account the bets that you’ve already
accepted (Pettigrew, 2020, Section 3.4). So even at the final stage of the
expected loss argument, where there is just one more bet to consider, and
you know what you’ve already accepted and you can see that accepting
this final bet locks you in to an expected loss, accepting it still has greater
expected utility from the point of view of your credence function than re-
jecting it. So even if you do look before you leap, and even if you do see
what awaits you should you leap, your credences still rationally require
you to leap. Indeed, it is this that renders them irrational.

1.3 Further pragmatic arguments for Bayes’ Rule

This brings us to Douven’s second objection to van Fraassen’s argument.
The sure loss argument for Bayes’ Rule presents vulnerability to a sure loss
as a flaw that renders an updating rule irrational. But it is a very peculiar
sort of flaw. On the one hand, when it manifests, it will lose you money
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for sure, and there is no limit to the amount of money it will lose you,
since the stake S of the bets may be set as high as you like. But, on the
other hand, the set of choices you must face in order that the flaw becomes
manifest is very specific and quite unlikely to arise. So, if you think other
decision problems are more likely, and if the credences your updating rule
bequeaths to you serve you better when you face those than the credences
that Bayes’ Rule demands, then you might well think that this outweighs
the flaw of vulnerability to a sure loss.

I’m very sympathetic to the starting point of this argument. I agree that
vulnerability to a sure loss does not, on its own, render credences irrational.
But I think the prospects are bleak for finding some virtue of alternative up-
dating rules that compensates for this flaw. The reason is that the sure loss
argument is by no means the only argument for Bayes’ Rule that appeals to
how well your credences serve you as a basis for decision-making. In the
following two sections, I’ll describe two more.

1.4 The expected pragmatic utility argument for Bayes’ Rule

The first is due to Peter M. Brown (1976) and it is perhaps best seen as a
generalization of I. J. Good’s Value of Information Theorem (Good, 1967).7

The set up is this. I am about to learn some evidence. After I learn this
new evidence, I’ll face a decision—that is, I’ll have to choose between a
set of available acts. I’ll make this choice by maximising expected utility
from the point of view of my credences at that time. How, then, should
I plan to update my credences, knowing that I’ll use them to make this
decision? Good showed that, if your only two options are to use Bayes’
Rule to update or to simply stick with your prior when the evidence comes
in, then your prior expects Bayes’ Rule to produce posteriors that guide
your choice after the evidence comes in better than sticking with your prior
does. Brown generalizes this by showing that your prior expects Bayes’
Rule to produce posteriors that guide your actions better than any available
updating rule.

Suppose:

• your prior is p;

• the evidence you’re about to receive will be a proposition from the set
E , and suppose that those propositions are mutually exclusive and
exhaustive—that is, E is a partition; if w is a possible world, Ew is the
unique proposition in E that is true at w;

• α is an updating rule that tells you to adopt pα
E if you start with p and

learn E from E ; we write pα
w for pα

Ew
—that is, pα

w is the posterior you

7It’s pretty clear that Savage already knew Good’s theorem when he wrote The Founda-
tions of Statistics (Savage, 1954, Section 7.3).
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would end up with if you were to update the prior p on the evidence
you would receive from E at world w;

• if a is an act and w is a possible world, a(w) is the utility of a at w; and

• if q is a credence function, aq is an act that maximizes expected utility
by the lights of q, so that

∑
w∈W

q(w)aq(w) ≥ ∑
w∈W

q(w)a(w)

for all acts a.

Then the expected utility of updating your prior p using the rule α is:

Expp(Use rule α) = ∑
w∈W

p(w)apα
w(w)

In particular, the expected utility of updating using Bayes’ Rule β is:

Expp(Use rule β) = ∑
w∈W

p(w)apβ
w(w)

Now, for any world w, by the definition of apβ
w ,

∑
w′∈W

pβ
w(w′)apβ

w(w′) ≥ ∑
w′∈W

pβ
w(w′)apα

w(w′)

So, since pβ
w(w′) =

p(w′)
p(Ew)

if w′ is in Ew and pβ
w(w′) = 0 if w′ is not in Ew,

∑
w′∈Ew

p(w′)apβ
w(w′) ≥ ∑

w′∈Ew

p(w′)apα
w(w′)

But of course, if w′ is in Ew, then Ew′ = Ew and pβ
w′ = pβ

w and pα
w′ = pα

w. So

∑
w∈W

p(w)apβ
w(w) ≥ ∑

w∈W
p(w)apα

w(w)

So

Theorem 1 (Expected pragmatic argument) For any prior p,

Expp(Use rule β) ≥ Expp(Use rule α)

And, if there is a world w such that (i) apβ
w 6= apα

w and (ii) p(w) > 0, then this
inequality is strict.
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That is, if you give any prior credence to ending up with a posterior that
chooses differently from how the Bayesian’s posterior will choose, then
your prior expects updating using β to be strictly better. So, if we must
make a choice after receiving some evidence, our prior expects us to make
that choice best if we choose using the posteriors we get by updating using
Bayes’ Rule.

Of course, we are not often in the precise situation covered by this re-
sult. Rarely do we know which decisions we will face using the posteriors
that our updating rule bestows on us when we deploy it on our next piece
of evidence. What’s more, an updating rule doesn’t just give you the cre-
dences you will use to make decisions after you receive this piece of evi-
dence. It also gives you the credences you will update when you receive
the next piece of evidence after that. And then the credences you will up-
date when you receive the next piece of evidence after that. And so on. So
we should be concerned not only with the choices that our updated cre-
dences mandate, but also the choices that our updated updated credences
mandate and our updated updated update credences, and so on.

Fortunately, Brown’s reasoning goes through even for this more com-
plex but more realistic situation, provided we grant a certain assumption,
which we’ll explain below. Here’s the setup. Suppose p is your prior. Sup-
pose t1, . . . , tn are the times during your epistemic life. For each 1 ≤ i ≤ n,

• Your total evidence at ti is a proposition in the partition Ei; Let Ew,i be
the total evidence from Ei that you will have at time ti at world w.8

• If α is an updating rule and w is a possible world, pα
w,i is the credence

function you reach in world w by time ti if you start with prior p and
successively apply α to the total evidence you’ll have at that world at
each time t1, . . . , ti.

• The decision problem you will face at ti comes from the setDi. We can
assume without loss of generality that you just face a single decision
problem at each time ti. If you face two, we just combine them into
a single composite one.9 Let Dw,i be the decision problem in Di that
you face at time ti in world w.

• 0 < λi < 1 is the weight that records how much you care about the
pragmatic utility your credences obtain for you at time ti.

8Since we assume that total evidence is cumulative, so that your total evidence at a later
time is strictly stronger than your total evidence at an earlier time, it follows that each Ei+1
is a fine-graining of Ei—that is, each proposition in Ei, there is a set of propositions in Ei+1
that partitions it.

9Here’s how to do that: Suppose decision problem D consists of available acts A and D′

consists of available acts A′. Then define D× D′ to be the decision problem with available
acts A× A′ = {(a, a′) : a ∈ A & a′ ∈ A′}, where (a, a′)(w) = a(w) + a′(w).
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• Given credence function q and decision problem D, let aq
D be the act

in D that maximises expected utility from the point of view of q.

Then:
ExpΛ

p (Use rule α) = ∑
w∈W

p(w)∑
ti

λia
pα

w,i
Dw,i

(w)

Now we introduce the assumption we must make if we are to extend Brown’s
proof: for any time ti, for any total body of evidence E in Ei, and for any
decision problem D in Di, p(w|ED) = p(w|E). Assuming that, we can
prove:

ExpΛ
p (Use rule β) ≥ ExpΛ

p (Use rule α)

After all, for any world w and any time ti, by the definition of a
pβ

w,i
Dw,i

,

∑
w′∈W

pβ
w,i(w

′)a
pβ

w,i
Dw,i

(w′) ≥ ∑
w′∈W

pβ
w,i(w

′)a
pα

w,i
Dw,i

(w′)

So

∑
w′∈W

p(w′|Ew,i)a
pβ

w,i
Dw,i

(w′) ≥ ∑
w′∈W

p(w′|Ew,i)a
pα

w,i
Dw,i

(w′)

But, by our assumption, p(w′|Ew,i) = p(w′|Ew,iDw,i), so

∑
w′∈W

p(w′|Ew,iDw,i)a
pβ

w,i
Dw,i

(w′) ≥ ∑
w′∈W

p(w′|Ew,iDw,i)a
pα

w,i
Dw,i

(w′)

So,

∑
w′∈Ew,i Dw,i

p(w′)a
pβ

w,i
Dw,i

(w′) ≥ ∑
w′∈Ew,i Dw,i

p(w′)a
pα

w,i
Dw,i

(w′)

But of course, if w′ is in Ew,iDw,i, then Ew′,i = Ew,i, Dw′,i = Dw,i, and thus
pβ

w′,i = pβ
w,i and pα

w′,i = pα
w,i. So

∑
w∈W

p(w)∑
ti

λia
pβ

w,i
Dw,i

(w) ≥ ∑
w∈W

p(w)∑
ti

λia
pα

w,i
Dw,i

(w)

And thus

Theorem 2 (Longitudinal expected pragmatic argument) For any prior p,

ExpΛ
p (Use rule β) ≥ ExpΛ

p (Use rule α)

And, if there is a time ti and a world w such that (i) apβ
w,i 6= apα

w,i and (ii) p(w) > 0,
then this inequality is strict.
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That is, if you give any prior credence to ending up at some point with a
posterior that chooses differently from how the Bayesian’s posterior will
choose at that point, then your prior expects updating using β to be strictly
better.

The problem with the sure loss argument for Bayes’ Rule is that it de-
clares any alternative updating rule irrational just because there is a very
specific decision problem you might face where your priors, together with
the credences issued by that updating rule, serve you very badly indeed—
to wit, they lead you to accept a sure loss. Douven’s worry is that, while this
is certainly a strike against non-Bayesian updating rules, it is a shortcoming
for which they might compensate in other ways. The foregoing expected
pragmatic utility argument pours cold water on that hope. Whichever se-
ries of decision problems you might face at whatever stage of your epis-
temic life, and almost whatever prior credences you have in facing those
decisions, you will be served best by updating using Bayes’ Rule. Or at
least that is what your prior expects.

Now Douven notes that we surely care more about the actual pragmatic
utility of adopting a particular updating rule than about its expected prag-
matic utility. So does the foregoing argument tell us nothing until we find
out which rule maximizes actual pragmatic utility? Surely not. This ob-
jection mistakes the reason we care about expected pragmatic utility. We
care about it precisely because we care about actual pragmatic utility. It is
our best way of choosing options when maximizing actual pragmatic util-
ity is our aim but our ignorance of what the actual world is like prevents us
from maximizing that directly. When I have a headache and choose which
painkiller to take, I ask myself which will minimize my expected pain. I
do this not because I care about expected pain in itself, but because I care
about my actual pain, and I think minimizing expected pain is my best shot
at minimizing that.

If we know more about the actual world than is encoded in our prior,
then we should incorporate that new information into our prior and then
do whatever maximizes expected pragmatic utility from the point of view
of this new updated prior. And, again, the advice will be to follow Bayes’
Rule, but this time applied to our updated prior. It is no surprise that, if
we know more about the actual world than our prior does, we can find
updating rules that actually outperform what our prior expects to do best.
If I know that, in fact, the urn contains two violet balls and one green ball,
while my prior assigns only credence 0.5 to that hypothesis, then I can sim-
ply update by setting my credence in that hypothesis to 1, regardless of the
further evidence I observe, and that will actually outperform Bayes’ Rule
as applied to my prior. But that is no objection to the expected pragmatic
utility argument for Bayes’ Rule.
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1.5 The pragmatic utility dominance argument for Bayes’ Rule

In any case, Brown’s expected pragmatic utility argument suggests a new
argument for Bayes’ Rule that might better satisfy someone who feels that
maximising expected utility is not our best shot at maximising actual util-
ity. The idea behind the argument is drawn from a brief section in Savage’s
seminal 1971 paper on eliciting credences using scoring rules (Savage, 1971,
Section 7). It is developed a little by Schervish (1989), and made more ex-
plicit by Levinstein (2017), and then by Pettigrew (2020, Section 6.3).

In the extended version of Brown’s argument that we presented above,
we assess update rules by the utility they obtain for us when we use the
credences they provide to make choices. Why not then use this to give an
explicit measure of the pragmatic utility of a credence function at a world?
Here’s the idea. As above, we can assume that, for each credence function
you have during your epistemic life, you will face only one decision prob-
lem armed with it. Let’s focus on a particular credence function q for the
moment. Let C be an objective chance distribution that says how likely a
particular decision problem is to be the one you face armed with q. That
is, C is a probability distribution over the space of possible decision prob-
lems, where such a problem is specified by (i) the number of acts available
to the chooser, which we can assume is bounded by some very large finite
number; and (ii) for each act and each world, the utility of that act at that
world, which might take any real number. If there were just finitely many
decision problems D in the set D of decision problems you might face with
q, then we’d define the pragmatic utility relative of q at a possible world w
relative to the chance distribution C as follows:

UC(q, w) = ∑
D∈D

C(D)aq
D(w)

where C(D) is the chance that you’ll face decision problem D armed with
credence function q. Thus, UC(q, w) is the expected utility at world w of
the choice you will make when you use q to make your decisions, where
the probability that goes into the expectation is not the probability of the
world, since that is fixed to be w, but the probability that you will face that
decision problem. Of course, in reality, there are infinitely many decision
problems you might face armed with a particular credence function, and
so we must use an integral rather than a summation:

UC(q, w) =
∫
D

aq
D(w)dC

Building on Savage’s observation, we can see that, if we make certain as-
sumptions about C, U has two important properties:

Continuity of UC
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For each world w, UC(q, w) is a continuous function of q.

We ensure this by ensuring that C is continuous over the space
of possible decision problems.

Strict Propriety of U

UC is strictly proper. That is, for any two probability functions
p 6= q,

Expp(UC(p)) = ∑
w∈W

p(w)UC(p, w) > ∑
w∈W

p(w)UC(q, w) = Expp(UC(q))

So p expects itself to do better as a guide to action than it expects
any other credence function to do.

Without any restrictions on C, we have

Expp(UC(q)) = ∑
w∈W

p(w)UC(q, w) =

∑
w∈W

p(w)
∫
D

aq
D(w)dC =∫

D
∑

w∈W
p(w)aq

D(w)dC =
∫
D

Expp(aq
D)dC

Now, by the definition of ap and aq,

Expp(ap
D) ≥ Expp(aq

D)

So we have
Expp(UC(p)) ≥ Expp(UC(q))

What’s more, if there is a set Dp,q ⊆ D of decision problems to
which C assigns positive credence such that ap

D 6= aq
D for all D

in Dp,q, ∫
D

Expp(ap)dC >
∫
D

Expp(aq)dC

and
Expp(UC(p)) > Expp(UC(q))

So UC is strictly proper if there is such a set Dp,q for any two
probabilistic credence functions p and q.

We can now give the second pragmatic argument for Bayes’ Rule. The
setup is very similar to before. As before, t1, . . . , tn are the times in your
epistemic life at which you’ll receive new evidence, and t0 is the time at
which you have your prior. For each 1 ≤ i ≤ n:

• Ei is the partition from among which your total evidence at ti will
come;
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• pα
w,i is the credence function you will reach in world w by time ti if

you use α to successively update your credences on the total bodies
of evidence you’ll have at the various times in that world leading up
to ti;

• Di is the set of possible decision problems you might face at ti;

• Ci is the objective chance function overDi that determines how likely
you are to face a particular decision problem in that set at ti;

• 0 < λi < 1 is the weight that records how much you care about the
pragmatic utility your credences obtain for you at time ti.

Then the pragmatic utility of a prior p together with an updating rule α is

U((p, α), w) = λ0UC0(p, w) + λ1UC1(pα
w,1, w) + . . . + λnUCn(pα

w,n, w)

But then it is possible to show the following:

Theorem 3 (Longitudinal pragmatic dominance argument) Suppose each UCi

is continuous and strictly proper. Then:

(I) If p is your prior and α is not Bayes’ Rule, then there is a prior q such that,
for all w,

U((p, α), w) < U((q, β), w)

(II) If p is your prior, there is no q, α such that, for all w,

U((p, β), w) < U((q, α), w)

This is a straightforward generalization of the mathematical result at the
heart of Briggs and Pettigrew’s paper, even though we here consider U as
a measure of pragmatic utility, while Briggs and Pettigrew consider it a
measure of accuracy (Briggs & Pettigrew, 2020). So, if you plan to update at
any point in your epistemic life using any updating rule other than Bayes’
Rule, then there is an alternative prior you might have such that you would
obtain greater pragmatic utility over the course of your epistemic life if you
were to adopt that alternative prior and update it using Bayes’ Rule. And
if you plan always to update by Bayes’ Rule, that won’t happen.

The upshot: not only does Brown’s result show that Bayes’ Rule is the
updating rule that your prior expects to obtain for you the most pragmatic
utility; it is also the only rule that renders your priors and posteriors, taken
together, undominated when their value at a world is measured by the ex-
pected utility of the actions they’ll lead you to choose. These two argu-
ments address slightly different issues. Brown’s argument imagines that
you have a prior and you are in the market for an updating rule, and it
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tells you how to choose that. It tells you to choose Bayes’ Rule. The ar-
gument inspired by Savage’s remarks and based on Briggs and Pettigrew’s
theorem, on the other hand, imagines that you have yet to pick any of your
credal furniture and you are therefore shopping around for both prior and
updating rule. It tells you to pick a prior and Bayes’ Rule. Together, they
are a formidable obstacle to any claim that rules other than Bayes’ Rule
bring pragmatic benefits.

1.6 Getting to the truth faster

Nonetheless, Douven thinks there is a pragmatic virtue of the explanation-
ist’s rule that might save it from irrationality. He does not consider the two
pragmatic arguments just described, so we can’t know whether he thinks
those virtues outweigh the flaws those arguments identify, but let’s con-
sider the matter ourselves.

In short, Douven claims that the explanationist’s update rule ε might
lead us to converge to the truth more quickly than Bayes’ Rule β (Douven,
2013, 2021). He uses computer simulations of their performance to support
this conclusion. The example he uses is a slight variation of the urn case
we described above. Instead of three balls, there are ten in this urn; but, as
before, all are coloured violet or green; and, as before, you know nothing
of the distribution. There might be no violet and ten green (H0), one violet
and nine green (H1), and so on up to nine violet and one green (H9), and
ten violet and no green (H10). So Hi is the hypothesis that there are exactly
i violet balls in the urn. In this context, the explanationist’s updating rule
works on a prior p like this:

pε
E(Hi) :=

p(E|Hi)p(Hi) + f (Hi, E)
∑n

j=1
(

p(E|Hj)p(Hj) + f (Hj, E)
)

where f (Hi, E) divides a fixed award c between the best explanations of
E; that is, in this case, where Hi is a better explanation for E than Hj iff
p(E|Hi) > p(E|Hj) and at most two hypotheses can be the best explana-
tions,

fc(Hi, E) =


c if P(E|Hi) > P(E|Hj) for all j 6= i
1
2 c if P(E|Hi) = P(E|Hj) > P(E|Hk) for all k 6= j, i
0 otherwise

Douven begins by making precise what he means by converging to the
truth. He sets a threshold—in particular, he picks 0.9, though it seems plau-
sible that we’d see the same phenomenon for other values. And he says
that a credence function leads us to assert the truth of the hypothesis if it
assigns it credence above that threshold. Then, for each possible composi-
tion of the urn, he asks a computer to simulate drawing a ball, looking at
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it, and replacing it 500 times in a row; and he asks it to do that 1,000 times.
He also asks the computer to start with two uniform priors over the eleven
hypotheses H1, . . . , H10 about the urn’s contents and then to update one of
them after each draw using Bayes’ Rule and to update the other after each
draw using the explanationist’s rule. Then, for each draw from the urn, he
looks at the proportion of those 1,000 sequences of 500 draws at which up-
dating using Bayes’ Rule leads to credences in the true hypothesis that first
cross the 0.9 threshold at that draw, and the proportion at which updat-
ing using the explanationist’s rule leads to credences in the true hypothesis
that first cross the 0.9 threshold at that draw. That is, for each draw, he asks
how likely it is that Bayes’ Rule ‘gets it right’ for the first time at that draw,
and how likely it is that the explanationist’s rule ‘gets it right’ for the first
time at that draw. And he asks for which of the two updating rules does
the draw at which it first ‘gets it right’ occur earliest. For each possible bias,
his simulations show, it is the explanationist’s rule. He then asks the same
question but not for the draw with the highest chance of your rule getting it
right, but for the draw with the highest chance of your rule getting it right
and remaining right, where by that he means that the credence in the true
hypothesis crosses the threshold and stays there for the remainder of the draws.
And again it is the explanationist’s rule.

One problem with this argument is that it isn’t clear how impressive
explanationism’s victory is here. Consider, for instance, the following up-
date rule. Whatever prior it is given, it recommends no change until you
have seen ten draws from the urn. Then, if the first ten draws contain ex-
actly i purple balls, assign credence 1 to hypothesis Hi, which says the urn
contains exactly i purple balls, and 0 to all the others. Then never change
your credences again, whatever further draws you witness. Now, for each
bias Hi, run the same 1000 versions of the sequence of 500 draws from the
urn. At which draw is it most likely this rule will lead to credence greater
than 0.9 in the true hypothesis for the first time? And at which draw is it
most likely to do that and then never fall below that threshold again? Well,
it’s the tenth draw for both, of course. Granted, it might not get it right at
that toss. And indeed if it doesn’t it never will. But if it’s going to do it,
it’s going to do it then. Indeed, consider the rule that behaves exactly like
this, but instead of assigning credence 1 to Hi when you see i purple balls
among the first ten draws, it instead assigns 1 to H1 if no purple balls are
drawn, it assigns 1 to H2 if exactly one purple ball is drawn, it assigns 1 to
H3 if exactly two purple balls are drawn, and so on until it assign 1 to H10
if exactly nine purple balls are drawn, and 1 to H0 if ten purple balls are
drawn. Again, it’s most likely to get it right for the first time at the tenth
draw, and most likely to get it right and stay right at that same draw. So
these two rules outperform both Bayes’ Rule and the explanationist’s rule
according to the measure that Douven introduces. But these are, of course,
terrible rules. And that suggests that we should not care much about this
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measure of convergence to the truth.
Now, you might wonder what this all has to do with pragmatic utility.

Here is Douven:

[I]magine that the hypotheses concern some scientifically inter-
esting quantity—such as the success rate of a medical treatment,
or the probability of depressive relapse—rather than the bias of
a coin, and the tosses are observations or experiments aimed at
determining that quantity. Which researcher would not want
to use an update rule that increases her chances of being in a
position to make public a scientific theory, or a new medical
treatment, before the (Bayesian) competition is? (Douven, 2021,
103)

Well, here is one answer: a researcher who wishes to update in a way that
gives her posterior credences that her prior expects will lead her to the
best choice when she uses them to face decisions. And Brown’s expected
pragmatic utility argument from above says that Bayes’ Rule does this. We
might suppose that the researcher will receive a stream of data, some parcel
at each of a number of successive times. At each time, they’ll face the same
decision: make the new treatment public, or don’t. The decision whether to
announce a new treatment is always difficult. If you announce early and it’s
safe and effective, you prevent lots of suffering. If you announce early and
it’s safe but ineffective, you prevent no suffering, but equally you cause
none, but perhaps you precipitate some loss of faith in medical science.
And so on. So our researcher tries to quantify the utility of these different
outcomes, assign credences to the different possibilities, and choose. But if
they know that, at each time, they’ll choose whether or not to make their
treatment public by maximising their expected utility by the lights of their
credences at that time, we know from the result of the previous section that
they should update using Bayes’ Rule. They will expect their future choices
to have lower utility if they update in any other way.

This point is relevant also to a game Douven describes that pits the
Bayesian against the explanationist, and is intended as another way to find
out which converges to the truth faster. Again, in this game, balls are drawn
and replaced from an urn containing ten balls, each violet or green; again,
we don’t know how many of each colour. After each draw, the Bayesian
and the explanationist update the uniform prior using their favoured rule.
And, at each point, they raise their hand if their credence in one of the
hypotheses has risen above 0.9. The scoring system is then somewhat elab-
orate. Before we consider it, let’s consider a slightly different, but much
simpler system. If a player does not raise their hand on a given draw,
they add 0 points to their total; if they do raise it and the hypothesis in
which their credence is above 0.9 is true, they receive 1 point; if they raise
it and the hypothesis is false, they lose 1 point. Now, I don’t know which
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player will typically win this game, but it wouldn’t surprise me at all if it
is the explanationist. Nonetheless, I don’t think this would tell against the
Bayesian. After all, given that reward structure, raising you hand exactly
when your credence in a hypothesis rises above 0.9 is just not what the
Bayesian would choose to do. Rather, they would raise their hand when-
ever they would maximise expected utility by doing so, and that would
be whenever their credence in a hypothesis rose above 0.5. After all, they
would then have greater than 0.5 credence that they would obtain 1 point
by raising their hand, and less than 0.5 credence that they would lose 1
point by doing so. And so raising their hand will have positive expected
utility, which is greater than the guaranteed utility of 0 that keeping their
hand lowered will have.

So it is no great criticism of Bayesianism that their credences lead them
to have fewer points at the end of a game in which they wouldn’t have cho-
sen to play the way they were forced to play. One lesson from the literature
on epistemic consequentialism is that, for any epistemic behaviour what-
soever, however rational, we can create a way of scoring epistemic states
on which it performs poorly (Jenkins, 2007; Greaves, 2013; Ahlstrom-Vij &
Dunn, 2018; Jenkins & Elstein, ta). Imagine this game: at successive stagess,
I work through the propositions to which you assign credences and I ask
you to report your credence in that proposition and in its negation. The
points you receive at each turn is the difference between 1 and the sum of
your credences in that turn’s proposition and its negation. Many incoher-
ent agents will win this game against a coherent agent. But that does not
tell against probabilism.

Now, in Douven’s version of this game, things are slightly more com-
plicated. Nonetheless, the same problem arises. For him, the points you
receive at a given draw depend not only on your credences, but also on
your opponent’s. Here are possibilities:

Raise & Right Raise & Wrong Don’t Raise
Raise & Right 1, 1 0, 2 0, 1

Raise & Wrong 2, 0 0, 0 1, 0
Don’t Raise 1, 0 0, 1 0, 0

In the simpler version of the game, when each player considered whether
raising their hand or keeping it lowered would maximise expected utility,
they had only to consider their credences in the different hypotheses, since
their score was dependent only on which of those was true. In this game,
since the points they receive depend not only on which hypothesis is true
but also on whether their opponent raises their hand as well, they must at-
tend to their opponent’s credences too. But the problem with the argument
is the same: in each case, neither Bayesian nor explanationist would choose
to raise their hand exactly when their credence in a hypothesis rises above
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0.9. So it is no pragmatic argument against the Bayesian that their update
rule, coupled with a non-Bayesian decision rule governing their play in this
game, performs worse than the explanationist updating rule coupled with
the same non-Bayesian decision rule.

2 Accuracy arguments for Bayes’ Rule

So much, then, for the practical benefits of updating either using Bayes’
Rule or using the explanationist’s alternative or in some other way entirely.
Alongside these practical arguments for Bayes’ Rule, there are also purely
epistemic arguments. These appeal not to how well the update credences
guide action but how accurately they represent the world. The idea is this:
just as full beliefs represent the world accurately by being true, credences
represent the world more accurately the closer they are to the truth, where
a credence in a true proposition is more accurate the higher it is and a
credence in a false proposition is more accurate the lower it is. Assum-
ing veritism, which says that accuracy is the fundamental source of purely
epistemic value, we can give accuracy arguments for norms that govern
credences by showing that, if you violate the norm, your credences are
somehow suboptimal from the point of view of accuracy. Accuracy argu-
ments have been given for probabilism (Joyce, 1998, 2009; Pettigrew, 2016a),
Bayes’ Rule (Greaves & Wallace, 2006; Leitgeb & Pettigrew, 2010; Briggs &
Pettigrew, 2020), the principal principle (Pettigrew, 2013), the principle of
indifference (Leitgeb & Pettigrew, 2010; Pettigrew, 2016b), and norms gov-
erning peer disagreement (Levinstein, 2015), higher-order evidence (Schoen-
field, 2016), and the permissibility of rationality (Horowitz, 2014; Schoen-
field, 2019), among many others. If the accuracy arguments for Bayes’ Rule
succeed, they tell against explanationism. So in this section we consider
them and ask whether they do, indeed, succeed.

The two accuracy arguments for Bayes’ Rule closely mirror the prag-
matic arguments, and indeed they appeal to almost exactly the same math-
ematics. Just as the expected pragmatic argument showed that you will ex-
pect the credences demanded by Bayes’ Rule to serve you best as a guide to
future decision-making, so the expected epistemic utility argument shows
that you will expect the credences demanded by that rule to most accu-
rately represent the world. And just as the pragmatic utility dominance ar-
gument showed that updating your prior using anything other than Bayes’
Rule will ensure there is an alternative prior and updating rule that, to-
gether, better serve as a guide to choice, so the epistemic utility dominance
argument shows updating your prior by anything other than Bayes’ Rule
will ensure there is an alternative prior and updating rule that, together,
more accurately represent the world.

At the heart of accuracy arguments for credal norms lie the measures
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of accuracy. Mathematically, they are very much like the measures of prag-
matic utility we introduced above. Each such measure A takes a credence
function q and a possible world w and returns A(q, w), which measures the
accuracy of q at w. And indeed we assume of these measures the same
properties that we showed our pragmatic utility measures had above:

Continuity of A

For each world w, A(q, w) is a continuous function of q.

Strict Propriety of A

A is strictly proper. That is, for any two probability functions
p 6= q, p expects itself to be more accurate than it expects q to
be.

Expp(A(p)) > Expp(A(q))

Both properties are assumed in nearly all discussions of epistemic utility,
and I won’t rehearse arguments in their favour here. There are many many
accuracy measures that boast them both, but it will suffice to mention just
the most popular pair. Suppose p is a credence function defined on a set
of propositions F . Given a proposition X in F and a possible world w, let
w(X) = 1 if X is true at w and w(X) = 0 if X is false at w. Then:

Brier score First, define the quadratic scoring rule:

• q(0, x) = x2

• q(1, x) = (1− x)2

Then define the Brier score of p at w:

B(p, w) = ∑
X∈F

q(w(X), p(X))

Additive log score First, define the logarithmic scoring rule:

• l(0, x) = x

• l(1, x) = log x + x

Then define the additive log score of p at w:

L(p, w) = ∑
X∈F

l(w(X), p(X))

We then have the following mathematical results. The setup is the same
as in the pragmatic case, except that we don’t assume that there are any de-
cision problems you might face using the credences you obtain from your
prior and your updating rule. So t1, . . . , tn are the times in your epistemic
future, and t0 is the time at which you have your prior. At each time ti your
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total evidence will come from the partition Ei. Ai measures the accuracy
of your credences at time ti. And 0 < λi < 1 is the weight that encodes
how much you care about the accuracy of your credences at ti. Then we
define the longitudinal accuracy of an updating rule α applied to a prior p
as follows:

A(α, w) = λ1A1(pα
w,1, w) + . . . + λnAn(pα

w,n, w)

Then,

Theorem 4 (Longitudinal expected accuracy argument) For any prior p,

∑
w∈W

p(w)A(β, w) ≥ ∑
w∈W

p(w)A(α, w)

And the inequality is strict if there is a world w and a time ti such that (i) pβ
w,i 6=

pα
w,i and (ii) p(w) > 0.

This is the accuracy analogue of the expected pragmatic utility argument
for Bayes’ Rule. It generalizes the argument by Hilary Greaves and David
Wallace that applies when you learn just once (Oddie, 1997; Greaves & Wal-
lace, 2006). It shows that any prior will expect Bayes’ Rule to produce more
accurate credences than it expects any other rule to produce.

And we define the longitudinal accuracy of a prior and updating rule
together as follows:

A((p, α), w) = λ0A0(p, w) + λ1A1(pα
w,1, w) + . . . + λnAn(pα

w,n, w)

But then it is possible to show the following analogue of the pragmatic
utility dominance argument for Bayes’ Rule.

Theorem 5 (Longitudinal accuracy dominance argument) Suppose each Ui
is continuous and strictly proper.

(I) If p is your prior and α is not Bayes’ Rule, then there is a prior q such that,
for all w,

A((p, α), w) < A((q, β), w)

(II) If p is your prior, there is no q, α such that, for all w,

A((p, β), w) < A((q, α), w)

That is, if you are picking priors and updating rules together, only if you
pick a prior and Bayes’ Rule will you avoid accuracy dominance—that is,
if you pick a prior and any other rule, there will be an alternative prior
such that picking that and Bayes’ Rule would produce more total accuracy
in all worlds. This generalises Briggs and Pettigrew’s argument (Briggs &
Pettigrew, 2020).

Before we move on to Douven’s simulation results concerning the ac-
curacy of the two competing updating rules, it’s worth noting how these
results answer one of his concerns. He writes:
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The general problem for the inaccuracy-minimization approach
this points to is that [minimizing accuracy] permits of a number
of different interpretations. For instance, it can be interpreted
as demanding that every single update minimize expected in-
accuracy [...] or that every update minimize actual inaccuracy,
or that every update be aimed at realizing the long-term project
of coming to have a minimally inaccurate representation of the
world, even if individual updates do not always minimize in-
accuracy or expected inaccuracy. (Douven, 2021, 108)

In the longitudinal versions of the expected accuracy and accuracy domi-
nance arguments we just described, we needn’t weight all moments in the
individual’s epistemic life equally. If we are interested primarily in our
long-run accuracy, we can give the lion’s share of the weight to later points
in our life. On the other hand, if we want to maximise getting quick results,
perhaps in time for a big decision at the end of the week, we can shift it all
to the times that lie within the next few days. But whatever we do, the
results will be the same: Bayes’ Rule is the uniquely best rule.10

Nonetheless, Douven thinks there is still a sense in which explanation-
ism does better than Bayesianism from an accuracy point of view (Douven,
2021, Section 4.3). Again, he uses computer simulations to make his point.
This time, he considers sequences of 1,000 draws from our urn. For each
bias, he asks his computer to produce 1,000 such sequences and to update
one uniform prior using Bayes’ Rule after each draw, and one uniform prior
using the explanationist’s rule. After 100, 250, 500, 750, and 1000 draws, he
compares the accuracy of the results of these two updating rules using the
Brier score. He shows that, for any bias and any one of these five staging
posts, the explanationist is more likely to have produced the more accurate
credences of the two; and much more likely for the more extreme biases.

How can we reconcile this fact with the expected accuracy argument
above? Well, as Douven himself notes, in those many cases where the
explanationist does better than the Bayesian, they do only slightly better,
while in the cases where the Bayesian prevails, they do a lot better. So, in
expectation, Bayes’ Rule is superior, even though in most cases, the expla-
nationist’s rule is better. Douven contends that, while this doesn’t tell de-
cisively in favour of the of the explanationist, it does undermine the claim
that accuracy considerations tell decisively in favour of Bayes’ Rule. If we
care about being more accurate most of the time, rather than having great-
est expected accuracy, we should be explanationists. And caring in this
way is reasonable.

This is an interesting result, and it should give Bayesian’s pause. But is
it really reasonable to care about probability of comparative performance
and ignore the distribution of absolute performance? Let’s think how that

10This answers Douven’s objection in footnote 74 (Douven, 2021).
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pattern of caring would play out in a practical decision. Suppose, for in-
stance, I think there are three possible outcomes of a new treatment for a
particular medical condition: on the first, it alleviates the condition a very
small amount; on the second, it alleviates the condition a small amount;
on the third, it exacerbates the condition greatly and indeed produces new
complications far far worse than the original condition. If I’m equally con-
fident in these three possibilities, it doesn’t seem at all reasonable to favour
administering the drug, even though doing so is better in the majority of
cases. Indeed, the very purpose of expected utility theory is to give us the
means to navigate this sort of problem.

You might reasonably respond to this by pointing out that many deci-
sion theorists now think that maximizing expected utility isn’t rationally
mandated. Responding to examples like the Allais paradox, they hold that
it is rationally permissible to use decision rules that give greater weight
to worst-case scenarios than expected utility gives, and it is rationally per-
missible to use decision rules that give greater weight to best-case scenarios
than expected utility gives (Allais, 1953; Quiggin, 1993). Perhaps the best
example of such rules are given by Lara Buchak’s risk-weighted expected
utility theory (Buchak, 2013). I don’t have a settled view on the rational
permissibility of these rules. But I do know that they all obey the domi-
nance or Pareto principle, which says that an option that is worse in every
possible state of the world should be dispreferred. And of course the ac-
curacy dominance result appeals not to expected utility theory, but only to
such a dominance principle.

3 Updating in a social setting

So far, the setting for the stand offs between Bayes’ Rule and explanation-
ism has been the epistemology of individuals. That is, we have considered
only the single solitary agent collecting evidence directly from the world
and updating on it. But of course we often receive evidence not directly
from the world, but indirectly through the opinions of others. I learn how
many positive SARS-CoV-2 tests there have been in my area in the past
week not my inspecting the test results myself but by listening to the lo-
cal health authority. In their 2017 paper, ’Inference to the Best Explanation
versus Bayes’s Rule in a Social Setting’, Douven joined with Sylvia Wen-
mackers to ask how Bayes’ Rule and explanationism fare in a context in
which some of my evidence comes from the world and some from learning
the opinions of others, where those others are also receiving some of their
evidence from the world and some from others, and where one of those
others from whom they’re learning might be me (Douven & Wenmackers,
2017). As for Douven’s studies in the individual setting, Douven and Wen-
mackers conclude in favour of explanationism. Indeed, their conclusion in
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this case is considerably stronger than in the individual case:

The upshot will be that if agents not only update their degrees
of belief on the basis of evidence, but also take into account the
degrees of belief of their epistemic neighbours, then the noted
advantage of Bayesian updating [from (Douven, 2013)] evapo-
rates and explanationism does better than Bayes’s rule on every
reasonable understanding of inaccuracy minimization. (Dou-
ven & Wenmackers, 2017, 536-7)

As before, I want to stick up for Bayes’ Rule. As in the individual setting, I
think this is the update rule we should use in the social setting.

In the individualistic cases we considered above, there’s a single urn
containing a particular number of violet and green balls. The individual
draws and replaces balls one at a time, and updates their credences about
the balls in the urn on the basis of those observations. In the social setting
case, we assume each individual has an urn, and each of these urns has the
same number of violet and green balls in it. So, again, the hypotheses in
question are H0, . . . , H10, where Hi says that every urn contains exactly i
violet balls. As before, we assume each individual has the same uniform
prior over the hypotheses, and obeys the Principal Principle. Douven and
Wenmackers then assume that things proceed as follows:

• STEP (I) Each member draws and replaces a ball from their urn a
certain number of times. This produces their worldly evidence for
this round.

• STEP (II) Each then updates their credence function on this worldly
evidence they’ve obtained. To do this, each member uses the same
updating rule, either Bayes’ Rule or a version of explanationism.

• STEP (III) Each then learns the updated credence functions of the oth-
ers in the group. This produces their social evidence for this round.

• STEP (IV) They then update their own credence function on this so-
cial evidence by taking the average of their credence function and the
other credence functions in the group that lie within a certain dis-
tance of theirs. The set of credence functions that lie within a certain
distance of your own, Douven and Wenmackers call your bounded
confidence interval.

They then repeat this cycle a number of times, and each time an individual
begins with the credence function they reached at the end of the previous
cycle.

Douven and Wenmackers use simulation techniques to see how this
group of individuals perform for different updating rules used in step (II)
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and different specifications of how close a credence function must lie to
yours in order to be included in your bounded confidence interval and
thus in the average in step (IV). The updating rules they consider in step
(II) are the explanationist’s rule for different values of c, the reward that
the rule distributes equally among the best explanations of the evidence.
That is, for c = 0, this update rule is just Bayes’ Rule, while for c > 0, it
gives a little boost to whichever hypothesis best explains the evidence E,
where providing the best explanation for a series of coin tosses amounts
to making it most likely, and if two hypotheses make the evidence most
likely, they split the boost between them. Douven and Wenmackers con-
sider c = 0, 0.1, . . . , 0.9, 1. For each rule, specified by c, they also consider
different sizes of bounded confidence intervals. These are specified by the
parameter δ. Your bounded confidence interval for δ includes each cre-
dence function for which the average difference between the credences it
assigns and the credences you assign is at most δ. Thus, δ = 0 is the most
exclusive, and includes only your own credence function, while δ = 1 is the
most inclusive, and includes all credence functions in the group. Again,
Douven and Wenmackers consider δ = 0, 0.1, . . . , 0.9, 1. Here are two of
their main results:

(i) For each bias other than p = 0.1 or 0.9, there is an explanationist rule
and bounded confidence interval (i.e. c > 0 and some specific δ) that
gives rise to a lower average inaccuracy at the end of the process than
Bayes’ Rule with any bounded confidence interval (i.e. c = 0 and any
δ).

(ii) There is an averaging explanationist rule and bounded confidence
interval (i.e. c > 0 and δ > 0) such that, for each bias other than
p = 0, 0.1, 0.9, 1, it gives rise to lower average inaccuracy than Bayes’
Rule with any bounded confidence interval (i.e. c = 0 and any δ).

Inaccuracy is measured by the Brier score throughout.
Now, you can ask whether these results are enough to tell so strongly

in favour of explanationism, but that isn’t my concern here. Rather, I want
to focus on a more fundamental problem: Douven and Wenmackers’ argu-
ment doesn’t really compare Bayes’ Rule with explanationism. Instead, it
compares Bayes’ Rule-for-worldly-data-plus-Averaging-for-social-data with
explanationism-for-worldly-data-plus-Averaging-for-social-data. So their
simulation results don’t really impugn Bayes’ Rule, because the average
inaccuracies that they attribute to Bayes’ Rule don’t arise from it. They
arise from using Bayes’ Rule in step (II), but something quite different in
step (IV). Douven and Wenmackers ask the Bayesian to respond to the so-
cial evidence they receive using a non-Bayesian rule, namely, Averaging.
And Averaging lies far from Bayes’ Rule.11

11For more on the tension between Averaging and Bayes’ Rule, see (Dawid et al., 1995;
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Why, then, do Douven and Wenmackers use Averaging rather than
Bayes’ Rule for step (IV)? Here is their motivation:

[T]aking a convex combination of the probability functions of
the individual agents in a group is the best studied method of
forming social probability functions. Authors concerned with
social probability functions have mostly considered assigning
different weights to the probability functions of the various agents,
typically in order to reflect agents’ opinions about other agents’
expertise or past performance. The averaging part of our up-
date rule is in some regards simpler and in others less simple
than those procedures. It is simpler in that we form probability
functions from individual probability functions by taking only
straight averages of individual probability functions, and it is
less simple in that we do not take a straight average of the prob-
ability functions of all given agents, but only of those whose
probability function is close enough to that of the agent whose
probability is being updated. (Douven & Wenmackers, 2017,
552)

In some sense, they’re right. Averaging or linear pooling or taking a convex
combination of individual credence functions is indeed the best studied
method of forming social credence functions. And there are good justifi-
cations for it: János Aczél and Carl Wagner and, independently, Kevin J.
McConway, give a neat axiomatic characterization (Aczél & Wagner, 1980;
McConway, 1981); and indeed Richard Pettigrew has argued that there are
accuracy-based reasons to use it in particular cases (Pettigrew, 2019). The
problem is that our situation in step (IV) is not the sort of situation in which
you should use Averaging. Arguments for Averaging concern those situa-
tions in which you have a group of individuals, possibly experts, and each
has a credence function over the same set of propositions, and you want
to produce a single credence function that could be called the group’s col-
lective credence function. Thus, for instance, if I wish to give the SAGE
group’s collective credence that there will be a safe and effective SARS-
CoV-2 vaccine by March 2021, I might take the average of their individual
credences. But this is quite a different task from the one that faces me as
the first individual when I reach step (IV) of Douven and Wenmackers’
process. There, I already have credences in the propositions in question.
What’s more, I know how the other individuals update and the sort of
evidence they will have received, even if I don’t know which particular
evidence of that sort they have. And that allows me to infer from their cre-
dences after the update at step (II) a lot about the evidence they receive.
And I have opinions about the propositions in question conditional on the

Bradley, 2018; Dawid & Mortera, 2020).
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different evidence my fellow group members received. And so, in this sit-
uation, I’m not trying to summarise our individual opinions as a single
opinion. Rather, I’m trying to use their opinions as evidence to inform my
own. And, in that case, Bayes’ Rule is better than Averaging. So, in order
to show that explanationism is superior to Bayes’ Rule in some respect, it
doesn’t help to compare Bayes’ Rule at step (II) + Averaging at step (IV)
with explanationism at (II) + Averaging at (IV). It would be better to com-
pare Bayes’ Rule at (II) and (IV) with explanationism at (II) and (IV).

So how do things look if we do that? Well, it turns out that we don’t
need simulations to answer that question. We can simply appeal to the ac-
curacy arguments we mentioned above: the expected accuracy argument
for picking Bayes’ Rule on the basis of your prior, and the accuracy domi-
nance argument for picking a prior-rule pair where the rule is Bayes’ Rule
applied to the prior.

You might respond to this objection by arguing that applying Bayes’
Rule at (IV) is all well and good if you are a computer or a robot, but it
might require computation that is either not feasible for an ordinary person,
or feasible but not worth their while. After all, it might seem to require a
great deal of work to extract from those posteriors the evidence that gave
rise to them and thus the evidence on which you are going to update using
Bayes’ Rule at (IV). Suppose each individual has drawn and replaced ten
balls at (I). Then the possible evidence an individual might have received
falls into eleven groups: those in which they drew and replaced no violet
balls, those in which they drew and replaced one violet ball, and so on.
Thus, for each of these possibilities, I would have to calculate at (IV) the
posterior that they would have mandated. Only then could I compare those
with the posteriors that my fellow group members have reported in order
to find out what evidence they have. Surely it would be a lot easier to apply
Averaging directly to the reported posteriors, even if by doing so I sacrifice
some accuracy.

I agree. It would be a chore to extract that evidence. But thankfully
this is not the only option. Thanks to a beautiful result due to (Baccelli &
Stewart, ms), we can achieve the same effect by using geometric pooling
instead of the linear pooling that Douven and Wenmackers use. Given a
set of credence functions p1, . . . , pn, their straight geometric pool is defined
as follows:

GP(p1, . . . , pn)(w) =
∏n

i=1 pi(w)
1
n

∑w′∈W ∏n
i=1 pi(w′)

1
n

That is, instead of taking the arithmetic mean of the credences in each
world, we take their geometric mean and normalise. We then have Bac-
celli and Rush’s central result:
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Theorem 6 For any prior p, if E1, . . . , En are compatible pieces of evidence, then

p(−|
n⋂

i=1

Ei) = GP(p(−|E1), . . . , p(−|En))

Thus, I needn’t actually extract the evidence from the reported posteriors. I
can simply apply an alternative pooling method at (IV). That will be equiv-
alent to applying Bayes’ Rule on the extracted evidence and thus has the
same advantages when assessed for accuracy.

4 Choosing your intellectual trajectory

I’d like to finish by taking up a challenge that Douven lays down in passing.
He writes:

[I]n science, we rarely just happen across useful data. Typi-
cally, we must actively search for data, in the many areas of
science that rely on experimentation even produce our data.
Because our time is limited, as is our funding, we constantly
have to make decisions as to which instruments (telescopes, mi-
croscopes, etc.) to construct, which expeditions to undertake,
which experiments to run, and so on. Such decisions will be in-
formed by which hypotheses we deem most promising. Had
we deemed hypothesis H promising, and had we wanted to
compare that with the hypothesis currently dominant in our
field, we might have run a different set of experiments than we
actually did, given that in fact we deemed H′ more promising
than H and were mainly interested in comparing H′ with the
received doctrine. Which hypothesis or hypotheses we deem
most promising, and most worthy of spending our limited re-
sources on, will at least in part depend on how probable they
appear to us, compared to their most direct rivals. If (say) a
Bayesian update makes H more probable than H′, while the
opposite will be the case if we update via some non-Bayesian
update rule, then our decision to use one of these rules may put
us on a very different research path with very different down-
stream consequences than if we had decided to use the other
rule. Which of these paths will eventually lead us to have the
more accurate representation of the world will have nothing to
do with which of the rules minimizes expected inaccuracy of
the piece of evidence now lying before us. (Douven, 2021, 107)

Douven is right, of course. What credences our update rule bestows on us
will determine not just how we’ll choose when faced with practical deci-
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sions, such as whether or not to publicly announce a new medical treat-
ment, but also how we’ll choose when faced with an intellectual decision,
such as which experiment to run next, which hypothesis to pursue, and so
on. So, even if we focus only on our purely epistemic goal of accuracy, we’ll
want credences that lead us to choose how to gather evidence in a way that
maximises the accuracy we obtain after we choose them, perform them,
and update on the results. But of course we have a ready-made answer to
that challenge. The expected pragmatic argument for Bayes’ Rule applies
just as well when the options between which you’ll choose after updating
are whether to pursue one hypothesis or another, or whether to conduct
this experiment or that one, and when the utilities that attach to those hy-
potheses at the different possible worlds are given by the accuracy of the
credence functions you’ll end up with if you do pursue that intellectual
trajectory.

5 Conclusion

Credences play at least two roles in our lives. They guide our actions and
they represent the world. When we decide how we’ll update our credences
in response to evidence, we should pick a rule that leads to credences that
play those roles well. Bas van Fraassen argued that there is a particular way
in which updating other than by Bayes’ Rule leads to credences that guide
action poorly. But, as Igor Douven points out, it’s a pretty weak argument.
Fortunately for Bayes’ Rule, there are now much stronger arguments in
its favour. Some focus on the pragmatic value of credences, others on the
epistemic value. Together, they allow us to answer the sorts of objections to
Bayes’ Rule that Igor Douven has raised using simulations of the two ways
of updating.

This is good news for Bayesians. Is it bad news for those who think
that inference to the best explanation is an important and correct rule of
inference? I think not. If I have convinced you at all, it can only be that any
inference to the best explanation should not require a boost to hypotheses
beyond what can be incorporated into a prior credence function and what
Bayes’ Rule already gives them. But leaves a lot of room for inference to
the best explanation to play a role within the confines of probabilism and
Bayes’ Rule.
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