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For our teachers



Owerall, and ultimately, mathematical methods
are necessary for philosophical progress. . .

— Hannes Leitgeb

There is no mathematical substitute for philosophy.

— Saul Kripke

PREFACE

In formal epistemology, we use mathematical methods to explore the
questions of epistemology and rational choice. What can we know? What
should we believe and how strongly? How should we act based on our
beliefs and values?

We begin by modelling phenomena like knowledge, belief, and desire
using mathematical machinery, just as a biologist might model the fluc-
tuations of a pair of competing populations, or a physicist might model
the turbulence of a fluid passing through a small aperture. Then, we ex-
plore, discover, and justify the laws governing those phenomena, using
the precision that mathematical machinery affords.

For example, we might represent a person by the strengths of their
beliefs, and we might measure these using real numbers, which we call
credences. Having done this, we might ask what the norms are that govern
that person when we represent them in that way. How should those
credences hang together? How should the credences change in response
to evidence? And how should those credences guide the person’s actions?
This is the approach of the first six chapters of this handbook.

In the second half, we consider different representations—the set of
propositions a person believes; their ranking of propositions by their
plausibility. And in each case we ask again what the norms are that govern
a person so represented. Or, we might represent them as having both
credences and full beliefs, and then ask how those two representations
should interact with one another.

This handbook is incomplete, as such ventures often are. Formal epis-
temology is a much wider topic than we present here. One omission, for
instance, is social epistemology, where we consider not only individual
believers but also the epistemic aspects of their place in a social world.
Michael Caie’s entry on doxastic logic touches on one part of this topic,
but there is much more. Relatedly, there is no entry on epistemic logic, nor
any on knowledge more generally. There are still more gaps.

These omissions should not be taken as ideological choices. This material
is missing, not because it is any less valuable or interesting, but because we



failed to secure it in time. Rather than delay publication further, we chose
to go ahead with what is already a substantial collection. We anticipate a
further volume in the future that will cover more ground.

Why an open access handbook on this topic? A number of reasons. The
topics covered here are large and complex and need the space allowed
by the sort of 50 page treatment that many of the authors give. We also
wanted to show that, using free and open software, one can overcome a
major hurdle facing open access publishing, even on topics with complex
typesetting needs. With the right software, one can produce attractive, clear
publications at reasonably low cost. Indeed this handbook was created on
a budget of exactly £0 (~ $0).

Our thanks to PhilPapers for serving as publisher, and to the authors:
we are enormously grateful for the effort they put into their entries.

R P & J.W.
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PRECISE CREDENCES Michael G. Titelbaum

I am more confident than not that I will go in to my office tomorrow. I'm
not certain that I will go, and I haven’t even hit the point of believing that
I will: it is the summer, I have no courses to teach or students to meet,
I may wake up tomorrow and decide it’s not worth the effort. But I'm
more confident that I will go than I am that I won’t. If I had to place my
confidence on a scale of 0 to 100, I'd put it somewhere above 50.

Credences are numerical degrees of confidence. While they could be
expressed as percentages—between 0 to 100, inclusive—it has become
customary to measure them on a scale from 0 to 1. Credences are also often
called “degrees of belief,” though that name may hold the connotation
that they are a species of ordinary, qualitative belief.

It’s better to think of credence not as a kind of qualitative belief, but in-
stead as a member of the same family as qualitative belief. That family—the
family of doxastic attitudes—also includes certainty, disbelief, suspension
of belief, and probably comparative confidence as well. The members
of this family have a variety of commonalities. For example, we tend to
think of credences as taking the same sorts of objects as outright beliefs.
Many authors take these objects to be propositions, and so classify both
credences and beliefs as propositional attitudes. I will follow that trend
here, but if you think beliefs are adopted towards something other than
propositions (sentences, perhaps?), you will be inclined to the same view
about credences.

The theory of credences was developed to address a number of philo-
sophical problems. One was the proper interpretation of “probability”
locutions. If I say, “The probability that I'll go to the office tomorrow is
over 50%,” what does this mean, and what are the truth-conditions for my
utterance? A number of interpretations of probability have been offered
and defended (some of which we will discuss in Section 1.6), and it’s not
clear that every use of the term “probability” should be interpreted the
same way. But one prominent suggestion, the “subjective interpretation of
probability,” is that probability statements express the speaker’s degree of
confidence in a proposition. So my utterance expresses a confidence over
0.5 that I shall go to the office.

Yet even if “probability” statements rarely—or never—express an agent’s
degrees of confidence, such degrees of confidence may still exist, and have
philosophical work to do. Degrees of belief play a prominent role in
traditional decision theory, the classic formal approach to rational choice
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(about which more in Section 2.2). Credences also figure in Bayesian
confirmation theory (Section 2.1), an account of evidential support rivaling
other statistical approaches such as frequentism and likelihoodism. And
they can be applied to such further topics as coherentism, Inference to the
Best Explanation, and social epistemology (Section 2.3).

So if we grant that credences exist, what exactly does it take to possess
one? In line with contemporary behaviorist approaches in psychology, de
Finetti (1937/1964) defined the degree of belief assigned to an event by
an individual as the rate at which she’d bet that it would occur (more
about the details in Section 2.2). But as was typical with operationalism,
this definition ran into problems when, say, an agent displayed inconstant
betting behaviors over time, and so was difficult to assign a particular cre-
dence to. Nowadays we may grant than an agent with a particular degree
of belief will, if rational, display particular betting behavior (Christensen,
2004). But we also tend to think of this normative connection less as a
definition of credence and more as one aspect of what it is to possess a de-
gree of confidence. Just as our account of qualitative belief has progressed
beyond behaviorism to a broader functionalism, we think of credence as a
multi-faceted mental state with descriptive and normative connections to
a wide variety of behaviors and other attitudes.

Besides their connections to desires, intentions, and decisions contem-
plated in action theory and decision theory, credences are connected to
other varieties of doxastic attitudes (not to mention emotions, sensations,
and memories). If comparative confidence is a distinct type of mental state,
it clearly is connected to credence: I am more confident of P than Q just in
case my credence in P is higher than my credence in Q. As for qualitative
attitudes, certainty is often identified with credence 1 in a proposition
(though see Section 1.7 below). There must also be links between credence
and outright belief: if I believe P, my credence in P should be higher than
my credence in ~P.

Can we find a fully general connection between credence and outright
belief? Some authors (e.g., Holton, 2014) maintain that to the extent there
are any credences, to possess credence x in P is just to hold an outright
belief that the probability of P is x. Yet it’s difficult to find a single concept
of probability that applies to every proposition to which an agent might
assign a degree of belief. And it seems agents (such as children) can be
more or less confident of propositions without possessing a concept of
probability. Moreover, whatever concept of probability we select, it seems
conceivable for an agent to adopt a degree of confidence in the proposition
that P has probability x. (We'll see a further technical difficulty with
the credence-as-outright-belief theory in Section 1.2.) Most theorists now
hold that the numerical value of a credence is an attribute of the attitude
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adopted towards a proposition, not part of the content of the proposition
towards which that attitude is adopted.”

Going in the other direction, the “Lockean Thesis”? takes outright belief
just to be credence above a particular threshold. The threshold credence is
usually lower than 1 (belief need not be certainty) but well above 1/2, and
may depend on contextual parameters. The main objection to the Lockean
Thesis is that one can describe rationally acceptable credence distributions
which, by way of the thesis, generate rationally unacceptable patterns of
belief. In the Lottery Paradox (Kyburg, 1961) an agent assigns to each
ticket in a lottery a low credence that it will win, while assigning a high
credence (perhaps certainty) that some ticket will win. For any Lockean
threshold less than 1, we can arrange the numbers so that the agent winds
up believing of each ticket that it will lose, while believing that some ticket
will win—a logically inconsistent overall set of beliefs. Similarly, in the
Preface Paradox (Makinson, 1965), an author has high confidence in each
claim made in her book while also being confident that at least one of
those claims is false. Via the Lockean Thesis this becomes belief in each
conjunct of a conjunction coupled with disbelief in that conjunction.

How, then, to relate credence and outright belief in general? The most
radical possibility is to deny either the existence of beliefs or the existence
of credences. More conservatively, one could offer a reduction of one
category to the other, or at least a principle of descriptive supervenience.
Alternatively, one could grant that while beliefs and credences appear in a
variety of configurations in actual agents, normative principles specify how
they’d align in a rational agent. The current consensus is that something
beyond just the Lockean Thesis would be required to make either of these
approaches work; recent attempts to articulate belief-credence principles
can be found in Leitgeb (2017), Douven (2012), and Lin and Kelly (2012).

On the other hand, one could concede that beliefs and credences are
both genuine kinds of mental states an agent can possess, there are some
ways in which they interact (or interact if one is rational), but no systematic
general principles are available. While this stance is available to strong
realists about beliefs and credences, it is especially attractive to theorists
who read belief and credence ascriptions as convenient, simplifying models
of a highly complex cognitive system. The belief-model and the credence-
model are each effective and efficient in different circumstances, and may
be applied toward different ends. In that case, it would be unsurprising if
no universal translation from one to the other were available.

1 Moss (2018) takes the numerical value to be part of a credence’s content, but takes credal
objects to be more complicated than simple propositions.
2 Locke (1689/1975, Bk. IV). See also Foley (1993) for discussion.
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1 RATIONAL CONSTRAINTS ON CREDENCE

Once we understand what a credence is, the next question is what it takes
for a set of credences to be rational.

1.1 The Probability Axioms

The most generally-accepted rational credence norms are Kolmogorov’s
(1933/1950) axioms. Suppose we have a language L of propositions, which
starts with a finite set of atomic propositions and then closes them under
the standard truth-functional connectives. Define a real-valued function c
over L representing the credence values an agent assigns the propositions
in £.3 The precise, real-number values that c assigns each proposition are
the “precise credences” of this entry’s title; I'll discuss alternative formal
approaches in Section 5 below.
Given this setup, Kolmogorov’s axioms become the following.

NonN-NEgcGaTIviTy. Forany X € £, ¢(X) > 0.
Normarrty. For any tautology T € £, ¢(T) = 1.

FINITE ADDITIVITY. For any mutually exclusive X,Y € L,
c(XVY)=c(X)+c(Y).

Mathematicians often call these the probability axioms, and call any distribu-
tion satisfying them a probability function. Probabilism is the position that
rational credences form a probability function; in other words, rational
credences satisfy the Kolmogorov axioms.*

The probability axioms set 0 < ¢(X) < 1 for every X € L. Probabilism
also entails a number of intuitive constraints on rational credence. Here’s
one example.

o Forany X € £, ¢(~X) =1 —c(X).

Suppose you assign a high confidence that anthropogenic global warming
has occurred. This constraint requires you to assign a low confidence
that no anthropogenic warming has occurred. And should you become
more confident that anthropogenic warming has occurred, this constraint

While I will consider languages containing propositions, other authors describe credences
as distributed over sentences, or sets of possible worlds, or sets of events, etc.
Probabilism is often described as the doctrine that rational agents have credences satisfying
the probability axioms, or (if that’s considered too unrealistic) that ideally rational agents
have probabilistic credences. Both of these formulations make agents (real or ideal) the
targets of evaluation. Strictly speaking, I prefer to evaluate credences (or sets of credences)
for rationality, rather than agents. But for ease of locution I will largely treat the two as
interchangeable here.
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will require your confidence in that proposition’s negation to decrease
accordingly.
Some other intuitive constraints following from the Kolmogorov axioms.

o For any contradiction F € £, ¢(F) = 0.
o For any X,Y € £ (mutually exclusive or otherwise),

c(XVY)=c(X)+c(Y) —c(X&Y).

o

Forany X,Y € £, if X E Y then c(Y) > ¢(X).

o

For any logically equivalent X, Y € £, ¢(X) = ¢(Y).

o

For any finite set of mutually exclusive Xy,..., X, € L,

c(XyV...VXy) =c(X1)+...+c(Xn).

The last bulleted constraint has an important consequence when an agent
considers a partition—a set of propositions whose members are mutually
exclusive and jointly exhaustive. Because the disjunction of a partition’s
elements is a tautology, probabilism demands that the credences assigned
to elements of a partition sum to 1.

A further important consequence of probabilism is that credences are
strongly extensional. If an agent is certain that two propositions X and
Y have the same truth-value (that is, if ¢(X = Y) = 1), then for the sake
of calculating credences X and Y might as well be logically equivalent.
For instance, any credence equation or inequality in which X appears
would remain true were any of its Xs replaced with Ys. Any difference in
meaning, modal profile, etc. is irrelevant to probability once truth-values
are established to be identical.

We can illustrate probabilism with Kyburg’s Lottery example from page
3. Given a lottery with, say, 100 tickets, introduce a language whose atomic
propositions are Wy through Wioy (with W; indicating that ticket i wins the
lottery). If the lottery is fair, an agent might assign c(W;) = 1/100 for each
W;. From our first intuitive consequence of the probability axioms, we then
have c(~W;) = 99/100; the agent is highly confident of each ticket that it
will not win. However, assuming no more than one ticket can win, our
final intuitive consequence listed above yields:

C(Wl\/...\/wloo) :C(W1)+...+C(W100) =1. (1)

So our agent is certain some ticket will win, as intuitively she ought to

be.5

Notice that none of this solves the Lottery Paradox, which brings full beliefs into the lottery
picture. My goal is just to illustrate how probabilism is compatible with and supportive of
a natural account of rational credences in the lottery case. A similar illustration could be
given for Makinson’s Preface example.

5
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While proofs in the probability calculus usually proceed from Kol-
mogorov’s axioms, practical problem-solving is often made easier by work-
ing with state-descriptions. Define a literal to be an atomic proposition
of L or its negation, then define a state-description in £ to be a maximal
consistent conjunction of its literals. Every noncontradictory X € £ then
has a unique disjunctive normal form, a disjunction of state-descriptions
logically equivalent to X.°

Carnap (1950) makes repeated use of the fact that a distribution c
over L satisfies the probability axioms just in case it assigns: (1) non-
negative values to L’s state-descriptions summing to 1; (2) for every
noncontradictory X, a value equal to the sum of the values assigned to the
state-descriptions in X’s disjunctive normal form; and (3) a value of 0 to
every contradictory proposition.”

This result is handy in two ways. First, we can completely characterize
any probability distribution over £ by specifying the values it assigns to L’s
state-descriptions. Second, given partial information about a probability
distribution, we can determine what this information says about the values
assigned to state-descriptions, then from there work out the values of (or
constraints on the values of) other propositions.

For example, suppose I tell you that Bob is certain of P O Q, and is twice
as confident of P as ~P. It immediately follows that Bob’s confidence in
~Q is less than or equal to 1/3. Why? Well, the disjunctive normal form
equivalent of ~Q is (P & ~Q) V (~P & ~Q). Since Bob is certain of P D Q,
the first disjunct receives credence 0, so for Bob ¢(~Q) = ¢(~P & ~Q).
But since ¢(P) + ¢(~P) =1, and ¢(P) = 2 - ¢(~P), we have ¢(~P) = 1/3.
The disjunctive normal form equivalent of ~P is (~P & Q) V (~P & ~Q).
By Non-Negativity Bob’s credence in the first disjunct must be greater
than or equal to 0, so the second disjunct receives a credence less than or
equal to 1/3.8

Finally, with the notion of a probability function in hand we can define
the notion of an expectation. Suppose we have a numerical quantity for
which many values are possible. To calculate an agent’s expectation for
that quantity, we multiply each value times the agent’s credence that the
quantity will take that value, then sum over all the values available. For
example, if I'm 10% confident that I'll go into my office two days this

To make the disjunctive normal form unique, we require literals to appear in a state-
description in some canonical order (perhaps alphabetical, if the propositions are desig-
nated by letters), and then we require state-descriptions to appear in disjunctive normal
forms in a canonical order as well.

I have never been able to discover whether this result was original to Carnap or not. I
would sincerely welcome any e-mails demonstrating its historical provenance!

For more on the mathematical theory underlying this approach, and for a Mathematica
routine that will solve many probability problems once they are reduced to algebra using
state-descriptions, see Fitelson (2008).
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week, 60% confident that I'll go in just one day, and 30% confident that I
won’t go in at all, then my expectation for the numbers of days I'll go into
my office this week is:

0.10 - 2 days + 0.60 - 1 day + 0.30 - 0 days = 0.8 days. (2)

1.2 The Ratio Formula

So far we have discussed unconditional credence—an agent’s degree of
confidence that a particular proposition is true in light of her current
understanding of what the world is like. We may also inquire after an
agent’s conditional credence in proposition X given Y; this is the agent’s
credence in X upon making the additional assumption that Y. Notice that
Y may be a proposition in which the agent currently has low unconditional
credence. In asking for her credence in X given Y, we ask her to set aside
her current actual opinion about Y, temporarily add Y to the stock of
propositions she takes to be true, then assess X in light of this enhanced
suppositional set.?

An agent’s conditional credence in X given Y is denoted ¢(X |Y), and
is usually taken to be governed by the Ratio Formula.

Ratro Formura. Forany X,Y € £ with ¢(Y) > 0,

o(X|Y) = M
c(Y)

The Ratio Formula can be read as either a descriptive truth or as a norma-
tive requirement. On the former approach, an agent’s conditional credence
X given Y takes a particular value just in case her unconditional credences
in X & Y and Y stand in that ratio. This reading is most natural if one wants
to reduce one type of credence to the other: one could hold that to have a
conditional credence just is to have unconditional credences standing in a
particular ratio; or one could hold that conditional credences are basic and
unconditional credences are a proper subset of those.’® Alternatively, one
could see conditional credence as just another type of doxastic attitude on
equal footing with unconditional credences, then read the Ratio Formula

Notice that we are discussing indicative, not subjunctive, conditional credences. The
supposition Y is to be added to the agent’s current set of assumptions about the world, with
the resulting suppositional set assumed to be consistent. Most discussions of conditional
credence concern the indicative form. For a treatment of subjunctive conditional credences,
see Joyce (1999).

From the Kolmogorov axioms and Ratio Formula, it follows that for any X € £, ¢(X) =
¢(X | T). So unconditional credences can be thought of as conditional credences conditional
on a tautology. See Easwaran (this volume) for more.
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as a rational requirement on how conditional and unconditional credences
should align.™
Note that as I've defined the Ratio Formula, it remains silent when the
agent assigns the condition (proposition Y) a credence of 0. We will return
to credences conditional on credence-0 propositions in Section 1.7.
Combining the Ratio Formula and Kolmogorov’s Axioms yields the
handy Law of Total Probability.

Law oF ToraL ProBasiLiTy. For any X,Yi,...,Y, € L such that the
Yi,...,Y, form a finite partition,

c(X)=c(X|Y1)-c(Y1)+...+c(X]|Ya) - c(Yan).

The Law of Total Probability calculates the unconditional credence of X
as a weighted average of X’s credences conditional on members of the
Y-partition, weighted by the unconditional credences in the Ys.'?

To illustrate once more with our lottery scenario, suppose B is the
proposition that our agent will benefit from the outcome of the lottery. She
holds tickets 1 through 3, so is sure to benefit if they win. Also, her sister
holds the very last ticket (ticket 100), and the agent is 1/2 confident that
her sister will share the winnings should that ticket come in. Applying
the Law of Total Probability (and recalling that W; is the proposition that
ticket i will win), the agent’s credence that she will benefit is

c(B) =c(B|W1) -c(W1)+c(B| W) -c(Wa)+c(B|Ws)-c(Ws)
+ C(B | W4) . C(W4> 4+ ...+ C(B | W100> . C(Wmo)

=1-1/100+1-1/100+1-1/100 (3)
+0-1/100+...+1/2-1/100
= 0.035.

Conditional credence also plays a crucial role in the notion of credal
relevance. When 0 < ¢(Y) < 1, all of the following inequalities are equiva-
lent:

c(X[Y) > ¢(X), 4)
c(X) > c(X|~Y), (5)
c(Y|X) > c(Y), (6)
c(Y) > c(Y[~X), (7)
c(X&Y) > c(X)-c(Y). (8)

For a discussion of how conditional credences interact with an agent’s credences in
conditionals, see Briggs (this volume).

Put another way, the Law of Total Probability requires an agent’s unconditional credence
in X to equal her expectation of her credence in X conditional on the true element of the
Y-partition.
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When these inequalities hold, we say that Y is positively relevant to X
on the agent’s credence function. (Since positive relevance is a symmetric
relation, we may also say that X is positively relevant to Y.) Another way
to put this is that the agent takes X and Y to be positively correlated.
Replacing the greater-thans with less-thans describes when Y is negatively
relevant to X (or negatively correlated with X) on an agent’s credences.
On the other hand, when ¢(X & Y) = ¢(X) - ¢(Y) (or any of the other
inequalities above becomes equality), we say that X is irrelevant to Y for
the agent, or probabilistically independent of Y.

These relevance relations are relative to an agent’s credences; they reflect
which propositions she assesses as relevant to each other given her current
understanding of the world. But we can also temporarily enhance her
current set of suppositions about the world, and see whether any relevance
relations change. This takes us from a notion of unconditional relevance
to conditional relevance. Y is relevant to X conditional on Z just in case

(X|Y&Z)>c(X|Z). (9)

For each of the inequalities above, a corresponding characterization of
conditional relevance can be given by adding Z as a condition to the
expressions on each side.

The notion of conditional relevance underlies a crucial notion in the
philosophy of science: screening off. We say that Z screens off X from
Y when X and Y are unconditionally dependent but the following two
equalities hold:

c((X|Y&Z)=c(X|2Z), (10)
c(X|Y&~Z)=c(X|~Z). (11)

In other words, X and Y are independent conditional on each of Z and
~Z. In a screening-off situation, supposing either Z or ~Z makes the
correlation between X and Y disappear.’3

To illustrate one application of this concept, Reichenbach (1956) argues
that a common cause screens off its effects from each other. Suppose X is
the proposition that my newspaper reports that the Yankees won last night,
Y is the proposition that your newspaper reports that the Yankees won
last night, and Z is the proposition that the Yankees actually won. On the
one hand, while I remain ignorant of Z it would be rational for me to treat
X as relevant to Y. X provides information about Z, and therefore also
provides information about Y. But once the truth-value of Z is established,
X and Y lose the ability to say anything about each other; X and Y become

This definition generalizes to the case in which Z is a random variable capable of taking a
variety of values z;. Screening off then occurs when X and Y are unconditionally correlated,
but become independent conditional on each proposition of the form Z = z;.
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independent conditional on any supposition about Z. Thus Z will screen
off X from Y on my credence function.

A proximal cause will also screen off its effect from a distal cause. (Imag-
ine Y states the final score of last night’s Yankees game, Z is the proposition
that the Yankees won, and X is the proposition that my newspaper reports
that they won.) In general, probabilistic correlations (conditional and un-
conditional) can provide useful evidence about the causal relations among
a set of variables. Some philosophers have even defined causality in terms
of probabilistic relations. For more on all of this, see Hitchcock (2012).

One final point about conditional credences. Earlier (p. 2) I mentioned
the theory that a credence of x in P is just the outright belief that the
probability of P is x. There I noted a number of problems for that theory;
now we can add that the theory seems to lack a good way of understanding
conditional credence. A conditional credence c¢(P | Q) of x cannot be read
as a qualitative belief in the proposition “If Q, then the probability of P is
x,” nor can it be read as the belief that “The probability of ‘If Q, then P is
x.” This was established by a series of triviality results initiated by Lewis
(1976)." For instance, Lewis’ work shows that if we assume c¢(P | Q) = x
just in case p(Q — P) = x for some suitable notion of probability p and
some indicative conditional —, then it follows that every proposition is
probabilistically independent from every other! This is obviously absurd. A
conditional credence just isn’t a credence—or a belief—about a conditional.

1.3 Updating by Conditionalization

The rational constraints on credence listed to this point have been
synchronic—when they relate multiple credences, all the credences related
are held at the same time. The degree of belief literature has also proposed
a number of diachronic constraints, governing relations among credences
assigned at different times.

Suppose we have two times, #; and ¢;, with the latter occurring after the
former. Let ¢; and c; be the agent’s credence functions at these two times.
The most traditional, well-established, and well-known diachronic credal
constraint is Conditionalization.

ConNDITIONALIZATION. If E € L represents everything the agent learns
between t; and t;, then for any X € £, ¢j(X) = ¢;(X | E).

The intuitive idea of Conditionalization is simple. Suppose that at t; you
don’t know whether E is true. I ask you to hypothetically suppose E
(temporarily add it to your stock of assumptions about what the world is
like), then ask for your conditional credence in X given this supposition.

14 For the recent state of the art in this area, see Hajek (2011) and Fitelson (2015).
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You offer some number. Then, between ¢; and t;, you learn that E is
actually true (and learn nothing else besides). If I now ask you at ¢; for
your unconditional credence in X, it seems you should offer the same
number you reported as a conditional credence before. After all, the set of
real-world conditions against which you're assessing X is the same at both
times; it’s just that at t; you were supposing E as a fact about the world,
while at ; you know E to be true.

Conditionalization integrates nicely with our other credal constraints.
For instance, if ¢; satisfies the Kolmogorov axioms and ¢;(E) > 0, then
conditionalizing yields a c; distribution that satisfies the axioms as well. So
if an agent begins with a probability distribution and repeatedly updates
by conditionalizing, she is guaranteed to respect probabilism on an ongo-
ing basis. The probability axioms and Ratio Formula also make updating
by conditionalization cumulative and commutative. If you conditionalize
successively on E and then E’, this yields the same result as conditional-
izing just once on E & E’, which means it also yields the same result as
conditionalizing on E’ followed by E.

For a conditionalizing agent, current credences interact in an interesting
way with predictions about future credences. Suppose an agent is certain at
t; that her t; credences will be formed by conditionalizing on a proposition
she will learn from some particular finite partition. (Perhaps she will
conduct an experiment between t; and t;, and the propositions in the
partition represent all of its possible outcomes.) Assuming she meets a few
other plausible side-conditions, such an agent will satisfy the Reflection
Principle.

REFLECTION PRINCIPLE. For any X € £, ¢;(X|¢j(X) =71) =r.

This principle, introduced by van Fraassen (1984), sets the agent’s t; un-
conditional credence in X equal to her t; expectation of her unconditional
t; credence in X.'> Notice that although a ¢; appears in the righthand
expression, the principle governs synchronic credal interactions: it relates
the agent’s ¢; credences in X to her c; credences about her future credences
in X. Given (again) a few side-conditions, Reflection may be derived from
the Kolmogorov axioms, the Ratio Formula, and the agent’s certainty that
she will update by conditionalizing on some member of a particular parti-
tion. Van Fraassen, however, argues in the opposite direction: he provides
independent motivation for Reflection, then views Conditionalization as
a derivable consequence. For more on the arguments in each direction,
and the specific side-conditions required, see Weisberg (2007) and Briggs

(2009).

To see why, return to our formulation of the Law of Total Probability on page 8, and
let each Y; there assert that the agent’s unconditional {; credence in X will take some
particular real value 7.

11
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When an agent repeatedly updates by Conditionalization, she often
finds herself calculating the value of ¢(X | E). This calculation can be
streamlined by a famous theorem.

Bayes” THEOREM. For any X, E € £ with non-zero c-values,

C(X | E) _ C(E | X) ) C(X)
c(E)

Bayes” Theorem has proved so central to the application of Conditional-
ization that theorists who work with degrees of belief are often called
“Bayesians” (or “subjective Bayesians,” or “Bayesian epistemologists”). In a
moment I'll describe why Bayes” Theorem is so useful. But first, it's worth
noting that Bayes’ Theorem is indeed a theorem, easily derivable from the
Kolmogorov Axioms and Ratio Formula.’® Bayesianism has generated a
great deal of controversy, especially among statisticians. But the contro-
versial claim in Bayesianism isn’t that Bayes” Theorem is true. Everyone
agrees that the theorem follows from the Kolmogorov Axioms, and that if
an agent is going to generate new credences over time by conditionaliz-
ing, then the theorem provides a handy tool for calculating post-update
credences from pre-update credences. The controversy is whether agents
should really update their credences by conditionalizing, and whether
scientific inference is best understood as a series of conditionalizations.

Setting this controversy aside, why is the particular analysis of ¢(X | E)
in Bayes” Theorem so useful? Consider a scientific context, in which a
theorist has a finite partition of hypotheses Hj, ..., H, about what’s going
on with some phenomenon. The theorist plans to run an experiment that
she hopes will discriminate among the hypotheses. At time t;, before she
has run the experiment, the theorist has a set of unconditional credences c;,
which we call her priors. The theorist runs the experiment between ¢; and ¢;,
and let’s suppose the observation she makes is represented by proposition
E. Given this new evidence, Conditionalization helps her calculate her
credences at ¢;, which we call her posteriors.

Suppose we're interested in the theorist’s confidence in some particular
hypothesis H,, after the experimental results come in. Applying Condi-
tionalization, Bayes” Theorem, and then the Law of Total Probability to the
denominator of Bayes” Theorem, we derive:

ci(E| Hum) - ci(Hm)

GUHn) = CETH) o) -t olE B oy 2

The theorem is traditionally attributed to the Reverend Thomas Bayes. Though Bayes never
published the theorem, Richard Price found it in his notes and published it after Bayes’
death in 1761. Pierre-Simon Laplace rediscovered the theorem independently later on, and
was responsible for much of its early popularization.
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Consider the components of the right-hand fraction one at a time. First, we
have a number of expressions of the form c;(Hy). These are the theorist’s
priors in the various hypotheses. Presumably going into the experiment
she has some unconditional levels of confidence in the hypotheses she is
considering; these supply the priors in question. Then we have expressions
of the form c;(E | Hy). An agent’s conditional credence in an experimental
result E given some hypothesis H, is called her likelihood for that evidence
on that hypothesis. A well-defined scientific hypothesis should make a
prediction for how the theorist’s experiment will come out, or at least
should assign probabilities to various possible outcomes. These inform
the theorist’s likelihoods for various experimental outcomes (such as E)
on the various hypotheses she entertains. Thus Bayes” Theorem allows the
theorist to form a posterior opinion about each hypothesis H;, that she
entertains, based on the evidence she’s received, her unconditional priors
in the hypotheses, and her ¢; likelihoods—elements that are plausibly all
easily to hand.

1.4 Jeffrey Conditionalization

Statisticians and philosophers of science often worry that Conditional-
ization allows a scientist’s final verdict on a hypothesis to be influenced
by her initial credence in that hypothesis—her personal degree of belief
in the hypothesis before any evidence came in. Epistemologists worry
about Conditionalization’s conception of evidence. It seems that for Con-
ditionalization to work, it must be possible to identify some proposition
E representing everything the agent learns between f; and t;. Moreover,
the agent must become certain of E between t; and t;, because updating
the agent’s credence in E itself using Conditionalization yields ¢;(E) = 1.
Finally, once an agent becomes certain of some proposition, subsequent
updates by Conditionalization will retain that certainty forever.'”

Conditionalization therefore seems to embody a conception of learning
on which what is learned is explicitly summarizable in propositional form,
becomes certain, and is retained ever after. To epistemologists, this is
reminiscent of foundationalist approaches to evidence abandoned decades
ago. It also violates the Regularity Principle, which deems it irrational for
an agent to assign absolute certainty to an empirical proposition. (After
all, what evidence could ever make you entirely certain that some empirical
claim was true?)

To address these problems, Richard C. Jeffrey offers an updating rule
that generalizes Conditionalization to allow for learning experiences in

It’s easy to show that if an agent conditionalizes on E between t; and ¢}, she will have
c]-(E ) =1, and then if she conditionalizes on some other evidence between £ and t;, she
will still have ¢, (E) = 1 as well.

13
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which no certainties are gained. He introduces his rule using the following
example.

The agent inspects a piece of cloth by candlelight, and gets the
impression that it is green, although he concedes that it might
be blue or even (but very improbably) violet. If G, B, and V
are the propositions that the cloth is green, blue, and violet,
respectively, then the outcome of the observation might be that,
whereas originally his degrees of belief in G, B, and V were .30,
.30, and .40, his degrees of belief in those same propositions
after the observation are .70, .25, and .05. (Jeffrey, 1965, p. 154)

Discussing the example, Jeffrey writes:

If there were a proposition E in [the agent’s] preference ranking
which described the precise quality of his visual experience in
looking at the cloth, one would say that what the agent had
learned from the observation was that E is true.... But there
need be no such proposition E in his preference ranking; nor
need any such proposition be expressible in the English lan-
guage. ... The description ‘“The cloth looked green or possibly
blue or conceivably violet,” would be too vague to convey the
precise quality of the experience.... It seems that the best we
can do is to describe, not the quality of the visual experience
itself, but rather its effects on the observer, by saying, “After
the observation, the agent’s degrees of belief in G, B, and V
were .70, .25, and .05.” (Jeffrey, 1965, pp. 154-5)

Jeffrey proposed an updating rule he called “probability kinematics”;
nowadays everyone calls it “Jeffrey Conditionalization.” The rule applies
when an agent’s experience impinges on her credences by altering her
degree of belief distribution across a particular finite partition in £; any
other changes in her credences are caused by the changes to this partition.
If the originating partition is By, ..., By, then Jeffrey’s rule is as follows.

JEFFREY CONDITIONALIZATION. For any A € £,
C](A) = Ci(A ’ Bl) . Cj(Bl) +... —|—Ci(A | Bn) . C]‘(Bn).

Jeffrey did not mean to rule out the possibility that some learning occurs
by certainty acquisition. He just wanted to allow for the possibility of
other types of learning experiences as well. So in the case where one of
the B, goes to certainty (and therefore every other member of the parti-
tion goes to credence-0), Jeffrey Conditionalization reduces to traditional
Conditionalization.
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Let’s see how Jeffrey Conditionalization applies to Jeffrey’s cloth by
candlelight example. Suppose the agent is interested in the proposition
M, that the selected piece of cloth will match her couch. She’s certain
that anything violet will match, she’s certain anything green will not, and
she’s 50% confident that a blue cloth will match. (The match depends
on the specific shade of blue.) Let t; be the time before she inspects the
cloth by candlelight. Using the Law of Total Probability and the initial
unconditional credences Jeffrey provides, we have

ci(M) =c¢;(M|G)-ci(G)+¢ci(M|B)-ci(B)+ci(M]|V)-ci(V)

(13)
=0-30+05-.30+1-.40 = 0.55.

Jeffrey also provides the agent’s unconditional credences in G, B, and V at
t;, after the inspection. With these values, Jeffrey Conditionalization yields

¢j(M) =ci(M|G) - ¢;j(G) +ci(M|B) - ¢j(B) +ci(M| V) - ¢;(V)

(14)
=0-.704+05-.25+1-.05=0.175.

The glimpse by candlelight increases the agent’s confidence that the cloth
is green and decreases her confidence that the cloth is violet, so the Jeffrey-
prescribed posterior that the cloth will match decreases.

Notice how this change in credence is effected. The agent’s visual
experience changes her credences by directly altering her distribution
across the cloth-color partition. Any changes to other propositions in
the agent’s language (such as M) are downstream effects of this direct
alteration. Yet the dependencies between these downstream propositions
and the color propositions remain unaltered: changing the agent’s opinions
about the color of the cloth doesn’t change how confident she is that
particular colors will match the couch. This is why the same conditional
credences appear in both the c;(M) and the c;(M) calculations.

Against the background of the Kolmogorov axioms and Ratio Formula,
Jeffrey Conditionalization is equivalent to the following condition.

Ricipity. For any A € £ and any By, ¢j(A | By) = ¢i(A | By).

In a Jeffrey Conditionalization, experience alters an agent’s credences
across the B-partition. The agent’s credences in other propositions con-
ditional on the B,;s don’t change. So the agent sets her posteriors by
adopting unconditional credences in the B,,s from experience, copying
over her old conditional credences, then applying the Law of Total Proba-
bility to calculate her unconditional credences in non-B propositions.

1.5 Further Rational Requirements

We have now seen a variety of putative rational constraints on credence: the
probability axioms, the Ratio Formula, the Reflection Principle, Regularity,
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and the diachronic rules of Conditionalization and Jeffrey Conditionaliza-
tion. Yet there are infinitely many credence distributions (and sequences
of credence distributions over time) compatible with these constraints. Are
all of those distributions rationally permissible? Some of them are quite
strange, and unintuitive—for instance, some assign very high credence to
skeptical scenarios; some will lead agents to reason counter-inductively.

One extreme position about the strength of rational constraints is some-
times called “Objective Bayesianism.” This position endorses the Unique-
ness Thesis (Feldman, 2007; White, 2005) that given any body of evidence,
there is exactly one credence distribution rationally permitted to any agent
with that body of total evidence. At the other extreme, what we might
call “Extreme Subjective Bayesians” hold that any probabilistic credence
distribution is rationally permissible. In between are “Moderate Subjective
Bayesians,” who hold that there are some rational constraints beyond the
ones we’ve described, but not enough to generate a unique permissible
distribution in every case.

What might these further rational constraints be? A constraint that
might considerably narrow the field of what’s rationally permissible is the

PRINCIPLE OF INDIFFERENCE. If an agent has no evidence favoring any
possibility in a partition over any other, then she should assign equal
credence to each element of the partition.™®

The traditional objection to this principle is that it seems to give conflicting
advice when we repartition the same space of possibilities. Following van
Fraassen (1989), suppose I tell you that a cube has been produced from a
factory, and its side length is between 0 and 1 meter. Given the paucity of
further evidence, if I ask how confident you are that the side length is less
than 0.5 meters, the Principle of Indifference seems to require a credence of
1/2. But if I now ask how confident you are that the volume (which must
be between 0 and 1 cubic meter) is less than 0.5 cubic meters, the Principle
of Indifference also seems to require a credence of 1/2. Since a side length
of 0.5 meters corresponds to a volume of 0.125 cubic meters, the only way
to assign both these credences consistently with the probability axioms is
to be absolutely certain that the volume in cubic meters is not between
0.125 and 0.5!"

Another family of putative rational constraints has a member we’ve
already seen. The Reflection Principle directs us to set our current uncon-

The basic idea here dates back at least to Laplace (1814/1995), who saw it as an application
of what Bernoulli (1713) called the “principle of insufficient reason.”

A more technically-sophisticated cousin of the Principle of Indifference is Jaynes’ (1957a,
1957b) Maximum Entropy Principle. This principle applies more naturally over infinite
partitions, and adapts well to a variety of forms of evidence. Yet it still succumbs to
partition variance problems, and also conflicts with updating by conditionalization in
particular cases. See Seidenfeld (1986).



20

PRECISE CREDENCES

ditional credence in a proposition equal to what we're certain it will be in
the future—or if we’re not certain of our future credences, equal to our
expectation of what they will be. This principle directs us to defer to the
opinions of our future self as if she were some sort of expert. But of course
there are other experts in the world, such as contemporaries who we think
have better judgment or information than ourselves. Following the lead
of the Reflection Principle, Elga (2007) suggests that if ¢, is the credence
distribution of an agent we consider an expert, then for any X € £ (or at
least any X in the expert’s area of expertise) we should assign

e(X[eo(X) = 1) =. (15)

Thinking more metaphorically, an “expert” distribution worthy of our
deference need not even be an agent. It may be rational to align our
credences with certain objective numerical values in the universe. This
brings us to the topic of direct inference principles.

1.6  Direct Inference Principles

Page 1 briefly mentioned interpretations of probability—proposals for the
meaning of “probability” locutions. For example, the classical interpreta-
tion, dating back at least to Laplace (1814/1995), defined probability as the
number of favorable outcomes of a process divided by the total number of
outcomes possible. Later, the frequency theory of probability (associated
most closely with von Mises, 1928/1957), read probability as the frequency
with which an outcome would occur were a particular process repeated
many times.*°

My task here is not to assess these notions of probability as proposals in
the theory of meaning, or in the theory of probability. Instead, I want to
ask what these notions have to do with rational credence. Many Bayesians
have endorsed principles of direct inference: principles carrying the agent
from information about some notion of probability to specific credences
in specific events. For example, it might be that if I'm certain a particular
type of experimental setup produces a particular type of outcome with
frequency x, then when an experiment of that type is to be run, I should
have credence x that it will yield an outcome of that type. This would be a
principle of direct inference from frequency facts to credences in outcomes.

Frequency-to-credence principles face notorious difficulties, even when
sketched out as roughly as I've just done. For one, a single event (I go

The previous section introduced one usage of “Objective/Subjective Bayesian” terminology.
That usage should be carefully distinguished from another usage that often comes up in the
literature about interpretations of probability. In that literature, “Subjective Bayesianism”
describes the position that in everyday talk, “probability” always refers to or expresses
subjective credences. “Objective Bayesianism,” on the other hand, holds that probability
talk refers to something beyond the subject, such as frequencies or chances.

17
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in to my office tomorrow) can be classed as the outcome of a variety of
experiment types (choosing whether to go in on a summer day, choosing
whether to go in on a Tuesday, etc.), which may yield different frequencies
and therefore different credal recommendations. (This is one version of
the “reference class problem.”?') Also, if we tried to use this principle as a
general credence-setting strategy, we’d have trouble with experiments that
look to be unrepeatable. Before the Large Hadron Collider was switched
on, newspapers prominently reported physicists” degrees of belief that
doing so would destroy the Earth. It’s difficult to align such credences
with the frequency with which switching on the collider would cause
global destruction; in the event of such destruction, the switching-on only
occurs once.

It may therefore be preferable to link rational credence with “objective
chance.” As a notion of probability, chance is objective, in the sense that its
value is determined by the physical makeup of an experimental apparatus.
Chance may also be applied to events that occur only once. A frequency-
to-credence principle recommends credence 1/6 that a fair die roll will
come up 3 on the grounds that repeating the roll will yield 3 one-sixth of
the time. The objective chance theorist recommends 1/6 on the grounds
that a fair die is physically constituted in a particular manner (equally
weighted on each side, etc.). This would remain true even if the die had
never been rolled before, and was guaranteed to be destroyed after the roll
in question.

The most famous direct inference principle linking credence and chance
is Lewis” (1980) Principal Principle. Very roughly, and skipping over a
great many details,** the Principal Principle directs an agent to set

c(A|Ch(A) =x) =x, (16)

unless she possesses inadmissible evidence relevant to A. Here Ch(A) = x
is the proposition that the objective chance of A is x. So—setting aside
the matter of inadmissible evidence for a moment—if the agent is certain
that, say, a particular die has a 1/6 chance of coming up 3, the Principal
Principle will set her credence in 3 at 1/6. If, on the other hand, the agent
knows the die is biased, but splits her credence evenly between the number
3’s having a 1/10 chance and a 1/5 chance of coming up, the Law of Total
Probability will combine with the Principal Principle to yield:

c(3) = c(Ch(3) =1/10) - ¢(3 | Ch(3) = 1/10)
+¢(Ch(3) =1/5)-¢(3| Ch(3) = 1/5)
=1/2-1/10+1/2-1/5
= 0.15.

(17)

21 See Héjek (2007) for many more versions.
22 See Meacham (2010) for some of those details.
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In other words, her credence that the die will come up 3 is her expectation
of the objective chance of getting a 3. We can therefore think of the Principal
Principle as an expert deference principle in which the expert is objective
chance.

The key innovation of Lewis” Principal Principle is its treatment of ev-
idence the agent takes to be relevant to the outcome of a chance event.
Lewis divides such evidence into two sorts: admissible evidence is evi-
dence that the agent takes to be relevant to the outcome because it affects
her opinion of the objective chance of the event. For example, information
about the weighting of the die is admissible with respect to the outcome
of the roll—it affects how the agent thinks the roll will come out by way
of affecting what the agent thinks are the chances of a 3. Inadmissible
evidence affects the agent’s opinion in some other way. For instance, if a
confederate tells her how the roll came out, this affects the agent’s opinion
of whether it came out 3, but not by making her think the chances of a 3
were any different going in. Lewis’ insight was that chance facts about an
outcome screen off admissible information relevant to that outcome. So if
E is admissible, the Principal Principle also gives us:

c(A|Ch(A) =x&E) =c(A|Ch(A) =x) =x. (18)

Admissible evidence relates to chances much the way a distal cause relates
to the proximal cause of an event.

1.7 Countable Additivity

Up to this point the examples we’ve considered have typically involved
only finitely many possibilities. But what if an agent considers a parti-
tion of infinitely many possible outcomes, and distributes her credence
equally among all of them? How can this be modeled in our Bayesian
epistemology?

To have a concrete example, let’s suppose that a positive integer has been
selected by some process, and our agent wants to assign equal credence to
each integer’s having been selected. Presumably that should be possible.
But what numerical value might that credence take? It's easy to show that
the probability axioms prevent its being a positive real. For suppose the
agent assigns

r=c(1)=c(2)=c(3)=.... (19)

(Where ¢(1) is her credence that 1 was selected.?3) For any positive real 7,
there will exist a positive integer n such that r > 1/n. Now consider the

Notice we are now dealing with a language containing infinitely many atomic propositions.
While this is a change from our earlier setup, it’s not too difficult to manage, and is fairly
common in formal models.
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agent’s credence that the selected integer is between 1 and #n (inclusive).
If you look back at the list of intuitive constraints following from the
Kolmogorov axioms (Section 1.1), the last principle on the bulleted list
will give us

civ2v..vn)=c(l)+c2)+...4c(n)=r-n>1, (20)

which violates the axioms.

What other options are available? One popular suggestion is that when
an agent assigns equal confidence to infinitely many possibilities, we
represent that level of confidence as a credence of 0. So we would say that
c(l)=¢(2)=...=0.

Using credence 0 in this way introduces a few problems. First, up
until this point we’ve conceived credence 1 as representing certainty in a
proposition, and credence 0 as certainty that the proposition is false. Now
we’ll have to allow an agent to assign c¢(P) = 0 even if the agent admits
P might be true, and c(~P) = 1 even if the agent isn’t certain P is false.
And we’ll have to phrase the Regularity principle carefully: we may still
prohibit agents from assigning certainty to empirical propositions, but no
longer ban credences of 1 and 0 in such propositions.

Second, the Ratio Formula we’ve provided only relates the conditional
credence ¢(X | Y) to unconditional credences when c¢(Y) > 0. We'll need
to expand this principle to handle cases in which ¢(Y) = 0 yet the agent
doesn’t rule Y out. For instance, our agent assigning equal credence to
the selection of each positive integer might assign ¢(2 |2V 4) = 1/2, even
though c(2V4) = ¢(2) +c(4) = 0.2

Third and most importantly, we’ll want a way to sum credences over
infinite disjunctions. Finite Additivity only covers disjunctions with finitely
many disjuncts—what if we want to calculate our agent’s credence that
the selected integer is even? A natural extension of Finite Additivity is the
following.

CoUNTABLE ApDITIVITY. For any countable partition {Q1,Q2,Qs,...} C
L,
c(QiVQVQ3V...) =c(Q1) +c(Q2) +¢(Q3) +-...

Countable Additivity is not only natural; it also allows us to establish a
very important constraint on credences.

CONGLOMERABILITY. For any proposition P € £ and partition {Q1, Q>,
Qs,...} C L, c(P) is no greater than the largest ¢(P | Q;) and no less
than the least c¢(P | Q;).

24 One way to manage this situation is to take conditional credences as basic. See footnote 10

for more information.
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Given Conglomerability, the c(P | Q;) establish upper and lower bounds
on the value of ¢(P). This makes sense if you think of c¢(P) as a weighted
average of the credences the agent would assign to P conditional on all
the different possible Q;. And it’s especially important when the agent has
a partition {Eq, Ep, E3, ...} of possible new pieces of evidence she might
receive before her next update. Assuming she plans to update by Condi-
tionalization, she knows that her future credence in P will be one of her
current ¢(P | E;); Reflection then demands she satisfy Conglomerability.>>

The Conglomerability /Countable Additivity package is attractive. But
it’s inconsistent with assigning a credence of 0 to each positive integer in
our example. The reason is simple: given Countable Additivity, the agent’s
credence that any positive integer will be selected at all is the sum of her
credences in each individual integer. But the former value should be 1,
while the latter individual values are each 0. So advocates of Countable
Additivity have suggested instead that in this situation the agent assign
an infinitesimal value to each integer’s being selected. The infinitesimals
are an extension of the set of real numbers, defined to be greater than
0 but less than any given real number. Thus they don’t fall prey to the
problem of our Equation 20. At the same time, adding up infinitely many
infinitesimals can yield a real number, so we can maintain both Countable
Additivity and a credence of 1 that any integer will be selected at all.

Yet infinitesimals introduce difficulties of their own; for some of the
difficulties, and many of the mathematical details, see Hajek (2003, Section
5), Williamson (2007), Easwaran (2014), and Wenmackers (this volume).

2 APPLICATIONS OF CREDENCE

I've presented the Bayesian study of credence as the study of a doxastic
attitude type, and what it takes to make such attitudes rational. This study
is valuable in its own right, as a contribution to epistemology and the
philosophy of mind. But historically it’s also been pursued to enhance our
understanding of other topics, some of which we’ll discuss in this section.

2.1 Confirmation Theory

A Bayesian epistemologist or philosopher of science studies justification
and evidential support by thinking about “confirmation.” The type of con-

Notice that my statement of Conglomerability doesn’t specify the cardinality of the
Q; partition. For finite partitions, Conglomerability can be proven from the standard
probability axioms. Adopting Countable Additivity extends Conglomerability to countable
partitions. For an agent who entertains larger disjunctions than that, Seidenfeld, Schervish,
and Kadane (manuscript) show that at each cardinality we need the relevant Additivity
principle to secure Conglomerability for partitions of that size.
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firmation studied is usually incremental, rather than all-things-considered;
when we say that “evidence E confirms hypothesis H,” we mean that E
provides at least some positive evidential support for H, not that it settles
the matter of H or even pushes H past some crucial threshold.?® For a
Bayesian, confirmation is also always relative to a probability distribu-
tion, and to a background corpus of propositions. Most commonly, the
probability distribution will be some agent’s credence function, and the
background corpus will be the total evidence informing that credence
function. (On a Conditionalization regime, the corpus is represented for-
mally by the set of all propositions X such that ¢(X) = 1.27) So we take a
given agent at a given time, and ask whether E confirms H for her, relative
to her credences and background corpus at that time.

Letting K represent a background corpus, and ¢, represent a probability
distribution informed by that corpus, Bayesian confirmation theory posits
that

E confirms H relative to ¢ just in case ¢, (H | E) > cx(H).

Bayesian confirmation is just positive probabilistic relevance relative to c.
(Similarly, disconfirmation is usually defined as negative relevance relative
to ¢x.)

Though fairly simple, this theory of confirmation turns out to be surpris-
ingly subtle, powerful, and convincing. To illustrate—and fix the intended
notion of evidential support in the reader’s mind—suppose a fair die
has just been tossed, and you know nothing of the outcome. Perhaps in
accordance with the Principal Principle, some frequency principle, or even
the Principle of Indifference, you assign equal credence to each of the six
possible outcomes. Relative to your credence distribution and background
corpus, if you received evidence that the toss came up with a prime num-
ber, this would confirm for you that the toss came up odd. Why? Because
if you satisfy the Kolmogorov axioms and Ratio Formula, then you assign

2/3 = c¢(odd | prime) > c(odd) = 1/2. (21)

This doesn’t mean that prime evidence should make you certain the toss
came up odd, or even that it would justify you in believing the toss came
up odd. But if you update by Conditionalization, learning that the toss
came up prime would make you at least somewhat more confident that
the toss came up odd. Again, the confirmation here is incremental.

This contrasts with the way “confirms” is sometimes used in English, as when we speak
of a nominee’s being confirmed, or even a dinner reservation.

Notice that despite our suggestion in Section 1.7 that it might sometimes be interpreted
otherwise, I have gone back to treating credence 1 as representing certainty. To simplify
discussion, I will continue to do this going forward.
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This Bayesian theory of confirmation gives the confirmation relation
some interesting and intuitive formal properties.?®

o If E=F E' and H =+ H’, then E confirms H just in case E’ confirms
H'.

o E confirms H just in case E disconfirms ~H.
o If E&KF Hbut K¥ H, then E confirms H.
o If H& K E E but K ¥ H, then E confirms H.

The first of these properties ensures that logical equivalents behave the
same within the confirmation relation. The second relates confirmation to
disconfirmation. The third and fourth properties® specify how confirma-
tion relates to entailment. The third property tells us that entailment is a
form of confirmation; if E entails H jointly with K while K didn’t entail
H on its own, then E confirms H. As for the fourth property, it captures
the idea3° that a hypothesis which predicts an evidential observation (in
concert with one’s background corpus) is confirmed by that observation.

On the other hand, the Bayesian theory withholds from the confirmation
relation certain properties that are sometimes mistakenly ascribed to it.
Here are two examples.

o If E confirms both H and H’, then the set H, H’, K is logically consis-
tent.

o If X confirms Y and Y confirms Z, then X confirms Z.

The first of these properties is important to reject because we're talking
about incremental confirmation. For example, in Jeffrey’s example in which
an agent inspects a piece of cloth by candlelight, his brief glimpse may
confirm that the cloth is green, while also confirming that it’s blue or
even that it’s violet. (Perhaps the glimpse disconfirms that the cloth is
red and disconfirms that it's orange.) This is perfectly reasonable, despite
the fact that green, blue, and velvet are inconsistent hypotheses about the
color of the cloth. Similarly, in scientific settings the same observation may
confirm mutually exclusive theories from a partition, while at the same
time (perhaps) ruling others out.

The latter property is the supposed property of confirmation transitivity.
This is one of the most common mistakes made about confirmation, sup-
port, justification, and other related notions.3* Just because X confirms Y

In every one of these properties, the expressions “E confirms H” and “E disconfirms H”
should be followed by the phrase “relative to cx.” Going forward I'll simplify locutions by
leaving the relativization to ¢, implicit whenever possible.

Both of which require a side-condition that the set {E, K, H} is logically consistent.
Familiar from hypothetico-deductivism (Crupi, 2016, Section 2).

Correcting this mistake has been a theme of the epistemology literature about epistemic
and justificatory closure. See, e.g., Dretske (1970), Davies (1998) and Wright (2003).
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and Y confirms Z does not mean that X confirms Z—even in the special
case when Y entails Z! To see why, imagine a card has been drawn at
random from a standard playing card deck. Information that the card is
a spade confirms (incrementally!) that the card is the Jack of Spades. But
information that the card is a spade does not even incrementally confirm
that the card is a jack.

Another common mistake is to conflate what Carnap (1962) called
“firmness” and “increase in firmness” accounts of confirmation.3*> The
Bayesian account we’ve been discussing is an increase in firmness account.
A firmness account, on the other hand, says that E confirms H relative
to cx just in case cx(H | E) is high (where the necessary height may be
influenced by, say, contextual parameters). Among many other problems,
the firmness account errs by maintaining that E confirms H in cases when
cx(H | E) is high simply because the prior ¢, (H) is high. In fact, a firmness
account may say that E confirms H relative to ¢ even though ¢ (H | E) is
lower than c,(H) (as long as cx(H | E) is nevertheless high)! The Bayesian
account focuses on the relation between E and H—how E would alter the
agent’s opinion of H—rather than just on where that opinion would land
were E taken into account.

We can provide more information about E’s effect on the agent’s opinion
of H by measuring the degree of incremental confirmation. The simplest
way to measure confirmation is to calculate c¢x(H | E) — cx(H); this mea-
sure simply asks how much conditionalizing on E would increase the
agent’s confidence in H. Yet as a measure of E’s bearing on H, this simple
difference has some drawbacks. For example, the degree to which E can
confirm H will be limited by the value of cx(H). If, say, cx(H) = 0.99, then
even if E entails H, the maximal degree to which it can confirm H will
be 0.01. Bayesian confirmation theory thus has a considerable literature
proposing and assessing alternative measures of confirmational strength;
see Crupi (2016, Section 3.4) for a recent summary and references.

One upshot of the literature on measuring confirmation is a new ap-
proach to “solving” traditional paradoxes of confirmation. For example,
we usually think that universal generalizations are confirmed by their
positive instances. The hypothesis that all ravens are black is typically
confirmed by the evidence that a particular raven is black.33 In symbols,
(Vx)(Rx D Bx) is confirmed by Ra & Ba. But now suppose we discover an
item that is a non-black non-raven. The evidence ~Ba & ~Ra is a positive

Carnap was well-acquainted with this mistake, having made it himself in the first 1950
edition of his Logical Foundations of Probability.

I say “typically” because it is possible to generate a deviant background corpus against
which it would be reasonable for the observation of a black raven to disconfirm that all
ravens are black. (For examples, see Swinburne, 1971, and Rosenkrantz, 1977, Chapter 2.)
The generation of the paradox doesn’t rely on such deviant corpora, so we will set them
aside for the rest of the discussion.



PRECISE CREDENCES

instance of the generalization (Vx)(~Bx D ~Rx), so it should confirm that
generalization. Yet the latter generalization is (by contraposition) logically
equivalent to our former one. So by the first property of confirmation
I endorsed above, ~Ba & ~Ra should confirm that all ravens are black.
This is Hempel’s (1945) famous “Paradox of the Ravens,” which seems to
generate the absurd conclusion that a hypothesis about the color of ravens
may be confirmed by the observation of a white shoe.

Recently, a number of Bayesian confirmation theorists have conceded
that perhaps a white shoe does confirm that all ravens are black—it’s
just that observing a white shoe confirms this hypothesis much less than
observing a black raven would.3* Fitelson and Hawthorne (2010), for
instance, specify conditions on ¢ such that as long as these conditions are
met, evidence of a black raven will confirm the ravens hypothesis much
more strongly than evidence of a non-black non-raven, on virtually every
proposed measure of confirmation in the literature. It's highly plausible
that most of us in the real world have credence distributions satisfying
Fitelson and Hawthorne’s conditions, accounting for our intuitions about
the asymmetry of favoring in this case. Similar approaches have been taken
to the problem of irrelevant conjunction (Hawthorne & Fitelson, 2004) and
Goodman’s (1955) grue paradox (Chihara, 1981; Eells, 1982).

2.2 Decision Theory

Since this handbook contains an extensive article on decision theory
(Thoma, this volume), I will give only a brief sketch here. In formal
decision theory, an agent is confronted with a decision problem, repre-
sented by a partition of acts she may perform. Once she performs an
act, some outcome will occur, and the agent values different outcomes to
different degrees. These valuations are represented by a utility function,
which assigns real-number utilities to each possible outcome. (The key
assumption about utilities is that they measure value uniformly—the agent
takes each added unit of utility to be as valuable as the next. The same is
not true of money; your first dollar may be much more valuable to you
than your billionth.)

So what'’s difficult about that—shouldn’t the agent just choose the act
leading to the most valuable outcome? The trouble is that the agent may
be uncertain which acts will lead to which outcomes. Put another way,
the agent may be unsure what state the world is in, and the outcome that
follows her decision may depend both on the act she chooses and on the
remaining state of the world. For example, suppose I'm trying to decide
whether to go into my office tomorrow. I know that if I go, it may be quiet

34 Though the idea dates all the way back to Hosiasson-Lindenbaum (1940).
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and peaceful there, in which case I'll get a great deal of writing done,
which is an outcome I highly value. On the other hand, there may be loud
construction happening outside my office window, in which case I'll dally
on the internet and get no writing done, an outcome to which I assign little
utility. Since I don’t know the state of construction around my building
tomorrow, it’s unclear to me which available act (go into the office, stay
home) correlates with which outcomes, complicating my decision.

The standard solution to this problem is to have the agent assign an
expected value to each available act. An agent’s expected value for an act
is her expectation for the amount of utility that will accrue if she performs
the act—calculated using her credences that various states of the world
obtain. Given a decision between two acts, a rational agent prefers the act
to which she assigns the higher expected value (and is indifferent in case
of ties). We can thus use her credence and utility assignments to develop a
preference ordering over the acts available to her in any decision problem.

For example, suppose I assign a utility of 100 to a day of peaceful writing
at my office, but a utility of 0 to spending the day there with construction
going on. If I'm 40% confident there’ll be no construction tomorrow, my
expected utility of going into the office is

EU(go to office) = c(no construction) - u(peaceful writing)
+ ¢(construction) - u(wasted day)
=0.40-10040.60-0
=40,

(22)

where the function u designates the amount of utility I assign to a given
outcome. Given this expected utility for going to the office, I should prefer
to stay home only if I expect doing so to yield me a utility greater than 40.

We can prove that if an agent sets her preferences by maximizing
expected utility, her preference ordering over acts will satisfy various
intuitive conditions, commonly known as the “preference axioms.” For
example, her preferences will be asymmetric (she never prefers both A to
B and B to A) and transitive (if she prefers A to B and B to C, then she
prefers A to C).

As I said, I'm going to avoid the many subtleties of developing a full-
blown decision theory. One crucial concern is cases in which the agent’s
act may be correlated with the state of the world. Evidential decision
theorists (Jeffrey, 1965) respond by working with the agent’s credence in a
state conditional on her performing a particular act, while causal decision
theorists (Gibbard & Harper, 1978; Lewis, 1981; Joyce, 1999; Weirich, 2012)
consider the agent’s credence that her act will cause a particular state to
obtain. Another concern is modeling risk-averse agents—such as an agent
who prefers a guaranteed payout with utility 1 to a fair coin flip on which
heads yields a prize with utility 3 (Allais, 1953; Buchak, 2013).
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There is, however, one more notion from decision theory that we’ll need
in what follows: fair betting price. Consider a proposition P and a betting
slip that guarantees its possessor $1 if P turns out to be true. How much is
that betting slip worth to you? That depends how confident you are that P
obtains. If you're certain of P, that slip is worth $1 to you. If you're certain
P is false, the slip is worth nothing. In between, the more confident you
are of P, the more value you assign to the betting slip.

To be more precise, your expected value in dollars of the fair betting
slip is ¢(P) - $1. We call this your fair betting price for this gamble on P. In
general, if a bet pays out $X dollars when P is true, your fair betting price
for the bet is

(P) - $X. (23)

What does it mean to say this is your fair betting price? Suppose someone
offers to sell you a betting slip that pays off on P. Your fair betting price
is the price at which you’d expect to break even on such an investment.
Assuming you value money linearly (so that each additional cent confers
the same amount of additional utility on you), decision theory says that
you should be willing to purchase the betting slip for any amount lower
than your fair betting price, and indifferent about buying it at exactly your
fair betting price. Conversely, if you possess such a slip, you should be
willing to sell it for any amount above your fair betting price.

2.3 Other Applications

Historically, confirmation and decision theory have been major drivers
of Bayesianism’s development and the two most common applications to
which the approach has been put. But the Bayesian theory of credences
has been applied to many other philosophically significant topics as well.
Here are a few examples.

o Probabilities have been used to measure when the propositions in a
set cohere. Coherentism about justification has then been evaluated
by asking whether coherence among propositions makes it rational
to invest a higher credence in each of them. See Shogenji (1999),
Bovens and Hartmann (2003), Huemer (2011), and Olsson (2017).

o It's been debated whether an agent who updates by conditional-
ization will thereby increase her credence in the hypothesis that
best explains evidence observed. Van Fraassen (1989) argues that
Bayesianism is incompatible with Inference to the Best Explanation.
Replies have been offered by, inter alia, Okasha (2000), Lipton (2004),
Weisberg (2009), and Henderson (2013).
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o Elga (2007) argues that when an agent discovers that an epistemic
peer has assigned different credences than her based on the same
evidence, that agent should move her credences closer to her peer’s.
A great deal of debate has ensued about whether such conciliation-
ism is the rational response to peer disagreement. Christensen (2009)
presents a useful survey that is unfortunately now outdated; Chris-
tensen and Lackey (2013) is a more recent collection. (Though plenty
has been published on the subject since then!)

o The peer disagreement controversy intersects with broader questions
about the rational response to higher-order evidence—evidence con-
cerning whether one has responded rationally to one’s evidence. New
essays on higher-order evidence and its connection to disagreement
may be found in Rasmussen and Steglich-Petersen (forthcoming).

o Peer disagreement is also an aspect of social epistemology, which has
considered for decades how groups and individuals should combine
the opinions of multiple experts to form a coherent single view. The
literature on probabilistic opinion pooling dates back at least to Boole
(1952). More recent discussions, with copious additional references,
include Bradley (2007), Russell, Hawthorne, and Buchak (2015), and
Easwaran, Fenton-Glynn, Hitchcock, and Velasco (2016).

3 ARGUMENTS FOR CREDAL CONSTRAINTS

Many of the constraints on credences presented in Section 1 have an
intuitive claim on being rationally required. It’s just plausible that the
more confident you are it will rain tomorrow, the less confident you should
be that it won’t rain. But can we provide arguments for the various rational
constraints? Here I'll survey three historically-significant approaches to
arguing for rational constraints on credence.

3.1 Representation Theorem Arguments

In Section 2.2 I suggested that if an agent has credence and utility functions,
decision theory can combine these to determine her rational preferences
among acts. But decision theory can also work in the opposite direction.
Suppose I observe an agent make a number of decisions over her life-
time. Assuming these choices express her preferences among acts, I can
construct credence and utility functions for her that would rationalize
such preferences if she is an expected utility maximizer. I might then use
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these credence and utility functions to predict choices she’ll make in the
future.35

We can prove that as long as an agent’s preferences are rational, she can
be represented as maximizing expected utility by combining credence and
utility functions. More precisely, a representation theorem shows that given
a preference ordering over acts satisfying certain preference axioms, there
exists a utility function and a probabilistic credence function on which
those preferences maximize expected utility. Since there are many different
versions of decision theory, there are many sets of preference axioms, and
so many different representation theorems.3® But typically the preference
axioms can be divided up into two sorts: substantive constraints such
as the asymmetry and transitivity requirements I mentioned earlier; and
what Suppes (1974) calls “structure axioms” specifying that the preference
ordering is complete, has acts available at a variety of levels of preference,
etc. (Structure axioms are usually considered a convenience to make the
theorems cleaner and the proofs easier.)

Representation theorems can be highly useful. For instance, economists
engaged in rational choice theory often model market participants as
maximizing expected utility based on a utility function and a probabilistic
credence function. A representation theorem assures us that as long as
an agent remains rational—in the sense of making choices that satisfy
the preference axioms—her behavior will continue to conform to such a
model.

Yet there’s a big step from arguing that rational agents can be modeled as
employing a probabilistic credence function to arguing that rational agents
actually possess probabilistic credence functions (Héjek, 2009; Meacham &
Weisberg, 2011). We can begin to see the problem by noting that an agent’s
preferences will often underdetermine her utility and credence distribu-
tions. That is, if all we know is an agent’s preferences, there are (infinitely)
many different pairs of utility and credence functions that will generate
that preference ordering by maximizing expected utility. Moreover, many
of those pairs feature credence functions that don’t satisfy the probability
axioms. Standard representation theorems prove only that if an agent’s
preferences satisfy the axioms, there exists a corresponding credence/utility
pair in which the credence function satisfies the probability rules. This
hardly shows that rationality requires probabilistic credences.

We can think of this as a formalization of the folk deployment of a “theory of mind.”
I watch what you do, I surmise what you want and what you believe, then I let that
information guide my interactions with you going forward.

Representation theorems were inspired by early, suggestive results in Ramsey (1931). The
first rigorous representation theorem of the type we're discussing is in Savage (1954).
(Though see also von Neumann and Morgenstern, 1947.) A representation theorem for
evidential decision theory appears in Jeffrey (1965), while Joyce (1999) proves one for
causal decision theory.
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Matters can be improved with a representation theorem based on some
ideas Lara Buchak and I came up with together. (A sketch of a proof
appears in the Appendix.) This theorem shows that if an agent’s pref-
erences satisfy various preference axioms, and she maximizes expected
utility, then her credence function must be a positive scalar transformation
of a probability distribution. In other words, her credences will be non-
negative, they will be finitely additive, they will assign the same value to
every tautology, and that value will be greater than the value assigned
to contradictions. A credence function like this will have all the same
properties as a probabilistic function, except that the maximal value it
assigns to tautologies may be some positive number other than 1. Yet
nothing substantive hangs on whether we measure credence ona 0 to 1
scale or instead, say, a percentage scale from 0 to 100.

Still, even the improved theorem assumes that the agent’s credences
and utilities interact with preferences through the maximization of ex-
pected utility. Zynda (2000) notes that there are many other mathematical
quantities combining credence and utility that an agent could choose to
maximize. So to argue for probabilism (or something close to it) using one
of these representation theorems, we need to assume not only that ratio-
nality requires satisfying the preference axioms, but also that it requires
maximizing expected utility.

3.2 Dutch Book Argquments

As with representation theorems, an inspiration for Dutch Book arguments
can be found in Ramsey’s (1931), in which he commented,

These are the laws of probability, which we have proved to be
necessarily true of any consistent set of degrees of belief. ...
If anyone’s mental condition violated these laws, his choice
would depend on the precise form in which the options were
offered him, which would be absurd. He could have a book
made against him by a cunning better and would then stand
to lose in any event. (p. 84)

Suppose, for instance, that I am both 0.7 confident that I will go to
my office tomorrow and 0.7 confident that I will not. Now consider two
betting slips—one that pays a dollar if I go to the office, and another that
pays a dollar if I don’t go to the office. Given my credences, my fair betting
price for each of these slips is $0.70. That means I'm willing to pay up to
$0.70 for each of them. So suppose I buy both, at a price of $0.70 each. I've
now spent a total of $1.40, and no matter what happens tomorrow, I will
only make $1. My non-probabilistic credence distribution has made me
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susceptible to a combination of bets on which I will lose $0.40, come what
may!

De Finetti (1937/1964) proved that if an agent’s credences violate the
probability axioms, a set of bets exists such that if the agent purchases
each of them at her fair betting price, she will lose money in every possible
world. For unknown reasons, such a set of bets is called a “Dutch Book.”
The proof works by going through each of the axioms one at a time, and
showing how to construct a Dutch Book against an agent who violates
the relevant axiom. Moreover, we can establish what Hajek (2009) calls
a “Converse Dutch Book Theorem,” showing that if an agent satisfies the
probability axioms, no Dutch Book of the types described in de Finetti’s
proof can be constructed against that agent.

Other proofs show how to construct Dutch Books against agents who
violate the Reflection Principle (van Fraassen, 1984), the Principal Principle
(Howson, 1992), Regularity (Kemeny, 1955; Shimony, 1955), and Countable
Additivity (Adams, 1962). We can also construct what is known as a “Dutch
Strategy” against any agent who violates Conditionalization (Teller, 1973,
reporting a result of David Lewis’) or Jeffrey Conditionalization (Armendst,
1980; Skyrms, 1987b). A Dutch Strategy is not strictly speaking a particular
set of bets guaranteed to give the agent a sure loss; instead, it’s a strategy
for placing bets with the agent in which certain bets are placed at an initial
time, then future bets are placed depending on what the agent learns after
that time. Still, the idea of a Dutch Strategy is that no matter what happens
(and no matter what the agent learns), if she purchases the bets at her fair
betting prices when they’re offered, she’ll face a net loss come what may.

Avoiding Dutch Books and Dutch Strategies seems an important advan-
tage for the probabilistic agent. Still, can we argue that rationality forbids
susceptibility to Dutch Strategies and Books? One problem is that the
negative effects of violating probabilism highlighted by Dutch Books seem
oddly practical. We might have thought that the Kolmogorov axioms pro-
vided constraints of theoretical (rather than practical) rationality on agents’
credences. Yet here we're arguing for those axioms by pointing to financial
consequences of violating them. Moreover, it’s unclear how seriously we
should take those potential consequences. Are non-probabilistic agents
ever really going to face the precise set of bets that would expose them to a
Dutch Book? And what if the non-probabilistic agent has read about Dutch
Books, and decides that instead of changing her credences, she’ll just be
more cautious in her betting behavior? In the example above concerning
my going to the office, I might pay $0.70 for the bet that pays off if I go
into the office, but then refuse to buy the second bet because I see a Dutch
Book coming. In that case I'll still have non-probabilistic credences, but
will manage by practical strategizing to avoid the prospect of a sure loss.
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Taking a cue from the second sentence of the Ramsey quote above, a
number of authors have tried to “depragmatize” Dutch Book arguments.
Skyrms writes that “For Ramsey, the cunning bettor is a dramatic device and
the possibility of a dutch book a striking symptom of a deeper incoherence”
(Skyrms, 1987a, p. 227, emphases mine). For these authors,3” susceptibility
to Dutch Book merely brings out an underlying inconsistency in the agent’s
credences—the inconsistency of evaluating the same thing different ways
depending on how it’s presented.

Return to my bets on whether I'll go into the office tomorrow. Given my
0.7 confidence that I'll go, my fair betting price for a bet that pays $1 if I go
and nothing otherwise is $0.70. So I value that bet at $0.70; if I'm offered
the opportunity to purchase that bet at any lower amount—say, $0.50—I'd
consider that a favorable deal. On the other hand, my 0.7 confidence that I
won’t go gives me a fair betting price of $0.70 for a bet that pays $1 if I
don’t go and nothing if I do. So I would consider it unfavorable to sell that
bet at any price less than $0.70—for instance, $0.50. Yet buying the first
bet at $0.50 and selling the second bet at $0.50 are the exact same transaction;
each one would net me $0.50 if I go to the office and lose me $0.50 if I
don’t. So do I view that transaction favorably or not? One of my credences
suggests I view it favorably, while the other demands I don’t. How those
credences evaluate those bets reveals the conflict between them.3®

Still, even depragmatized Dutch Book arguments make potentially con-
troversial assumptions. First, we’re assuming that a rational agent’s fair
betting prices equal her expected payouts—an assumption that might fail
for risk-averse agents. And second, to construct a Dutch Book against some
violations of Finite Additivity, we need to assume a “package principle”—
that a rational agent’s fair betting price for a combination of two bets
equals the sum of her betting prices for each bet considered singly. Each of
these assumptions would follow easily if we assumed that rational agents
always choose to maximize expected utility. But if we could assume that,
we’d already have a representation-theorem argument for something very
close to probabilism (Section 3.1).39 So it’s unclear why the detour through
cunning bettors would be required.

See also Armendt (1992), Christensen (2004), and Howson and Urbach (2006).

Notice that I wouldn’t have this problem if I satisfied the probability calculus by, say,
assigning credence 0.7 that I'll go and credence 0.3 that I won't. In that case I'll look
favorably on buying the first bet at $0.50 and also look favorably on selling the second one
at $0.50, so my evaluations will harmonize.

In fact, the representation theorem proof in the appendix closely mirrors the structure of
traditional Dutch Book theorems for probabilism.
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3.3 Accuracy Arguments

In his 1998, James M. Joyce sets out to provide a “nonpragmatic vin-
dication of probabilism” that would explicitly avoid invoking practical
consequences in its defense of the probability axioms as rational con-
straints on credence. His work builds on mathematical results from de
Finetti (1974) and Rosenkrantz (1981), but uses those results to construct a
new kind of argument.

Joyce’s key idea is that from a point of view of pure theoretical rationality,
agents should aim to make their credences as accurate as possible. How
might we measure the accuracy of a credence function? Historically, one
option had been to focus on calibration. Function c is perfectly calibrated
if, for every 0 < x <1, when we look at all the propositions in £ to which
c assigns credence x, the fraction of those propositions that are true is
exactly x. If I'm perfectly calibrated, exactly half of the propositions to
which I assign credence 1/2 are true, exactly a third of the propositions to
which I assign credence 1/3 are true, etc.

Van Fraassen (1983) and Shimony (1988) argue for probabilism by show-
ing that in order for a credence distribution to be embeddable in larger and
larger systems approaching perfect calibration, that credence distribution
must satisfy the probability axioms. This might stand as a good argument
for probabilism, except that calibration has some intuitively undesirable
features as a measure of accuracy. For example, consider two agents who
assign credences to four propositions as in Table 1. I hope you’ll agree

A B C D

AGENT 1 05 05 05 05
AGENT 2 1 1 001 O
TRUTH-VALUES T T F F

Table 1: Two credence assignments

that intuitively, Agent 2’s credences are much more accurate (close to the
truth) than Agent 1’s. Yet Agent 1 is perfectly calibrated—exactly half the
propositions to which she assigns credence 1/2 are true—while Agent 2 is
not.

Our intuitions about accuracy work by looking at each credence assign-
ment one at a time, assessing how accurate that credence is given the
truth-value of the proposition, and then aggregating those local accuracy
assessments across all the propositions. Yet calibration works with global
features of a probability distribution, which (as we’ve just seen) can lead
to distorting effects.

33



34

40

MICHAEL G. TITELBAUM

So Joyce uses a gradational accuracy approach instead. On this approach,
we select a scoring rule to measure how far each individual credence
assignment to a proposition is from the truth about that proposition.
Intuitively, when proposition P is true, higher credences in P are more
accurate; when P is false, lower credences are better. We can formalize
this by having a function I that assigns 1 to P if it’s true and 0 if it’s false,
then measuring how far c¢(P) is from I(P). Historically, it’s been popular
to measure this distance as

(I(P) = c(P))™. (24)

Notice that this measurement increases the farther you are from the truth;
so it’s a measure of credal inaccuracy. A rational agent aiming to be
as accurate as possible should look to minimize this quantity for each
proposition. Globally, she should look to minimize the sum of this quantity
across all the propositions she entertains. (This sum is commonly known
as the Brier score, named for meteorologist George Brier’s discussion of it
in his 1950.)

Joyce shows that if we use the Brier score to measure accuracy, then
any non-probabilistic credence distribution will be accuracy-dominated
by another, probabilistic distribution over the same set of propositions.
That is, if you take an agent whose credences over some language vio-
late the probability axioms, there will be another, probabilistic credence
distribution over the same language that has a more accurate Brier score
than hers in every possible world. When the nonprobabilistic agent considers
that alternative distribution, she will know that it’s more accurate than
hers, even without knowing anything about which possible world is actual.
Joyce argued that for an agent to maintain her nonprobabilistic distribu-
tion, despite this information that another distribution was certainly more
accurate, would be irrational. And since the same situation will confront
any agent whose credences violate the probability axioms, this constitutes
an argument for probabilism.4°

Related accuracy arguments have been offered for a variety of other
Bayesian norms: Conditionalization (Greaves & Wallace, 2006; Briggs &
Pettigrew, forthcoming), the Principal Principle (Pettigrew, 2013), the
Principle of Indifference (Pettigrew, 2014), Reflection (Easwaran, 2013),
and Conglomerability (Easwaran, 2013).

There are two main concerns in the literature about these accuracy
arguments. First, there’s a general concern about assessing the rationality
of credences by measuring their distance to the truth. The gradational
accuracy approach evinces a sort of epistemic consequentialism, in which

Importantly, the same kind of argument cannot be run against probabilism. A credence
function that satisfies the probability axioms will not be accuracy-dominated in the manner
Joyce describes by any other function (probabilistic or otherwise).
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attitudes aim for some outcome (in this case, truth), and are evaluated by
how well they approximate that goal. Just as teleological approaches to
normativity have aroused suspicion in ethics and other areas of philosophy,
the gradational accuracy program has been criticized by such authors as
Greaves (2013), Berker (2013), and Carr (2017).

Second, among those who accept the gradational accuracy program,
there’s a concern about how to select an appropriate scoring rule for
measuring accuracy. Maher (2002) suggests that instead of using the Brier
score, we might gauge the distance between an individual credence ¢(P)
and a truth-value I(P) by calculating

[1(P) = ¢(P)]. (25)

Historically, the Brier score was favored over this absolute-value score
because the former is a “proper” scoring rule while the latter is not. To
understand the difference, suppose a six-sided die has just been rolled,
and we have two characters who do not yet know the outcome. Our
first character, Chancey, assigns credence 1/6 to each of the possible
outcomes. Our second character, Pessimist, assigns credence 0 to each
outcome. Chancey’s credence function satisfies the probability axioms,
while Pessimist’s does not.

Now suppose each of our characters calculates an expected inaccuracy
value for herself and for the other person. To give an example of how this
works, suppose Chancey calculates an expected inaccuracy value for her
own distribution using the Brier score. To do so, Chancey considers each of
the six possible worlds available (that is, each of the six possible outcomes
of the die roll), evaluates what her Brier score would be in that possible
world, multiplies by her credence that that possible world is actual, then
sums across all the possibilities. If, for instance, the die roll comes up 3,
Chancey’s Brier score will be

(1(1) = e(1))* + (1(2) = ¢(2))* + (1(3) — ¢(3))?

+ (1(4) = c(4))* + (I(5) — ¢(5))* + (I(6) — c(6))?
= (0-1/6)>+(0—1/6)*>+ (1 —1/6)*

+(0—-1/6)*+(0-1/6)*4 (0 —1/6)? (26)
= 1/36+1/36+25/3641/36 +1/36 +1/36
= 30/36

= 5/6.

A bit of reflection will show that this is Chancey’s Brier score in each
of the six possible worlds. So her expected Brier score across all those
worlds is also 5/6. In the meantime, I'll leave it to the reader to calculate
that Pessimist’s expected Brier score is 1. Since higher scores mean more
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inaccuracy—and less accuracy—Chancey expects her credences to be more
accurate than Pessimist’s when the Brier score is used to calculate accuracy.

Exactly the opposite happens if we use the absolute-value measure.
Again, I'll leave it to the reader to calculate that Chancey’s expected
absolute-value score is 5/3, while Pessimist’s is again 1. So by the lights
of the absolute-value score, the nonprobabilistic Pessimist is expected to
be more accurate than the probabilistic Chancey.

Proper scoring rules are rules on which a probabilistic agent will never
expect some other agent to be more accurate than herself. The Brier
score is one of many proper scoring rules, while the absolute-value score
is improper. In general, it seems irrational for an agent to hold onto a
credence distribution when she expects some other agent’s credences
to be more accurate than her own (Lewis, 1971). So a theorist who has
already accepted that probabilistic distributions are rational has good
reason to work with proper scoring rules rather than improper ones. The
accuracy-based arguments for Conditionalization, the Principal Principle,
the Indifference Principle, etc. mentioned above all confine themselves to
working with proper scoring rules.

Predd et al. (2009) show that Joyce’s accuracy-dominance argument
for probabilism could be run using any proper scoring rule. Yet in the
context of an argument for probabilism, favoring proper scoring rules over
improper ones seems question-begging. Proper scoring rules are defined
as those on which probabilistic distributions are rated more expectedly
accurate than the alternatives. Unless you have an antecedent reason to
think probabilistic distributions should come out looking better than the
alternatives, this is no reason to prefer a proper score.4!

4 ARGUMENTS AGAINST CREDAL CONSTRAINTS

Having surveyed some arguments in favor of various rational constraints
on credences, what are the arguments against these constraints? Of course
there are many, and they multiply over time. Here I will focus on a
handful that have generated insightful discussion and interesting positive
responses.

4.1 The Problem of Logical Omniscience

Savage (1967) famously considered the plight of “a person required to
risk money on a remote digit of 77.” His concern was that according to
the Normality axiom, an agent is required to assign certainty to every
tautology in her language L. Arguably, the fact that a given digit of 7

41 Though there may be other reasons. See, e.g., Joyce (2009) and Pettigrew (2016).
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takes a particular value is a tautology.#* So according to probabilism, a
rational agent should be certain of all the digits of 7r. Yet this seems too
much for rationality to demand of any real agent.

Savage’s discussion initiated a literature on what is known as “the
problem of logical omniscience.” I actually think there are multiple, related
problems here, which we might label as follows.43

CrepAL COMPLETENESS. Probabilism requires an agent to assign a cre-
dence to each proposition in her language.

LocrcaL DisceRNMENT. Probabilism forbids an agent from assigning a
credence other than 1 to any tautology.

LocGicaL LEARNING. A probabilistic agent will never pass from a lower
credence in a tautology to a higher credence.

The problem of Credal Completeness is that the probability axioms
require an agent to assign a credence to every proposition in her language.
For instance, Non-Negativity says that every X € L receives some non-
negative credence value. Even in a language with finitely many atomic
propositions, closure under truth-functional connectives will generate a
language of infinite size. Yet it seems not only impossible for a finite agent
to assign that many credences, but also inadvisable under Harman’s (1986)
principle of Clutter Avoidance.

CLUTTER AVOIDANCE. One should not clutter one’s mind with trivialities.

Yet we can slightly alter our formalism so that it no longer demands credal
completeness and evades clutter avoidance concerns. The idea is to require
not that an agent’s credence distribution actually satisfy the probability
axioms, but only that it be extendable to a distribution that does. In other
words, we permit an agent to adopt a partial credence distribution that
assigns numerical values to only some of the propositions in £, but we
require that there be some possible way of assigning values to the rest of
L so that the resulting full distribution satisfies the axioms. This approach
recovers intuitive results such as the stricture that if an agent assigns
credences to both P and ~P, those credences must sum to 1. But it will
not fault an agent if she fails to adopt attitudes towards P, ~P, or both.
Moving to partial distributions avoids the problem of Credal Com-
pleteness, but leaves the problem of Logical Discernment intact. It seems

If your views about logicism in the philosophy of mathematics entail that facts about
digits of 7 are not tautologies, we can always substitute in a conditional whose antecedent
is various arithmetic axioms and whose consequent reports a digit of 7r. Or we can work
instead with some highly complex logical truths.

The “Logical Learning” label is common in the literature; I invented the other two labels
for our discussion here.
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perfectly rational for me to assign credence 1/10 that the trillionth digit of
7t is a 2. Yet any credence distribution—partial or complete—containing
that assignment is not extendable to a probabilistic distribution. It’s either
a tautology that the billionth digit is a 2, or it’s a tautology that the billionth
digit isn’t, so probabilism either demands that I assign that proposition a
credence of 1 or demands that I assign it a credence of 0. Whichever is the
true demand, it seems a bit too demanding, since I don’t have any good
way to figure out which demand it is.

Before considering responses to this problem of Logical Discernment,
let’s quickly consider Logical Learning. The following credal sequence
seems quite reasonable: I assign credence 1/10 that the trillionth digit
of it is a 2, Talbott (1991) tells me that it is indeed a 2, so my credence
that it is dramatically increases (perhaps all the way to 1). It seems in
this case that I have learned a logical truth, and my credal increase is
a rational response to that learning episode. Yet a traditional Bayesian
system will not approve of this response, or be able to usefully model it,
since a probabilistic system countenances only credence distributions (at
any time) that assign that proposition a value of 1.

If we solved the Logical Discernment problem by building a Bayesian
theory that allowed rational credences in tautologies other than 1, pre-
sumably that theory would also allow increases and decreases in such
credences. So there’s hope that a solution to Logical Discernment would
open up a solution to Logical Learning.

How, then, might we model a Bayesian agent without perfect logical
discernment? Responding to Savage, Hacking (1967) suggests we identify
a proposition as “personally possible” for an agent if the agent doesn’t
know it’s false. We then adjust Normality to demand certainty only in
propositions whose negations are personally impossible, and Finite Ad-
ditivity to apply only when P & Q is personally impossible. This allows
an agent to be ignorant of arbitrarily many logical truths, and therefore
less-than-certain of those truths.

Yet this approach creates three problems. The first is formal. Hacking
works with credence distributions over sentences, and he’s free to treat
whatever sentences he wants as personally possible or impossible. But if
we think of those sentences as representing underlying propositions, and
those propositions in turn as representing underlying sets of possibilities,
it seems natural to ask what possibilities an agent entertains when she
entertains as personally possible that which is logically impossible. To
address this sort of gap, Hintikka (1975) constructs a semantics admit-
ting of logically impossible worlds, which can enter into the content of
propositions in just the manner of classical possible worlds.

A second, intuitive problem is that Hacking’s approach allows for arbi-
trarily large amounts of logical non-omniscience—nothing in Hacking’s
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formalism indicts an agent who assigns less-than-certainty to PV ~P,
as long as that agent doesn’t know the proposition is true. Bjerring and
Skipper (manuscript) complain Hacking’s formalism is so permissive that
in sacrificing logical omniscience, it fails to capture any rational require-
ment of basic logical competence. They make similar complaints about a
framework from Garber (1983), and various formalisms developed using
Hintikka’s semantics.

Finally, it’s important to see what a Bayesian system loses when it’s
redefined in terms of personal rather than logical possibility. If an agent
fails to know that P & ~P is impossible, then by Hacking’s lights she need
not apply Finite Additivity to P and ~P. As a result, such an agent may
assign P and ~P credences summing to more than 1. She may increase her
credence in P without decreasing her credence in ~P. In our relevance-
based theory of confirmation, she may not see P as disconfirming ~P. And
when she selects actions by maximizing expected epistemic utility, she
may violate the preference axioms in a variety of ways. In other words, the
very features and applications that make Bayesianism a plausible picture
of rationality begin to dissolve once logical discernment requirements are
loosened.

So perhaps we should go in the other direction? A number of theorists
have begun to wonder if logical omniscience requirements are not an
annoying side-effect of our epistemic formalisms, but instead a hint from
those formalisms about the underlying normative domain. Smithies (2015)
argues that certainty in logical truths is in fact a requirement of rationality;
Titelbaum (2015) and Littlejohn (2018) advocate related positions.

4.2 The Problem of Old Evidence

Clark Glymour initiated the Old Evidence debate with a famous example.

Scientists commonly argue for their theories from evidence
known long before the theories were introduced.... The ar-
gument that Einstein gave in 1915 for his gravitational field
equations was that they explained the anomalous advance of
the perihelion of Mercury, established more than half a cen-
tury earlier. Other physicists found the argument enormously
forceful, and it is a fair conjecture that without it the British
would not have mounted the famous eclipse expedition of 1919.
Old evidence can in fact confirm new theory, but according to
Bayesian kinematics, it cannot. (Glymour, 1980, pp. 306—7)

We've already seen (Section 1.3 and Section 1.4) that a traditional Bayesian
models evidence acquisition as the gaining of certainties, which are then
retained. At the same time (Section 2.1), confirmation is understood as
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positive relevance. Combining these two approaches, we have a problem:
once an evidential proposition has been learned, it receives credence 1.
When ¢(E) =1, ¢(H | E) = ¢(H) for any H € L. So once an agent learns
something, that piece of information is confirmationally inert ever after.

Given these basic facts about Bayesianism, we can identify two chal-
lenges in Glymour’s story about Einstein. Christensen (1999) calls them the
“synchronic” and “diachronic” problems of old evidence.#4 The diachronic
problem is about changes in credence. Over the course of 1915, Einstein
increased his confidence in the General Theory of Relativity (GTR), and
we think this had something to do with the perihelion of Mercury. Yet
it can’t be that Einstein increased his confidence because he learned of
the anomalous advance—he already knew about that well before 1915. So
what changed his opinion, and how can we reflect it in a Bayesian system?

The synchronic problem of old evidence comes up after 1915, when the
perihelion of Mercury has already had its effect on Einstein’s attitudes
toward GTR. Presumably even after 1915, Einstein would have cited the
perihelion advance of Mercury as a crucial piece of evidence supporting
GTR. Yet relative to Einstein’s credence function at that time—which
assigns 1 to the perihelion facts—those facts are not positively relevant to
GTR. So how can a Bayesian about confirmation interpret that evidential
support?

Proposals to solve the synchronic problem usually work by relativizing
confirmation to some probability function other than the agent’s current
credence distribution. Since the agent currently assigns c(E) = 1, E can’t
confirm anything relative to that current distribution. So we look for some
other relevant distribution that doesn’t assign 1 to E. For instance, we
might adopt a “historical backtracking” approach on which we look back
to some time when the agent wasn'’t yet certain of E, and ask whether E
was positively relevant to H in her credence distribution at that time. But
this approach is limited for a number of reasons. For instance, Einstein
probably knew about the perihelion of Mercury long before he ever con-
sidered GTR. So if we backtrack to a time well before 1915 when he wasn’t
yet certain of E, we won’t be able to find any conditional or unconditional
credences he assigned to the relevant H at that time. And so we won't be
able to say that E confirms H for Einstein now because at some time in
the past he assigned c¢(H | E) > c(H).

In light of this and other difficulties, Howson and Urbach (2006) ad-
vocate a “counterfactual backtracking” approach. Instead of looking to a
time in the past when the agent didn’t know E, we look to a close possible
world in which the agent knows everything she knows now except E. Well,

I'm using Christensen’s terminology because I find it the most helpful. But earlier, related
disambiguations of the problem of old evidence can be found in Garber (1983), Eells (1985),
and Zynda (1995).
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not quite everything—we will probably also want a world in which she
doesn’t know logical equivalents to E, immediate entailments of E, etc. But
Howson and Urbach (p. 300) have a technical proposal for identifying the
propositions that should be subtracted out. Setting the technical details
aside, Earman (1992, p. 123) worries this counterfactual approach will
suffer from similar defects to other counterfactual analyses; moving to a
non-actual world may have side-effects that spoil the analysis. For example,
the historical record suggests that Einstein was motivated to formulate
GTR in part to explain Mercury’s anomalous advance. So the closest possi-
ble world in which Einstein doesn’t know E yet still assigns credences to
H may be very far—and very different from our own—indeed.

Perhaps the best approach is to say that when an agent explains the
evidence supporting some hypothesis, the support she’s describing may be
relative not to her own personal credences but to some other probabilistic
distribution. That distribution may be one assumed pertinent by her
audience, or by a particular scientific community. Or if we are Objective
Bayesians (Section 1.5), it may be the objective distribution that determines
how all rational agents should set their credences. Maher (1996), for
instance, develops a proposal of the latter sort. Yet many details remain to
be resolved. For example, how does either a scientific community or an
objective rational distribution assign a prior probability to the proposition
that GTR expresses the physical laws of our universe?4>

As for the diachronic problem of old evidence, the typical response is to
identify something other than learning of Mercury’s perihelion advance
that gave Einstein new confidence in GTR over the course of 1915. For
one, Einstein might have discovered sometime in 1915 not that Mercury’s
perihelion advances anomalously, but that GTR predicts such an anoma-
lous advance. Since it’s a logical fact that GTR (along with other empirical
information of which Einstein was already aware) entails the details of
the advance, this would be an instance of logical learning. So a Bayesian
implementation of this explanation will depend on the logical omniscience
issues discussed in Section 4.1.

Another possibility is that Einstein’s high confidence in GTR at the end
of 1915 was new because he hadn’t had any attitude towards GTR at the
beginning of 1915. Perhaps Einstein hadn’t yet conceived of GTR at the
beginning of 1915, so the language over which he assigned credences
at that time didn’t contain a proposition expressing GTR'’s truth. This
approach would certainly explain why Einstein had a new, high credence
at the end of the year that he didn’t have at the beginning. But it probably
doesn’t generalize to all cases of confirmation by old evidence (and may not

Even if we wanted to use an Indifference Principle (Section 1.5) here, we’d need a partition
to divide our credence evenly across, and it’s difficult to determine what alternative sets
of physical laws should go into such a partition.
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even be historically accurate in Einstein’s case). Moreover, cases in which
agents add new propositions to their cognitive language pose another
challenge for Bayesianism. All of the updating norms we have considered
(Conditionalization, Jeffrey Conditionalization) work over a language
that remains fixed over time. The so-called “problem of new theories”
challenges us to build a formalism that allows an agent’s language to
change over time, and that places reasonable constraints on how the
agent’s credences should evolve across such changes.

Finally, we might focus on the fact that both versions of the problem
of old evidence seem to arise because Conditionalization treats acquiring
evidence as gaining certainties. If newly-acquired evidence didn’t go to
(and remain at) a credence of 1, then we wouldn’t have the problem that old
evidence always has credence 1 and therefore can’t be positively relevant to
anything. Suppose we adopt the Regularity principle (forbidding certainty
in empirical propositions), and mandate Jeffrey Conditionalization as the
rational updating scheme. Then evidence acquisition will increase credence
in particular propositions, but never send it to 1, and the problem of old
evidence will never arise.

Christensen (1999) pursues this approach and finds much to recommend
it, but eventually encounters a new difficulty. The problem of old evidence
is that acquiring a piece of evidence shouldn’t rob it of its ability to
confirm hypotheses. Generalizing this idea, we should agree that becoming
more confident in a piece of evidence shouldn’t affect the degree to which
it confirms a hypothesis. So Christensen seeks a confirmation measure
(Section 2.1) on which Jeffrey Conditionalizations that change ¢(E) don’t
affect E’s level of confirmation of H. He is unable to find a measure that
satisfies this constraint, meets other plausible formal conditions, and works
intuitively in examples.

4.3 Memory Loss and Context-sensitivity

Certainty acquisition and retention also pose other problems for a
Conditionalization-based updating framework. For instance, many of
us have the experience of gaining a piece of evidence one day and then
forgetting it a short time later. Yet if we are constant conditionalizers,
a proposition that achieves credence 1 at some time may never sink
to a lower credence later. So Conditionalization deems memory loss
irrational 40

Or at least, the version of Conditionalization we’ve been discussing deems memory loss
irrational, because it governs an agent’s updating across any arbitrary interval of times ¢;
to t;. One might embrace a more limited version of Conditionalization (compare Titelbaum,
2013a, Chapter 6) that applies only across intervals during which the agent’s information
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While this problem was recognized at least as far back as Levi (1987),
Talbott (1991) puts it particularly forcefully. He considers the response
that Bayesian rules are meant to model ideally rational agents—not ev-
eryday agents—“and an ideally rational agent would not be subject to
the fallibility of human memory.” (p. 141) For what it’s worth, I don’t see
why elephantine recall should make one agent more rational than another
(though see Carr, 2015), but the whole question may be sidestepped by an
ingenious example due to Arntzenius (2003). While I won’t work through
the details here, the upshot of Arntzenius’s example is that Conditionaliza-
tion indicts not only agents who actually forget evidence, but also agents
who suspect they might have forgotten evidence (even if they actually
haven’t). Surely we can’t require of ideally rational agents certainty in
the empirical proposition that they have never forgotten anything in their
lives!

Can we alter Conditionalization to allow for certainty loss? One popular
approach is to take advantage of a feature traditional Conditionalization
already displays. Suppose we have an agent who conditionalizes through-
out her entire life. As she gains evidence, she will accumulate certainties;
the total set of certainties she possesses at any time will represent her total
evidence at that time. Let’s refer to the proposition expressing the conjunc-
tion of all the agent’s evidence/certainties at time t; as E;. If the agent is a
faithful conditionalizer, there will exist at least one regular4” probability
distribution p;, such that for any time ¢; at which that agent assigns cre-
dences, and any proposition X in her language £, ¢;(X) = p;(X | E;). In
other words, there exists a single function p;, relating to every moment in
the agent’s life, such that her credence distribution at any moment can be
recovered by conditionalizing pj, on her total evidence at that moment.

I'll refer to this distribution p;, as the agent’s hypothetical prior; it is
sometimes also called an “ur-prior” or an “initial credence distribution.”
This last moniker comes from thinking of p;, as representing the agent’s
credences at some earliest moment in her life when she lacked any empiri-
cal certainties. Because conditionalization is cumulative and commutative,
if an agent did have such an initial moment in her life—before her first
update by Conditionalization—the credences she assigned at that time
would relate to her later opinions in the way that p;, relates to c;. Yet it’s
difficult to imagine that any actual agent has ever had a moment when
she entirely lacked empirical information.

So I prefer to think of an agent’s hypothetical prior as a convenient
tool for separating out two influences on her credences. On the one hand,

strictly increases. In that case the problem would be that rather than deeming memory loss
irrational, the limited updating rule fails to give any guidance in memory loss cases at all.
By saying the distribution is “regular,” we mean that it assigns credence 1 only to logical
truths.
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there’s her evidence; on the other, there are her epistemic standards, which
encapsulate her principles and tendencies for interpreting evidence. The
agent’s total evidence changes over time, and is represented at time ¢; by E;.
Yet as her evidence changes, she may retain a constant set of standards for
interpreting evidence, represented by her hypothetical prior pj,. Applying
these standards to the agent’s total evidence at t;—by conditionalizing pj,
on E;—yields her credence distribution ¢;.43

This generally attractive picture is entailed by Conditionalization: if an
agent conditionalizes at every update, then her credences throughout her
life will be representable as faithful to a constant hypothetical prior. Yet
interestingly, the entailment does not run in the opposite direction. That
is, an agent may maintain fealty to a constant hypothetical prior even if
her updates do not always satisfy Conditionalization. For instance, it’s
possible that an agent could both gain and lose certainties between two
times #; and ¢}, and yet there still exists a single hypothetical prior p;, such
that for every X € £, ¢;(X) = pp(X | E;) and ¢;(X) = ¢;(X | E;).

We can therefore achieve a plausible diachronic model of agents who
both gain and lose certainties by generalizing Conditionalization not to
demand that an agent conditionalize between each earlier time ¢; and later
time ¢;, but instead to demand (whatever happens to her certainties) that
she set her credences in line with a constant hypothetical prior throughout
her life. This new diachronic norm generates plausible results for a number
of forgetting stories, such as those featured by Talbott. In cases where an
agent does strictly gain certainties between two times, it mimics the effects
of traditional Conditionalization. And in cases where an agent strictly loses
certainties between times, it gives us reverse-temporal Conditionalization.
That is, the agent’s earlier unconditional credences will equal her later
credences conditional on the information she lost. Thus forgetting becomes
like learning backwards in time.

Unfortunately, shifting to this new diachronic norm does not suffice
alone to address another problem with Conditionalization: the way it
treats context-sensitive information. Here I refer to “self-locating” claims
that change their truth-values across times, persons, and locations—such
as “Today is Tuesday,” “I am a sailor,” and “We are in Detroit.” For one
thing, to model these sorts of claims in our formalism we will need to
add to our language £ something like what Lewis (1979) called “centered
propositions.” But even then, Conditionalization will face challenges. It
may be rational right now to be certain that it’s Tuesday, but that certainty
will not remain rational into perpetuity.

The context-sensitivity challenge is sometimes described as yet another
problem with Conditionalization’s certainty-retention. But even when
we shift to a diachronic norm that requires fealty only to a constant

48 Compare Schoenfield (2014) and Meacham (2016).
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hypothetical prior (and therefore allows for certainty loss), problems still
remain. This is because the Bayesian system was designed to model agents
whose evidence changed over time, but who used that evidence to evaluate
hypotheses with truth-values that were fixed targets.4> Adding in another
level of shiftiness generates complications for Conditionalization, Jeffrey
Conditionalization, and hypothetical priors.

A number of formal frameworks have been proposed to model credence
updates in context-sensitive propositions. Some retain Conditionalization,
some make use of hypothetical priors, but in every case new, additional
norms are required to capture the full range of phenomena. There isn’t
space to survey the various approaches here.>® But I will note that solving
the problem of updating self-locating beliefs may have important conse-
quences beyond fun philosophical thought-experiments like the Sleeping
Beauty Problem (Elga, 2000). For instance, fine-tuning arguments for the
existence of the multiverse, and debates about the proper interpretation
of quantum mechanics, may both turn on how agents should manage
credences in context-sensitive propositions.>*

5 OTHER CONFIDENCE FORMALISMS

In closing, I should note that there are a number of alternative formalisms
for modeling agents” varying levels of confidence in claims. First, we can
think simply about whether an agent is more confident in one proposition
than another. Composing these comparisons together yields a confidence
ordering that may float free of any numerical assignments (see Konek,
this volume). A second approach, called “ranking theory” (Spohn, 2012;
Huber, this volume), attaches numbers to the confidence ranking but
works only with the structure of non-negative integers. Third, we can
employ a formal structure even richer than the reals. For instance, instead
of representing an agent’s levels of confidence at a given time with a
single probability distribution, we may represent them with a set of such
distributions (Mahtani, this volume). Or we may have one real-valued
function to track the agent’s attitudes and a separate (though related) one
to track her evidence. This yields a fourth approach, commonly called
“Dempster-Shafer Theory” (Dempster, 1966; Shafer, 1976).

Each of these approaches may be supported by some of the argument-
types described above, and each is plagued by some of the problems above
as well. Some allow formal structures more flexible and expressive than

In philosophy of science applications, for instance, scientific hypotheses about the physical
laws of the universe or the evolutionary origins of hominids do not typically change their
truth-values over time.

Titelbaum (2016) provides a big-picture summary with copious references.

For these applications and others, see Titelbaum (2013b).
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Bayesianism, while some trade expressive power for added psychological
plausibility. I will not attempt to choose a favorite here. But it’s worth
noting that among all the formalisms for representing disparate confidence
levels, none is currently more studied or more often applied than the real-
valued credal approach.>?

6 APPENDIX

Here’s a proof sketch for the representation theorem mentioned in Section
3.1. We will assume that in the decision theory of interest, the following
hold.

o Structural axioms ensuring that betting acts with various structures
(as described in the proof below) are always available to the agent.

o Weak dominance principle: when acts are independent of states, if
there is no state in which act A yields a greater utility than act B,
then A is not preferred to B.

o Strong dominance principle: when acts are independent of states,
if act A yields a greater utility than act B in every state, then A is
preferred to B.

o For any acts A and B, the agent prefers A to B just in case EU(A) >
EU(B), where EU is calculated as described in the main text.

The dominance principles above employ a notion of act/state indepen-
dence, and the relevant notion will vary depending on which decision
theory (evidential, causal, etc.) is in play. So fleshing out the proof below
for a given decision theory will require showing that the acts and states
appearing in each step of the proof are independent in the relevant sense.
Given the types of acts involved, that should be fairly straightforward.

Notice that the following is a corollary of the weak dominance principle.

o Equivalence principle: when acts are independent of states, if two
acts yield the same utility as each other in every possible state, the
agent is indifferent between them.

The argument is simply that if A and B yield the same utility in every
possible state, then by weak dominance A is not preferred to B and
B is not preferred to A. So the agent is indifferent between them, and
EU(A) = EU(B).

Thanks to the editors, Richard Pettigrew and Jonathan Weisberg, and especially to the
latter for detailed comments and many citation suggestions. Much of the material in this
piece has been adapted from my forthcoming book (Titelbaum, forthcoming), which covers
almost all of the topics here in much greater depth.
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To show that any credence function c appearing in a decision theory
with the features above must be a positive scalar transform of a probability
function, we need to prove that it satisfies four conditions.

1. Every tautology in £ receives the same c-value.

Proof. Suppose for reductio we have two tautologies T1, T2 € £ such
that the agent assigns a credence of x to the first and a different
credence y to the second. Consider an act that pays 1 util on T
and 0 utils otherwise, and an act that pays 1 util on T, and 0 utils
otherwise. The agent will assign the first act an expected utility of x,
the second act an expected utility of y. Since x and y are different,
the agent will prefer one act to the other. Yet the two acts each yield
the same payout (1 util) in every possible state, so we’ve violated the
equivalence principle (and therefore weak dominance).

2. For any tautology and contradiction T,F € L, ¢(T) > c(F).

Proof. Suppose for reductio we have a T and F such that ¢(T) < ¢(F).
Now consider an act that pays 1 util on T and 0 utils otherwise, and
another act that pays 1 util on F and 0 utils otherwise. Given the
supposition, the agent will assign the first act an expected utility no
greater than the second. Yet the first act yields a greater utility than
the second in every possible state, so by strong dominance the first
act must receive a higher expected utility.

3. For any mutually exclusive X,Y € £, c(XVY) = ¢(X) 4+ c(Y).

Proof. First consider the act of purchasing a bet that pays 1 util on X, 1
util on Y, and 0 utils otherwise. Since X and Y are mutually exclusive,
we may partition the possible states into X, Y, and ~X & ~Y. Using
this partition, the expected utility of this act is

c(X) - u(X)+c(Y) u(Y)+c(~X&~Y) - u(~X &~Y)
=c(X) 14+c(Y) 14+c(~X&~Y)-0 (27)
= ¢(X) +c(Y).

Now consider the act of purchasing a bet that pays 1 utilon X VY,
and 0 utils otherwise. Partitioning the states into X VY and ~(X VYY),
the expected utility of this act is

c(XVY)-u(XVY)+c(~[XVY]) -u(~[XVY])
= c(XVY)-14+c¢(~[XVY])-0 (28)
= ¢(XVY).

These two acts have the same payout in every possible state, so
to satisfy the equivalence principle the agent must be indifferent
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between them. This means that their expected utilities are equal, so
c(XVY)=c(X)+c(Y).

4. Forany X € £, ¢(X) > 0.

Proof. First, we show that there canbeno Y, T € £ such that T is a
tautology and c(Y) > ¢(T). Suppose for reductio that we had such
two such propositions Y and T. Now consider an act that pays 1 util
if Y is true, and 0 utils otherwise, and an act that pays 1 util if T is
true, and 0 utils otherwise. The first act has expected utility c(Y),
while the second has expected utility ¢(T). By our supposition, the
agent prefers the first act. But since T is true in every state, there is
no state in which the first act yields a greater utility than the second.
So we have violated weak dominance.

Now to the main result. Assume for reductio that there exists an
X € L such that ¢(X) < 0. Since X and ~X are mutually exclusive,
c(XV~X) = c(X)+c(~X) by (3) above. If ¢(X) < 0, then ¢(X V
~X) < ¢(~X). But X V ~X is a tautology, so this is impossible.
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DECISION THEORY Johanna Thoma

Suppose I am deliberating whether I should live on a boat and sail the
Caribbean for a year. This is a decision not to be taken lightly. Many factors
will matter for my decision. Several of these depend on uncertain states of
the world. Will I be able to make a living? Is my boat really seaworthy?
Will I miss my friends? How bad will the next winter be in my home
town?

1 DECISION PROBLEMS AND THE USES OF DECISION THEORY

Giving a decision problem like this some formal structure may be helpful
for a number of interrelated purposes. As an agent, it might help me come
to a better decision. But giving formal structure to a decision problem may
also help a third party: prior to an action, it may help them predict my
behaviour. And after the action, it may help them both understand my
action, and judge whether I was rational. Moreover, giving formal structure
to a decision problem is a pre-requisite for applying formal decision
theories. And formal decision theories are used for all the aforementioned
purposes.

In the case of the decision whether to live on a boat, we could perhaps
represent the decision problem as shown in Table 1. In this matrix, the
rows represent the actions I might take. In our case, these are to either
live on a boat, or not to live on a boat. The columns represent the relevant
states of the world. These are conditions that are out of my control, but
matter for what I should do. Suppose these involve my boat either being
seaworthy, or not being seaworthy. I am uncertain which of these states
of affairs will come about. Finally, the entries in the matrix describe the
possible outcomes I care about that would result from my action combined
with a state of the world.

Boat seaworthy Boat not seaworthy
LIVE ON A BOAT Life on a boat, Life on a boat,

no storm damage storm damage
STAY IN HOME TOWN Life as usual Life as usual

Table 1: Should I live on a boat?
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Since Savage’s (1954) decision theory, it has become standard to charac-
terise decision problems with state-outcome matrices like the one I just
introduced. More generally, let A; ... A, be a set of n actions that are open
to the agent, and let S;...S,;, be m mutually exclusive and exhaustive
states of the world. These actions and states of the world combine to
yield a set of n - m outcomes Oy ... Opy. Table 2 shows this more general
state-outcome matrix.

Al Oll e Olm
AI’Z Ol’ll . e Onm

Table 2: State-outcome matrix

Given such a representation of a decision problem, formal decision
theories assume that agents have various attitudes to the elements of the
state-outcome matrix. Agents are assumed to have preferences over the
outcomes their actions might lead to. Depending on our interpretation
of decision theory, we may also assume that agents can assign a utility
value to the outcomes, and a probability value to the states of the world.
Decision theories then require the preferences the agent has over actions,
which are assumed to guide her choice behaviour, to relate to those other
attitudes in a particular way.

1.1 Expected Utility Maximisation

Traditionally, the requirement that decision theories place on agents under
conditions of uncertainty has been that agents should maximise their
expected utility, or act as if they did. Decision theories which incorporate
this requirement are known under the heading of ‘expected utility theory’.
In the special case where an agent is certain about the consequences
of each of her actions, this requirement reduces to the requirement to
maximise utility. Since we are always to some extent uncertain about the
consequences of our actions, I will focus on the uncertain case here."
However, much of the following discussion will also apply to decision-

I understand decision-making under “uncertainty” here to refer to any case where an agent
is not certain what the consequences of her actions will be, or what state will come about. A
distinction is sometimes made between risk, uncertainty, ignorance and ambiguity, where
‘risk’ refers to the case where objective probabilities are known, ‘uncertainty” refers to the
case where an agent can make a subjective judgement about probabilities, an agent is in
a state of ‘ignorance’ if she cannot make such probability assignments, and ‘ambiguity’
occurs when an agent can make probability assignments for some states, but not others.



DECISION THEORY

making under certainty. Moreover, most of this entry will focus on expected
utility theory. Some alternative decision theories are discussed in Section 6.

As we will see, the requirement to maximise expected utility takes
different forms under different interpretations of expected utility theory.
For now, let us assume that agents can assign utility values u(O) to
outcomes, and probability values p(S) to states of the world. The expected
utility is then calculated by weighting the utility of each possible outcome
of the action by the probability that it occurs, and summing them together.
Expected utility theory instructs us to prefer acts with higher expected
utility to acts with lower expected utility, and to choose one of the acts
with the highest expected utility.

In our example, suppose that I think that the chances that my boat
is seaworthy are 50%, and that the relevant utilities are the ones given
in Table 3. In that case, the expected utility of living on a boat will be
0.5-200 + 0.5 - 20 = 110, while the expected utility of staying in my home
town is 100. I conclude I should live on a boat.

Boat seaworthy Boat not seaworthy EU

LIVE ON A BOAT 200 20 110

STAY IN HOME TOWN 100 100 100

Table 3: Decision problem with utilities

Formally, the expected utility EU(A) of an action can be expressed as
follows:

Expected utility theory requires agents to prefer acts for which this
weighted sum is higher to acts for which this weighted sum is lower,
and to choose an action for which this weighted sum is maximised.

1.2 The Uses of Decision Theory

Now we can see how expected utility theory could be put to each of the
different uses mentioned above. The requirement to maximise expected
utility (or to act as if one did), however it is understood, is considered as
a requirement of practical rationality by proponents of expected utility
theory. In particular, the requirements of expected utility theory are often
interpreted to capture what it means to be instrumentally rational, that
is, what it means to take the appropriate means to one’s ends, whatever

While these differences will play a role later in this entry, it is not helpful to make these
distinctions at this point.
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those ends may be. We will see how this may be cashed out in more detail
in Section 3, when we discuss different interpretations of expected utility
theory. For now, note that if we take the utility function to express the
agent’s ends, then the requirement to maximise the expectation of utility
sounds like a natural requirement of instrumental rationality.

Sometimes, the requirements of expected utility theory are also under-
stood as expressing what it means to have coherent ends in the first place.
Constructivists about utility (see Section 3.1) often understand expected
utility theory as expressing requirements on the coherence of preferences.
But on that understanding, too, expected utility theory does not make any
prescriptions on the specific content of an agent’s ends. It merely rules out
certain combinations of preferences. And so for those who think that some
ends are irrational in themselves, expected utility theory will at best be an
incomplete theory of practical rationality.

If we understand the requirements of expected utility theory as require-
ments of practical rationality, it seems like expected utility theory could
help me as an agent make better decisions. After I have formally repre-
sented my decision problem, expected utility theory could be understood
as telling me to maximise my expected utility (or to act as if I did). In the
above example, we employed expected utility theory in this way. Expected
utility theory helped me decide that I should live on a boat. In this guise,
expected utility theory is an action-guiding theory.

From a third party perspective, expected utility theory could also be
used to judge whether an agent’s action was rational. Having represented
the agent’s decision problem formally, we judge an action to be rational if
it was an act with maximum expected utility. This understands expected
utility theory as a normative theory: a theory about what makes it the case
that somebody acted rationally.

It is important to note the difference between the action-guiding and
the normative uses of expected utility theory.> An action can be rational
according to normative expected utility theory even if the agent did not
use expected utility theory as an action-guiding theory. One could even
hold that expected utility theory is a good normative theory while being
a bad action-guiding theory. This would be the case if most agents are
bad at determining their expected utility, and do better by using simpler
heuristics.3

Herbert Simon famously drew attention to this difference when he distinguished between
procedural and substantive rationality, drawing on a similar distinction made by Max Weber
(1922/2005). See Simon (1976).

Starting with Tversky and Kahneman (1974), there has been a wealth of empirical literature
studying what kind of heuristics decision-makers use when making decisions under
uncertainty, and how well they perform. See, for instance, Payne, Bettman, and Johnson
(1993) and Gigerenzer, Todd, and Group (2000).
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Expected utility theory is also often put to an explanatory or predictive
use, especially within economics or psychology. If we assume that agents
follow the requirements of expected utility theory, and we know enough
of their preferences or utility and probability assignments, we can use
the theory to predict their behaviour. In this context, philosophers have
been interested more in whether decision theory can help us understand an
agent’s actions. Interpreting an agent as maximising her expected utility
in a formal decision problem may reveal her motives in action, and thus
explain her action.

In fact, there is a tradition in the philosophy of action that claims
that explaining another’s behaviour always involves rationalising her
behaviour to some extent. Davidson (1973) introduced the label ‘radical
interpretation” for the attempt to infer an agent’s attitudes, such as her
beliefs and desires, from her actions. He believed that this was only
possible if we assume certain rationality constraints on how these attitudes
relate. Ramsey (1926/2010) had already used expected utility theory to
infer an agent’s probabilities, and thus, he argued, her beliefs from her
behaviour. Lewis (1974) showed that expected utility theory captures
Davidson’s constraints on the relationship between beliefs and desires,
and thus can be used to elicit beliefs and desires. Davidson himself later
argued, in Davidson (1985), that expected utility theory can be extended
to further elicit an agent’s meanings, that is, her interpretation of sentences.
This is sometimes known as the interpretive use of decision theory.

And so in the philosophical literature, expected utility theory has been
used as an action-guiding theory, a normative theory, and an interpretive
theory.# Other decision theories have been put to the same uses. As we
will see in Section 6, there are alternatives to expected utility theory that
offer rival prescriptions of practical rationality. However, most alternatives
to expected utility theory have been introduced as primarily descriptive
theories, that are used to predict and explain behaviour that need not be
rational.

Now that we have seen what kinds of uses expected utility theory can
be put to, the next section will look at some influential applications of
expected utility theory.

1.3 Some Applications

Expected utility theory has proven to be an enormously fruitful theory,
that has been applied in various different fields and disciplines. Originally,
it found application mostly in the theory of consumer choice. This field

Bermudez (2009) draws a similar tri-partite distinction between the normative, action-
guiding and explanatory/predictive dimensions of decision theory. Similarly, Buchak
(2016) distinguishes between the normative and interpretive uses of decision theory.
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of economics studies why consumers choose some goods rather than
others, and helps to predict market outcomes. Expected utility theory has
been used to explain the shape of demand curves for goods. The demand
for insurance, in particular, is difficult to understand without a formal
theory of choice under uncertainty. Expected utility theory has also helped
to explain some phenomena that had previously seemed surprising. A
classic example here is adverse selection, which occurs when there is an
information asymmetry between buyers and sellers in the market. In these
kinds of situations, sellers of high quality goods may be driven out of
the market. Akerlof (1970) first explained this phenomenon, and a rich
literature has developed since. Einav and Finkelstein (2011) provide a
helpful overview of work on adverse selection in insurance markets.

Decision theory has also found application in many fields outside of
economics. For instance, in politics, it has been used to study voting and
voter turn-out,5 in law it has been used to study judicial decisions,® and in
sociology it has been used to explain class and gender differences in levels
of education.”

Expected utility theory has also been influential in philosophy. Apart
from it being an important contender as a theory of practical rationality,
expected utility theory plays an important role in ethics, in particular in
consequentialist ethics. Along with Jackson (1991), many consequentialists
believe that agents ought to maximise expected moral goodness. Moreover,
expected utility theory has been applied to the question of what agents
ought to do in the face of moral uncertainty—uncertainty about what one
ought to do, or even about which moral theory is the right one.®

Recently, expected utility theory has found application in epistemology
in the form of epistemic decision theory. Here, agents are modeled as receiv-
ing epistemic utility from being in various epistemic states, such as being
certain of the proposition that my boat is sea-worthy. I will receive a high
epistemic utility from being in that state in the case where my boat in fact
turns out to be seaworthy, and low epistemic utility when my boat turns
out not to be seaworthy. Agents are then modeled as maximising their
expected epistemic utility. Epistemic utility theory has been used to justify
various epistemic norms, such as probabilism (the norm that an agent’s
credences should obey the probability calculus), and conditionalisation
(the norm that agents should update their credences by conditionalizing
their old credence on the new evidence they received). For an overview of
these arguments, see Pettigrew (2011).

5 Downs (1957) counts as the first systematic application of decision theoretic models from
economics to politics. For recent work on voting specifically, see Feddersen (2004).

6 See, for instance, Epstein, Landes, and Posner (2013).

7 See, for instance, Breen and Goldthorpe (1997).

8 See, for instance, Lockhart (2000), and Sepielli (2013) for a criticism of Lockhart’s approach.
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1.4 Formulating Decision Problems

How should the decision problems that formal decision theories deal
with be formulated in the first place? In order to apply a formal decision
theory, the choices an agent faces need to already be represented as a
formal decision problem. Table 1 offered one representation of my choice
of whether to live on a boat. But how can we be sure it was the right one?

For his decision theory, Savage (1954) assumed that states are descrip-
tions of the world that include everything that might be relevant to the
agent. Similarly, he thought that descriptions of outcomes are descriptions
of “everything that might happen to the person” (p. 13). Joyce (1999, p. 52)
cashes out a rule for specifying outcomes that also appeals to relevance.
He claims that a description of an outcome should include everything that
might be relevant to the agent, in the following sense: whenever there is
some circumstance such that an agent would strictly prefer an outcome
in the presence of that circumstance to the same outcome in the absence
of that circumstance, the outcome has been underspecified. Importantly,
this implies that an agent’s evaluation of an outcome should be indepen-
dent of the state it occurs in, and the act that brought it about. All of
this means that the sets of states and outcomes will end up being very
fine-grained. Moreover, Savage also thinks of actions as functions from
states to outcomes. This means that in each state, each action leads to a
unique outcome. To ensure this, the set of actions, too, will have to be very
fine-grained.

Note that this means that the decision problem I presented in Table 1
was hopelessly underspecified. When it comes to the decision of whether
to live on a boat for a year or not, I do not only care about whether my boat
will have storm damage or not. I also care, for instance, about whether I
will have enough money for the year. I will evaluate the outcome “Life on
a boat, no storm damage” differently depending on whether I will have
enough money for the year or not. In fact, the exact amount of money I
will have is going to matter for my decision. And so my decision problem
should really distinguish between many different states of affairs involving
me having more or less money, and the many different outcomes that
occur in these states of affairs.

Jetfrey (1965/1983), who offered a famous alternative to Savage’s deci-
sion theory (see Section 2.4), and treated states, acts, and outcomes all as
propositions, went so far as to define outcomes such that they entail an
act and a state. An act and a state are also supposed to entail the outcome,
and so we can simply replace outcomes with the conjunction of an act and
a state in the decision matrix.

These ways of individuating outcomes will obviously lead to very large
decision matrices for any real life decision. There are two reasons why we
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might find this problematic. The first reason has to do with the efficiency
of the decision-making process. If we want our decision theory to be
an action-guiding theory, then decision problems can’t be so complex
that ordinary agents cannot solve them. An action-guiding theory should
be efficient in its application. Efficiency may also be a concern for the
interpretive project. After all, this project wants to enable us to interpret
each other’s actions. And so doing so should not be overly complicated.

Savage called decision problems that specify every eventuality that
might be relevant to an agent’s choice “grand world” decision problems.
Joyce (1999) holds that we should really be trying to solve such a grand-
world problem, but acknowledges that real agents will always fall short
of this. Instead, he claims, they solve “small world” decision problems,
which are coarsenings of grand-world decision problems. If we treat acts,
states and outcomes as propositions, this means that the acts, states and
outcomes of the small world decision problems are disjunctions of the acts,
states, and outcomes of the grand-world decision problem. The decision
problem described in Table 1 is such a small-world decision problem.

Joyce (1999, p. 74) holds that an agent is rational in using such small-
world decision problems to the extent that she is justified in believing
that her solution to the small-world decision problem will be the same as
her solution to the grand-world decision problem would be. This permits
the use of small world decision problems both for the action-guiding and
normative purposes of decision theory whenever the agent is justified in
believing that they are good enough models of the grand-world decision
problem.

Joyce argues that this condition is met in Jeffrey’s decision theory if
an agent correctly evaluates all coarse outcomes and actions, while it is
not generally met in Savage’s decision theory. As will be explained in
Section 2.4, this is due to the feature of partition invariance, which Jeffrey’s
theory has and Savage’s theory does not. Despite these arguments, if
efficiency in decision-making is an important concern, as it is for an action-
guiding theory, one might think that an agent should sometimes base her
decision on a small-world decision problem even if she is fairly certain that
her decision based on the grand-world decision problem will be different.
She might think that her solution to a small-world decision problem will
be close enough to that of the grand-world decision problem, while solving
the small-world decision problem will save her costs of deliberation.

The second argument against having too fine-grained a decision prob-
lem is that this makes expected utility theory not restrictive enough. As
will be explained in more detail in Section 2, the axioms used in the repre-
sentation theorems of expected utility theory concern what combination
of preferences are permissible. If preferences attach to outcomes, and
outcomes can be individuated as finely as we like, then the danger is that
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the norm to abide by the axioms of decision theory does not constrain our
actions much.

For instance, consider the following preference cycle, where a, b and ¢
are outcomes, and < expresses strict preference:

a<b<c=<a.

Preference cycles such as this are ruled out by the transitivity axiom, which
all representation theorems we shall look at in Section 2 share. When
outcomes can be individuated very finely, the following two problems
may arise. Firstly, a number of authors have worried that any potential
circularity in an agent’s preferences can be removed by individuating
outcomes more finely, such that there is no circularity anymore. Secondly,
and relatedly, fine individuation may mean that no outcome can ever be
repeated. In that case, an agent cannot reveal a preference cycle in her
actions, and so we cannot interpret her as being irrational.

To see this, note that if we treat the first and the second occurrence of
outcome a above as two different outcomes, say a; and a4, the circularity
is removed:

a <b<c=<a.

The worry is that this can always be done, for instance by distinguishing
“option a if it is compared to b” from “option a if it is compared to c”. If
this strategy is always available, in what sense is the transitivity axiom a
true restriction of the agent’s preferences and actions? If we can’t show
that decision theory puts real restrictions on an agent’s choices, then this
is a problem especially for the action-guiding and normative projects.

A number of authors? have held that this problem shows that the axioms
of decision theory on their own cannot serve as a theory of practical
rationality (even a partial one), but have to be supplemented with a further
principle in order to serve their function. Broome (1991, chapter 5) notes
that the problem can be dealt with by introducing rational requirements of
indifference. Rational requirements of indifference hold between outcomes
that are modeled as different, but that it would be irrational for the agent
to have a strict preference between. If there was a rational requirement of
indifference between a; and a5, for instance, the preference cycle would be
preserved.

However, we may also restrict how finely outcomes can be individuated
to solve the problem, by not allowing a distinction between a; and a,.
Broome (1991, chapter 5) advocates a rule of individuation by justifiers
that serves the same role as the rational requirements of indifference.
According to this rule, two outcomes can only be modeled as distinct if it
is not irrational to have a strict preference between them.

9 See, especially, Broome (1991), Pettit (1991) and Dreier (1996).
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Pettit (1991) proposes an alternative rule for individuation: two outcomes
should be modeled as distinct just in case they differ in some quality the
agent cares about, where caring about a quality cannot itself be cashed
out in terms of preferences over outcomes. And Dreier (1996) argues that
two outcomes should be distinguished just in case there are circumstances
where an agent has an actual strict preference between them. Note that
this rule for individuation is equivalent to the one proposed by Joyce, but
Pettit’s and Broome’s rules may lead to coarser grained individuations
of decision problems. The coarser grained the individuations, the more
restrictive the axioms of expected utility theory end up being.

2 REPRESENTATION THEOREMS
2.1 The Preference Relation

In decision theory, representation theorems are proofs that an agent’s
preferences are representable by a function that is maximised by the agent.
In the case of expected utility theory, they are proofs that an agent’s
preferences are such that we can represent her as maximising an expected
utility function. As we will see in Section 3, many decision theorists believe
that utility is nothing more than a convenient way to represent preferences.
Representation theorems are crucial for this interpretation of utility. The
significance of the representation theorems will be further discussed in
Section 3.2.

A weak preference relation is a binary relation >, which is usually
interpreted either as an agent’s disposition to choose, or her judgements
of greater choiceworthiness.’® An agent weakly prefers x to y if she finds
x at least as choiceworthy as y, or if she is disposed to choose x when x
and y are available.

We can also define an indifference relation ~ and a strict preference
relation > in terms of the weak preference relation =:

1. x ~yifand only if x =y and y = x,
2. x = yif and only if x > y and not y = x.

Representation theorems take such preference relations as their starting
point. They then proceed by formulating various axioms that pose re-
strictions on the preference relation, some of which are interpreted as

Many economists interpret preference as ‘revealed preference’, and claim that an agent
counts as preferring x to y just in case she actually chose x when y was also available. Such
pure behaviourism is usually rejected in the philosophical literature because it takes away
from the explanatory power of preferences, and does not allow for counter-preferential
choice. For a critique of the notion of revealed preference, see Hausman (2000).
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conditions of rationality. Let X be the domain of the preference relation.
What representation theorems prove is the following. If an agent’s prefer-
ences conform to the axioms, there will be a probability function and a
utility function such that:

for all x and y € X, EU(x) > EU(y) if and only if x 3> y.

All the representation theorems described in the following assume that
the preference relation is a weak ordering of the elements in its domain.
That means that the preference relation is transitive and complete.

TransiTIVITY. Forall x,y and z € X, x »= y and y = z implies that x = z.

CompLETENESS. Forallxandy € X, x =y ory = x.

Section 4 will discuss potential problems with both completeness and
transitivity.

Different representation theorems differ both in terms of the domain
over which the preference relation is defined, and in terms of the other
axioms needed for the representation theorem. They also differ in how
many of the agent’s attitudes other than preferences they take for granted.
Consequently, they result in representation theorems of different strength.

2.2 Von Neumann and Morgenstern

One of the first representation theorems for expected utility is due to von
Neumann and Morgenstern (1944) and takes probabilities for granted.™
In this representation theorem, the objects of preference are lotteries, which
are either probability distributions L = (py, ..., pm) over the m outcomes,
or probability distributions over these ‘simple” lotteries. Probabilities are
thus already part of the agent’s object of preference.

While it helps to think of lotteries in the ordinary sense of monetary
gambles where there is a known probability of winning some prize, von
Neumann and Morgenstern intended for their representation theorem to
have wider application. In our original example, if there is a 50% chance
that my boat is seaworthy, then I face a 50/50 lottery over the outcomes
described in Table 1. Note furthermore that, since we are dealing directly
with probability distributions over outcomes, there is no need to speak of
states of the world.

While von Neumann and Morgenstern’s representation theorem is per-
haps most naturally understood given an objective interpretation of proba-
bility, their representation theorem is in fact compatible with any interpre-
tation of probability. All we need is to already have access to the relevant

An earlier representation theorem is due to Ramsey (1926/2010) and derives probabil-
ities as well as utilities. It is often considered as a precursor to Savage’s and Bolker’s
representation theorems, discussed below. See R. Bradley (2004).
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(precise) probabilities when applying the representation theorems. If we
think of probability as the agent’s subjective degrees of belief, we already
need to know what those subjective degrees of belief are. If we think of it
as objective chance, we need to already know what those objective chances
are.

What von Neumann and Morgenstern go on to prove in their represen-
tation theorem is that, provided an agent’s preferences over lotteries abide
by certain axioms, there is a utility function over outcomes such that an
agent prefers one lottery over another just in case its expected utility is
higher. One crucial axiom needed for this representation theorem is the
independence axiom, discussed in Section 5.1.

Note that the result is not that there is one unique utility function which
represents the agent’s preferences. In fact, there is a family of utility func-
tions which describe the agent’s preferences. According to von Neumann
and Morgenstern’s representation theorem, any utility function which
forms part of an expected utility representation of an agent’s preferences
will only be unique up to positive, linear transformations. The different
utility functions that represent an agent’s preferences will thus not all
share the same zero point. What outcome will yield twice as much utility
will then also differ between different utility functions. It is therefore often
claimed that these properties of utility functions represent nothing “real”.
What is invariant between all the different utility functions that represent
the agent’s preferences, however, are the ratios of utility differences, which
can capture the curvature of the utility function. Such ratios are often used
to measure an agent’s level of risk aversion.**

2.3 Savage

While von Neumann and Morgenstern’s representation theorem provides
a representation of an agent’s preferences where probabilities are already
given, Savage (1954) infers both a utility function and probabilities from
an agent’s preferences.”> As we have already seen, the standard tripartite
distinction of actions, outcomes and states of the world goes back to
Savage. Instead of assuming, like von Neumann and Morgenstern did,
that we can assign probabilities to outcomes directly, we introduce a set

Risk aversion is further discussed in Section 5.3. Also see Mas-Colell, Whinston, and Green
(1995), chapter 6 for more detail on expected utility theory’s treatment of risk aversion.
This is why von Neumann and Morgenstern’s theory is sometimes referred to as a theory
of decision-making under risk, and Savage’s is referred to as a theory of decision-making
under uncertainty. In the former, probabilities are already known, in the latter, subjective
probabilities can be assigned by the agent. However, note that, as we pointed out above,
von Neumann and Morgenstern’s theory can also be applied when probabilities are
subjective.
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of states of the world, which determine what outcome an act will lead to.
The agent does not know which of the states of the world will come about.

Savage takes the agent’s preferences over acts as input, and introduces
a number of axioms on these preferences. He derives both a probability
function over states, which abides by the standard axioms of probability,
and a utility function over outcomes which, like the one von Neumann
and Morgenstern derived, is unique up to positive linear transformations.
Together, they describe an expected utility function such that an act is
preferred to another just in case it has a higher expected utility. Importantly,
the agents in Savage’s decision theory abide by the sure-thing principle,
which serves a role similar to the independence axiom in von Neumann
and Morgenstern’s representation theorem, and will also be discussed in
Section 5.1.

Acts, states and outcomes are all treated as theoretical primitives in
Savage’s framework. But Savage’s representation theorem relies on a
number of controversial assumptions about the act, state and outcome
spaces and their relation. For one, probabilities apply only to states of
the world, and utilities apply only to outcomes. Preferences range over
both acts and outcomes. Savage assumed that an act and a state together
determine an outcome. Most controversially, Savage assumes that there
are what he calls constant acts for each possible outcome, that is, acts
which bring about that outcome in any state of the world. For instance,
there must be an act which causes me great happiness even in the event
that the apocalypse happens tomorrow. What makes things worse, by
completeness, agents are required to have preferences over all these acts.
Luce and Suppes (1965) take issue with Savage’s theory for this reason.

While the results of Savage’s representation theorem are strong, they
rely on these strong assumptions about the structure of the act space. This
is one reason why many decision theorists prefer Jeffrey’s decision theory
and Joyce’s modification thereof.

2.4 Jeffrey, Bolker, and Joyce

Jeffrey’s decision theory, developed in Jeffrey (1965/1983), uses an axioma-
tisation by Bolker (1966). While he does not rely on an act space as rich
as Savage’s, Jeffrey preserves the tripartite distinction of acts, states and
outcomes. However, for him, all of these are propositions, which means
he can employ the tools of propositional logic. Moreover, preferences,
utility and probability all range over all three. Agents end up assigning
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probabilities to their own acts,’ and assigning utilities to states of the
world.

Jeffrey’s theory is sometimes known as conditional expected utility
theory, because agents who follow the axioms of his decision theory are
represented as maximisers of a conditional expected utility. In Savage’s
decision theory, the utilities of outcomes are weighted by the unconditional
probability of the states in which they occur. This is also the formulation
we presented in Section 1.1. In the example there, we weighted the possible
outcomes by the probability of the state they occur in. For instance, we
weighted the outcome of enjoying a year on a boat without damages by
the probability of my boat being seaworthy.

Jeffrey noted that the unconditional nature of Savage’s decision theory
may produce the wrong results in cases where states are made more or
less likely by performing an action. In our example, suppose that, for
whatever reason, my choosing to live on a boat for a year makes it more
likely that my boat is seaworthy. The unconditional probability of the boat
being seaworthy is lower than the probability of it being seaworthy given
I decide to live on the boat. And thus using the unconditional probability
may lead to the judgement that I shouldn’t spend the year on the boat,
because the probability of it not being seaworthy is too high—even if the
boat will be very likely to be seaworthy if I choose to do so. To avoid this
problem, Jeffrey argued, it is better to use probabilities that are in some
sense conditional on the action whose expected utility we are evaluating.
We should weight the outcome of spending a year on a boat without
damage by the probability of the boat being seaworthy given that I choose
to live on the boat for a year.">

Let the probability of a state given an act be p4(S). There is much
disagreement on how this probability is to be interpreted. The main
disagreement is whether it should be given a causal or an evidential
interpretation. I postpone this discussion to Section 3.3. But let me note
here that Jeffrey himself falls on the evidential side. Conditional expected
utility theory advises us to maximise the following:

EU(A;) = flm,»(s» u(0y).
L

Jeffrey interprets this conditional expected utility as an act’s ‘news value’,
that is, as measuring how much an agent would appreciate the news that
the act is performed.

This is a controversial feature of the theory. See Spohn (1977) for criticism of this assump-
tion.

Savage’s own solution to the problem is that, for his formalism to apply, states and acts
need to be specified such that there is no dependence between an action being performed
and the likelihood of a state. Jeffrey’s response is more elegant in that it requires no such
restriction on what kinds of decision problems it can be applied to.
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The conditional nature of Jeffrey’s decision theory is also what leads to
its partition invariance.’® In Jeffrey’s theory, the value of a disjunction is
always a function of the value of its disjuncts. For instance, the value of
a coarse outcome O;_19 which is a disjunction of outcomes Oy, ..., Oy is
a function of the values of the outcomes Oy, ..., 01p. But we could also
subdivide the coarse outcome O;_1¢ differently. O;_1¢ is also a disjunction
of the coarse outcomes O;_5 and Og_19, which are themselves disjunctions
of Oy,...,05 and O, ..., 01 respectively. And so we can also calculate
the value of O1_1¢ from the values of O;1_5 and Og_19. Partition invariance
means that we get the same value in either case. The value of O;_19
can be represented as a function of the values of any of its subdivisions.
This means that, as long as utilities are assigned correctly to disjunctions,
Jeffrey’s decision theory gives equivalent recommendations no matter
how finely we individuate outcomes, states and actions. Joyce argues that
for this reason, the use of small-world decision problems is legitimate
in Jeffrey’s decision theory (see Section 1.4), and that that is a major
advantage over Savage’s unconditional, and partition variant decision
theory.

Jeffrey’s and Bolker’s representation theorem is less strong than Savage’s.
It does not pin down a unique probability function. Nor does it result
in a utility function that is unique up to positive linear transformations.
Instead, it only ensures that probability and utility pairs are unique up to
fractional linear transformations."”

Joyce (1999) argues that this shows that we need to augment Jeffrey’s and
Bolker’s representation theorem with assumptions about belief, and not
merely preference. Unlike von Neumann and Morgenstern, however, he
does not propose to simply assume probabilities. Instead, he introduces a
‘more likely than’ relation, on which we can formulate a number of axioms,
just as we did for the preference relation. The resulting representation
theorem results in a unique probability function and a utility function
which is unique up to positive linear transformations.*®

We have introduced the most prominent representation theorems for
expected utility theory.’ What do these representation theorems show?
Each of them shows that if an agent’s preferences abide by certain axioms,
and certain structural conditions are met, her preferences can be repre-
sented by a utility (and probability) function (or families thereof) such
that she prefers an act to another just in case its expected utility is higher.

16 See Joyce (1999), pp. 121-122.
17 A fractional linear transformation transforms u to 2%+t witha-d —b-c > 0.

cu+d’

18 Also see R. Bradley (1998), for an alternative way to secure uniqueness.
19 A helpful, more technical and more detailed overview of representation theorems can be

found in Fishburn (1981).
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Agents who abide by the axioms can thus be represented as expected
utility maximisers.

What these kinds of results show depends to some extent on the purpose
we want to put our theory to. But it also depends on how we interpret
the utilities and probabilities expected utility theory deals with. Section 3
gives an overview of these interpretations and then returns to the question
of what the representation theorems can show.

3 INTERPRETATIONS OF EXPECTED UTILITY THEORY
3.1 Interpretations of Utility

Some of the earliest discussions of choice under uncertainty took place
in the context of gambling. The idea that gamblers maximise some ex-
pected value first came up in correspondence between Fermat and Pascal
(1654/1929). Pascal, who formulated the expected value function in this
context, thought of the value whose expectation should be maximised as
money. This is natural enough in the context of gambling. Similarly, in this
context it is natural to think of the probabilities involved as objective, and
fixed by the parameters of the game.

However, money was soon replaced by the notion of utility as the value
whose expectation is to be maximised. This happened for two interrelated
reasons. First, the same amount of money may be worth more or less to
us depending on our circumstances. In particular, we seem to get less
satisfaction from some fixed amount of money the more money we already
have. Secondly, the norm to maximise expected monetary value has some
counterintuitive consequences. In particular, we can imagine gambles that
have infinite monetary value, that we would nevertheless only pay a finite
price for. Nicolas Bernoulli first demonstrated this with his famous St.
Petersburg Paradox.?®

In response to these problems, Daniel Bernouilli (1738/1954) and Gabriel
Cramer independently proposed a norm to maximise expected utility
rather than expected monetary value. However, this raises the problem of
how to interpret the notion of utility. One strand of interpretations takes
utility to be a real psychological quantity that we could measure. Let us
call such interpretations of utility ‘realist’. Early utilitarians adopted a
realist interpretation of utility. For instance, Bentham (1789/2007) and Mill
(1861/1998) thought of it as pleasure and the absence of pain.

Bernoulli proposed a gamble in which a coin is thrown repeatedly. If it lands heads the
first time, the player gets $2. If it lands tails, the prize is doubled, and the coin thrown
again. This procedure is repeated indefinitely. The expected value of the resulting gamble
is thus $2 - % +$4- % +$8- % + ..., which is infinite. However, most people would only
pay a (low) finite amount for it.
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Note, however, that these utilitarians were interested in defining utility
for the purpose of an ethical theory rather than a theory of rationality. One
problem with interpreting utility as pleasure in the context of expected
utility theory is that the theory then seems to imply that true altruism can
never be rational. If rationality requires me to maximise my own expected
pleasure, then I can never rationally act so as to increase somebody else’s
happiness at my own expense.

For this and other reasons modern realists typically think of utility as a
measure of the strength of an agent’s desire or preference, or her level of
satisfaction of these desires or preferences. I may strongly desire somebody
else’s happiness, or be satisfied if they achieve it, even if that does not
directly make me happy.*' Jeffrey (1965/1983), for instance, speaks of
desirabilities instead of utilities, and interprets them as degrees of desire
(p. 63). The corresponding realist interpretation of the probabilities in
expected utility theories is usually that of subjective degrees of belief.

The representation theorems described in Section 2 have, however, made
a different kind of interpretation of utility (and probability) possible, and
popular. These representation theorems show that preferences, if they
conform to certain axioms, can be represented with a probability and
utility function, or families thereof. And so, encouraged by these results,
many decision theorists think of utility and probability functions as mere
theoretical constructs that provide a convenient way to represent binary
preferences. For instance, Savage (1954) presents his theory in this way.
Importantly, on this interpretation, we cannot even speak of probabilities
and utilities in the case where an agent’s preferences do not conform with
the axioms of expected utility theory. Let us call these interpretations of

utility and probability ‘constructivist’.**

3.2 The Significance of the Representation Theorems

Whether we adopt a realist or a constructivist interpretation of utility
matters for how expected utility theory can serve the three purposes of
decision theory described in Section 1.2, and for what the representation
theorems presented in Section 2 really establish. Let us first look at the
interpretive project. As already mentioned, those interested in the interpre-
tive project have mostly been interested in inferring an agent’s beliefs and

This is also the interpretation adopted by several later utilitarians, such as Hare (1981) and
Singer (1993).

See Dreier (1996) and Velleman (1993/2000) for defenses of constructivism. Buchak (2013)
draws slightly different distinctions. For her, any view on which utility is at least partially
defined with respect to preferences counts as constructivist. Since this is compatible with
holding that utility is a psychologically real quantity, she allows for constructivist realist
positions. The position that utility expresses strength of desire, for her, is such a position. I
will count this position as realist, and not constructivist.

73



74

23

JOHANNA THOMA

desires from her choice behaviour. If that is the goal, then the probabilities
and utilities involved in decision theory should at least be closely related
to desires and beliefs. Under the assumption that agents maximise their
utility and probability functions, thus understood, we can hypothesise,
perhaps even derive, probability and utility functions that motivate an
agent’s actions.

How could the representation theorems we described in Section 2 help
with this project? They go some way towards showing that beliefs and
desires can be inferred from an agent’s choice behaviour. But the following
assumptions are also needed for this project to succeed:

1. The agent’s choice behaviour must reflect her preferences, at least
most of the time. This assumption is more likely to be met if we think
of preferences as a dispositions to choose, rather than as judgements
of choiceworthiness.

2. The axioms of the representation theorems must be followed by the
agent, at least most of the time. If we want to use expected utility
theory to deduce an agent’s beliefs and desires, then the agent’s
preferences have to be representable by an expected utility function.
While we can interpret the axioms as rationality constraints, these
cannot be the kinds of constraints that people fail to meet most of
the time. In particular, if we want to employ expected utility theory
for Davidson’s ‘radical interpretation’, then the choice behaviour of
agents who fail to abide by the axioms will turn out to be unintelli-
gible.

3. The probabilities and utilities furnished by the representation theo-
rem must correspond to the agent’s actual beliefs and desires.

Assumption 2 is controversial for the reasons described in Section 4
and Section 5. But assumption 3 is also problematic. The representation
theorems only show that an agent who abides by the axioms of the
various representation theorems can be represented as an expected utility
maximiser. But this is compatible with the claim that the agent can be
represented in some other way. It is not clear why the expected utility
representation should be the one which furnishes the agent’s beliefs and
desires.?

To answer this challenge, the best strategy seems to be to provide
further arguments in favour of expected utility maximisation, and in

This question was raised, for instance, by Zynda (2000), Hajek (2008) and Meacham and
Weisberg (2011). Zynda (2000) argues that the representation theorems alone cannot show
that agents do or should have probabilistic degrees of belief. Meacham and Weisberg (2011)
provide a number of arguments why the representation theorems alone cannot serve as
the basis of decision theory.
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favour of probabilistic beliefs, apart from the plausibility of the axioms
of the representation theorems. Suppose we think it is plausible that
agents should have probabilistic degrees of belief, and should maximise
the expected degree of satisfaction of their desires. And suppose we also
think that our preferences are closely related to our desires. Then if, given
some plausible axioms, these preferences can be given an expected utility
representation, we seem to have good reason to think that the utilities and
probabilities furnished by the representation theorem correspond to our
degrees of belief and strength of desire.

Setting aside the question of why we might want to have probabilistic
degrees of belief, what could such realist arguments for expected utility
maximisation be? Note that, for the purposes of the interpretive project,
these arguments have to not only be normatively compelling, but also
convince us that ordinary agents would be expected utility maximisers.
One type of argument appeals to the advantages of being an expected
utility maximiser when making decisions in a dynamic context. These
will be covered in Section 7. Pettigrew (2014) makes another argument:
for most realists, utility is supposed to capture everything an agent cares
about. If that is true, then it seems plausible to say that in uncertain
situations, I should be guided by my best estimate of how much utility
I will get. We can appeal to results in de Finetti (1974) to argue that an
agent’s best estimate of a quantity is her subjective expectation. This is so
because any estimate of the quantity that is a weighted sum different from
the expectation will be accuracy dominated by an expectational estimate:
the expectational estimate will be closer to the true value no matter what
happens. Thus, I should maximise my expected utility.

So far, we have assumed a realist interpretation of utility and probability.
Note, however, that expected utility theory could still be explanatorily
useful even if a constructivist interpretation of utility and probability are
adopted. It is often argued that the representation theorems show that
the utility and probability functions allow for a simpler and more unified
representation of an agent’s preferences: all the agent’s preferences can
be described with one utility and probability function. This could be seen
to make them more intelligible. In fact, Velleman (1993/2000) argues that
being an expected utility maximiser makes an agent more intelligible to
herself and others, and that this gives her a reason to be an expected utility
maximiser.

Let us now turn to the action-guiding and normative projects. These
projects will lead to quite different prescriptions depending on whether
utility is interpreted in a realist or in a constructivist sense. Suppose that
we are constructivists about utility. In that case, there is a sense in which
the prescription to maximise expected utility does not make any sense.
If one abides by the axioms of one’s favourite representation theorem,
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one’s preferences are representable as expected utility maximising. To
maximise expected utility, there is nothing more one needs to do, apart
from act according to the preferences over acts one already has. But if one’s
preferences do not abide by the axioms, on the other hand, one simply
does not have a utility function whose expectation one could maximise.

Consequently, constructivists often interpret the prescription of expected
utility theory as a prescription to have preferences such that one can be
represented as an expected utility maximiser. That is, one should abide by
the axioms of expected utility theory. For the action-guiding project, this
means that, as an agent, I should have preferences such that they abide by
the axioms of expected utility theory. For the normative project, it means
that we judge an agent to be irrational if she has preferences that violate
the axioms. This is why constructivists often interpret expected utility
theory as a theory about what it means to have coherent preferences or
ends, rather than as a theory of means-ends rationality.

For realists, however, the prescription to maximise expected utility
makes sense even independently of the representation theorems canvassed
in Section 2. Consider first the action-guiding project, which aims to
interpret expected utility theory as a theory that can guide an agent in
deciding what to do. If utility is just my strength of desire, and probability
is my degree of belief, and I have introspective access to these, then I can
determine the expected utility of the various acts open to me. I can do so
without considering the structure of my preferences, and whether they
abide by the axioms of expected utility theory. Expected utility theory is
then action-guiding without appeal to representation theorems. But note
that the advice to maximise expected utility is only useful to agents if
they really have such intuitive access to their own degrees of belief and
strength of desire.**

Similarly, if we are realists and our interests are normative, we can judge
an agent to be irrational by considering her utilities and degrees of belief,
and determining whether she failed to maximise expected utility. This
is because there will be facts about the agent’s utilities and probabilities
even if she fails to maximise expected utility. Realists about utility and
probability can also help themselves to the realist arguments for expected
utility maximisation just mentioned. For them, the normative force of
expected utility theory does not depend solely on the plausibility of the
axioms of expected utility theory. If we adopt a realist interpretation of
utility and probability, it is also easier to argue that expected utility theory
provides us with a theory of instrumental rationality. Maximising expected
utility could be seen as taking the means towards the end of achieving
maximum utility. However, realists will also have to provide an argument
that this is a goal rational agents ought to have.

24 Also see Bermudez (2009) on this claim.
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3.3 Causal and Evidential Interpretations of Expected Utility Theory

We have said that the probabilities involved in expected utility theory are
usually interpreted as subjective degrees of belief, at least by realists. As we
have seen, Jeffrey, Joyce, and others have advocated a conditional expected
utility theory. In conditional expected utility theory, agents determine
an act’s expected utility by weighting utilities by the different states’
probabilities conditional on the act in question being performed. Above,
we called this probability p4(S). How this probability is to be interpreted
is a further important interpretive question. The main disagreement is
about whether it should be given a causal or an evidential interpretation.
Jeffrey himself had worked with an evidential interpretation, while causal
decision theorists, such as Gibbard and Harper (1978/1981), Armendt
(1986), or Joyce (1999)*> have given it a causal interpretation.

The difference between these two interpretations is brought out by the
famous Newcomb Problem, first introduced by Nozick (1969). In this
problem, we imagine a being who is very reliable at predicting your
decisions, and who has already predicted your choice in the following
choice scenario. You are being offered two boxes. One is opaque and either
has no money in it, or $1,000,000. The other box is clear, and you can see
that it contains $1,000. You can choose to either take only the opaque box,
or to take both boxes. Under normal circumstances, it would seem clear
that you should take both boxes. Taking the clear box gives you $1,000
more no matter what.

The complication, however, is that the being’s prediction about your
action determines whether there is money in the opaque box or not. If the
being predicted that you will take two boxes, then there is no money in
the opaque box. If the prediction was that you will take only the opaque
box, there will be money in it. Since the being’s prediction is reliable, those
who take only one box tend to end up with more money than those who
take two boxes.

Note that while this case is unrealistic, there are arguably real-life cases
that resemble the Newcomb Problem in its crucial features. In these cases,
the acts available to an agent are correlated with good or bad outcomes
even though these are not causally promoted by the act. This happens in
medical cases, for instance, if a behavioural symptom is correlated with a
disease due to a common cause. Before the causal link between smoking
and lung cancer was firmly established, interested parties hypothesised
that there may be a common cause which causes both lung cancer, and the
disposition to smoke. If that were right, smoking would not cause lung

Joyce also first showed that the two interpretations can be given a unified treatment in a
more general conditional expected utility theory.
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cancer, but merely give you evidence that you are more likely to develop
it.26

Evidential and causal decision theory come apart in their treatment of
these cases. Evidential decision theory traditionally interprets p4(S) as a
standard conditional probability:

p(A&S)
p(A)

According to this interpretation, the probability of the state where there is
$1,000,000 in the opaque box conditional on taking only one box is much
higher than the probability of the state where there is $1,000,000 in the
opaque box conditional on taking two boxes. This is because the act of
taking only one box provides us with evidence that the prediction was
that you would take only one box, in which case there is money in the
opaque box. And so expected utility maximisation would tell you to take
only one box.

Causal decision theorists take issue with this, because at the time of
decision, the agent’s actions have no more influence on whether there
is money in the opaque box or not. Either there is or there isn’t already
money in the box. In either case, it is better for you to take two boxes, as
Table 4 illustrates. This kind of dominance reasoning speaks in favour of
taking both boxes.

pa(S) =

Prediction: one box Prediction: two boxes

TAKE ONE BOX $1, 000, 000 $0
TAKE TWO BOXES $1,001,000 $1,000

Table 4: The Newcomb Problem

Causal decision theory allows for this by giving p4(S) a causal inter-
pretation. It measures the causal contribution of act A to whether state
S obtains. Following a proposal by Stalnaker (1972/1981), Gibbard and
Harper (1978/1981) use the probability of a conditional in their causal
decision theory, instead of a conditional probability. In particular, they use
the probability of the conditional that an outcome would occur if an action
was performed.?”

In the Newcomb Problem, neither the act of taking nor the act of not
taking the clear box make any causal contribution to whether there is
money in the opaque box. And so, on the causal interpretation, p(S)

See Price (1991) for more examples.

Lewis (1981) shows that if the right partition of acts, states and outcomes is used, Savage’s
decision theory will give the same recommendations as Gibbard and Harper’s, and is thus
a type of causal decision theory.
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just equals the unconditional probability p(S) in both cases. And then
dominance reasoning becomes relevant.

Note, however, that it is controversial whether taking both boxes really
is the rational course of action in the Newcomb Problem. Those who
advocate ‘one-boxing’, such as Horgan (1981/1985) and Horwich (1987),
point out that one-boxers end up faring better than two-boxers. It is also
controversial whether evidential decision theory really does yield the
recommendation to one-box if the problem is represented in the right
way: Eells (1981) argues that evidential decision theory, too, recommends
two-boxing.

Jeffrey (1965/1983) himself supplements evidential decision theory with
a ratifiability condition, which allows him to advocate two-boxing. The
condition claims that an agent should maximise expected utility relative to
the probability function she will have once she finally decides to perform
the action. In the Newcomb Problem, only two-boxing is ratifiable. If the
agent decided to one-box, she would then be fairly certain that there is
money in the opaque box, and then she will wish she had also taken the
second box. If she decides to two-box, she will be fairly certain that there
is no money in the opaque box, and she will be glad that she at least got
the $1,000.28

4 INCOMPLETENESS AND IMPRECISION

Several important challenges to expected utility theory have to do with
the fact that expected utility theory asks us to have attitudes that are more
extensive and precise than the preferences ordinary decision makers have.
In fact, in many cases it does not seem irrational to have attitudes that
are in some way imprecise or incomplete. And so the problems discussed
in the following arise both for the interpretive as well as for the action-
guiding and normative uses of decision theory.

The challenge takes different forms for constructivists and realists. For
constructivists, imprecision and incompleteness will manifest as violations
of the axioms of the representation theorems presented in Section 2. As
we have seen, all of these representation theorems assume that the agent’s
preference relation forms a weak ordering of the elements in its domain.
This means that the preference relation must be transitive and complete.

The status of the ratifiability condition is still a part of the contemporary debate on
causal decision theory. One open question is what decision should be favoured in cases of
decision instability, where no action is ratifiable, like in Gibbard and Harper’s Death in
Damascus case (see Gibbard and Harper (1978/1981), and Egan (2007) for further, similar
cases). Arntzenius (2008) and Joyce (2012) argue for ways of dealing with this problem.
The ratifiability condition also helps to illuminate certain equilibrium concepts in game
theory (see Joyce and Gibbard (1998)).
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Both assumptions are controversial for related reasons. Completeness
is controversial because it asks agents to have a more extensive set of
preferences than they actually have. Transitivity is controversial in cases
where an agent’s desires are coarse-grained, as will be explained below.
For realists, a related challenge is that both our degrees of belief and our
strength of desire are not precise enough to allow for representation in
terms of a precise probability and utility function.

4.1 Incompleteness

To start with the completeness condition, the worry here is that agents
simply do not have preferences over all the elements of the set the decision
theory asks them to have preferences over. For instance, if I have lived in
Germany all my life, I might simply have no preference between living
in Nebraska and living in in Wyoming. It’s not that I have never heard
of these places. The question would just never occur to me. It might then
neither be the case that I prefer Nebraska to Wyoming nor that I prefer
Wyoming to Nebraska. I am also not indifferent between the two. I might
simply have no preference. But if these outcomes are part of the set of
outcomes the decision theory asks me to have preferences over, then this
means that I am violating the completeness condition.

Similar claims are often made about cases of incommensurable values.
In a famous example due to Sartre (1945/2007), a young man has to choose
between caring for his sick mother and joining the French Resistance. The
two options here are often said to involve incommensurable values: on the
one hand, responsibility to one’s family, and on the other hand, fighting
for a just cause. In these kinds of cases, too, we might want to say that
the young man is neither indifferent, nor does he prefer one option to
the other. And here, this is not because the question of what he prefers
has never occurred to the man. He may in fact think long and hard about
the choice. Rather, he has no preference because the values involved are
incommensurable.

These kinds of examples are more convincing if our notion of preference
is that of a judgement of choiceworthiness. In these examples, agents have
not made, or are unable to make judgements of choiceworthiness about
some of the elements of the relevant set. If one thinks of preference as
disposition to choose instead, one might think that even if an agent never
thought about a particular comparison of outcomes, there can still be a
fact of the matter what she would be disposed to choose if she faced the
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choice. Moreover, if this is our notion of preference, we simply draw no
distinction between indifference and incommensurability.>

However, this alternative notion of preference may get into trouble
when some of the acts in the relevant set are ones that the agent could
not possibly choose between. The completeness condition in standard
expected utility theory may require the agent to have what Broome (1991)
calls “impractical preferences’. For instance, it might require an agent to
have a preference between

Oj : an orange,
Oy : an apple when the alternative is a banana.

Choosing between these alternatives is impossible in the sense that O, will
not come about unless the alternative is a banana, not an orange. And so
it seems like we cannot determine the agent’s choice disposition between
them.

Incompleteness in preference is often dealt with by replacing the com-
pleteness axiom in the various representation theorems with a condition
of coherent extendibility.3° That is, we only require that an agent’s prefer-
ences are such that we could extend her set of preferences in a way that
is consistent with the other axioms of the representation theorem. The
problem with this strategy is that any representation in terms of prob-
ability or utility that the representation theorem furnishes us with will
only be a representation relative to an extension. There will usually be sev-
eral extensions that are consistent with an agent’s incomplete preferences
and the axioms of the theorem. And thus, there will be several possible
representations of the agent’s preferences. The representation theorem
will no longer furnish us with a unique probability function, and a utility
function that is unique up to positive linear transformations. For this
reason, incompleteness of preference is often associated with imprecise
probabilities.

4.2 Imprecise Probabilities

There is an active field of research investigating imprecise probabilities.3"
These imprecise probabilities are usually represented by families of proba-
bility functions. And families of probability functions is exactly what the
representation theorems furnish us with if the completeness condition is

In fact, Joyce (1999) considers this an important argument against more behaviourist
interpretations of preference.

This is the strategy taken by Kaplan (1983), Jeffrey (1965/1983), and Joyce (1999).

See S. Bradley (2015) and Mahtani (this volume) for helpful overviews of the literature. For
an introduction to the theory of imprecise probabilities, see Augustin, Coolen, de Cooman,
and Troffaes (2014).
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replaced by a coherent extendibility condition. While this gives even a
constructivist reason to engage with imprecise probabilities, there are also
various realist arguments for doing so. Many formal epistemologists agree
that sharp degrees of belief that can be expressed with a sharp probability
function are both psychologically unrealistic, and cannot be justified in
situations where there is insufficient evidence.3*> If we believe that the
probabilities in decision theory should accurately describe our belief states,
the probabilities in decision theory should then be imprecise.

Another motivation for engaging with imprecise probabilities is that
this allows us to treat states or outcomes to which the agent can assign
precise probabilities differently from states or outcomes to which the agent
cannot assign precise probabilities. This may allow us to make sense of the
phenomenon of ambiguity aversion. Ambiguity aversion occurs in situations
where the probabilities of some states are known, but the agent has no
basis for assigning probabilities to some other states. In such situations,
many agents are biased in favour of lotteries where the probabilities are
known. For instance, take the following example from Camerer and Weber

(1992).33

Suppose you must choose between bets on two coins. After
flipping the first coin thousands of times you conclude it is
fair. You throw the second coin twice; the result is one head
and one tail. Many people believe both coins are probably fair
(p(head) = p(tail) = .5) but prefer to bet on the first coin,
because they are more confident or certain that the first coin is
fair. (p. 326)

Standard expected utility theory cannot make sense of this, since it does
not allow us to distinguish between different degrees of uncertainty. In
standard expected utility theory, every state is assigned a precise probabil-
ity. As a result, ambiguity aversion can lead an agent to violate the axioms
of the different representation theorems. In particular, ambiguity aversion
can result in violations of separability (see Section 5) as in the famous
Ellsberg Paradox.34 Nevertheless, ambiguity aversion is common and does

For examples of these claims, see, for instance, Levi (1980) and Kaplan (1996). When an
agent cannot assign a sharp probability to states, we sometimes speak of decision-making
under indeterminacy or ignorance, as opposed to merely uncertainty.

Camerer and Weber (1992) also provide an overview of the empirical evidence of this
phenomenon.

See Ellsberg (1961).The Ellsberg Paradox runs as follows: you are given an urn that you
know contains go balls. 30 of them are red. The remaining 60 are either black or yellow,
but you don’t know what the distribution is. Now first, you are offered the choice between
receiving $100 if a red ball is drawn, and receiving $100 if a black ball is drawn. Most
people choose the former. Then, you are offered the choice between receiving $100 if a
red or yellow ball is drawn, and receiving $100 if a black or yellow ball is drawn. Here,
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not seem irrational. Imprecise probabilities may help us to better model
ambiguity, and thus hold the promise to help us rationalise ambiguity
averse preferences.

There are epistemological objections to using sets of probabilities to
represent beliefs.3> But another common objection to using imprecise prob-
abilities is that they lead to bad decision-making.3®* How could decision-
making with imprecise probabilities proceed? We can use each probability
function in the family in order to calculate an expected utility for each act
open to the agent. But then each act will be associated with a family of
expected utilities, one for each member of the family of probability func-
tions. And so the agent cannot simply maximise expected utility anymore.
The question then becomes how we should make decisions with these sets
of probabilities and expected utilities.

One type of simple proposal that appears in the literature is the follow-
ing principle, sometimes called Liberal: an act which maximises expected
utility for every probability function in the family is obligatory. And any
act which maximises expected utility for some probability function in the
family is permitted.3” For an overview of other choice rules, see Troffaes
(2007).

Elga (2010) raises an important challenge for all such choice rules. If
they are permissive, as Liberal is, then they will allow us to make choices
in a series of bets that leave us definitely worse off. But if they are not
permissive, and always recommend a single action, they undercut one
main motivation for using imprecise probabilities in the first place. In that
case, they will pin down precise betting odds for an agent. But, Elga argues,
if we think that the evidence does not license us to use a precise probability,
it would be strange if it determined precise betting odds. Moreover, these
betting odds, if they abide by the axioms of expected utility theory, could
be used to infer a precise probability using the representation theorems
discussed above.3

Elga’s argument bears resemblance to other dynamic arguments against
violations of standard expected utility theory, which will be discussed in

most people choose the latter. These preferences display ambiguity aversion. They are not
consistent with a stable assignment of precise subjective probabilities to the drawing of a
yellow or black ball, combined with the assumption of expected utility maximisation.
See, for instance, the problem of dilation. Dilation occurs when an agent’s beliefs become
less precise when she updates on a piece of evidence. The phenomenon was first introduced
by Seidenfeld and Wasserman (1993) and is argued to be problematic for imprecise
probability theory in White (2010). See Joyce (2011), S. Bradley and Steele (2014b) and
Pedersen and Wheeler (2014) for critical discussion.

See, for instance, Williamson (2010).

37 See White (2010), Williams (2014), Moss (2015).
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However, note that there are choice rules that determine precise betting odds that do not
reduce to expected utility maximisation, such as the one introduced by Sahlin and Weirich

(2014).
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Section 7. It may be challenged on similar grounds. There may be dynamic
choice strategies available to agents that guard them against making
sure losses in dynamic choice problems. In fact, Williams (2014) claims
that agents using his choice rule can make their choices ‘dynamically
permissible” by only considering some of the probability functions in the
family to be ‘live” at any one point. S. Bradley and Steele (2014a), too,
argue that agents with imprecise credences can make reasonable choices
in dynamic settings.

4.3 Imprecise Utility and Intransitivity

One might expect there to be a literature on imprecision with regard to
utilities similar to the one on imprecise probabilities. For one, replacing
the completeness condition with a condition of coherent extendibility will
not only lead to a family of probability representations, it will also result
in a corresponding family of utility representations. Moreover, there might
be similar realist arguments that could be made in favour of imprecise
strength of desire or degree of preference. Some of the examples of incom-
pleteness, such as the cases involving incommensurable values, could be
described as examples where it is unclear to what degree an agent desires
the goods in question, or how they compare. Such cases are also often
described as cases of “vague preference’. However, imprecise utilities and
vague preferences are so far mostly discussed in the mathematical and
economic literature. Fishburn (1998) suggests a probabilistic approach to
studying vague preferences, while most of the literature uses fuzzy set
theory. Salles (1998) provides an introduction to that approach.

There is a certain kind of lack of precision in our attitudes that does not
result in vague preferences or incompleteness of preference. Instead, this
lack of precision leads to a failure of transitivity, and is thus nevertheless
problematic for expected utility theory. Intransitivity arises for outcomes
that the agent finds indistinguishable with regard to some of the things
she values. The problem is brought out most clearly by the Self-Torturer
Problem, introduced by Quinn (1990). It runs as follows: a person has an
electric device attached to her body that emits electric current which causes
her pain. The device has a large number of settings, such that the person
is unable to tell the difference in pain between any two adjacent settings.
However, she can tell the difference between settings that are sufficiently
far apart. In fact, at the highest settings, the person is in excruciating pain,
while at the lowest setting, she is painless. Each week, the person can turn
the dial of the device up by one setting, in exchange for $10,000.
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Let us call the settings of the dial Dy, D1, Dy, ..., Dig. In this problem,
the following set of intransitive preferences seems to be reasonable for a
person who prefers less pain to more pain, and more money to less:

Do < D1 <Dy < ... < Digp < Dg.

At the highest settings, the person is in such excruciating pain that she
would prefer being at the lowest setting again to having her fortune. At
the same time, if turning the dial up by one setting results in a level of
pain that is indistinguishable from the previous, it seems that taking the
$10,000 is always worth it, no matter how much pain the agent is already
in.

An agent who has the self-torturer’s preferences is clearly in trouble.
In the original example, she can never turn the dial down again once she
has turned it up. If she always follows her pairwise preferences, she will
end up at the highest setting. This is obviously bad for her, by her own
lights: there are many settings she would prefer to the one she ends up at.
If, on the other hand, we suppose that the agent can go back to the first
setting in the end, the problem is that she could be ‘money-pumped’.3°
If the agent has a strict preference for the lowest setting over the highest
setting, she should be willing to pay some positive amount of money on
top of giving up all her gained wealth for going back to the first setting.
She will end up having paid money for ending up where she started.

Advocates of standard expected utility theory may point out that these
observations just show why it is bad to have intransitive preferences.
However, critics, such as Andreou (2006) and Tenenbaum and Raffman
(2012), point out that while these are problematic consequences of having
the self-torturer’s preferences, there seems to be nothing wrong with
the self-torturer’s preferences per se. If the agent’s relevant underlying
desires are those for money and the absence of pain, but the agent cannot
distinguish between the levels of pain of two adjacent settings, then there
is nothing in the agent’s desires concerning the individual outcomes that
could speak against going up by one setting. If we think that preferences
should accurately reflect our underlying desires concerning the outcomes,
the self-torturer’s preferences seem reasonable.

Indeed, proponents of expected utility theory acknowledge that it is
somewhat unsatisfactory to simply declare the self-torturer’s preferences
irrational. They have hence felt pressed to give an explanation of why the
self-torturer’s preferences are unreasonable, despite appearances. Arntze-
nius and McCarthy (1997), and Voorhoeve and Binmore (2006) have made
different arguments to show that rational agents would hold that there

Money pumps were first introduced as an argument for transitivity by Davidson, McKinsey,
and Suppes (1955).
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is an expected difference in pain between two adjacent settings at least
somewhere in the chain.

Critics note that it is only in the context of the series of choices she
is being offered that the self-torturer’s preferences become problematic.
And so instead of declaring the self-torturer’s preferences irrational, we
may instead want to say that in some cases, it is rational for the agent
to act against her punctate preferences. Andreou (2006) argues that the
intransitive preferences of the self-torturer ought to be revised to be
transitive for the purpose of choice only. Tenenbaum and Raffman (2012)
note that the underlying problem in the self-torturer’s case is that the
agent’s end of avoiding pain is vague. It is not precise enough to distinguish
between all the different outcomes the decision theory may ask her to
evaluate, and that she in fact may have to choose between. They claim that
vague goals that are realised over time may ground permissions for agents
to act against their punctate preferences. And so this is another type of
imprecision in our attitudes which may call for a revision of standard
expected utility theory.

5 SEPARABILITY
5.1 The Separability Assumption

The imprecision and incompleteness of our attitudes discussed in Section 4
may be a problem for expected utility theory even in the context of certainty.
But another important type of criticism of expected utility theory has to do
with the assumptions it makes about choice under uncertainty specifically.
All the representation theorems canvassed in Section 2 make use of a
similar kind of axiom about choice under uncertainty. These axioms are
versions of what Broome (1991) calls separability. The idea here is that what
an agent expects to happen in one state of the world should not affect
how much she values what happens in another, incompatible state of the
world. There is a kind of independence in value of outcomes that occur
in incompatible states of the world. Separability is largely responsible
for the possibility of an expected utility representation. Separability is
a controversial assumption, for the reasons explained in Section 5.2 and
Section 5.3. Here, I present the versions of the separability assumption
used in the representation theorems introduced in Section 2.

In von Neumann and Morgenstern’s representation theorem (see Sec-
tion 2.2), separability is expressed by the independence axiom. Let &
be the space of lotteries over all possible outcomes. Then independence
requires the following;:
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INDEPENDENCE. Forall Ly, Ly, L, € £ and all p € (0,1), L, = Ly if and
onlyif p-Ly+(1—p)-L,=p-L,+ (1 —p)- L.

Independence claims that my preference between two lotteries will not
be changed when those lotteries become sub-lotteries in a lottery which
mixes each with some probability of a third lottery. For instance, suppose
I know I get to play a game tonight. I prefer to play a game that gives me
a 10% chance of winning a pitcher of beer to a game that gives me a 20%
chance of winning a pint of beer. The independence axiom says that this
preference will not be affected when the chances of me getting to play at
all today change. The possibility of not playing at all tonight should not
affect how I evaluate my options in the case that I do get to play.

In Savage’s framework (see Section 2.3), separability is expressed by his
famous sure-thing principle. To state it, we need to define a set of events,
which are disjunctions of states. Let A;(E) be the act A; when event E
occurs. The sure-thing principle then requires the following.

SURE-THING PRINCIPLE. For any two actions A; and Aj, and any mutually
exclusive and exhaustive events E and F, if A;(E) = A;(E) and
AZ(F) = A](F>, then A; = A]

The idea behind the sure-thing principle is that an agent can determine her
overall preferences between acts through event-wise comparisons. She can
partition the set of states into events, and compare the outcomes of each of
her acts for each event separately. If an act is preferred given each of the
events, it will be preferred overall. That is, if a particular act is preferred
no matter which event occurs, then it is also preferred when the agent
does not know which event occurs.

In Jeffrey’s decision theory (see Section 2.4), separability is expressed by
the averaging axiom. Remember that for him, acts, states and outcomes
are all propositions, and all objects of preference. The averaging axiom
claims the following.

AVERAGING. If A and B are mutually incompatible propositions, and
A = B, then A = (A or B) = B.

The averaging axiom claims that how much an agent values a disjunction
should depend on the value she assigns to the disjuncts in such a way that
the disjunction cannot be more or less desirable than any of the disjuncts.
When the propositions involved are outcomes that occur in different states
of the world, this requirement, too, expresses the idea that there is an
independence in value between what happens in separate states of the
world. Knowing only that I will end up with one of two outcomes cannot
be worse than ending up with any of the individual outcomes.
Assuming separability for preferences in the way that the independence
axiom, the sure-thing principle and the averaging axiom do ensures that
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the utility representation has an important separability feature as well. As
we have seen, in expected utility theory, the overall value of an action can
be represented as a probability-weighted sum of the utilities of the out-
comes occurring in separate states. This means that the value contribution
of an outcome in one state will be independent of the value contribution
of an outcome of another state, holding the probabilities fixed. And so
the separability of the value of outcomes in separate states is captured by
equating the value of an action with its expected utility. If separability is
problematic, it is thus problematic independently of any representation
theorem. In particular, this means that it is also problematic for realists.

5.2 Violations of Separability

To see how separability may fail, consider the following decision problem,
known as the Machina Paradox.4® Suppose you prefer actually going to
Venice to staying at home and watching a movie about Venice. You also
prefer watching a movie about Venice to doing nothing and being bored.
You are now offered the lotteries described in Table 5. Suppose that each
lottery ticket is equally likely to be drawn, so that, if we want to apply
von Neumann and Morgenstern’s framework, each lottery ticket has a
probability of 1%.

Tickets 1-99  Ticket 100

LorTtERY A Go to Venice Bored at home

LorTtERY B Go to Venice Movie about Venice

Table 5: Machina’s Paradox

Many people would prefer lottery A to lottery B in this context. Clearly,
if I am so unlucky as to draw ticket 100, I'd rather not have to watch
a movie reminding me of my misfortune. However, my preferences, as
stated, violate the independence axiom and sure-thing principle. It is also
clear why this violation of separability occurs. What happens in alternative,
incompatible states of the world, that is, what might have been, clearly
matters for how I evaluate the outcome of watching a movie about Venice.
If there was a big probability that I could have gone to Venice, I will
evaluate that outcome differently from when there was no such possibility.
In this case, the reason for an interdependence in value between outcomes
in alternative states of the world is disappointment: the movie about Venice
heightens my disappointment by reminding me of what I could have had.

40 See, for instance, Mas-Colell et al. (1995), chapter 6.
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The natural response to this kind of problem is to say that the outcomes
in the decision problem as I stated it were under-described. Clearly, the
feeling of disappointment is a relevant part of the outcomes of lottery B.
There is nothing irrational about wanting to avoid disappointment, and
many agents do. Thus, according to all the rules for the individuation
of outcomes discussed in Section 1.4, watching a movie about Venice
with disappointment should be a different outcome from watching a
movie about Venice without disappointment. And then, no violation of
separability occurs.

This seems to be a valid response in the case of Machina’s Paradox.
However, there are other violations of separability that arguably cannot
be given the same treatment. One famous case that seems to be more
problematic is the Allais Paradox, introduced in Allais (1953). It runs as
follows. First a subject is offered a choice between $1 million for certain
on the one hand, and an 89% chance of winning $1 million, a 10% chance
of winning $5 million, and a 1% chance of winning nothing on the other.
What she will get is decided by a random draw from 100 lottery tickets.
Many people choose $1 million for certain when offered this choice. Next,
the subject is offered the choice of either a 10% chance of $5 million, and
nothing otherwise on the one hand, or an 11% chance of $1 million, and
nothing otherwise on the other. Again, this is decided by the draw of a
lottery ticket. Here, most people pick the first lottery, that is, the lottery
with the higher potential winnings.

While this combination of preferences seems sensible, it in fact violates
independence and the sure-thing principle, given a natural specification
of the outcomes involved. This becomes evident when we represent the
two choices in decision matrices, as in Table 6 and Table 7.

Tickets 1-89 Tickets go—99 Ticket 100

LorTErY C  $1 million $5 million $0

LorTeErYy D  $1 million $1 million $1 million

Table 6: Allais Paradox: First Choice

Tickets 1-89 Tickets go—99 Ticket 100
LorTErY G $0 $5 million $0

Lortery H $0 $1 million $1 million

Table 7: Allais Paradox: Second Choice

Choosing lottery D in the first choice, and lottery G in the second choice
violates independence and the sure-thing principle. To start with the sure-
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thing principle, note that in both choices, the two lotteries to be chosen
from are identical with regard to what happens if tickets 1-89 are drawn.
And thus, according to the sure-thing principle, the only thing that matters
for the overall assessment should be what happens if tickets go—100 are
drawn. But for these tickets, the first choice, between lottery C and lottery
D, and the second choice, between lottery G and lottery H are identical.
And so, the agent should choose lottery D in the first choice if and only
if she chose lottery H in the second choice. Similar reasoning applies for
independence, if we regard each lottery as a compound lottery of the
sub-lotteries involving tickets 1-89 and 9o—100 respectively.

Nevertheless, choosing lottery D in the first choice and lottery G in the
second choice is both common#' and does not seem intuitively irrational.
Unless some redescription strategy works to reconcile Allais preferences
with expected utility theory, expected utility theory must declare these
preferences irrational. Redescribing the outcomes to take account of dis-
appointment (or regret) arguably cannot do away with the violation of
separability in the Allais Paradox. Michael Weber (1998) provides an exten-
sive argument to that effect. The Ellsberg Paradox (Section 4.2) is another
case that cannot easily be dealt with by redescription. These examples
suggest that there are more problematic types of interdependence in value
between outcomes in different states of the world that cannot be as easily
reconciled with expected utility theory as the Machina Paradox. They have
consequently been an important motivation for alternatives to expected
utility theory (see Section 6).

There might, however, be good arguments in favour of the verdict
that violations of separability, like the Allais preferences, are genuinely
irrational. Savage himself, as well as Broome (1991) argue that our reasons
for choosing one act or another must depend on states of affairs where
the two acts do not yield the same outcome. This seems to speak in
favour of the sure-thing principle. However, as Broome acknowledges, this
assumes that reasons for action themselves are separable. Somewhat more
promisingly, he suggests that, if the kind of rationality we are interested
in is instrumental rationality, then all our reasons for action must derive
from what it would be like to have performed an action in the various
states that might come about.

Buchak (2013), who, as we will see, defends an alternative to expected
utility theory, argues that instrumental rationality does not require sep-
arability. In any case, note that, even if expected utility theory is right
that separability is a requirement of rationality, examples like the Allais
Paradox still show expected utility theory to be quite revisionary. Expected
utility theory declares preferences that are common and seem intuitively

See, for instance Morrison (1967) for experimental evidence that many people choose this
way.
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reasonable as irrational. While this may not be troubling in the case of
the normative and action-guiding projects, this at least seriously calls into
question whether expected utility theory can serve the interpretive project.

5.3 Separability and Risk Aversion

Examples like the Allais Paradox seem to show that agents actually care
about some values that are not separable. The Allais preferences, for
instance, make sense for an agent who cares about certainty. Lottery D
in the first choice seems attractive because it leads to a gain of $1 million
for certain. If the agent does not care merely about the feeling of being
certain, but instead cares about it actually being certain that she gets $1
million, then certainty is a value that is only realised by a combination of
outcomes across different states.

Buchak (2013) calls agents who are sensitive to values that are only
realised by a combination of outcomes across different states (other than
expected utility itself) ‘globally sensitive’. Agents who are globally sen-
sitive are sensitive to features other than the expected utility of an act.
Next to certainty, Lopes (1981, 1996) argues that mean, mode, variance,
skewness and probability of loss are further global features of gambles
agents may care about. She argues that a normatively compelling theory
of decision-making under risk would have subjects weigh off these various
different criteria. Buchak (2013), too, argues that global sensitivity can be
rational, under certain constraints.4?

It has been argued that expected utility theory has trouble more gen-
erally in accounting for our ordinary attitudes to risk. In expected utility
theory, risk averse behaviour, such as preferring a sure amount of money to
a risky gamble with a higher expected monetary gain, is always explained
by the concavity of the utility function with regard to the good in question.
When a utility function is concave, the marginal utility derived from a
good is decreasing: any additional unit of the good is worth less the more
of the good the agent already has. When the utility function in money is
concave in this way, the expected utility of a monetary gamble will be less
than the utility of the expected monetary value. And this can mean that
the agent rejects gambles that have positive expected monetary value.

Figure 1 illustrates this for an agent with utility function u(m) = \/m
and current wealth of $100, who is offered a 50/50 chance of either losing
$100 or gaining $125. For her, the expected utility of accepting this gamble

There is some debate whether global sensitivity can also be made compatible with ex-
pected utility theory. Weirich (1986) argues that globally sensitive aversion to risk can be
represented with disutilities that are assigned to outcomes. In the context of Buchak’s
theory, Pettigrew (2014) argues that the global sensitivity allowed for by her theory is
compatible with expected utility theory if outcomes are appropriately redescribed.
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is 0.5-1/0 4+ 0.5 - /225 = 7.5. This is less than the agent’s current utility
level of +/100 = 10. The agent would reject the gamble even though it
leads to an expected gain of $12.50.43

Figure 1: A concave utility function

However, there are results suggesting that decreasing marginal utility
alone cannot adequately explain ordinary risk aversion. For monetary
gambles, it can be shown that according to expected utility theory, any
significant risk aversion on a small scale implies implausibly high levels
of risk aversion on a large scale. For instance, Rabin and Thaler (2001)
show that an expected utility maximiser with an increasing, concave utility
function in wealth who turns down a 50/50 bet of losing $10 and winning
$11 will turn down any 50/50 bet involving a loss of $100, no matter how
large the potential gain. Conversely, any normal level of risk aversion for
high stakes gambles implies that the agent is virtually risk neutral for
small stakes gambles.# These results are troubling because we are all risk
averse for small stakes gambles, and we are all willing to take some risky
gambles with larger stakes. Moreover, this does not seem to be intuitively
irrational.

Another, more direct line of critique of the way expected utility theory
deals with risk aversion is available to realists about utility. If we think of
utility in the realist sense, for instance as measuring the strength of our
desire, it seems like we can be risk averse with regard to goods for which
our utility is not diminishing. But according to expected utility theory, we

See Mas-Colell et al. (1995), chapter 6 for more detail on expected utility theory’s treatment
of risk aversion.
See Samuelson (1963) and Rabin (2000) for similar results.
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cannot be risk averse with regard to utility itself. For realists, depending
on their interpretation of utility, this may be counterintuitive.4>

6 ALTERNATIVES TO EXPECTED UTILITY THEORY

Most alternatives to expected utility theory have been introduced as de-
scriptive theories of choice under uncertainty, with no claim to capturing
rational choice. The most well-known is prospect theory, introduced by
Kahneman and Tversky (1979). Its most distinctive features are firstly,
that it includes an editing phase, in which agents simplify their decision
problems to make them more manageable, and secondly, that outcomes are
evaluated as losses and gains relative to some reference point. In prospect
theory, losses can be evaluated differently from gains. Since different ways
of presenting a decision problem may elicit different reference points, this
means that the agents described in prospect theory are sensitive to ‘“fram-
ing’. While real agents are in fact subject to framing effects,4® sensitivity to
framing is commonly regarded as irrational.

Alternatives to expected utility theory in the economic literature, too,
have given up the idea that agents maximise a utility function that is
independent of some reference point. Generalised expected utility the-
ory, as developed in Machina (1982), for instance, introduces local utility
functions, one for each lottery the agent may face. The lack of a stable
utility function makes it difficult to interpret these theories as theories of
instrumental rationality.

Other non-expected utility theories, in particular rank-dependent utility
theory, as introduced by Quiggin (1982), use a stable utility function. In
contrast to expected utility theory, however, they introduce alternative
weightings of the utilities of outcomes. While in expected utility theory,
an outcome’s utility is weighted only by its probability, in rank-dependent
utility theory, weights depend not only on the probability of an outcome,
but also its rank amongst all the possible outcomes of the action. This al-
lows the theory to model agents caring disproportionately about especially
good and especially bad low probability outcomes.

Buchak (2013) introduces risk-weighted expected utility theory, in which
a ‘risk function” plays the role of the weighting function. In contrast
to older rank-dependent utility theories, she argues that risk-weighted
expected utility theory provides us with utilities and probabilities which
can be interpreted as representing the agent’s ends and beliefs respectively,

See Buchak (2013) for this line of critique, as well as more examples of risk aversion that
expected utility has trouble making sense of.
See, for instance, Tversky and Kahneman (1981).
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and a risk function, which represents the agent’s preferences over how to
structure the attainment of her ends.4”

There is a research programme in the psychological literature that
studies various heuristics that agents use when making decisions in the
context of uncertainty. While these are usually not intended as norma-
tive theories of rational choice, they have plausibility as action-guiding
theories—theories that cognitively limited agents may use in order to
approximate a perfectly rational choice. Payne et al. (1993), for instance,
introduce an adaptive approach to decision-making, which is driven by
the tradeoff between cognitive effort and accuracy. Gigerenzer et al. (2000)
introduce various “fast-and-frugal” heuristics to decision-making under
uncertainty.

7 DYNAMIC CHOICE

So far, we have looked at individual decisions separately, as one-off choices.
However, each of our choices is part of a long series of choices we make in
our lives. Dynamic choice theory models this explicitly. In dynamic choice
problems, choices, as well as the resolution of uncertainty happen sequen-
tially. Dynamic choice problems are typically represented as decision trees,
like the one in Figure 2. The round nodes in this tree are chance nodes,
where we think of the agent as going ‘left” or ‘right” depending on what
state of affairs comes about. The square nodes are decision nodes, where
the agent can decide whether to go ‘left’ or ‘right’.

There are a number of interesting cases where an agent ends up making
a series of seemingly individually rational choices that leave her worse off
than she could be.4¥ Dynamic choice theory helps us analyse such cases.
Here I want to focus on dynamic choice problems involving agents who
violate standard expected utility theory. These cases provide some of the
most powerful arguments in favour of expected utility theory, and against
the alternatives canvassed in Section 6. We already mentioned Elga’s
dynamic choice argument against imprecise probabilities in Section 4.2.
Here, I turn to arguments involving violations of separability.

7.1 Dynamic Arguments in Favour of Separability

Machina (1989) discusses the following dynamic version of the Allais
Paradox. This dynamic version serves as an argument against Allais pref-
erences, and violations of separability more generally. In this dynamic

For an overview of other alternatives to expected utility theory in the economic literature,
the two most comprehensive surveys are Schmidt (2004) and Sugden (2004).

One example is the Self-Torturer Problem discussed in Section 4.3. Andreou (2012) is a
helpful overview of more such cases.
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version, agents only get to make a decision after some of the uncertainty
has already been resolved. They make a choice after they have found out
whether one of tickets 1-89 has been drawn, or one of tickets go—100 has
been drawn, as shown in Figure 2.

$0 $5 million $o $5 million

(a) First Choice (b) Second Choice

Figure 2: Dynamic Allais Problem

The interesting feature of the dynamic case is that at the time where
the agent gets to make a decision, the rest of the tree, sometimes called
the ‘continuation tree’, looks the same for the first and second choice. We
might think that this means that the agent should decide the same in
both cases. But then she will end up choosing in accordance either with
lotteries C and G respectively, or with lotteries D and H respectively, but
not according to the Allais preferences. That in turn means that for at least
one of the choices, an agent with Allais preferences will end up choosing
contrary to what she would have preferred at the beginning of the decision
problem, before any uncertainty has been resolved.

This has been held to be problematic for a variety of reasons. Firstly,
for the agent we are considering, the dynamic structure of the decision
problem clearly makes a difference to what she will choose. It can make a
difference whether the agent faces a one-off choice or a dynamic version
of that choice involving the same possible outcomes. But, it is claimed, for
instrumentally rational agents, who care only about the final outcomes,
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the temporal structure of a decision problem should not matter. Secondly,
suppose the agent anticipates that, after uncertainty has been removed, she
will go against the preferences she has at the outset. Such an agent would
presumably be willing to pay to either not have uncertainty removed,
or to restrict her own future choices. Paying money for this looks like a
pragmatic cost of having these kinds of preferences. Moreover, refusing
free information has been argued to be irrational in its own right.4® Thirdly,
the agent does not seem to have a stable attitude towards the choice to
be made in the dynamic decision problem, even though her underlying
preferences over outcomes do not change. All of these considerations have
been argued to count against the instrumental rationality of an agent with
Allais preferences.

Similar dynamic choice problems can be formulated whenever there is
a violation of separability. In Savage’s framework, whenever the agent’s
attitudes are non-separable for two events, one can construct decision
problems where the two events are de facto ‘separated” by revealing which
of the events occurs before the agent gets to decide. And then parallel
problems will arise. In fact, if we find the previous argument against Allais
preferences convincing, we can formulate a very general argument in
favour of expected utility theory. Spelling out the argument from conse-
quentialism in Hammond (1988) in more precise terms, McClennen (1990)
shows that, given some technical assumptions, expected utility theory can
be derived from versions of the following principles:

NEC (NorRMAL-FORM/EXTENSIVE-FORM COINCIDENCE). In any dynamic
decision problem, the agent should choose the same as she would,
were she to simply choose one course of action at the beginning of
the decision problem.

SEP (DyNAMIC SEPARABILITY). Within dynamic decision problems, the
agent treats continuation trees as if they were new trees.

DS (DynaMmic CoNsISTENCY). The agent does not make plans she foresee-
ably will not execute.

A similar argument is made by Seidenfeld (1988). The third condition in
McClennen’s formulation is fairly uncontroversial. However, those defend-
ing alternatives to expected utility theory have called into question both
NEC and SEP. Buchak (2013) discusses both the strategy of abandoning
SEP and that of abandoning NEC, and argues that at least one of them
works.

SEP is characteristic of a choice strategy that was first described by Strotz
(1956), and is now known in the literature as ‘sophisticated choice’.>° So-

49 See, for instance, Wakker (1988).
50 See McClennen (1990) for a characterisation of different dynamic choice rules.
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phisticated agents treat continuation trees within dynamic choice problems
as if they were new tress. Moreover, they anticipate, at the beginning of
the dynamic choice problem, that they will do so. Given this prediction
of their own future choice, they choose the action that will lead to their
most preferred prospect. They thus follow a kind of ‘backward induction’
reasoning. Sophisticated agents fail to abide by NEC: they can end up
choosing courses of action that are dispreferred at the beginning of the
choice problem. This can be seen in our example of the dynamic Allais
Paradox. Sophisticated agents behave in the way we assumed above. They
thus suffer the pragmatic disadvantages we described.>"

Those who question NEC allow that the dynamic structure of a decision
problem can sometimes make a difference, even if that may have tragic
consequences. But note that one can question NEC as a general principle
and still think that in the particular dynamic choice problems we are
considering, the pragmatic disadvantages count against having preferences
that violate separability.

Because of the difficulties associated with sophistication described above,
many advocates of alternatives to expected utility theory have rejected
SEP instead. For instance, Machina (1989) argues that SEP is close enough
to separability that accepting SEP begs the question against separability.
If SEP is given up, it can make a difference to an agent if she finds
herself in the middle of a dynamic choice problem rather than at the
beginning of a new one. One choice rule that then becomes open to her is
‘resolution’, where the agent simply goes through with a plan she made
at the beginning of a decision problem. Resolute agents obviously abide
by NEC and avoid any pragmatic disadvantages. A restricted version of
this dynamic choice rule is advocated by McClennen (1990).5* Rabinowicz
(1995) argues that sophistication and resolution can be reconciled.

7.2 Time Preferences and Discounting

While dynamic choice theory is concerned with the temporal sequence of
our decisions, there is another branch of decision theory that is concerned
with the timing of the costs and benefits that are caused by our actions.
This literature studies the nature of our time preferences: do we prefer
for an outcome to occur earlier or later? How much would we give up in
order to receive it earlier or later?

In fact, Seidenfeld discusses cases where sophisticated agents end up making a sure loss.
Note that related notions of resolution are also discussed in the non-formal literature in
order to deal with problems of diachronic choice, such as the Toxin Puzzle, described in
Kavka (1983). See, for instance, Holton (2009) and Bratman (1998), as well as the discussion
on the Self-Torturer Problem in Section 4.3 above.

97



98

53
54

JOHANNA THOMA

Since most agents prefer for good outcomes to occur earlier, and bad
outcomes to occur later, Samuelson (1937) proposed the discounted utility
model. According to this model, agents assign the same utility to an
outcome (in Samuelson’s model these are consumption profiles) no matter
when it occurs, but discount that utility with a fixed exponential discount
rate. They can then calculate how much a future outcome is worth to them
at the time of decision, and maximise their discounted utility. In the case
where decisions are made under certainty, let the outcomes occurring at
different points in time, up until period ¢, be Oy, ..., O;. The agent assigns
utility #(O) to each of these outcomes. This is an ‘instantaneous’ utility
function, where the timing of the outcome does not matter for the utility
assignment. Moreover, let d be the discount factor. The agent’s discounted
utility DU(Oq, ..., 0Oy) is then given by:

t
DU(Oy,...,01) = Y d" - u(0y).
i=1

This discounted utility describes the current value of the stream of out-
comes Oy, ..., 0O to the agent. According to the discounted utility model,
agents maximise this discounted utility. When we have 0 < d < 1, the
agent prefers good outcomes to occur sooner rather than later. In that
case, it is also true that the value of an infinite, constant stream of benefits
will be finite. Koopmans (1960) presents a number of axioms on time
preferences, and provides a representation theorem for the discounted
utility model.

One main advantage of being the type of agent who abides by the
discounted utility model is that for such an agent, there will be no pref-
erence reversals as time moves on (this feature is sometimes referred to
as ‘time consistency’). That is, an agent will never suddenly reverse her
preference between two actions as she gets closer in time to a choice.
Yet, such preference reversals are common.>3 It has been argued that the
hyperbolic discounting model advocated by Ainslie (1992), which allows
for such reversals, models the ordinary decision-maker better. Whether
the discounted utility model is normatively adequate is controversial, and
depends in part on whether we think that time inconsistency is necessarily
irrational 54 In fact, time inconsistent preferences, just like preferences that
violate expected utility theory, may lead to problematic patterns of choice
in dynamic choice problems, unless the agent adopts the right dynamic
choice rule.

The discounted utility model underlies much public decision-making.
Discount rates are standardly applied in cost-benefit analyses. This has

For empirical evidence of this phenomenon, see, for instance, Thaler (1981).
Frederick, Loewenstein, and O’Donoghue (2002) provide a helpful overview of this debate,
and the literature on time preferences more generally.
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received special philosophical attention in the case of cost-benefit analyses
of the effects of climate change. Ethicists and economists have debated
whether a strictly positive discount rate is justified when evaluating the
costs of climate change.”> Much recent work on time preference and
discounting has focused on how to discount in the context of uncertainty.
Again, this question is especially important for evaluating the costs of
climate change, since these evaluations are carried out in the context of
great uncertainty. Gollier (2002) provides an expected utility based model
of discounting under uncertainty that much of this literature appeals to.
Weitzman (2009) discusses discounting in a context where our estimates of
future climate have ‘fat tails’, and argues that fat tails make a big difference
to our evaluations of the costs of climate change.

8 CONCLUDING REMARKS

This entry started out by introducing decision theories that can be classified
under the heading of ‘expected utility theory’. Expected utility theory is an
enormously influential theory about how we do and should make choices.
It has been fruitfully applied in many different fields, not least philosophy.
This entry has described expected utility theory, discussed how it can be
applied to the choices real agents face, and introduced debates about its
foundations and interpretation.

Much recent discussion in decision theory concerns the two main types
of challenge to traditional expected utility theory that the latter half of
this entry focused on. The first type of challenge claims that traditional
expected utility theory requires agents to have attitudes that are too
fine-grained and too extensive. According to this challenge, agents have
attitudes, and are rationally permitted to have attitudes that are imprecise,
or vague, or incomplete. The important question arising for expected
utility theory is whether it can incorporate imprecision, vagueness, and
incompleteness, or whether it can instead offer a convincing argument
that these attitudes are indeed irrational.

The second type of challenge questions the assumption of separability
that underlies expected utility theory—that is, the assumption that the
value of an outcome in one state of the world is independent of what
happens in other, incompatible states of the world. According to this chal-
lenge, agents have attitudes to risky prospects that violate this assumption,
and are rationally permitted to do so. This challenge, in particular, has
inspired alternatives to expected utility theory. Alternatives to expected

See, in particular, the debate between Stern (2007) and Nordhaus (2007). For a philosopher
who holds that there is no justification for time preference in public decision-making, see
Broome (1994).
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utility theory face challenges of their own, however, not least the question
of whether they can make sense of dynamic choice.
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IMPRECISE PROBABILITIES Anna Mahtani

Suppose we take a standard, randomly shuffled pack of cards with no
jokers, and ask what the probability is that the top card is a red picture
card. We can calculate the probability of this to be 6/52 = 3/26. And of
course if, as many think, people have degrees of belief, or credences,
then you—knowing only that the pack is normal and has been randomly
shuffled—should have a credence of 3/26 that the top card is a red picture
card.

But many think that you can have credences in all sorts of claims,
and not just claims about random events involving cards, dice or coins.
In particular, classical Bayesian epistemologists think that you have a
credence in every proposition that you can entertain. Thus for example,
there is some number between 0 and 1 that is your credence that it will
snow in London on New Year’s Day 2026; and there is some number
between 0 and 1 that is your credence that I have a cup of tea beside my
computer as I type. But what exactly are your credences in these claims?
Perhaps no particular number springs to mind. Unlike in the playing card
scenario above, here there does not seem to be any obvious way to ‘work
out” what the probability of these events is and so arrive at the precise
credence that you ought to have. Cases like these have led some to reject
the classical Bayesian epistemologist’s claim that people must have precise
credences in every proposition that they can entertain. Instead it is claimed
that people—even rational people—can have imprecise credences in at
least some propositions. Hereafter I will use ‘imprecise probabilism” as
the name for the view that rational people can have imprecise credences.

Imprecise probabilism has some intuitive appeal. Take again the claim
(which we can call ‘NyD’) that it will snow in London on New Year’s
Day 2026. It is hard to put a precise number on your credence—but
there may still be something we can say about your attitude towards
this proposition. For example, perhaps you think the claim is not very
likely, but far from impossible, and certainly more likely than the claim
(which we can call ‘MIDSUMMER’) that it will snow on Midsummer’s day
in London in 2026. We might think that your credences in these claims can
be represented with ranges, rather than points. For example, perhaps your
credence in NYD is the range (0.1,0.4), and your credence in MIDSUMMER is
the range (0.01,0.05). Versions of this idea—of representing credences by
ranges rather than points—can be found in numerous sources, including
R. Bradley (2009), Gdrdenfors and Sahlin (1982), Jeffrey (1983), Joyce (2005),
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Kaplan (1996), Keynes (1921), Kyburg (1983), Levi (1974), Sturgeon (2008),
van Fraassen (2006), and Walley (1991).

To explain imprecise probabilism in more depth, I must first set out
the classical Bayesian view more precisely. We begin with a set (an event
space) Q) = {w1,wy, ..., w,}. Each w; in () is a state of affairs, or possible
world. We can then see a proposition (or event) A as a subset of set ().
For example, suppose we take the proposition that a particular dice throw
landed on an even number. This proposition obtains at all those possible
worlds where the dice lands on 2, 4, or 6. Thus there will be a set of
possible worlds where the proposition obtains. For the purposes of this
topic, we assume that the proposition can be identified with that set of
possible worlds at which it is true.

Now consider a set F = {A1, Ay, ..., An} of these propositions (which
are themselves each sets of possible worlds). To make this set a sigma
algebra (c-algebra), the set must be closed under union, intersection, and
complementation. For the set to be closed under union, it must be the
case that for two propositions A; and A; in the set, the union (A; U A))
is also in the set; similarly, for the set to be closed under intersection, it
must be the case that for any two propositions A; and A; in the set, the
intersection (A; N A;) must also be in the set; and for the set to be closed
under complementation it must be the case that for any proposition A; in
the set, the proposition () — A; must also be in the set.

Finally we introduce a function p mapping F to [0, 1]. Thus for example,
if F contains some proposition A, then our function p will map that propo-
sition A to some number between 0 and 1. If the function is a probability
function, then it will meet these three conditions (the probability axioms).

1. p(A) >0, for all A in F.

2. p(Q) =1.
3. If AjNAj = @ then p(A; U Aj) = p(A;) + p(4)).

Classical Bayesian epistemologists claim that any rational agent has an
epistemic state that can be represented by such a probability function.
In contrast according to the imprecise probabilist, a rational agent may
have an epistemic state that cannot be represented by a single probability
function. Instead, the imprecise probabilist typically claims that a rational
agent’s epistemic state can be represented by a set of probability functions
P = {p1,p2 ..., pr}. Thus rather than assigning each proposition in F
some unique number, for each proposition A in F there will be some least
number assigned to it by the probabilities in P (the agent’s lower envelope
of A), and some greatest number assigned to A by the probabilities P (the
agent’s upper envelope of A).
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Thus the imprecise probabilist moves away from the classical Bayesian
view by claiming that an agent’s epistemic state is given not by a single
function from propositions to numbers, but by a set of such functions. And
if the agent is rational, then each of the functions in the set that represents
the agent’s epistemic state will be a probability function. In van Fraassen’s
terminology, this set of functions is the agent’s representor (van Fraassen,
1990). On another vivid version of this account, we can see the set as a
group of avatars (R. Bradley, 2009), each of whom has a precise credence
function: these avatars collectively represent the agent’s epistemic state.

This view raises some interesting problems, but before I turn to these, I
will first explore in more depth the central claims of the view.

1 EXPLORING THE VIEW

How can a set of credence functions represent an agent’s epistemic state?
Or, to put the point another way, what must be true of a given agent
for her epistemic state to be correctly represented by some specific set of
credence functions?*

The idea is that what holds across all the credence functions in the set,
holds for the agent’s epistemic state.? Thus for example, suppose that
every credence function in the set assigns the number 0.5 to the claim that
the next fair coin tossed will land heads: then it follows that the agent has
a credence of precisely 0.5 in this claim. Or suppose that every credence
function in the set assigns a number of no more than 0.4 to the claim Nyb:
then it follows that the agent has a credence of no more than 0.4 in this
claim. Or suppose that every credence function in the set assigns a higher
number to NYD than it does to MIDSUMMER: then it follows that the agent
has a higher credence in the claim NYD than she does in MIDSUMMER.

On this picture, there may be some questions we can ask about the
agent’s epistemic state which have no answer. For example, we might
wonder which of a pair of claims is given the highest credence, or whether
they are given equal credence—but there may be no answer to this question
if the credence functions that represent the agent’s epistemic state conflict
over this. Similarly, on learning that an agent has a credence of no more
than 0.4 in NYD, we might ask what exactly the agent’s credence is in this
claim. But there is no answer to this question if the different credence
functions that represent the agent’s epistemic state assign different values
to this claim. In such cases, it is natural to say that the agent’s credence in
a claim is a range rather than a single unique number—where the range
contains all and only those numbers that are assigned to the relevant

1 Richard Bradley argues that for any given epistemic state, there is a unique maximal set of
such functions that represents that epistemic state (R. Bradley, 2009, p. 242).
2 Or perhaps, is determinately true of the agent’s epistemic state (Rinard, 2015).
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proposition by some credence function from the set that represents the
agent’s epistemic state.

I turn now to consider some variations on this view, and some initial
objections and clarifications.

1.1 Variations on the view

Here I contrast two different sorts of imprecise probabilist. All proponents
of imprecise probabilism agree that agents are sometimes permitted to
have imprecise credences in some propositions. They thus stand in con-
trast to the classical Bayesian epistemologists, according to whom rational
agents have precise credences in every proposition which they can enter-
tain. But even amongst those who accept imprecise probabilism, there
is disagreement over whether imprecise credences are ever required by
rationality.

James Joyce, for example, argues that one’s degrees of belief should be
no sharper than the evidence requires (Joyce, 2005): Joyce requires an agent
to have an imprecise credence in a claim where the evidence for that claim
does not justify a more precise credence. Thus for example consider again
the claim NYD, that it will snow in London on New Year’s Day 2026. Given
that the evidence for this is (as yet) slight, an agent who had a precise
credence in this claim (e.g. a credence of exactly 0.35) would be irrational.
In contrast, take the claim that the next fair coin tossed will land heads.
Given that the chance of this event is known to be 0.5, it is rational to have
a credence of exactly 0.5 in this claim.

To clarify this view, we need to explain what determines the correct
imprecise credence for an agent to have in any given situation. One possi-
ble answer to this is the chance grounding thesis: “one’s spread of credence
should cover the range of chance hypotheses left open by the evidence”
(White, 2009, p. 174).3 To see what this means, let us consider a few exam-
ples. First take an agent who knows that a coin is fair, and is contemplating
the claim, HEADS, that on the next toss the coin will land heads. Given
that (s)he knows that the chance of HEADs is 0.5, the chance grounding
thesis requires that every credence function in the set that represents the
agent’s epistemic state must assign 0.5 to HEADs—and so the agent must
herself have a credence of precisely 0.5 in HEADs. Now suppose instead
that the agent has a coin that she does not know to be fair: the chance of
its landing heads (HEADS*) is anywhere within the range (0.2,0.8), for all
she knows. Then the chance grounding thesis requires that for each value
v within the range (0.2,0.8), there must be a credence function in the set
that represents the agent’s epistemic state that assigns v to HEADS*. And

3 White defines this thesis, but does not endorse it.
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furthermore there must be no credence function in the set that assigns to
HEADS* some value v that is outside the range (0.2,0.8).

This chance grounding thesis generates some counterintuitive results,
and Joyce argues that it should be replaced with the less stringent demand
that when your only relevant evidence is that the chance of some event is
within some interval (a, b), then your spread of credence ought to cover
this range (Joyce, 2010, p. 289). So for example suppose that in the case
above, you know not only that the chance of the coin’s landing heads is
within the range (0.2,0.8), but also that the coin was selected at random
from a bag which contained a variety of coins with complementary biases:
i.e. for each coin in the bag that has a chance v of landing heads, the bag
also contained exactly one coin with a chance 1 — v of landing heads. In
this case, because you have this extra piece of evidence, your “spread of
credence” in HEADS is not required to cover the whole range (0.2,0.8), and
a credence of precisely 0.5, say, is permitted. However if you know only
that the chance of the coin’s landing heads is within the range (0.2,0.8),
then your spread of credence in HEADSs is required to cover the whole
range (0.2,0.8).

Now we turn to consider imprecise probabilists who permit, but never
require agents to have imprecise credences. For these theorists, an agent is
free to have a credence of precisely 0.35 in the claim NyD (that it will snow
in London on New Year’s Day 2026). To these theorists, we might ask
whether there are any rational constraints on an agent’s epistemic state, bar
the requirement that their state should be represented by some maximal
set of credence functions that obey the probability axioms. Such a theorist
might require that any rational agent’s epistemic state will conform to the
principal principle—i.e. that the agent’s credence in any claim P conditional
on the chance of P being some value v, is v (Lewis, 1980). From this, it
follows that in the case where an agent is contemplating the claim (HEADS)
that on its next toss a coin known to be fair will land heads, the agent’s
credence in HEADS must be 0.5. But what constraint is placed on the agent
in the case where (s)he is contemplating the claim (HEADs*) that on its
next toss a coin known to have a chance within the range (0.2,0.8) will
land heads? The principal principle here requires that the agent’s credence
should not exceed the range (0.2,0.8), but nothing seems to require that
the agent’s credence should occupy this entire range.

Having explored this variation in the views of imprecise probabilists, I
turn now to contrast the account with an alternative view.

1.2 Dempster-Shafer Theory

An alternative approach to modelling our epistemic state involves belief
functions (Dempster, 1967, 1968; Shafer, 1976). To illustrate this view, we

111



112

ANNA MAHTANI

can again take the proposition (NyD) that it will snow in London on New
Year’s Day in 2026, and suppose that my belief-function assigns a value of
0.6 to this claim: we represent this by writing Bel(NYD) = 0.6. If my belief
function was a probability function, then it would follow that the value
assigned to the negation of NYD (i.e. to not-NYD) would be 0.4. However a
belief function need not be a probability function, and it might assign any
value less than or equal to 0.4 to not-NYD. Thus for example, it might assign
a value of 0 to not-NyD. This is despite the fact that the value assigned to
the tautology (either NYD or not-NYD) must be 1.

More generally, on this view the value assigned to the disjunction of
two disjoint propositions A and B, Bel(A U B), need not equal the sum of
Bel(A) and Bel(B). The requirement is only that the value assigned to the
disjunction must be at least as great as the sum of the values assigned to
the disjuncts. Thus the belief function is not a probability function, as the
third probability axiom (countable additivity) does not apply.

One way to interpret the idea of a belief function, is as a measure of the
weight of evidence for each proposition. Thus consider again my belief
function that assigns a value of 0.6 to Nyp. We can suppose that I have
asked a friend whether it will snow in London on New Year’s Day 2016,
and (s)he assures me that it will. I consider this friend to be reliable in 60%
of cases of this sort, and this explains why my belief function assigns a
value of 0.6 to this claim. If we suppose that this is all the relevant evidence
that I have, then my belief function assigns a value of 0 to not-NyD simply
because I have no evidence to support not-NyD. In cases where I have
evidence from two different sources (e.g. in a case where I make another
friend who also gives me his or her opinion on NYD), then the belief
functions that result from these different bodies of evidence need to be
combined, and Dempster and others have explored the question of how
this combination should be carried out (Dempster, 1967).

In common with imprecise probabilism—and in apparent contrast with
classical Bayesianism—this theory has resources designed to model severe
uncertainty. To see this, suppose that a coin is about to be tossed, and
that you have no information whatsoever about whether the coin is fair or
how it might be biased. On the classical Bayesian view, in spite of your
severe uncertainty, you will nevertheless have a precise probability that
the coin will land head-side-up. This strikes many as counterintuitive.
Advocates of both imprecise probabilism and Dempster-Shafer theory
take their theories to improve on classical Bayesianism here. According to
imprecise probabilism, in the case where you have no information about
the bias of the coin, a rational agent may—and on some versions of the
theory, must—have a credal range of (0, 1) rather than a precise credence
of 0.5. And according to Dempster-Shafer theory, in a case where you have
no information about the bias of the coin, you have no evidence in favour
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of heads, and no evidence in favour of tails, and so your belief function
will assign a value of 0 to both HEADs and TAILS.

For more on the Dempster-Shafter theory, and how it differs from both
classic Bayesianism and imprecise probabilism, see Halpern (2003) and
Yager and Liu (2008).

1.3 Scoring Rules

I turn now to an issue for those theorists who want to apply the idea of
accuracy scoring rules in the context of imprecise probabilism. I begin by
outlining a standard proposal for measuring the (in)accuracy of a credence
function, and I explain how this sort of scoring rule has been used to
construct an argument for probabilism. I then gesture towards some of the
challenges that arise when we consider these measures of accuracy in the
context of imprecise probabilism.

Let’s begin then with the classical Bayesian picture, according to which
a rational agent’s epistemic state is represented with a single precise
credence function. In this context a variety of scoring rules have been
proposed for measuring a credence function’s (in)accuracy at a given
world. One popular such rule is the Brier score (Brier, 1950) which I outline
here. First we set the truth-value of a proposition at a world to 1 if the
proposition is true there, and 0 if it is false. Now we can measure the
“distance” between the truth-value of the proposition at a world and the
credence assigned to it, by taking the difference between the two and
squaring the result. To illustrate this, suppose that you have a credence of

0.8 in the proposition that the world’s population is over 7 billion in 2016.

In the actual world, this proposition is true, and so has a truth-value of
1. Thus we measure the distance between the credence assigned to this
proposition and its truth-value in the actual world as follows: take the
truth value of the proposition (1), deduct the value assigned to it by the
credence function (0.8), and then square the result (giving 0.04). We get the
inaccuracy score for an entire credence function at a world by calculating
this distance for each proposition that is assigned a value by the credence
function, and summing the lot.

The Brier score is just one suggestion for measuring inaccuracy, and
others have been proposed, along with various claims about conditions
that any scoring rule ought to fulfil. One such requirement is that a scoring
rule ought to be proper, which can be defined as follows: any agent with a
rationally permissible credence function (i.e. one that obeys the probability
axioms), will score her own credence function to be no more inaccurate
than every other credence function, if the scoring rule that she uses is
proper. The Brier score is one example of a scoring rule that meets this
requirement.
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Scoring rules of this sort have been used to argue for probabilism—i.e.
for the claim that a rational agent’s credence function obeys the probability
axioms. The argument works by showing that for any credence function Cr
that does not obey the probability axioms, there is an alternative credence
function Cr* which does obey the probability axioms and which dominates
Cr in the following sense: the inaccuracy of Cr is at least as great as the
inaccuracy of Cr* at every world, and at some world the inaccuracy of Cr
is greater than the inaccuracy of Crx*. Thus, the argument goes, it would be
irrational to have a credence function such as Cr which does not obey the
probability axioms, when an alternative credence function Cr* is available.
Arguments of this sort can be constructed using any scoring rule provided
that it meets certain requirements—including the requirement that it be
proper (Joyce, 1998). Arguments from accuracy for a variety of other
epistemic principles have also been proposed, including an argument for
the principal principle (Pettigrew, 2013), and conditionalization (Greaves
& Wallace, 2006).

We can now consider how these issues are affected by a switch from
precise to imprecise probabilities. If an agent has an imprecise credence
function, then how should the inaccuracy of her credence function be mea-
sured? We can see at once that the original measures of inaccuracy cannot
be straightforwardly carried across—for where an agent’s credence in
some proposition is imprecise, we have no single number which measures
that agent’s credence, and so cannot make sense of the idea of deducting
the agent’s credence in a given proposition from its truth-value at some
world. Thus a new way of measuring inaccuracy is needed.

There is not yet any consensus as to what this new way of measuring
inaccuracy would be like. Some authors have proposed requirements that
any way of measuring the inaccuracy of an imprecise credence function
would need to meet, and some have uncovered difficulties for the project.
Seidenfeld, Schervish, and Kadane argue that there is no strictly proper
scoring rule for imprecise probabilities. See Seidenfeld, Schervish, and
Kadane (2012) and Mayo-Wilson and Wheeler (2016) for further discussion
on this issue. Schoenfield (2017) argues that if the new accuracy scoring
rule meets certain conditions, then the claim that accuracy is all that
matters is incompatible with the claim that imprecise probabilities are
sometimes rationally required—or even permitted. Thus challenges await
those who wish to endorse both imprecise probabilism and accuracy
arguments.

Having explored the account of imprecise probabilities, I turn now to
some of the most discussed objections and problems for the account. I
divide these into two categories: learning and deciding.
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2 LEARNING

On the classic Bayesian picture, an agent’s epistemic state is represented
by a single credence function. If the agent is rational, then she will update
(only) by conditionalization. Thus for example suppose that an agent
is about to run an experiment at the end of which she will have learnt
(just) either E or not-E. At the start of the experiment (at ¢) let’s suppose
that the agent has a credence of 0.2 in E, and a credence of 0.5 in some
hypothesis H. Furthermore, the agent has a conditional credence of 0.9
in H given E: in other words, if we let Crp name the agent’s credence
at to, then Cro(H | E) = Cro(HNE)/Cro(E) = 0.9. Now suppose that
the experiment runs, and at t; the agent discovers E. The agent’s new t;
credence function (Cr;) ought rationally to be her old ¢y credence function
(Crg) conditionalized on the new evidence that she has gained, E. Thus her
new credence in H ought to be her old conditional credence in H given E:
Cri(H) =Cro(H | E) =09.

For the proponent of imprecise probabilities, an agent’s epistemic state
is represented by a set of credence functions. How will a rational agent
adjust her epistemic state in the light of evidence on this account? The
idea standardly endorsed by imprecise probabilists is that each credence
function in the set will be adjusted in the usual way by conditionalization,
and the agent’s new, post-evidence epistemic state can be represented by
this adjusted set of credence functions. Thus for example, to return to our
experiment case above, suppose that every credence function in the set
that represents the agent’s epistemic state at ¢y assigns a number within
the range (0.4,0.6) to H—and every number within this range is assigned
to H by some credence function in the set. And suppose furthermore that
for each of these credence functions, the conditional credence assigned
to H given E is within the range (0.85,0.95)—and every number within
this range is the conditional credence assigned to H given E by some
credence function within the set. Then at t;, when the agent has learnt
(just) E, the agent’s epistemic state will be represented by the original set
of credence functions each conditionalized on E, and thus the agent’s new
credence in H will be given by the range (0.85,0.95). I will now turn to
two problems—both related to learning—for the proponent of imprecise
probabilities.

2.1 Belief Inertia

Let us consider a scenario in which you have just selected a coin from a
bag, knowing only that the bag contains various coins some of which may
be biased to various unspecified degrees. You are going to toss the coin 25
times, and before you begin tossing the coin (a time we can call f() you
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contemplate claim HEADs25—the claim that the coin will land heads on
its 25th toss. According to any proponent of imprecise probabilities, you
are permitted to have an imprecise credence in this claim. Now we can
consider what will happen to your credence in HEADS25 if you toss the
coin a few times, and it lands heads each time. Let HEADS1 be the claim
that the coin lands heads on the first toss, HEADS2 be the claim that the
coin lands heads on its second toss, and so on. Intuitively, your credence
in HEADS25 ought to increase on learning HEADS1, and increase even more
on learning (HEADS1 (N HEADS2), and so on.

For a certain sort of proponent of imprecise probabilism, this scenario
is problematic. In particular, consider the sort of imprecise probabilist
who claims that an agent’s epistemic state should conform to the chance
grounding thesis.# On this view, all and only those credence functions
which are compatible with the known chances must be included in the
set that represents the agent’s epistemic state. In the scenario that we are
considering, at fp you can rule out very few chance hypotheses: for all you
know, the chance of HEADS25 may be any number strictly between 0 and 1.
Thus at ¢y your credence in HEADS ought rationally to be the range (0,1).
What happens if you toss the coin once and it lands heads—i.e. if you learn
HEADS1? For any number n within the range (0, 1), you have not learnt that
the chance of HEADs25 is not n. For example, you have not learnt that the
chance of HEADS25 is not 0.0001. Thus your new credence in HEADS25, after
learning HEADs1, ought still to be the range (0,1). What happens if you
toss the coin again, and it again lands heads—i.e. in addition to HEADs1,
you also learn HEADS2? You cannot then rule out any additional chance
hypotheses. For example, it may still be the case, for all you know, that the
chance of HEADS25 is 0.0001. Thus your credence in HEADS25 after learning
both HEADS1 and HEADS2 remains the range (0,1). This pattern continues:
even if you toss the coin 24 times and it lands heads on each toss, your
credence in HEADS25 should still remain fixed at (0,1). In this sense, your
epistemic state exhibits inertia in the face of evidence. That your epistemic
state should rationally exhibit this inertia is very counterintuitive: surely as
you toss the coin and it lands heads repeatedly, your credence in HEADS25
ought to increase?

To put the point vividly, we can imagine the credence functions that
represent your epistemic state as a group of avatars. The avatars at ty
will assign various precise credences to HEADS25: for every number in
the range (0,1), there will be some avatar who assigns that value to
HEADS25. On learning HEADS1, each avatar ought to update accordingly by
conditionalizing. Take an avatar who had a credence of 0.0001 in HEADS25.

4 A similar problem applies to Joyce’s adjusted version of this principle mentioned earlier.
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It may be> that this avatar’s conditional credence in HEADS25 given HEADS1
is higher than her unconditional credence in HEADS25, in which case this
avatar will increase her credence in HEADS25 on learning HEADS1. But there
will be some avatar (perhaps an avatar whose unconditional credence
in HEADS25 was even lower than 0.0001) whose credence in HEADS25
conditional on HEADs1 is 0.0001. Thus even after learning HEADS1, there
will still be, in the set representing your epistemic state, an avatar whose
credence in HEADS25 is 0.0001. Similarly, even if you learn the conjunction
of the claims HEADs1 through HEADS24, there will still be an avatar in the
set representing your epistemic state whose credence in HEADs1 is 0.0001.
Thus your credence in HEADs25 will not shift from the range (0,1) no
matter how much evidence you amass in favour of HEADS25.

This looks like a problem—at least for those imprecise probabilists who
accept the chance grounding thesis, or something close to it. For some of
the responses available, see R. Bradley (2017), Joyce (2010), Rinard (2013),
and Vallinder (2018).

2.2 Dilation

Here we turn to another problem for the proponent of imprecise probabil-
ism. The phenomenon I discuss here was first noted by early statisticians
of imprecise probabilism Walley (1991) and Seidenfeld and Wasserman
(1993), and has recently been prominently discussed by White (2009). Take
some claim P, that you have no evidence whatsoever for or against, so that
your credence at t( in P is the range [0, 1]. Suppose that I know whether
P is true, and I take a fair coin and paint the heads side over. I write “P’
on this heads side iff P is true, and “not P” on the heads side iff P is not
true. I similarly paint over the tails side of the coin, and write on this side
whichever claim (out of “P” and “not P”) is false. You know that I have
done this. I then toss the coin before your eyes. Your credence before it
lands (i.e. at tp) that it will land head-side up (HEADS), is 0.5. Then at t;
you see it land, with the “P”-side up. What then at ; is your credence in
P and what is your credence in HEADS?

At t; you have learnt that the coin has landed “P”-side up. Thus if P
is true, then HEADS is also true (i.e. it must have landed heads)—for if P
is true then “P” has been painted onto the heads side of the coin, and so
given that it has landed “P”-side up it has also landed heads. Furthermore,
if HEADs is true, then P is also true—for if it has landed heads then given
that it has landed “P”-side up, “P” must have been painted onto the heads
side of the coin, which will have happened only if P is true. Thus at ¢; you

Though it need not be: perhaps some avatars will stubbornly refuse to adjust their credence
in HEADS25 from 0.0001. We might try to avoid this problem by excluding such agents
(Halpern, 2003), though this will not solve the problem discussed in the main text.
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can be certain that P is true iff HEADS is true. Thus at t; you must have the
same credence in P as you have in HEADs. Given that at ty your credence
in HEADS is 0.5, and your credence in P is the range [0, 1], how will your
credence adjust between ty and #1? Will your credence in HEADS become
the range [0,1]? Or will your credence in P become precisely 0.5? Both
options seem counterintuitive.® It seems implausible that your credence in
HEADS should “dilate” to the range [0, 1]: surely (by the principal principle)
your credence that a fair coin has landed heads ought to be 0.5, unless
you have some evidence as to how it has landed. And knowing that it
landed on the “P”-side does not seem to give you any evidence as to
whether it has landed heads or tails. And it also seems implausible that
your credence in P should sharpen to the number 0.5 (White, 2009), for
after all you knew even at f( that the coin would either land “P”-side up,
or “P”-side down, and we cannot say that learning either of these pieces
of information would force your credence in P to become precisely 0.5
without violating van Fraassen’s reflection principle (van Fraassen, 1984).

One popular response made by the imprecise probabilist, is to accept
that at #; your credence in HEADS ought to dilate to [0,1].” Here are two
things that might be said in defence of this position.

o It seems as though learning that the coin landed “P”-side up gives
you no evidence as to whether it has landed head-side up. But this
would not follow if P was a claim that you knew something about.
Suppose as a contrast case, then, that P is the claim that you have
just won the lottery—a claim in which you have a very low credence
indeed. On hearing that I (who know the outcome) am painting the
true claim (out of “P” and “not-P”) on the heads side, and the false
claim on the tails side, you will be almost certain that I am painting
“not-P” on the heads side, and “P” on the tails side. Your credence at
tp in HEADS is 0.5, but when at ¢; you learn that the coin has landed
“P”-side up, you will be almost certain that HEADs is false. Thus
where you have some evidence concerning P, it is natural to suppose
that learning that the coin has landed “P”-side up will alter your
credence in HEADS (see Sturgeon, 2010, Joyce, 2010).

What about in the case where P is a claim about which you have
no evidence? In this case, it is tempting to suppose that learning
that the coin has landed “P”-side up gives you no reason to adjust
your credence in HEADS. But the situation is more complicated than

6 A further option would be for both your credence in HEADS and your credence in P to
adjust, but this is no more appealing than the alternatives.

7 As White acknowledges, some statisticians and philosophers (such as Walley, 1991, and
Seidenfeld and Wasserman, 1993) had noted this result and “taken it in their stride” (White,

2009, p. 177).
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this suggests. Consider again your epistemic state as a set of avatars.
For every number in the range [0, 1], there is some avatar in the set
that represents your epistemic state that assigns this number to P.
Each such avatar, on learning that the coin has landed “P”-side up,
will adjust her credence in HEADS accordingly.® For example, the
avatar whose credence in P is 0.2 will adjust her credence in HEADS
downwards; and the avatar whose credence in P is 0.8 will adjust her
credence in HEADS upwards. More generally after conditionalizing
on the claim that the coin has landed “P”-side up, for every number
in the range [0, 1], there will be an avatar who assigns that number
to HEADS. We can see then that it is not that learning that the coin
has landed “P”-side up gives you no evidence relevant to HEADS, but
rather that you are just very uncertain as to in what direction the
evidence you have received should pull you, and how far. Thus your
credence in HEADS is infected with the imprecision that you assigned
to P, and your credence in HEADs dilates to the range [0, 1] (Joyce,
2010).

o It is tempting to object that it is counterintuitive for an increase in
evidence to leave your credence function more imprecise than it was
before. However it is not obvious that your credence function is more
imprecise at t; than it was at tg. To see this, consider that at ¢y though
your credence in HEADS was precise, your conditional credence in
HEADS given that the coin lands “P”-side up was imprecise. Thus
there was imprecision in your credence function even at t;: this
just was not obvious when we focused only on your unconditional
credence in HEADs (R. Bradley, 2017).

Further discussion of the problem of dilation can be found in R. Bradley
(2017), S. Bradley and Steele (2014), Dodd (2013), Joyce (2010) and Pederson
and Wheeler (2014).

3 DECISION-MAKING

On the classic Bayesian picture, a rational agent has a precise credence
function assigning some number between 0 and 1 to each proposition, and
also a precise utility function assigning some number to each possible
outcome representing in some sense how much the agent values each
outcome. When faced with a decision problem—i.e. a choice between
different actions—on the classic picture the agent must choose an action
that has maximum expected utility. We can calculate the expected utility
of any given action for the agent as follows: for every possible outcome,

8 Those avatars whose credence at ¢ in P is 0.5 need make no adjustment.
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Milk at home (s;) No milk at home (s3)

Cr(s1) =0.5 Cr(sz) =0.5
STOP FOR MILK 9 9
DoN’T sToPr 10 5

Table 1: A decision problem

we multiply the agent’s credence that the outcome will obtain should she
perform the action under consideration, by the utility of that outcome—
and then we sum the lot.?

Here is an example to illustrate this. Sometimes on the way home from
work, I stop to buy a pint of milk, which means that I take a bit longer to
get home, but it is certainly better than getting home and finding that there
is no milk in the house. Suppose that on this occasion, my credence that
there is milk in the house already is 0.5. Table 1 represents my assessment
of the possible outcomes.

We can now calculate the expected utility of each available action. The
expected utility of stopping to buy milk is (0.5)(9) + (0.5)(9) = 9, whereas
the expected utility of not stopping to buy milk is (0.5)(10) + (0.5)(5) =
7.5. On the classic decision rule “maximise expected utility”, I ought to
stop to buy milk, because this is the action with the highest expected
utility.

The maximise expected utility rule works on the assumption that for
every relevant state of the world, the rational agent has a precise credence
that that state of the world obtains. But proponents of imprecise probabili-
ties deny this, and so cannot accept this rule. What alternative rule should
they put in its place? According to the proponent of imprecise probabilities,
what requirements does rationality place on an agent’s choice of action?
Many different answers have been proposed, and I will briefly outline two
of these answers.

PERMISSIVE CHOICE RULES  Recall that we can see an agent’s epistemic
state as represented by a set of avatars, each with a precise credence func-
tion. Thus faced with any decision problem, each avatar will have a view as
to which action—or actions—will maximise expected utility.’® According

This is a rough and ready sketch of Savage’s account (Savage, 1954). Modifications have
been made to that account (e.g. in Jeffrey, 1965) but here I will stick to straightforward
examples so that the modifications should not be relevant.

Here I assume that the agent has a precise utility function which feeds into each avatar’s
calculation. This of course is also up for debate, and some argue that just as a rational
agent can have an imprecise credence function, so (s)he can have an imprecise utility
function. I do not discuss this further here however.
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to the permissive choice rules,’* the agent may rationally perform any
action provided that at least one of her avatars recommends that action.

To illustrate this, suppose that an agent’s credence that it will rain
tomorrow is the range (0.4,0.8). Thus for every number in this range,
there is some avatar who assigns that number to the claim that it will rain
tomorrow. Suppose then that the agent is offered the following bet: she is
to pay out £5, and will get £10 back iff it rains tomorrow. The agent has
to choose whether to accept the bet, or reject it. We can assume that the
agent values only money, and values it linearly. Some of her avatars would
recommend accepting the bet (those whose credence that it will rain is
greater than 0.5), some recommend rejecting it (those whose credence that
it will rain is less than 0.5), and some rate the expected utility of accepting
it equal to the accepted utility of rejecting it (those whose credence that
it will rain is 0.5). Thus according to the permissive choice rules, the
agent is free to either accept or reject the bet: both actions are permissible.
This rule—together with some variations—is discussed under the name
‘Caprice’ by Weatherson (1998).

MAXIMIN The rule maximin works as follows. Where an agent has
an imprecise probability function, we can see her epistemic state as rep-
resented by a set of precise functions, or avatars. When considering a
possible action, there is an expected utility for that action relative to each
precise probability function in the agent’s set. Amongst these expected
utilities for the action, one will be the lowest—and so each action has
a minimum expected utility. According to maximin, when faced with a
choice, a rational agent will carry out whichever action has the maximum
minimum expected utility.

To illustrate this, take again our agent whose credence that it will rain
tomorrow is the range (0.4,0.8): for every number in this range, there
is some avatar who assigns that number to the claim that it will rain
tomorrow. Suppose then that the agent is offered the following bet: she
is to pay out £5, and will get £10 back iff it rains tomorrow. Each avatar
calculates the expected utility of each possible action—i.e. the action of
accepting the bet and the action of rejecting the bet. The avatar who assigns
the lowest expected utility to accepting the bet is the avatar whose credence
that it will rain tomorrow is 0.4: assuming again that the agent values only
money and that linearly, we can represent the expected utility of accepting
the bet from the perspective of this avatar as —5+ (0.4)(10) = —1. Thus the
minimum expected utility of accepting the bet is —1. Now we can calculate
the minimum utility of rejecting the bet. All avatars assign the same
expected utility to this action—namely 0. Thus the minimum expected
utility of rejecting the bet is 0. A rational agent will choose from amongst

11 This is Elga’s (2010) term.
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those actions with the highest minimum expected utility—and as rejecting
the bet has a higher minimum expected utility (0) than accepting the bet
(—1), the agent if rational will reject the bet.

Variations on this rule have been developed by Géardenfors and Sahlin
(1982), Gilboa and Schmeidler (1989), and others. An analogous maximax
rule has been developed by Satia and Lave (1973). Many further rules
have been proposed, including those by Arrow and Hurwicz (1972) and
Ellsberg (1961). See Troffaes (2007) for a discussion and comparison of
some of these rules.

3.1 Applying These Rules

In some scenarios, some of the alternative rules developed by imprecise
probabilists seem to work better than the classical Bayesian’s rule maximise
expected utility. Here is a famous case—the Ellsberg paradox—in which
this holds (Ellsberg, 1961).

You have an urn before you, which contains 150 balls. 50 are black, and
the other 100 are some mixture of red and yellow—but you have no further
information as to what the proportions of red and yellow balls are. For all
you know, there may be 100 red balls and no yellow balls, or 100 yellow
balls and no red balls, or any mixture between these two extremes. Now
a ball will shortly be selected at random from the urn, and you have the
chance to bet on what colour the ball will be. You can either say ‘black’, in
which case you'll win £100 if it is black, and nothing otherwise; or you can
say ‘red’, in which case you'll win £100 if it is red, and nothing otherwise
(Table 2).

Black (B) Red (R) Yellow (Y)

BET BLACK £100 £0 £0
BET RED £0 £100 £0

Table 2: The first scenario in the Ellsberg paradox

Now suppose instead that you have the option of saying ‘black or
yellow’, in which case you'll win £100 if the ball is either black or yellow,
and nothing otherwise; or you can say ‘red or yellow’, in which case you'll
win £100 if the ball is either red or yellow, and nothing otherwise (Table 3).

Typically people choose to say ‘black” in the first scenario, but ‘red
or yellow” in the second. Furthermore, many apparently rational people
exhibit this betting pattern.”? The problem is that if we assume that a
rational agent has precise probabilities and utilities, and chooses only

See Voorhoeve, Binmore, Stefansson, and Stewart (2016) for an analysis and discussion of
the prevalence of this betting pattern.
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Black (B) Red (R) Yellow (Y)

BET BLACK OR YELLOW £100 £0 £100
BET RED OR YELLOW £0 £100 £100

Table 3: The second scenario in the Ellsberg paradox

between those actions that maximise expected utility, then a rational agent
cannot exhibit this betting pattern. To see this, let’s suppose that some
agent who exhibits this betting pattern has precise probabilities, and is
maximising expected utility. We let the agent’s credence in B, R and Y
be given by Cr(B), Cr(R) and Cr(Y) respectively, and we let the utility of
winning £100 be given by u; and the utility of winning £0 be given by u5.
Then—given that our agent chooses ‘black” over ‘red” in the first scenario,
it follows that

Cr(B) -u1 +Cr(R) -up +Cr(Y) -up > Cr(B) - ug + Cr(R) - us + Cr(Y) - up,
and so that
Cr(B) -uy + Cr(R) -up > Cr(B) - ug + Cr(R) - u.

But then the agent chooses ‘red or yellow” over ‘black or yellow” in the
second scenario, and so it follows that

Cr(B) -u1 +Cr(R) -up +Cr(Y)-u; < Cr(B) -up+ Cr(R) - us +Cr(Y) - uy,
and so that
Cr(B) -uy + Cr(R) - up < Cr(B) - up + Cr(R) - u.

This contradicts our earlier result. Thus no agent exhibiting this betting
pattern can have only precise probabilities and utilities and be guided by
the rule maximise expected utility.

What alternative rule might be guiding the agent’s behaviour in Ells-
berg’s scenario? Several of the rules formulated by proponents of imprecise
probabilities can explain the agent’s behaviour, and so Ellsberg’s scenario
can be used to argue both for (some of) the alternative rules, and for
the claim that rational agents can have imprecise probabilities. To illus-
trate how some of these rules might handle Ellsberg’s scenario, I will run
through Ellsberg’s own solution to the problem.

In Ellsberg’s terminology, a situation can be “ambiguous” for an agent.
In an ambiguous situation, more than one probability distribution seems
reasonable to the agent. We can gather these probability distributions
into a set P = {p1, p2, ..., pn}: these are the distributions that the agent’s
information “does not permit him to rule out” (Ellsberg, 1961, p. 661). The
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agent assigns weights to each of these reasonable distributions, and arrives
at a composite “estimated” distribution p; where p; is a member of P. The
estimated pay-off A.s: of a given action A is the expected utility of the action
calculated using p; (Ellsberg, 1961, p. 661). But when faced with a choice of
actions, the rational agent may be guided not just by the expected pay-off
of each action, calculated in terms of p;. The agent may also take into
account the lowest expected utility of each action as calculated using any
member of P. We let A,,;, denote the minimum expected utility of action
A as calculated using any member of P, and we let x denote the agent’s
degree of confidence in p; (the “estimated” distribution). Then the index of
an action A is given by x - At + (1 — x) - Ay Ellsberg’s rule for action,
then, is as follows: choose the action with the highest index.

In Ellsberg’s scenario, the agent is in an ambiguous situation: the agent
can be certain that the probability that a ball randomly drawn from the
urn will be red is 1/3, but the agent cannot be certain of the probability
of the ball’s being yellow or black, because (s)he does not know the
proportion of yellow and black balls in the urn. There are a range of
probability distributions that seem reasonable to the agent: for every
number r between 0 and 2/3, there is a reasonable probability distribution
under which the probability of R is r, the probability of Y is 2/3 — r, and
the probability of B is 1/3. Let us assume for simplicity that the agent
assigns weight evenly across these reasonable probability distributions.
Thus on the composite “estimated” distribution, the probability of R is 1/3,
the probability of Y is 1/3, and the probability of B is 1/3. Thus the expected
payoff of saying ‘black’ in the first scenario (1/3 - u; +2/3 - u) is the same
as the expected payoff of saying ‘red” in that scenario, and the expected
payoff of saying ‘black or yellow” in the second scenario (2/3 - 11 4 1/3 - uy)
is the same as the expected payoff of saying ‘red or yellow’ in that scenario.

However a rational agent need not be guided merely by the estimated
payoff of each action, but also by the lowest expected utility of each action.
For the action of saying ‘red” in the first scenario, the lowest expected
utility is that given by the probability distribution according to which the
probability of R is 0, the probability of Y is 2/3, and the probability of B is
1/3: according to this distribution, the expected utility of saying ‘red” is 0.
In contrast, according to every distribution the expected utility of saying
‘black’ is 1/3, and so of course the lowest expected utility of saying ‘black” is
1/3. The ‘index’ of some action A is given by x - Aest + (1 — x) - Aypin, where
x is the agent’s level of confidence in the ‘estimated distribution’. Thus the
index of saying ‘red” is 1/3- x + 0 (1 — x), and the index of saying ‘black’
is 1/3-x 4+ 1/3- (1 — x). Thus whenever the agent is less than perfectly
confident in the estimated distribution—which a rational agent may well
be—the value x will be less than 1, and the index of saying ‘black” will be
greater than the index of saying ‘red’. Thus any agent for whom x is less
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than 1 will say ‘black’ rather than ‘red” in the first scenario. In the second
scenario, however, the very same agents will choose to say ‘red or yellow’
rather than ‘black or yellow’. For it works out that the expected payoff of
both of these actions is 2/3, but the lowest expected utility of saying ‘black
or yellow” (1/3) is lower than the lowest expected utility of saying ‘red or
yellow” (2/3), and so saying ‘black or yellow” has a lower index than saying
‘red or yellow’.

In short, an agent for whom x is less than 1 is ambiguity averse: all else
being equal, the agent prefers actions where (s)he knows the chances of
the relevant outcomes over actions where (s)he merely estimates those
outcomes. In the first scenario, if the agent says ‘black” then (s)he will
know the chance of winning £100, whereas if she says ‘red” then the chance
of winning will be unknown. In contrast, in the second scenario, if the
agent says ‘red or yellow’ then (s)he will know the chance of winning
£100, whereas if she says ‘black or yellow’, the chance of winning will be
unknown. Thus the betting pattern that is typically displayed in Ellsberg’s
scenario is permissible.

Here the imprecise probabilist seems to have an advantage over
the precise probabilist. The precise probabilist seems forced to claim—
counterintuitively—that the typical betting pattern in Ellsberg’s scenario
is irrational, whereas the imprecise probabilist can account for this betting
pattern well.

I turn now to the problem of sequential decision problems, which seem
to pose a problem for the imprecise probabilist.

3.2 Sequential Decision Problems

Here is a problem posed by Elga (2010)."3 According to the imprecise
probabilist, a rational agent may have a credence of, say, [0.1,0.8] in some
claim H. Now consider the following two bets:

Bet A: If H is true, then you lose £10; otherwise you win £15.
Bet B: If H is false, then you lose £10; otherwise you win £15.

These bets are offered sequentially: first Bet A is offered to the agent, and
then Bet B. The agent knows that she will be offered both bets, and has
the option of taking both, rejecting both, or taking either one. Intuitively, it
would be irrational for an agent to reject both bets, because rejecting both
bets leaves the agent with nothing, whereas accepting both bets leaves the
agent with a sure £5. Surely then a rational agent would not reject both?

The problems that the imprecise probabilist faces over sequential decision problems are
widely discussed in the literature from economics, and a puzzle related to Elga’s can be
found in Hammond (1988).
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The challenge that Elga poses to the imprecise probabilist is to put forward
a plausible decision rule that entails that a rational agent in this scenario
will not reject both bets. Various attempts have been made to meet this
challenge.

It seems at first as though the permissive choice rules will not do. To
see why, consider that if the agent is presented with just Bet A, there
will be avatars who recommend rejection, so it follows that the agent is
rationally permitted to reject Bet A. But then when presented with Bet B,
there will similarly be avatars (different avatars) who recommend that this
bet is rejected. So it follows that the agent is rationally permitted to reject
Bet B. Thus it seems that the permissive choice rules would permit the
agent to reject both bets, and so this rule cannot be used to meet Elga’s
challenge. However defenders of this rule may claim either that a sequence
of actions is permitted only when that sequence is recommended by a
single avatar, or else challenge Elga on his assumption that accepting each
bet is a separate action, rather than parts of a single action (Weatherson,
2003; Williams, 2014).

Similarly, it may seem that maximin, Ellsberg’s rule, and others will be
unable to handle Elga’s scenario, for many of these rules would permit a
rational agent to reject both bets if offered on separate occasions. However
as several authors have pointed out, and as Elga (2012) acknowledges,
once we call on the resources of game theory, we find that several of these
rules do entail that a rational agent in Elga’s scenario (in which the agent
knows that (s)he will be offered both bets) will not reject both bets. See S.
Bradley and Steele (2014), Chandler (2014), and Sahlin and Weirich (2014);
see Mahtani (2018) for a response.

A further way of responding to Elga’s challenge is to argue that when
faced with a series of choices, a rational agent will make a plan and stick
to it—and where an agent has an imprecise credence function, that plan
will be endorsed as maximising expected utility by at least one of the
agent’s avatars. For further discussion of this sort of view, see Bratman
(2012), Gauthier (1986), and McClenen (1990).

Finally, there are authors who reject the assumption that an agent in an
Elga-style scenario who rejects both bets is thereby irrational. For example,
Moss (2015) constructs an account of what it is for an agent with imprecise
credences to “change his or her mind”, and argues that it is permissible
in at least some Elga-style scenarios for an agent to reject Bet A while
identifying with one of her avatars, and then change her mind and reject
Bet B, identifying with a different avatar. Others such as S. Bradley and
Steele (2014) also maintain that a rational agent in an Elga-style scenario
may reject both bets.

Thus there are a range of interesting ways that the imprecise proba-
bilist might respond to the sort of sequential decision problem that Elga
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has raised, and the debate over which rule of rationality the imprecise
probabilist should endorse is still ongoing.

4 SUMMARY

I began with a natural motivation for accepting imprecise probabilism. I
then outlined the most widely discussed account of imprecise probabilities,
and considered how the account should be interpreted. I then turned to
two categories of objections to the account: objections concerning learning,
and objections concerning decision making. Within learning, I discussed
two different objections: firstly the problem of belief inertia, and secondly
the problem of dilation. Within decision making, I focused on the problems
that the imprecise probabilist faces in situations of sequential choice. There
has been recent, lively debate about these objections, and while various
responses have been put forward by the imprecise probabilists, we are
currently far from a consensus.
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CONDITIONAL PROBABILITIES Kenny Easwaran

Conditional probability is one of the central concepts in probability theory.
Some notion of conditional probability is part of every interpretation of
probability. The basic mathematical fact about conditional probability is
that p(A | B) = p(A A B)/p(B) where this is defined. However, while
it has been typical to take this as a definition or analysis of conditional
probability, some (perhaps most prominently Héjek, 2003) have argued
that conditional probability should instead be taken as the primitive notion,
so that this formula is at best coextensive, and at worst sometimes gets it
wrong.

Section 1.1 considers the concept of conditional probability in each of
the major families of interpretation of probability. Section 1.2 considers a
conceptual argument for the claim that conditional probability is prior to
unconditional probability, while Section 1.3 considers a family of mathe-
matical arguments for this claim, leading to consideration specifically of
the question of how to understand probability conditional on events of
probability 0. Section 1.4 discusses several mathematical principles that
have been alleged to be important for understanding how probability 0
behaves, and raises a dilemma for probability conditional on events of
probability 0. Section 2 and Section 3 take the two horns of this dilemma
and describe the two main competing families of mathematical accounts
of conditional probability for events of probability 0. Section 4 summarizes
the results, and their significance for the two arguments that conditional
probability is prior to unconditional probability.

1 BACKGROUND
1.1 What is Conditional Probability?

Before considering the arguments suggesting that conditional probability
is a primitive notion (either equal to unconditional probability in fun-
damentality, or perhaps even more basic), we should consider just what
conditional probability is.

Some have argued, following some cryptic remarks of Frank Ramsey;,
that conditional probability can be understood as the probability of a
conditional. However, without a clear interpretation of what a conditional
means, this provides little help for clarifying the concept of conditional
probability. There are deep difficulties with this identification, since to-
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gether with certain plausible logical principles for conditionals, it entails
various triviality results about unconditional probability. (Edgington, 1995,
summarizes much of this literature and argues that there is some inter-
pretation of the conditional that allows for this identification, and Bacon,
2015, shows how much logic for conditionals can be preserved.) At any
rate, the defenders of this principle hope to use conditional probability
to clarify the meaning of conditionals, rather than vice versa. Since the
meaning of a conditional has so much obscurity, this identification is of no
help in trying to analyze the meaning of conditional probability.

Perhaps a more useful (and also Ramsey-inspired) way to think of
conditional probability is to look at some of the roles it plays in order
to see what features it needs to have. But since there are many different
phenomena that have all been said to be interpretations of probability,
and conditional probability plays different roles in each, I will break this
consideration down into several parts. In this discussion, I will not consider
each separate interpretation of probability, but I will instead consider them
in three broad families. (For more on specific interpretations, see Hajek,
2007.)

The first family (which I will use as my primary reference point in much
later discussion) is the set of broadly “Bayesian” interpretations that treat
probability as some sort of informational state. The second family is the
set of broadly “physical” interpretations that treat probability as a feature
of some part of the world itself, rather than an information state. The third
family is the set of “mathematical” applications of probability, some of
which I don’t think rise to the level of an interpretation, but are worth
mentioning separately.

1.1.1  Bayesian Interpretations

Among the interpretations I am calling “Bayesian” are both various ob-
jective and subjective notions. I mean this class to include “logical proba-
bilities” (Keynes, 1921; Carnap, 1950; Maher, 2006) and “evidential prob-
abilities” (Williamson, 2002), as well as the more familiar objective and
subjective Bayesian interpretations of probability as some sort of rational
degree of belief (Easwaran, 2011a, 2011b). These interpretations of proba-
bility are used in a broad variety of applications in psychology, economics,
decision theory, philosophy of science, and epistemology.

However, in all of these applications, it seems that there are three
main roles that conditional probability is said to play. First, conditional
probability is said to play some sort of fairly direct role in constraining the
way that probabilities change over time. Second, conditional probability
is used in the analysis of various measures of confirmation (which often
claim to describe the potential value of various pieces of information,
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whether or not anyone ever gains that information). And third, conditional
probability is important in certain accounts of decision theory. If there
are roles for conditional probability other than these, then some of my
later evaluation of the different mathematical accounts of conditional
probability may need to be modified.

The role of conditional probability in updating is perhaps the most
familiar one. The traditional notion of Bayesian updating is said to occur
when there is some new evidence E that the agent gains with certainty. In
this case, the probability function after the update pnew and the probability
function before the update poq are said to satisfy, for every A, ppew(A) =
Pold (A | E). Following Jeffrey (1965), many have thought that this sort
of update scenario is implausible, because there is never any particular
evidence that is gained with certainty. Instead, there is said to be an
evidential partition E, which is a set of propositions {E;: i € I}, such that
it is antecedently certain that there is exactly one i such that E; is true. No
member of this partition becomes certain, but their probabilities change
in a way that drives the change of all other propositions. This notion of
“driving the change” is summarized by a constraint known as rigidity: for
any A, pnew(A | E;) = poia(A | E;). The specification of these conditional
probabilities is said to be enough, in conjunction with the new probabilities
for each E;, to specify the new probability function uniquely, by means
of the Law of Total Probability. When the partition is finite, this takes the
form p(A) = Y p(E;)p(A | E;), though in the infinite case we need to be
a bit more careful. As I will discuss in Section 1.4.3, the natural way to
generalize this will be notated as p(A) = [ p(A | Er) dp, though further
complexities arise.

At least since the work of Hosiasson-Lindenbaum (1940), conditional
probability has also been very important in analyzing the notion of confir-
mation. Much of this literature has focused on finding numerical measures
of the degree to which particular evidence would support particular hy-
potheses. Where H is some hypothesis, and E is some potential evidence,
some well-known measures are said to take the value p(H | E) — p(H),
or p(H|E)/p(H), or p(E|H)/p(E|—H). (These and other measures are
discussed by Fitelson, 1999.) The probabilities that show up in these formu-
lations are of four types. There are two unconditional probabilities, p(E)
and p(H), which are called “priors” for the evidence and the hypothesis
respectively. (Priors for their negations sometimes appear as well, but
since p(—E) = 1— p(E) and p(—H) = 1 — p(H) these are not relevantly
different.) There are also two types of conditional probability that arise.
p(H | E) is called the “posterior” of the hypothesis, because (according to
the update rule mentioned above), it gives the probability the hypothesis
would have after hypothetically learning the evidence. And p(E | H) and
p(E | —~H) are called “likelihoods” of the hypothesis and its negation. Some
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philosophers have focused on measures involving only likelihoods, be-
cause they are said to be more objective than priors and posteriors (Royall,
1997). But at any rate, these are the conditional probabilities whose values
are relevant to confirmation.

In decision theory, the most traditional analysis of the value of an action
doesn’t depend on conditional probability at all (Savage, 1954). There are
said to be a set A of actions available to the agent and a set S of possible
states of the world independent of the agent, and together these are said
to determine outcomes of the act. The agent has a value V(A A S) for
each outcome. When everything is finite, the value of an act A € A is
given by V(A) = Yscs P(S)V(A A S). (Again, when S is infinite, things
are more complicated, as will be discussed in Section 1.4.2.) However,
Jeffrey (1965) and others have worried about cases in which one can’t
identify states of the world independent of the agent. In this case, Jeffrey
suggests that we should have V(A) = Y sc5 p(S| A)V(AAS), replacing
the unconditional probability of a state with its probability conditional on
each action. Joyce (1999) and other “causal decision theorists” have argued
that this “evidential decision theory” is wrong for certain cases, and replace
the conditional probability p(S | A) with something like p(A o0— S), the
probability of the subjunctive conditional. Regardless of how this is to be
interpreted, the relevant conditional probabilities for decision theory are
what I will call “action probabilities,” and they must be defined for states
of the world conditional on the possible acts of an agent.

Thus, on the Bayesian interpretations of probability, the conditional
probabilities that arise in any relevant application appear to be of three
forms—posteriors, likelihoods, and action probabilities. Posteriors must be
defined for every hypothesis conditional on every piece of possible evidence
(for confirmation theory), or for every proposition conditional on every
piece of possible evidence (for updating). Likelihoods must be defined
for every piece of possible evidence conditional on every hypothesis. And
action probabilities must be defined for every state of the world conditional
on every possible action. (On Jeffrey’s interpretation, action probabilities
may just be a special case of posteriors, since the role of an act for him
is in some sense as a special piece of evidence, but for Joyce and others
the role is somewhat different, though it may not even be a conditional
probability in the traditional sense.) In each case, the set of things that may
be conditioned on form a “partition”—they are a set of propositions such
that it is certain in advance that exactly one of them is true. This fact will
be significant for later discussion.
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1.1.2  Physical Interpretations

Another family of interpretations of probability take probability to be
something separate from any sort of information state. One historically
influential such interpretation is Popper’s account of chance as a sort
of “propensity” of the world to evolve in a certain way (Popper, 1959b).
Many statisticians have wanted some sort of objective physical notion of
probability like this, but without the metaphysical baggage. This has given
rise to frequentist statistical practice, described for instance by Mayo and
Cox (2006), on which the relevant probabilities are the proportion of cases
in which particular outcomes “would arise in a hypothetical long-run of
repeated sampling” (p. 79).

These interpretations are possibly more heterogeneous than the Bayesian
ones I discussed above, but we can still identify particular families of uses
to which conditional probabilities are put. First, conditional probabilities
are sometimes said to govern the way in which chances change over time.
Second, conditional probabilities are sometimes used to analyze notions
of causation or independence. Third, there are various uses conditional
probabilities are put to in frequentist statistical practice. And fourth, there
may be a relevant notion of expected value computed from physical
probabilities.

For changing chances, David Lewis claims that “a later chance distri-
bution comes from an earlier one by conditionalizing on the complete
history of the interval in between” (1980, p. 280). That is, if pyq is the
probability function giving the chances at some earlier time and ppew gives
the chances at a later time, and H is the history of all events that occur
between these two times, then for any A, prew(A) = poid(A | H). This
requires a notion of probability conditional on any H € H, where H is the
set of all histories that could transpire between one time and another.

Some analyses of causation have said that A is a cause of B iff p(B| A) >
p(B), where p is some physical notion of probability. There are many
obvious problems with this account, turning on cases where there are
common causes (the probability of a parent having blond hair given that
a child has blond hair is higher than the unconditional probability of a
parent having blond hair, even though the child’s hair color is not a cause
of the parent’s), other events intervening (the probability of getting in a car
crash given that you've had a drink may be lower than the unconditional
probability of getting in a car crash, if drinking makes you less likely to
drive, even though drinking does tend to cause car crashes), and similar
sorts of problems. Sophisticated versions of this theory have now turned
to the sort of “causal modeling” developed by Pearl (2000) and Spirtes,
Glymour, and Scheines (2000). On this picture, events A and B are taken
to be particular values of variables A and B, which may have two values
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(A occurs or does not occur) or more (if A is seen as one of a class
of ways for something to happen). These variables are represented by
nodes in a graph with arrows connecting some nodes to others. Physical
probabilities are given by a probability distribution for the values of one
variable conditional on each specification of the values of the variables with
arrows pointing directly to it. There are then two notions of conditional
probability, depending on whether we “intervene” on one variable or
merely “condition” on it (Meek & Glymour, 1994). This difference can be
seen by considering the probability of someone having a sun tan given
that their vitamin D levels are high—conditioning involves looking at
people with currently high levels of vitamin D and measuring their tan,
while intervening involves artificially giving people high levels of vitamin
D and measuring their tan. Variable A is then said to be a cause of B iff
intervening on A in different ways gives different conditional distributions
for B, and is said to be independent if the conditional probabilities are
the same. (Vitamin D likely turns out not to be a cause of sun tan, but to
have correlation due to common cause.) Again, the relevant probabilities
always involve conditioning on the elements of a partition. For far more
on this, see Hitchcock (2010).

In frequentist statistical practice, there are a variety of conditional prob-
abilities that arise. One of the most well-known such conditional proba-
bilities is the p-value of a piece of evidence. This is the frequency with
which evidence at least as extreme as the observed value would occur in
hypothetical repetitions of the same experimental protocol, assuming that
the “null hypothesis” is correct. We might notate this as p(E™ | Hp), where
E* is the event of evidence at least as extreme being observed, and Hy is
the null hypothesis (though see Section 1.2 for discussion of whether this
should really be thought of as a conditional probability). The p-value is
often used as a criterion for statistical rejection, and it is common to reject
the null hypothesis (in favor of some alternative) if the p-value falls below
some pre-arranged threshold. The “power” of a statistical test is said to be
the frequency with which the same experimental protocol would result in
rejection of the null hypothesis, assuming that the alternative is in fact true.
We might think of this as p(R | H'), where H' is the alternative to the null
hypothesis, and R is the event of an experimental result that our protocol
recommends rejection on. In statistical tests for which we want to estimate
the value of some unknown parameter, our experimental protocol often
ends not with rejection, but with specification of a “confidence interval.”
For instance, a 95% confidence interval is the set of parameter values
for which the p-value would be at least .05 if that value were treated as
the null—we can think of the confidence interval as the set of values that
wouldn’t be rejected at a given p-level. These probabilities are not the same
as the likelihoods discussed above for Bayesian probabilities (because these
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are not probabilities of the actually observed evidence, but rather of the
event “an observation at least as extreme would occur”), but they are still
probabilities conditional on each hypothesis.

Finally, although many contemporary decision theorists follow Savage
(1954) in using some sort of Bayesian probability as the basis of compu-
tation of expected value, von Neumann and Morgenstern (1947) use a
physical probability as their basis for a theory of rational decisions. Sim-
ilar issues involving objective correlations between “states of the world”
and an agent’s actions might motivate some use of conditional probabil-
ity in calculations of expected value, and these will be like the “action
probabilities” I mentioned above.

Again, in all cases, the set of things that can be conditioned on forms a
partition.

1.1.3 Mathematical Interpretations

There are some other interpretations of probability that don’t quite fit in
with those mentioned above. The most interesting such interpretation is
that of probability as actual relative frequency. For instance, the World
Health Organization reports that 68% of deaths worldwide in 2012 were
due to non-communicable diseases, such as cancer, diabetes, and cardio-
vascular diseases. We can interpret this as a sort of probability, and say that
the probability that a person who died in 2012 died of a non-communicable
disease is .68. On this interpretation, for any descriptions A, B, we can
say that p(B | A) is the fraction of things fitting description A that also fit
description B. Any description whatsoever can be used in either position,
provided that there is a meaningful way to count instances of each.

This bears much similarity to the “classical interpretation” of probability
attributed by Héjek (2007) to early probability theorists. The idea again
is that in many traditional games of chance, physical probabilities or
Bayesian probabilities may be usefully approximated by counting all the
different possible outcomes of the game and seeing how many of them
are of the sort of interest.

Tools like this have also been applied in pure mathematics, in what is
called the “probabilistic method.” This method was introduced by Erd&s
(1947) to derive bounds for Ramsey numbers. (These numbers were first
investigated by Ramsey, 1930, in an attempt to work on the decision
problem for logic, but have since been generalized to the size of any sort
of structure that is needed to guarantee the existence of subsets with given
complexity.) Erds considers the complete graph on 7 vertices where edges
are arbitrarily colored in two colors. He then defines a probability function
on subsets of this graph, and shows that if n is large enough, then the
probability of selecting k vertices at random such that all edges between
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them are the same color is non-zero. In particular, this means that for any
coloring of the graph on n vertices, there must be k vertices whose edges
are all the same color. The importance of Erdés’ result is that the bound he
arrived at for n is substantially smaller than that arrived at by Ramsey, and
is in most cases still the best known. This method has since been deployed
in many other problems in combinatorics.

The classic applications of this method don’t make any use of conditional
probability. More advanced applications might, but in general, the inter-
pretation of the probability function is not really of any interest. Instead,
the probabilities (and perhaps any conditional probabilities) are just tools
for mathematical computation. Any mathematical account of “conditional
probability” could be useful, whether or not it has any application to other
interpretations of probability. Thus, this interpretation of probability gives
no particular constraint to our theorizing about conditional probability,
and if anything, encourages us to explore as many different mathematical
accounts as possible, in case one is of use in some mathematical problem
or other.

1.2 Backgrounds vs. Conditions

There are two main families of argument that all probabilities must really
be conditional. One family of argument (considered in this section) is
conceptual, and claims that for many different interpretations, some sort of
background is essential to even determine probabilities. The second family
of argument (considered in Section 1.3) is mathematical, and uses problems
involving division by zero to argue that conditional probability must be
prior to unconditional probability. Although the mathematical arguments
are sometimes clearer and seem more convincing, I will consider the
conceptual arguments first, since the mathematical arguments lead more
naturally to the issues that arise in the rest of this article. This section is
independent of the rest of the article, and can be skipped by readers more
interested in the mathematical issues.

This section considers the claim that a background is essential to the
possibility of probability. I will consider versions of this argument for each
interpretation of probability, and argue that for most interpretations of
probability, this “background” is different enough in kind from the sort of
thing that one can conditionalize on, that it should be treated separately
from conditional probability. I claim that only for probabilities thought of
as actual frequencies is it correct to say that every probability requires a
background, and that this background makes every probability essentially
a conditional probability. For some of the other interpretations, we will
at least find that many numbers traditionally thought of as unconditional
probabilities may be better thought of as conditional probabilities, but for



CONDITIONAL PROBABILITIES

all of these other interpretations there is conceptual room to argue that
some probabilities really are unconditional.

For this argument, again it will be useful to consider different interpre-
tations of probability in some detail. However, I will skip a few of the
most purely mathematical interpretations for which there are no important
conceptual requirements, and will consider the other interpretations in
somewhat different connections than I did before.

1.2.1  Degree of Belief

For subjective degree of belief, some have argued that all probabilities are
really conditional on a background. I will argue that the role of the back-
ground is different from the role of the conditioning event in conditional
probability. De Finetti (1974) says “every evaluation of probability is condi-
tional; not only on the mentality or psychology of the individual involved,
at the time in question, but also, and especially, on the state of information
in which he finds himself at that moment” (p. 134). That is, rather than
representing a subject S’s degree of belief at ¢ in a proposition A as p(A),
many authors suggest that it should be represented as p(A | Ks;), where
Ks is the conjunction of all the propositions that S knows at ¢.

However, if it is possible (or reasonable, or rational) for different subjects
with the same knowledge to have different degrees of belief, then including
the knowledge as a proposition in an expression of conditional probability
doesn’t address the fundamental issue. There would not be one single
probability function such that conditionalizing it on the knowledge that
each subject has at each time yields the degrees of belief that agent does
or should have. While the “information” may be a proposition of the same
sort as the bearers of probability, the “mentality or psychology of the
individual” is not.

Thus, unless we assume that the knowledge an agent has uniquely
determines the probabilities that are rationally permitted for her (a thesis
known as Uniqueness, contrasted with its negation, Permissivism; see Kopec
and Titelbaum, 2016), it seems more accurate to represent a subject S’s
degrees of belief at a time t as ps;(A). There is a separate Bayesian proba-
bility function for each subject at each time. This probability function will
reflect an agent’s knowledge, which may mean that it gives probability 1 to
any proposition that is known. If this is the right way to treat knowledge,
then ps;(A) = pst(A | Ksy). But the conditional probability is no more
fundamental here.

However, some philosophers, such as Horowitz and Dogramaci (2016),
argue that the knowledge or evidence that one has does uniquely deter-
mine the rational degrees of belief to have. On this picture, the degrees
of belief that are rational for a subject at a time really do turn out to be a
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matter of conditional probability, prationai(A | Ks ). What the Subjectivist
Bayesians think of as a subject-and-time-relative unconditional probability
is actually aimed at following an objective conditional probability function.
However, even on this interpretation, there is an important theoretical
consideration of what the rational degrees of belief would be for an agent
with no knowledge whatsoever. The defender of the claim that condi-
tional probabilities are fundamental would represent this as prationai(A | T),
where T is some tautology, but it seems just as reasonable to represent
this as Prational (4 ), so that there are some unconditional probabilities after
all. The question then becomes: do the unconditional rational probabilities
suffice to determine all the conditional rational probabilities? But this is
largely a mathematical question, and not a conceptual one, and this is
the fundamental question behind Section 1.3 and Section 1.4, with full
theories described in Section 2 and Section 3.

I should also note that there is a view like this one available for a
more permissive or subjectivist viewpoint. This viewpoint is associated
with the work of Isaac Levi (1980). There is no one objectively rational
evidential probability function. Instead, there are just many different “con-
firmational commitments” that one might have. When this confirmational
commitment is conditionalized on the knowledge a subject has, we can
find the degrees of belief that the subject is committed to. Thus, what I
referred to above as pg;(A) would instead be referred to as pc(A | Ksy),
where C is the particular confirmational commitment the agent has. A
major advantage this view has, if correct, is that it allows us to extend
Bayesian updating to cases in which one revises one’s beliefs by giving
up something that was taken as evidence, by removing this proposition
from one’s knowledge. However, this view also requires such hypothetical
revisions to yield well-defined commitments for giving up any of one’s
beliefs. And again, there may still be unconditional probabilities on this
view (namely, the commitments one has prior to any evidence), though
there is still a mathematical question of whether they suffice to determine
the conditional probabilities that we usually focus on.

1.2.2  Chance and Frequentism

Some have argued that for the chance or frequency interpretation of prob-
ability, the role of experimental setup or preconditions for repeatability
mean that all chance is conditional. I will again argue that the role of the
background here is distinct from the role of the conditioning event in con-
ditional probability, so that these interpretations also have no conceptual
reason for making conditional probability prior to unconditional.

On one picture, chances are relative to a world and a time (Lewis, 1980).
Thus, the chance of A at a time ¢ in world w is fundamentally given by
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Pw,(A). Chances may update by conditionalization, so that if ¢’ is later
than ¢, then py,p(A) = pwt(A | Hyp), where Hy p is the description of the
complete history of the world from ¢ to t'. If there is some earliest time
0, then one may even be able to say that py(A) = pwo(A | Hoy), so that
the chances at all later times are fundamentally given by the conditional
chances at the beginning of time. But this still leaves unconditional chances
at the earliest time. And if there is no earliest time, then it seems that
we must allow unconditional chances at every time to count as equally
fundamental, because there is no privileged earlier reference point from
which they are all conditionalized. And on any of these pictures, the
world must enter in as a separate background parameter distinct from the
things conditionalized on. The history up to t alone does not suffice to
determine the chances at t. (Just consider the following two worlds where
nothing happens other than a series of coin flips. In one world the flips
are independent and have chance .6 of coming up tails, while in the other
they are independent and have chance .5 of coming up tails. It is possible
for the first six flips to come up the same way in the two worlds while
still maintaining different chances for the seventh flip. This can happen on
any view on which chances are determined either by the Humean pattern
including the future, or by non-Humean laws.)

On another picture of chance, the chances are determined not by the
laws and the world, but by an experimental setup. The chance of a coin
coming up heads may be 0.5 when the setup of the coin flipping situation
is properly specified. But without a specification that the coin is flipped,
that the flip is fair, that the coin is balanced, etc., it just may not be the case
that it makes sense to say what the chance is that the coin will come up
heads. On some ways of taking this, experimental outcomes are the result
of chance processes, but experimental setups are the result of free choice of
the experimenter. Conditional probability is a relationship between two
events that are both in the domain of the probability function, while the
experimental setup is a precondition for the existence of these probabilities
at all. As Humphreys points out (Humphreys, 1985, 2004), Bayes” Theorem
and other mathematical results allow us to invert conditional probabil-
ities by means of some mathematical calculations. If there were such a
thing as p(outcome | setup), then there would have to be something that is
p(setup | outcome). But the setup is not the sort of thing that has a chance,
as it is the result of a free choice, and the outcome is not the sort of thing
that characterizes a chance process, so this conditional probability is either
senseless or irrelevant. If we want to notate the role of the setup in deter-
mining the chance of the outcome, we should write it as psetup(outcome),
not p(outcome | setup).

This viewpoint on chance is similar to the one that frequentist statisti-
cians have of probability. The only probabilities that make sense on this
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view are the results of repeatable experiments. Scientific hypotheses help
specify these probabilities, but do not themselves have probabilities, since
they are not the results of repeatable experiments. This sort of thing is
often notated by philosophers as pet,y(E | H), where E is some evidence
consisting of experimental outcomes, and H is a scientific hypothesis. The
function represents something like the fraction of times that this outcome
would occur if one were, hypothetically, to repeat this experimental setup
many times, assuming the hypothesis is true. If this is the right way to
represent the situation, then every statement of probability must have
some scientific hypothesis or other that determines it, so every probability
must be conditional.

However, I claim that on the frequentist interpretation, H should not
be thought of as being conditioned on, but must instead be part of the
background, just like a world, confirmational commitment, or experimen-
tal setup. The clearest reason for this is that on the frequentist account,
H is from an importantly different ontological category than E, while
conditional probability involves pairs of entities of the same ontological
category. H is either true or false, and not the outcome of a repeatable
experiment. A hypothesis, for the frequentist, is not the sort of thing that
has a probability, so it is not the sort of thing that can be conditioned on. In
statistical practice, the difference is often indicated by using a semicolon to
set off the hypothesis that is the precondition for the probabilities, rather
than the vertical line, which is used for conditional probabilities. Thus, we
should write “P(E; H)” rather than “P(E | H)".

Furthermore, there is a notion of conditional probability that the fre-
quentist can talk about, that is quite different. On the hypothesis that an
urn has 3 white and 7 black balls, the conditional probability of the second
draw (without replacement) being black given that the first is white is
7/9, while the unconditional probability of the second draw being black
is 7/10. In this case we can calculate the conditional probability as the
unconditional probability of a white draw followed by a black one, divided
by the unconditional probability of the first draw being white, all given
the background of the urn hypothesis, which has no probability of its
own for the frequentist. The Bayesian can say that all of these probabilities
are conditional on the hypothesis, because the Bayesian thinks that the
hypothesis is the sort of thing that has a probability. But the frequentist
shouldn’t say this. So the frequentist has no special need for primitive
conditional probabilities.

1.2.3 Actual Frequencies

Some have argued that on the actual frequency interpretation of probability,
all probabilities are fundamentally conditional. For this interpretation, I
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agree. When probability is interpreted as frequency of some property
within an actual reference class, every probability really is conditional.

The interpretation of probability as actual finite frequency says that
p(B | A) is the fraction of entities with property A that also have property
B. There is a particular number that is the frequency of heart attacks
among 40-to-50-year-old American males in a given year, which we can
calculate by counting how many 40-to-50-year-old American males there
were that year, and counting how many of them had heart attacks that
year. There is another frequency of heart attacks among all Americans,
and another among all humans, calculated similarly. But if there is such a
thing as the frequency of heart attacks independent of any reference class
(even the entire universe), it is just a number, not a probability.

In this case, it looks like the reference class is the same sort of entity
as the event whose probability is being measured. We can talk about
the frequency of 40-to-50-year-old males among American heart attack
victims, by counting how many heart attack victims there were that year,
and finding what fraction of them were 40-to-50-year-old American males.
Furthermore, if we ask for the conditional frequency of heart attacks among
40-to-50-year-old American males given that they smoke, this appears to
be the same as the “unconditional” frequency of heart attacks among 40-
to-50-year-old American males who are smokers. Conditionalizing really
just is conjunction with the reference class. Thus, the reference class really
is the same sort of thing as a conditioning event. Thus, on the actual
finite frequency interpretation, we really do have a good case for every
probability being conditional.

1.2.4 Logical and Evidential Probabilities

For logical and evidential probabilities (as well as perhaps some objective
versions of the degree of belief interpretation of probability), some have
argued that all probabilities are fundamentally conditional. For these
interpretations, I don’t specifically reject this argument. However, there is
a special case of “empty background” that might be considered to be an
unconditional probability that is equally fundamental to the conditional
probabilities, so the upshot of the argument here is more equivocal.

Logical probability is often said to be a relation of partial entailment
between two propositions. That is, “p(B | A) = 1” is said to mean the same
thing (or something very similar to) “A - B.” Saying that p(B| A) =2/3
is saying that A “2/3 entails” B. Since entailment is a binary relation,
this logical probability is said to be an essentially conditional relation.
This is the point of view described, for instance, by Keynes (1921). (A
similar viewpoint, though not identical, is expressed with regards to the
“evidential probabilities” of Williamson, 2002.)
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Both roles here are played by arbitrary propositions, so there are no on-
tological distinctions between the two sides of the conditional probability.
There is no category mistake in reversing a logical entailment (though of
course the degree of entailment can differ). Furthermore, just like with
actual finite frequencies, there doesn’t appear to be any other notion of
conditional probability that is interestingly distinct from this one. The
probability of A given B, with C as background, doesn’t obviously have
any interpretation that would be clearly different from the probability of
A with B A C as background. Thus, just as with actual frequencies, one
might be able to argue on conceptual grounds that all logical probabilities
are inherently conditional.

However, unlike with frequencies, the opponent of this view has a re-
sponse. Deductive logic can be expressed as the study of logical entailment
relations, but it can also be expressed as the study of theorems. One can
think of theorems either as sentences entailed by a tautology, or as sen-
tences entailed by no premises whatsoever. Similarly, it may be possible to
consider the set of logical probabilities conditional on a tautology either
as the degree of partial entailment the tautology gives to each sentence, or
as the degree of partial theoremhood each sentence has.

If we can interpret p(B | A) as the degree to which A partially entails
B, we may also be able to interpret p(A) as the degree of partial theorem-
hood of A. On this account, it may be further possible to recover all the
partial entailments from these facts about partial theoremhood through
techniques of calculating conditional probabilities, just as it is possible to
recover all the deductive entailments from the facts about theoremhood
through the deduction theorem. Thus, the opponent of conditional proba-
bility as the fundamental notion may have a response to this argument,
though it will depend on the extent to which conditional probabilities
really can be recovered from the unconditional ones, just as in the case of
Objective Bayesianism, or Levi’s confirmational commitments.

1.2.5 Summary

In summary, degree of belief, physical chance, experimental chance, and
hypothetical frequency all have some fundamental ontological distinction
between the bearers of probability and the backgrounds that are required
for probabilities to even exist. Thus, the necessity of these backgrounds
does not motivate the claim that conditional probability is primitive or
fundamental. For actual frequencies, logical probability, and evidential
probability, the backgrounds are of the same type as the bearers of proba-
bility, so this argument does seem to motivate the claim that conditional
probability is fundamental. But for logical and evidential probability, there
is a possibility of empty background, which can be re-interpreted as a
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fundamental notion of unconditional probability. Further mathematical
investigation is needed to see whether these unconditional probabilities
suffice to determine the conditional probabilities. Only for actual frequen-
cies is it clear that all probabilities really are conditional, because of the
necessity of a background for probability.

o All probabilities are non-trivially conditional:

¢ Actual frequency

o All are conditional, some conditions are empty:
¢ Logical
¢ Evidential

¢ Unique Degree of Belief

o Background relevant, not all are conditional:
¢ Chance
¢ Hypothetical Frequency

¢ Permissive Degree of Belief

1.3 Problems for the Ratio

The previous section considers conceptual arguments that all probabilities
are fundamentally conditional. I have argued that this argument works
for the interpretation of probability as actual frequency, and is equivocal
for logical and evidential probability and related objective epistemic in-
terpretations, but that it does not work for the other interpretations of
probability. In this section, I consider arguments for the claim that all prob-
ability is fundamentally conditional based on the mathematical features of
conditional probability. This set of arguments is the center of Alan Héjek’s
(2003). Although this argument is perhaps easier to feel the grip of, and is
largely independent of the particular interpretation of probability, I put it
second, because consideration of it leads naturally to the technical issues
considered in the later sections of this article.

The immediate target of Hajek’s argument is the common claim that con-
ditional probability is just defined as p(A | B) = p(A A B)/p(B). As Hajek
points out, it appears to be a consequence of this definition that there is no
such thing as the conditional probability p(A | B) unless p(B) has a precise
non-zero numerical value. He then gives a litany of cases in which it seems
clear that p(A | B) exists, even though p(B) is either zero, imprecise, vague,
or non-existent. Thus, we must reject the ratio analysis as a definition
of conditional probability. Whether this requires conditional probability
to be a (or the) fundamental concept of probability theory is a deep and
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difficult question that depends on what alternatives to the ratio analysis
exist. The rest of the article after this section is a long consideration of
these alternatives. Section 1.4 defines the particular mathematical features
of probability and conditional probability that come up in addressing this
problem. Section 2 and Section 3 consider the two advanced mathematical
characterizations of conditional probability that avoid the problems of the
ratio definition, one of which makes conditional probability primary and
the other of which allows it to (almost) be calculated from unconditional
probability. Evaluation of the merits of these two mathematical accounts is
thus essential for deciding whether or not to accept Héjek’s argument that
conditional probability is prior to unconditional probability.

I will give examples of Héjek’s cases shortly. I think that most are not
decisive, but there is one family of them that is quite convincing for every
interpretation of probability mentioned above, apart from actual frequen-
cies. Thus it is interesting that the two primary arguments for conditional
probability being fundamental have this complementary distribution—the
one interpretation for which Héjek’s argument against the ratio analysis
clearly fails is the one interpretation for which all probabilities clearly
require a background of the same type as the bearers of probability, so
that it can clearly be understood as conditional probability.

1.3.1 Impossible or Ruled Out Conditions

I will begin by considering a type of case Hajek considers that is easy to
reject. I think it is important to consider how this type of case differs from
the others, which are more plausibly relevant. Let H be the proposition
that a particular coin flip comes up heads, and T be the proposition that
this same flip comes up tails. Hdjek claims that p(T | T) = 1 under any
circumstance. In particular, he claims (p. 287) that this should be true even
if p is the function encoding physical chances at a time when the flip has
already happened and the coin already came up heads, so that p(T) = 0.
He also suggests that it should be true if p is the function encoding degrees
of belief of a rational agent who has already learned that the coin came up
heads, so that p(T) = 0.

These cases can be rejected because there doesn’t appear to be a clear
meaning for these conditional probabilities. Although I don’t think that
conditional probabilities are the probabilities of conditionals, there is a
useful analogy to be drawn with conditionals. Conditional probability is
intended to capture something more like an indicative conditional, rather
than a subjunctive conditional or a material conditional, and indicative
conditionals generally aren’t considered in cases where the antecedent
has already been fully ruled out. It seems correct to say, “if Oswald didn’t
kill Kennedy then someone else did,” but this is because we allow that
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our knowledge of the circumstances of the assassination is fallible. If we
imagine fully ruling out any possibility that Oswald didn’t commit the
assassination, then the conditional becomes harder to interpret. We can
apply subjunctive or material conditionals even to cases of necessary false-
hoods, but it’s hard to interpret them as indicative conditionals. Maybe we
can make sense of a sentence like, “if 7 hadn’t been a prime number, then
8 would have been,” but a sentence like “if 7 isn’t a prime number, then 8
is” seems only interpretable as a material conditional. Just as indicative
conditionals seem not to be acceptable when the antecedent has been fully
ruled out, none of the purposes for which conditional probabilities have
been proposed makes any use of probabilities conditional on antecedents
that have already been ruled out. There is no question of updating on or
confirming a hypothesis that has been completely eliminated.

There are processes of belief revision, on which one removes a belief that
one already has before updating on new information, but this is a different
process that uses conditional probability from the revised state rather than
the current state.” Similarly, the probability of outcomes conditional on
acts that weren’t done is irrelevant to decision theory.? Similarly, there is
no question of how the chances of events will evolve when something that
didn’t occur does occur (though there may be a question of how chances
will evolve when something of similar type to that event does occur),
and there is no question of the degree of causal relevance of something
that didn’t occur (though there may be a question of the degree of causal
relevance of its non-occurrence, which of course is something that did
occur).

1.3.2 Vague, Imprecise, or Gappy Conditions

A second class of cases that Héjek considers involve vague or imprecise
probabilities (pp. 293-5). It is controversial whether imprecise probabilities
even exist (see Titelbaum, this volume, and Mahtani, this volume, for
further discussion). But if they do, then it’s clear that they cause problems.
Perhaps one is uncertain about the outcome of the next United States
presidential election in such a way that one has imprecise credences
about it. Or perhaps it depends on non-deterministic events in a way that
leaves it with an imprecise chance. Nevertheless, if D is the proposition

Levi’s notion of confirmational commitments allows for probability conditional on propo-
sitions that are currently known to be false. But in this case, the probability function is
not the current degree of belief function, but rather the confirmational commitment—the
current degree of belief function is itself conditional on current knowledge. Thus, the
probability conditional on something currently known to be false is a prior commitment
of an indicative sort—not Héjek’s probability conditional on a certain falsehood.
Brandenburger (2007) has argued that game theory sometimes needs to consider probabili-
ties conditional on actions that are ruled out by rationality considerations, but these are
not ruled out with certainty, the way that tails was in Héjek’s examples.
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that a Democrat will win the next US presidential election, and H is the
proposition that a completely unrelated coin flip will come up heads, it
seems clear that p(H | D) = 1/2.

However, this challenge may not be a fatal objection to the ratio analysis
either. One proposal about imprecise probabilities is that, rather than p(D)
being an imprecise value (or set or whatever), there are instead multiple
precise probability functions p; that are all part of the representation of
degree of belief, or chance, or whichever interpretation of probability we
are considering. On each such function, p;(H | D) can be well-defined
by the ratio formula, and if they all happen to take value 1/2, then the
conditional probability can be precise even though the unconditional
probability is not. (This response is described in slightly greater detail on
page 295 of Hajek’s paper.)

Hajek puts the most weight on cases where there is no unconditional
probability, but conditional probabilities are well-defined. He gives a long
series of such cases on pp. 295-312. These include cases of free actions
(which may be such that they can’t have credences or chances), mere gaps
in the credences or chances, and cases of non-measurable sets.

I think that mere gaps are either best thought of as maximally imprecise
probabilities and addressed supervaluationally as above, or as events that
are outside of the scope of the relevant probability function. An agent
who fails to have a degree of belief in some proposition is an agent who
hasn’t considered or grasped it, and thus fails to have any degree of belief
conditional on it as well (even though there are some facts about what
degree of belief she should have were she to have them—Ilike p(A | A) = 1).
Similarly with non-measurable sets—if they are outside the bounds of
chance or credence, then there are no meaningful conditional probabilities
on them either.

There may be some class of events (perhaps the actions of a free agent
who is in the process of deliberation) that can’t have probabilities, but
which themselves serve as the conditions for probabilities of other events.
However, some of these may in fact be better thought of as the “back-
grounds” for probabilities that I considered in Section 1.2. This may be
the right way to think of the “action probabilities” of decision theory, for
instance, where every probability must depend on a specification of the
action of the agent. However, if there were a class of events that can’t have
probabilities, but which also aren’t essential to the specification of other
probabilities, even though they can affect them, then this would be a better
case.
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1.3.3 Probability 0 Conditions

At any rate, I think the strongest case is one that Hajek puts less weight on
(pp. 289—290). These are cases arising from consideration of infinite proba-
bility spaces, where some events have probability O without being ruled out.
Consider a point on the surface of a sphere. Label the sphere with lines of
latitude and longitude like those of the Earth. Let N be the proposition
that the point is in the northern hemisphere. Let Lg be the proposition that
the point is on the line of longitude at angle 6 from the boundary between
the eastern and western hemispheres. If the initial probability distribution
is uniform, then it is quite plausible that P(N | Ly) = 1/2, even though
P(Ly) = 0, so that P(N A Lg)/P(Ly) is undefined. Furthermore, even if
the initial probability distribution isn’t uniform, it seems that P(N | Ly)
should be defined whenever there is some possibility of Lg being true.
However, there are uncountably many distinct values of 6, and at most
countably many of them can have positive probability (because at most
n of them can have probability greater than 1/n, for each of the count-
ably many integers 1, and any positive number is greater than 1/n for
some integer n). Thus, there must be some way to make sense of these
conditional probabilities, despite the use of probability 0. This example
can be generated for probability interpreted as chances or as degrees of
belief or as evidential probability, or any interpretation, as long as there
are uncountably many distinct possibilities that aren’t ruled out.

There are two methods that have been proposed to block this set of
cases. One is to introduce additional non-zero values for the probability
function to take that are nevertheless lower than 1/n for any positive
integer n. I have argued elsewhere that this method is unlikely to be
correct for chances or degrees of belief (Easwaran, 2014). (This proposal is
discussed in more detail by Wenmackers, this volume.) Furthermore, this
option bears some relationship to one of the proposals described later, in
Section 3.1, so I suggest that this is in some sense not really an alternative
to the methods considered here—it is effectively equivalent to letting the
probability take the value 0.

The other method for blocking this sort of case is to argue that the rele-
vant notion of probability can’t have uncountably many disjoint possible
events. In the case of Bayesian probabilities, this is motivated by some
consideration of the finitude of the human mind, while in the case of
chances it is motivated by some understanding of quantum mechanics
as requiring the universe to be discrete in time, space, and every other
meaningful parameter.

However, this sort of interpretation of quantum mechanics is implausible.
Although certain parameters like charge and spin are quantized, time and
space just enter into “uncertainty” relations. This means that they are
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bound to other parameters in a way that interactions depending very
precisely on one parameter must allow for exceedingly large variation on
the other. However, this does not put any specific lower bound on the
precision of any interaction, and doesn’t directly motivate the idea that
space and time are discrete.

Furthermore, although any particular human mind is finite, there is
reason to allow consideration of every hypothesis of the form V > p/g,
where V is some physical parameter, and p and q are integers. Certainly,
science seems to proceed as if each of these hypotheses is meaningful,
even if we can never be absolutely sure which are true or false. But these
countably many hypotheses together generate a family of uncountably
many hypotheses of the form x = r where r is a real number. (The claim
that all of the relevant algebras are countably generated, or generated
by random variables in this way will be important in Section 2.3.2.) The
example with points on a sphere is exactly like this, but so are many others
that are more directly relevant in science. To reject these cases is to say that
every probability function has some finite limit on the size of examples
that are relevant.

This response in terms of finitism is quite effective in the interpretation
of probability as actual frequency, if the classes of events one is discussing
are always finite. (When the classes may be infinite, it’s hard to say how
to even define the notion of frequency involved.) But this response is
no help to the statistical frequentist, who may be interested in scientific
hypotheses of the relevant sort. Philosophers often make reference to
examples involving a dart thrown at a board, with infinitely many points
that its center might hit, or a fair coin being flipped infinitely many times,
for which each sequence of heads and tails is a possible outcome. But
examples involving infinity are central to much scientific practice as well.

For instance, a statistical frequentist may be interested in some hypoth-
esis about how energetic particles are ejected from an atomic nucleus
under a particular sort of process. She may further be interested in the
question of how the energy distribution of these particles is correlated to
the direction in which they are ejected. If we let E, be the statement that
the energy of the particle is x, and Dy be the statement that the particle is
ejected in a direction at angle 6 to the motion of the atomic nucleus, then
she could be interested in all probabilities of the form p(E, | D). But if she
hypothetically imagines the process being repeated infinitely many times,
the probability of many of the Dy is likely to be zero, given that there are
uncountably many directions in which the particle could be ejected. If
we limit consideration to some actual set of experiments, then there are
likely to be only finitely many such ejections, and so the non-realized Dy
can be ignored. But the statistical frequentist is interested in hypothetically
repeated experiments, so all of these possibilities must be considered.
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To summarize, there may be a way to resist all of these cases. But it
would involve some extensive use of special backgrounds for certain types
of probability, a particular way of dealing with any kind of imprecision in
probability functions, and a rejection of infinity. Most of the mathematical
work on alternatives to the ratio analysis only address the issue of infinite
probability spaces and probability 0. I think that the other problems can
be avoided as in ways that I have suggested along the way. But there
is certainly room for further philosophical and mathematical analysis of
those suggestions, and perhaps for new alternatives, which may or may
not prioritize conditional probability over unconditional probability. But
the rest of this article will examine the mathematical theories that have
been developed for dealing with the problems that arise around infinite
probability spaces and the resulting events of probability 0.

1.4 Additivity, Disintegrability, and Conglomerability

Once we consider these infinite families of hypotheses, it seems that we
must have some way of making sense of p(A | B) even when p(B) = 0.
There are many different mathematical theories that allow this to work
out, and these will be the subject of the further sections of this article.
The reason there are so many different theories is due to a fundamental
dilemma around infinity, which will take some time to explain.

Every such theory begins with the idea that the “definition” p(A | B) =
p(A A B)/p(B) should be replaced with an axiom p(A | B)p(B) =
p(AAB). We can then consider whether further information allows
us to define p(A | B) from the unconditional values, or at least in some
sense ground it in them, or whether we must take p(A | B) as a fundamen-
tal function separate from the unconditional probability function p(A).
However, even allowing for this function, there are difficulties when the
set of possibilities is infinite.

In this section I will discuss some of the mathematical properties in-
volved, and show that the idea that conditional probability can be un-
derstood as a function p(A | B) conflicts with the natural generalization
of Additivity in cases of infinity. We must either give up on Additivity
(and related principles generalizing the Law of Total Probability), or else
accept that conditional probability is given by a function p(A | B, ) for a
further parameter £. The mathematical theory of conditional probabilities
for infinite sets is an interplay between the two horns of this dilemma.

In this section I will formally treat the bearers of probability as sets of
possibilities, and will largely bracket concerns about the interpretation of
probability until the end.
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1.4.1 Additivity

When dealing with infinity, a fundamental question for probability theory
is whether and how to generalize the notion of Additivity. One of the
standard axioms of probability is that if A; and A; are disjoint events (that
is, there is no possibility on which they both occur) then p(A; U Ay) =
p(A1) + P(Az). Kolmogorov and others have considered a generalization
of this axiom to countable cases.

Definition 1 The A, for i € I form a partition of A iff each A; entails A, and
whenever A is true, exactly one of the A; is true.

(If no particular A is mentioned, then I am considering a partition of the
set of all possibilities.) Thinking of the A; as sets, that means that they are
disjoint, and their union is A. I will refer to this partition with boldface Ay,
and with the index set I as subscript, while italic A;, with a member i of I
as subscript, will refer to the member of Aj that is indexed by element i.

One way to state Countable Additivity is as the requirement that for any
countable partition Ay of A, we have p(A) = Y_;c; p(A;). Kolmogorov ac-
tually framed his axiom in a slightly different form as a sort of continuity—
whenever the B; for i € IN are a family of sets whose intersection is empty,
we have lim,,_,. p(Ni_y B;) = 0.

However, I think that it is more perspicuous to phrase this generalization
in a third way, in order to more clearly demonstrate the further generaliza-
tions to uncountable sets. The following is a theorem of standard finitely
additive probability, whenever Aj is a partition of A.

Theorem 1 If x > p(A), then for any finite I C I, x > Yc;, p(Ai).
We can then define additivity as the converse.

Definition 2 (Aj-Additivity) If for every finite Iy C I, x > Yic;, p(A;), then
x> p(A).

The following definition is equivalent.

Definition 3 (Aj-Additivity) If x < p(A) then there is some finite Iy C I
such that x < Y ;) p(A;).

Countable Additivity is equivalent to Aj-Additivity for all countable
sets of indices 1.3 This is because, for a set of non-negative real numbers,

We can also naturally talk about x-Additivity as Aj-Additivity for all I with cardinality less
than «. This is standard notation though it is slightly confusing that Countable Additivity,
also known as “o-Additivity,” is Ni-Additivity, while Rp-Additivity is actually Finite
Additivity. But this notation is relevant to distinguish between Additivity for all cardinals
strictly below R, and Additivity for all cardinals up to and including R, which is called
N, 11-Additivity.
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the sum of that set is the smallest real number that is at least as great as
every finite sum of those numbers.*

Countable Additivity is not entailed by the standard probability axioms,
and in fact rules out certain intuitively appealing probability distributions.
The classic proposed counterexample to Countable Additivity is often
known as the “de Finetti lottery” (de Finetti, 1974; for more detailed
discussion see Bartha, 2004, and Howson, 2008). Imagine that some natural
number is chosen in such a way that no number is more likely than any
other. This intuitively seems possible, and yet it is ruled out by Countable
Additivity. Since every number is equally likely to be chosen, each number
must have probability less than 1/#n, because otherwise some 7 of them
would exhaust all the probability. The only way for this to be the case is
for each number to have probability 0. But this is a violation of Countable
Additivity, because the sum of these Os is strictly less than 1, which is the
probability of the countable disjunction of these possibilities.

Considering Definition 3, we can derive a more general set of apparent
problems. Let each A; stand for the event of the number i being picked,
and let I be the set IN of all natural numbers, so that Ay is a partition
of the necessary claim that some number or other is picked. In this case,
Definition 3 of Aj-Additivity states that for every x < 1, there must be
some finite Iy such that x < Y;c; p(A;). That is, for every x < 1, there
is some finite set such that the probability that the number chosen is
from that set is at least x. Aj-Additivity doesn’t just rule out uniform
distributions on the natural numbers—it requires that every distribution
concentrate most of the probability on some finite set or other.

If Aj-Additivity holds for all partitions Ay, then the probability function
is said to be Fully Additive. In this case, for any partition A of a set

Readers may be familiar with the definition of the sum of a sequence of (non-negative or
negative) numbers a; for i € N as

n
a; = lim ) a;.
ig\T Lo z; 1

This definition doesn’t work for index sets other than IN, and makes essential use of the
order of the indices. When some terms are negative, this order can be important—the
same set of numbers can have a different sum when added in a different order, if both
the negative and positive terms separately sum to infinite values. But when all terms
are non-negative, the least upper bound of the sums of finite subsets is the same as the
sum of the terms in any order (because every finite initial sequence is a finite subset, and
every finite subset is contained within some finite initial sequence, and since there are no
negative terms, the sum of any larger subset is at least as great as the sum of any subset
contained within it).

For uncountable infinite sets of non-negative numbers, it is hard to extend the sequential
definition, because we don’t have good methods for dealing with uncountably long
sequences. However, the least upper bound of the set of all sums of finite subsets is still
well-defined.

153



154

KENNY EASWARAN

A, Definition 3 entails that for every n, there is a finite set of A; whose
probability adds up to more than p(A) —1/n. Let I’ C I be the union
of the countably many finite sets of indices of these sets, which is thus
countable. By Theorem 1, if we let A" = ;e A;, then p(A’) > p(A) —1/n
for each n (since it contains a finite subset adding to this probability). Since
A" C A, we have p(A’) = p(A). Thus, the remainder of A that is not in
A’, A\ A’, must have probability 0. If A was the set of all possibilities,
and each A; is a singleton set containing a single possibility, then A’
is countable. Not only does each element outside of this countable set
individually contribute probability 0, but even collectively they all contribute
0.5 Thus, if Full Additivity holds, there is a sense in which we can ignore
all but countably many possible outcomes, and these countably many
outcomes have individual probabilities that add up to 1. A probability
function in which the set of all possibilities is countable is said to be discrete.
While there are many interesting applications of discrete probability, there
are also plenty of applications for which no countable set of possibilities
should account for all the probability, such as any scientific question for
which every real number within some interval is a possible answer. Thus,
most probability theorists do not accept Full Additivity.

We can think of different views of probability as along a sort of scale
(Figure 1). At the most restrictive end there is the strongly finitistic view
that there are only finitely many possibilities that probability is distributed
over. Next we get the discrete view, that there are only countably many
possibilities that probability is distributed over—this is classical probability
theory with Full Additivity for all cardinalities. Next we get the traditional
mathematical view on which the set of possibilities can be uncountable,
but the probability function is required to satisfy Countable Additivity.
Finally, at the most liberal end of the scale, we have the minority view
in mathematics but a popular view in philosophy, where the probability
space can be uncountable and the probability function is only required
to satisfy Finite Additivity. (Some of the popularity of this view among
philosophers may stem from confusion with probability over finite spaces,
at the opposite end of the scale.) Finite and discrete probability have no
problem with Additivity, and in fact allow conditional probability to be
uniformly defined by the ratio. However, the consideration of scientific
examples where we want to measure the unknown value of some parame-
ter push us towards uncountable spaces. So it is useful to investigate the

Another way to see this is to consider the probabilities of each individual possibility. For
each n, at most n of the individual possibilities can have probability greater than 1/n.
Thus, at most countably many have non-zero probability. But if Full Additivity holds, then
the sum of all the probabilities of the individual possibilities must be 1. So these countably
many non-zero probabilities must add up to 1. Thus, the set of all possibilities other than
the countably many with non-zero probability must be a set with probability 0.
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ways in which probability functions with failures of Additivity can still be
well-behaved. I believe that Countable Additivity is the most useful point
on this scale, but it is worth considering the mathematical features of all
four points.

Finitely Additive probability

Countably Additive probability

Discrete probability /Fully Additive probability

Finite probability

Figure 1: A scale of views

1.4.2 Disintegrability and Conglomerability

Although generalizations of Additivity are quite controversial, there are
related principles that have been argued to generalize to infinite cases.
These principles are defined by using integration in place of addition when
infinity arises, to avoid some of the difficulties of adding up zeros. By the
end of this section, I will mention some results that show that instances
of these principles must fail when instances of Additivity fail. However,
in Section 1.4.3, I will show that we can avoid these failures by defining
conditional probability relative to a partition.

The starting point for discussion of these principles is the Law of Total
Probability.

Theorem 2 (Finite Law of Total Probability) If A, and A, are incompatible,
and A is the disjunction Ay U Ay, then

p(BNA) =p(B|A1)p(A1) + p(B| A2)p(Az).

Given two instances of the conjunction law, p(BN A;) = p(B| A;)p(4:),
this is equivalent to an instance of Additivity: p(BNA) = p(BN A7) +
p(B N Az). We can state a generalization of this, where Ay is a partition of
some set A.

Definition 4 The B N Aj-Law of Total Probability states that

p(BNA) =) p(B|A)p(A).

iel
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Given that p(BN A;) = p(B| A;)p(A;), it is straightforward to see that the
B N Ay Law of Total Probability is equivalent to B N Aj-Additivity. Giving
up Full Additivity means giving up certain instances of the Law of Total
Probability. But there are ways of modifying the Law of Total Probability
that don’t directly take this additive form.

The Law of Total Probability can be related to considerations of expected
value for random variables. Informally, a random variable is some quantity
with a potentially unknown real number value, where for each real number
x, there are well-defined probabilities p(V > x) and p(V = x). Notably,
the set of events V = x form a partition.

Definition 5 When there are only finitely many possible values for V, the ex-
pected value of V is given by

exp(V) = Yx-p(V = x),

where the sum ranges over all finitely many possible values for V.

This definition would yield strange results if it were applied to a variable
V for which Additivity fails on the partition into V = x.

Any violation of Additivity must involve some partition Ay such that
Yicrp(A;) = 1 —e. If I has cardinality at most that of the set of real
numbers, then we can generate a random variable whose expected value
under an extension of the above definition would be paradoxical. For each
i € I, let €; be a distinct positive value less than €/(1 —¢€). Let V be a
random variable that takes on the value 1 + ¢; iff A; is true. Then a naive
extension of Definition 5 would tell us that exp(V) = Y ;c;(1 + €;)p(A)).
But by choice of ¢;, we see that (1+¢;) < (1+€/(1—€)) =1/(1—¢€).
Thus, exp(V) < Yie1(1/(1—€))p(A;) = (1/(1 —€))(1 —€) = 1. That is,
even though V is a random variable whose value is always strictly greater
than 1, this definition of expectation would yield an expected value that is
strictly less than 1.

To avoid this problem, it has been standard to define expected value
slightly differently in infinite cases. Instead of directly considering the
probability of V' = x for each possible value that V' can take on, mathemati-
cians just directly rule out discontinuities like the one mentioned above. If
V is a random variable that only has finitely many possible values, then
we follow the old definition and let exp(V) = Y, x - p(V = x). If V has
infinitely many possible values, but has a lower bound (that is, there is
some [ such that it is certain that V' > [), then we can avoid this problem.
If V' is a random variable that always takes a value strictly less than V,
we will say V' < V. We will just directly stipulate that if V > V' then
exp(V) > exp(V’). This will rule out the problem of the previous para-
graph, because we could let V' be the random variable that always takes
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the value 1, and see that exp(V) > exp(V') = 1. By considering variables
V' that only take on finitely many distinct values, we get a set of lower
bounds for what E(V') could be. We say that the expectation of V is the
least number above all these lower bounds (the “supremum” of this set of
lower bounds).

Definition 6 Let V be a random variable with a lower bound. Then

exp(V) = 5u}€/exp(V'),
<

where V' ranges over variables that only take on finitely many distinct values.

Similarly, for random variables that have an upper bound, we can define
the expectation to be the greatest number below all the upper bounds (the
“infimum” of this set). We then deal with unbounded random variables by
breaking them into a component with a lower bound and an upper bound.
Let V* be the random variable that agrees with V when V is positive and
is 0 otherwise, and V'~ be the random variable that agrees with V when V
is negative and is 0 otherwise. Then define exp(V) as follows.

Definition 7

exp(V) Z/Vdpz sup Y x-p(V'=x)+ inf Y x-p(V' =x),
VI<V+ «x Vi>v- 5
where V' ranges over random variables that only take finitely many distinct
values.

This is the definition of the Lebesgue integral of V with respect to proba-
bility function p, and is the final generalized definition of expected value.
It agrees with Definition 5 and Definition 6 in the cases where they apply.

With this new definition, we can try to save the Law of Total Probability
in a slightly different form. Let A be a partition. We can consider p(B | Ay)
as a random variable whose value is given by p(B | A;) for whichever
proposition A; is the unique one from Aj that is true. If Ay is finite, then
the Law of Total Probability takes the form p(B) = exp(p(B | Ar)). This
motivates the following definition.

Definition 8 B is Disintegrable over the partition Ay iff

p(B) = [ p(B| A1) dp.

Disintegrability is thus another generalization of the Law of Total Proba-
bility, formulated with integrals rather than (potentially infinite) sums.

Let A be any partition, I’ be any subset of [ and A’ = U< A;. Define
Conglomerability as follows.
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Definition 9 p(B | Ay) is Conglomerable over A’ iff

infp(B| Aj) < p(B|A") <supp(B|A).

iel’ iel
It is useful to compare Conglomerability to van Fraassen’s principle of
“reflection” (van Fraassen, 1984; Briggs, 2009).

It is not hard to see that Disintegrability of B over Aj entails Con-
glomerability over each A’ with positive probability (because constant
functions taking on the infimum or supremum of p(B | A;) are among the
set of random variables whose expectation is considered in calculating
exp(p(B | Ar))). Conversely, Conglomerability of p(B | Ay) over all A" with
positive probability entails Disintegrability of B over Aj. (Since the inte-
gral is defined by comparison to finite sums, this only requires the Finite
Law of Total Probability, rather than the generalizations that fail when
Additivity fails over infinite partitions.)

We might hope that these new generalizations of the Law of Total
Probability in terms of integration rather than summation don’t require
Countable Additivity. However, this hope turns out to be misplaced. A
general theorem is proven by Hill and Lane (1985), verifying that for
countable probability spaces, Conglomerability and Countable Additivity
are equivalent. That is, any failure of Countable Additivity entails a failure
of Conglomerability, and thus Disintegrability, which is the generalization
of the Law of Total Probability. (Slightly more general versions of this
result were proven earlier by Schervish, Seidenfeld, and Kadane, 1984.)

Instances of this result were noted by de Finetti (1974, pp. 177-8), who
also conjectured the general result but hadn’t proven it. To see the basic
idea, consider something like the de Finetti lottery, where each natural
number has equal probability of being chosen. Let E be the event that
an even number is chosen. Intuitively, p(E) = 1/2. However, if we con-
sider the partition into the sets A; = {2i + 1,4i,4i + 2}, then intuitively
p(E| A;) = 2/3, so that the unconditional probability of E, which is 1/2, is
strictly outside the range spanned by its probabilities conditional on each
member of the partition, which are all 2/3. The construction by Hill and
Lane notes that even without the assumptions of uniformity underlying
the specific probability judgments 1/2 and 2/3, if E and its complement
are both sets of positive probability, then we can often create each A;
by taking enough elements of E with one element of its complement to
make p(E| A;) > p(A) + €. If we can’t do this for every element of the
complement, we can usually do it by taking enough elements of the com-
plement with one element of E to make p(E | A;) < p(A) — €. The tricky
part of the Hill and Lane construction is showing how to create a special
partition in the case where neither of these techniques works. These results
have been generalized to show that there are failures of Conglomerability
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for probability distributions that satisfy Countable Additivity but fail to
satisfy Additivity at some cardinality beyond the countable (Seidenfeld,
Schervish, & Kadane, 2013, 2014). Thus, Disintegrability and Conglomer-
ability don’t let us get quite as much distance from Additivity as we might
hope.

1.4.3 The Fundamental Dilemma

However, there is a way to separate Disintegrability and Conglomerability
from Additivity.

First, we should note that Additivity only makes reference to uncon-
ditional probabilities, while Disintegrability and Conglomerability make
reference to conditional probabilities. Furthermore, Disintegrability and
Conglomerability make reference to conditional probabilities p(B | A;) only
in the context of a random variable p(B | Ay). In generating a contradiction
to Conglomerability from a failure of Additivity, Hill and Lane needed
to construct a new partition by joining together elements of Aj. (This is
also the case for Seidenfeld et al.) Thus, if a given set A is an element of
two distinct partitions Ay and Ay, we can avoid the problems if we change
the value of p(B | A) when we move from considering Ay to considering
Ai,. That is, we should consider conditional probability as a three-place
function, p(B | A;, A1), so that changing just the partition can change the
value of the conditional probability, even if we are considering the same
events B and A;. Some theorists find this repugnant to their sense that
conditional probability p(B | A;) must have a single value, but it enables
us to avoid the paradoxes.

This move was in fact already made by Kolmogorov (1950). Although
he hadn’t noticed the connections between Additivity principles and Con-
glomerability, he had already noticed some problems that Conglomerabil-
ity apparently led to, and avoided them by turning conditional probability
into a three-place function of two events and a partition.® (In fact, this
problem was already mentioned as early as Bertrand, 1889, though due
to Borel’s work on this problem, and the existence of another paradox
known as “Bertrand’s Paradox,” this has come to be known as the “Borel
Paradox.”)

Imagine a point uniformly chosen from the surface of a sphere, labeled
with latitude and longitude like the surface of the Earth. Consider the set
P of “polar” points—those with latitude greater than 60 degrees north or
greater than 60 degrees south. Consider the set E of “equatorial” points—
those with latitude between 30 degrees south and 30 degrees north. Let
Ly be the great circle of longitude 6. By symmetry, it seems that p(P | Ly)

6 Strictly speaking, Kolmogorov worked with a “sub-c-algebra” rather than a partition, but
we will discuss the relation of these concepts in Section 2.
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should be independent of 6, and so should p(E | Ly). Conglomerability
over the partition” Ly requires that p(P) = p(P | Ly) and p(E) = p(E | Lg).
But p(P) = % ~ 1/8 while p(E) = 1/2. Note that P and E each cover
1/3 of the length of Lg. Thus, conditionalizing a uniform distribution over
the sphere in a way that is Conglomerable over the longitudes gives a
conditional distribution that is concentrated near the equator and away
from the poles.

To force a problem for the two-place conditional probability function, we
can fix a given line of longitude and shift which partition it is considered
as a member of. Re-describe the sphere so that the poles are still on this
line, but where the old equator was. This switches which points on the line
are polar and which are equatorial. Conglomerability requires the very
same great circle to give rise to different conditional probabilities when
considered as a line of longitude for one set of coordinates, rather than
as a line of longitude for a different set of coordinates. If we let C be this
circle, and Ly be the partition into lines of longitude for the given poles,
while Ly is the partition into lines of longitude for poles where C intersects
the equator of the original partition, then we get p(P |C,Ly) = Z_T‘/g while
p(P|C,Ly) = 1/2. Conditioning on the same event gives different results
when that event is considered as drawn from one partition rather than
another.

Thus, Conglomerability already motivates the idea that conditional prob-
ability depends not just on the conditioning event, but also on the partition
from which that event is drawn. Since the arguments from Conglomerabil-

Strictly speaking, Ly do not form a partition, because every line of longitude includes
the poles. However, the example can be slightly modified without making any significant
changes to anything by just removing the poles from the sphere, or arbitrarily adding
the poles to one particular line of longitude and not any of the others. A slightly cleaner
version of the same sort of case exists if X and Y are two independent normally distributed
variables with mean 0 and standard deviation of 1. Exercise 33.2 of Billingsley (1995)
notes that conditioning on X — Y = 0 relative to the partition X — Y gives different results
from conditioning on X/Y = 1 relative to the partition X/Y. Example 6.1 on pp. 224-5 of
Kadane, Schervish, and Seidenfeld (1986) considers the case where Y = 0 has been ruled
out and notes that conditioning on X = 0 relative to the partition X gives different results
from conditioning on X/Y = 0 relative to the partition X/Y.

Some have worried that the appeal to symmetry in the argument that p(P | Lg) should be
independent of 6 is enough like the appeal to symmetry in the intuition that the conditional
probability should be uniform that both are suspect. However, if we take the partition into
account as part of the description of the problem, then there is a relevant difference. The
unconditional probability is symmetric under any rotation of the sphere. However, the
partition into lines of longitude is only symmetric under rotations of the sphere about
the poles—rotating about any other point sends some lines of longitude to great circles
that are not lines of longitude. In particular, rotation along any particular line of longitude
changes the partition, so there is no need for probability conditional on this partition to
preserve uniformity under this rotation. See p. 303 of Chang and Pollard (1997) for more
discussion of this symmetry breaking.
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ity to Additivity rely on generation of new partitions, we might hope that
allowing conditional probability to vary as the partition changes can avoid
the worst consequences. And in fact it often can. As shown by Billingsley
(1995, Theorem 33.3), if p is a probability function satisfying Countable
Additivity over the events involving two random variables, then there is a
way to specify the values for p(B| A, A) while satisfying Conglomerability,
where A is the partition of possible values of one variable, and B ranges
over any proposition involving the two variables. In particular, this means
that it is possible to give up on all forms of Additivity beyond Countable
Additivity while holding on to Conglomerability.”

Thus, we have a choice between allowing conditional probability to
be a three-place function p(B | A, A) depending on a partition as well as
a pair of events, and having unrestricted Conglomerability while only
keeping Countable Additivity; or requiring conditional probability to be
a two-place function p(B| A) just of two events and keeping only as
much Conglomerability as we do Additivity. The former option is called
Regqular Conditional Probability, while the latter is called Coherent Conditional
Probability. (‘Coherent’ in this sense just means that the same pair of events
has the same conditional probability regardless of what algebra it was
drawn from, and is not related to the use of the word ‘coherent’ to mean
“satisfying the probability axioms.” I don’t know where the term ‘regular’
comes from here, but it is not related to the concept requiring non-zero
probabilities.) Mathematical theories of these two types will be the subjects,
respectively, of Section 2 and Section 3.

Fuller consideration of the costs and benefits of these proposals will
come in Section 2 and Section 3. But I will first mention several arguments
for Conglomerability, which defenders of Coherent Conditional Probability
must reject.

Recall that Conglomerability (Definition 9) says that for any partition
A, infaca p(B|A) < p(B) < supy, p(B| A). By considering either B
or its negation as needed, a violation means that there is some value x
such that p(B) < x, but for every A € A, p(B| A) > x. If we consider
the role of conditional probability in updating degrees of belief or in
measuring confirmation, then this means that if one is about to perform an
experiment whose possible outcomes are A, then one can know in advance
that one will get evidence confirming proposition B. This possibility seems
intuitively costly for statistical or scientific reasoning, though there have
been some attempts to mitigate it (Kadane, Schervish, & Seidenfeld, 1996).

For update via Jeffrey Conditionalization, Conglomerability is even more
natural. Recall that update via Jeffrey Conditionalization proceeds by tak-

There are some other challenges to Conglomerability raised by Arntzenius, Elga, and
Hawthorne (2004), but these also depend on changing partitions while keeping conditional
probability fixed.
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ing some partition E of possible evidence and updating one’s old degrees
of belief p(E) to new degrees of belief p'(E) for all E € E. This then prop-
agates through the rest of one’s beliefs by means of “rigidity,” the require-
ment that for any proposition A, we have p'(A |E) = p(A | E). In the finite
case, the Law of Total Probability tells us that p’(A) = Y g p'(A | E)p'(E),
and since these values are specified, so are the probabilities for all other
propositions. In the infinite case, we need some version of the Law of Total
Probability for this to generalize. The natural thought is that we should
have p’(A) = [p'(A|E)dp’. But this just is the formulation of Disin-
tegrability for p’, which is equivalent to Conglomerability. Thus, giving
up Conglomerability would require finding a new version of the Law of
Total Probability that doesn’t have these features, to use in defining Jeffrey
Conditionalization.

Considering the role of conditional probability in decision theory, Con-
glomerability is also supported by a Dutch book argument. The basic idea
is given by Billingsley (1995, p. 431). Basically, any sort of reasoning to a
foregone conclusion (as violations of Conglomerability allow) will make
for guaranteed changes in one’s betting prices that can be exploited by
someone who knows one’s updating rule. Rescorla (2018) has given a more
complete Dutch book argument, including converse theorems proving that
Conglomerability suffices for immunity to this sort of Dutch book.

There is also an accuracy-based argument for Conglomerability. Some
authors have suggested that the right way to think of degree of belief is
as aiming at the truth. Once we have a reasonable notion of “accuracy”
that measures closeness to the truth, we can then derive norms for degree
of belief from principles of maximizing accuracy (Joyce, 1998; Greaves &
Wallace, 2006; Pettigrew, 2016). As it turns out, an update plan for learning
which member of a partition is true maximizes expected accuracy iff it
satisfies Conglomerability with respect to that partition (Easwaran, 2013a).

None of these arguments is fully definitive. It is possible to reject the
importance of Dutch books and accuracy conditions for degree of belief. It
is conceivable that an alternative formulation of the Law of Total Probabil-
ity allows for a generalization of Jeffrey Conditionalization (or that Jeffrey
Conditionalization is not the right update rule). And perhaps reasoning to
a foregone conclusion is not so bad for updating. And all of these problems
are perhaps less bad for physical or chance interpretations of probability
than for Bayesian interpretations of one sort or another. Thus, if it is very
important that conditional probability really be a two-place function rather
than depending on a partition as well, then there is motivation to pursue
Coherent Conditional Probability.

Thus the question becomes just how bad the costs are of Regular Con-
ditional Probabilities, with their extra parameter. Some have said that
an event alone must be sufficient to determine a posterior probability
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distribution, and that the fact of the partition from which the event was
drawn can’t be relevant. “This approach [Regular Conditional Probability]
is unacceptable from the point of view of the statistician who, when given
the information that A = B has occurred, must determine the conditional
distribution of X,” (Kadane et al., 1986). This is most plausible for uses
of conditional probability in update by conditionalization, where one just
learns a new piece of information, and apparently doesn’t learn anything
about the partition from which this information was drawn.

However, I claim that by considering the situation in a bit more detail,
there will always be a partition that is relevant in any application of
conditional probability. Billingsley (1995, end of section 33) brings this
out with a juxtaposition of three exercises. The first two exercises involve
consideration of the Borel paradox with a point on the surface of a sphere,
and a version involving two independent normally distributed random
variables. The third exercise juxtaposes the effect in these exercises of the
same information presented in two different ways (a great circle presented
as one from the family of longitudes, or as the equator from a family
of latitudes; the fact of two random variables being equal as a piece of
information about their difference, or as a piece of information about their
ratio) with a classic probability puzzle.

Three prisoners are in a cell and two will be executed in the morning.
Prisoner 3 asks the guard to tell him which of 1 or 2 will be executed
(since at least one of them will) and on hearing the answer reasons that
his chance of survival has gone up from 1/3 (as one of three prisoners,
two of whom will be executed) to 1/2 (as one of two prisoners, one of
whom will be executed). But of course, as anyone who has considered the
similar “Monty Hall” problem can recognize, this reasoning ignores the
fact that “Prisoner 1 is executed” and “Prisoner 2 is executed” do not form
a partition, since it is possible for both to be true. The relevant learning
situation is one in which the partition is “The guard says prisoner 1 will
be executed” and “The guard says prisoner 2 will be executed.” If these
two answers are equally likely conditional on prisoner 3 surviving, then
in fact the probability of survival is unchanged by this update.

This sort of example shows that even in elementary cases, we need to
be careful about only updating on evidence by conditionalization in cases
where it is clear that the evidence is drawn from a partition. To properly
take this into account, we must be able to figure out what partition the
evidence was drawn from. For Jeffrey Conditionalization, the partition is
in fact part of the specification of the update situation, so this is clearer.
Thus, I claim that for the first two uses of Bayesian probability (update by
conditionalization or Jeffrey Conditionalization) the partition relativity of
Regular Conditional Probabilities is no problem. There are some authors
who argue that update situations don’t always involve evidence that comes
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from a partition (Schoenfield, 2016; Gallow, 2016). But I think that at least
for scientific cases where evidence comes as the result of the performance
of an experiment, the partition is implicit in the experimental setup. This is
especially so in cases where the evidence was something that antecedently
had probability 0, which are the only cases in which the issue of how to
conditionalize arises.

For the uses of conditional probability in the measurement of confir-
mation, we have to look both at posterior probabilities and likelihoods.
That is, we should be looking at probabilities of hypotheses conditional
on evidence (as for updating) and for probabilities of evidence condi-
tional on hypotheses. In this case, because of the Problem of Old Evidence
(presented by Glymour, 1980, and classified and investigated at length
by Eells, 1985), we must be considering conditional probabilities given
before the experiment is actually performed. In order to properly compare
and contrast the effect of different possible pieces of evidence, or different
experiments, on different hypotheses, we must have a sense of the possible
experiments, the possible pieces of evidence they could result in, and
the possible hypotheses under consideration. This is particularly clear in
cases where we are interested in confirmation, disconfirmation, and inde-
pendence of hypotheses about random variables rather than just single
propositions. A scientist who is interested in measuring the value of some
physical, social, or biological parameter is going to have a whole family
of propositions about its value that each may be confirmed, disconfirmed,
or independent of the evidence received, and this family will define a
partition for the relevant likelihoods.

For decision-theoretic cases, the relevant conditional probabilities are
probabilities of outcomes conditional on actions. Here again it seems
plausible that the set of actions available to an agent forms a partition. If
this is right, then the relativization to a partition just brings out a feature
that is already important to the situation. Thus, just like with the other
Bayesian applications of conditional probability, I claim that there is no
problem to the three-place formulation of conditional probability required
by Regular Conditional Probabilities.

Even once we see that conditional probability depends on the partition
from which the conditioning event was drawn, we might worry about
how the description of events and partitions can affect the actual value.
Rescorla (2015) argues that we should think of the same event drawn
from a different partition as having something like a different “sense,” so
that these are just Frege puzzles of a sort. I'm not convinced that this is
the right way to understand things, because the difference in conditional
probability persists even when everyone involved recognizes that the same
conditioning event is a member of multiple partitions. But I think that
some reasoning of this sort can dissolve some worries.
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Some have also worried that by redescribing the probability space, we
might be able to make one partition look like another, so that we can
get conflicting requirements for the same conditional probability. But
Gyenis, Hofer-Szab6, and Rédei (2016) show that this is impossible—any
reparameterization of a set of events and a partition gives rise to some other
description on which the mathematical requirements of Conglomerability
and Disintegrability give the same results.

In addition to the obvious challenge in terms of relativization, there
is also a question of whether Regular Conditional Probabilities require
Countable Additivity. Classic results (such as the Radon-Nikodym Theo-
rem, or Theorem 33.3 of Billingsley, 1995) show that when the propositions
involved are just about random variables, relativization of conditional
probability to a partition as well as a conditioning event is sufficient to
allow Conglomerability to hold even when Additivity fails at uncountable
cardinalities. However, every existence theorem I know of assumes Count-
able Additivity. I have not investigated the proofs of Countable Additivity
from Countable Conglomerability in enough detail to be sure that they
hold up when conditional probabilities are allowed to vary as the parti-
tion changes. Thus, if considerations like the de Finetti lottery motivate
rejection of Countable Additivity, then there may be further problems
for Regular Conditional Probabilities. But as I have argued elsewhere,
there are independent reasons to accept Countable Additivity that don’t
generalize to higher cardinalities (Easwaran, 2013b).

As the reader can probably see, I favor Regular Conditional Probabilities
over Coherent Conditional Probabilities. But in the remainder of the paper,
I will put forward mathematical theories of both types so that the reader
can judge for herself what the appropriate uses of each might be.

2 REGULAR CONDITIONAL PROBABILITIES
2.1 Formal Theory

Regular Conditional Probabilities are a central motivation for the Kol-
mogorov (1950) axiomatization of probability. There is some set () of
“possibilities,” and the bearers of probability are subsets of this set. (Dif-
ferent interpretations of probability will interpret these possibilities and
sets of them differently.) Not every subset of the space of possibilities is a
bearer of probability, but there is some collection F of them that are. F is
assumed to be a “c-algebra” or “c-field,” which means that the empty set
is an element of F, the complement of any element of F is an element of
F,and if A; for i € N are any countable collection of elements of F, then
Uien Ai is also an element of F. (This restriction to closure only under
countable unions and complements is quite natural for the propositions
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implicitly grasped by a finite mind, though one might want to restrict
further to computably-definable sets or the like.)

Finally, there is a function p assigning real numbers to all and only the
elements of F subject to the following rules. For any A € F, p(A) > 0;
p(Q)) = 1; and if A; for i € IN are any countable collection of disjoint
elements of F, then p(Uieny Ai) = Lien P(Ai). That is, the probability
function satisfies Countable Additivity. We refer to the triple (Q), F, p) as
a probability space.

For any non-empty set (), there are of course multiple different o-
algebras of subsets of that space. Trivially, the set {®, )} is always the
minimal c-algebra on (), while the full power set consisting of all subsets
of () is always the maximal c-algebra on (). But usually, F is some algebra
other than these two. We say that a set A is “.A-measurable” iff A is an
element of A. If A and B are any two c-algebras on (), and every element
of A is B-measurable, then we say that A is a “sub-c-algebra” of B.

We often consider functions assigning a real number to every element of
Q. If V is such a function, then we say that V is a random variable, or that
it is F-measurable, iff for all rational values x, the set {w € Q: V(w) < x}
is F-measurable. The set {w € Q: V(w) € S} is often just written as
V(w) € Soreven V € S, so for V to be F-measurable just is for p(V < x)
to exist for all rational values x, just as in Section 1.4.2. Furthermore, since
the rational values are a countable and dense subset of the real numbers,
the fact that F is closed under countable unions and complements means
that p(V = x), p(V > x) and any other probability simply expressible in
terms of values of V exist as well.

As in Section 1.4.2, we can define the integral | 4, Vdp for bounded
random variables V. This definition proceeds in two parts. If V only
takes finitely many values on points in A, we say that [, Vdp =
Y. x-p(AN(V = x)), where the sum ranges over the finitely many values
that V takes on. Otherwise, we define [, Vdp = supy,_,, [, V' dp, where
the supremum ranges over all random variables V' that take on only
finitely many values in A, and such that whenever w € A, V'(w) < V(w).

With these definitions, I can finally give the official definition of a
Regular Conditional Probability.

Definition 10 A Regular Conditional Probability is a three-place real-valued
function p(B | A)(w) satisfying the following three conditions:

1. Fixing a o-algebra A C F and w € Q) defines a function of B satisfying
the probability axioms (that is, it is non-negative for all B € F, it takes the
value 1 when B = Q), and it is Countably Additive).

2. Fixing a o-algebra A C F and a measurable set B defines an A-measurable
function of w.
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3. For any fixed oc-algebra A C F and an F-measurable set B, and for
A€A

/| p(BlA)@)dp = p(BN A).

In Section 2.2 T will discuss how this notion relates to the three-place
function p(B | A, A) of conditional probability mentioned earlier. The basic
idea of each condition is as follows. Condition 1 will ensure that condi-
tioning on a single event relative to a single partition yields a probability
function. Condition 2 will ensure that we really are conditioning on an
event A from the partition A. Condition 3 will ensure that p(B | A, A)
satisfies Disintegrability (and thus Conglomerability). But for now I will
just discuss a few formal features this mathematical function has.

As a first example, consider a probability space defined by a joint
probability density for two random variables. That is, we can consider
X and Y as two random variables, and let Q) = R2, where the element
w = (wx,wy) of Q) represents the possibility of X = wx and Y = wy.
F is the c-algebra generated by the set of sets X < x and Y < y. (This
algebra is known as the collection of “Borel sets,” which is a subset of the
Lebesgue-measurable sets, but sufficient for our purposes.) To say that the
probability is defined by a joint probability density means that there is a
measurable function d(x, y) such that

X2 2
plaa <X <x)N(n <Y <uy)) = /x /yy d(x,y)dydx,

1 1
where the integrals here are ordinary real-valued integrals. (This defini-
tion of probability over the rectangular boxes suffices to determine the
probability of every measurable set.)*

If X is the o-algebra generated by the set of sets X < x, then we can

define a Regular Conditional Probability p(B | X)(w) as follows. Let

2 d(wy, y) dy
plla <X <) Ny <Y <y2) | X)(w) = 5 :
f—ood(wx’y) dy

if x; < wx < x2 and 0 otherwise. (I use wx to represent the fixed value
X takes at w, while I use y as the bound variable of the integral.) Again,
because the rectangles (x; < X < x2) N (y1 <Y < y») generate the whole
o-algebra, this suffices to define the conditional probability p(B | X')(w)
for all measurable sets B. Note that the values y; and y; enter on the right
as limits of an integral, while the values x; and x; just determine when

Note that since we have assumed there is an unconditional probability function p, then we
have assumed that [*  [* d(x,y)dydx = 1. In Section 3.2.5, when discussing Rényi’s
theory of conditional probability, I will allow this integral to be infinite instead, to capture
the statistical theory of “improper priors.”
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the probability is 0. This is because the point (wx, wy) with respect to
the c-algebra X represents the set of all points with X = wx and any
value of Y, and the rectangle either intersects this line at all points from
y1 to y2 or none of them. Intuitively, the numerator of the right side says
how much density is concentrated at y; < Y < y, and X = wyx, while
the denominator normalizes this to account for how much density is at
X = wx generally. It is tedious, but possible to check that this definition
satisfies the three conditions to be a Regular Conditional Probability.**

The Borel paradox can be thought of as a special case of this example. If
X represents the longitude (from —7t to /1) and Y represents the latitude
(from —7/2 to 7/2), then the uniform unconditional probability is given
by the density function d(x,y) = =Y when —7 < x < mand —71/2 <
y < 1t/2, and 0 otherwise. Using the above formula, we calculate that

Y2 cosy
Jyy a4 siny, —sinyy

plyn <Y <) | X)(w) = T = .

By parallel reasoning, we calculate that

X2 Ccos wy
fxl T dx X2 —x

coswy/2 21

pla <X <x0)[V)(w) =

That is, conditional on lines of longitude, probability is concentrated near
the equator, while conditional on lines of latitude, probability is uniform.

If we want to use this sort of technique to figure out other Regular
Conditional Probabilities for other sub-c-algebras, we can often do this,
if the new algebra is related to the old one by a change of coordinates.
This will work if the probability space is defined by two random variables
X and Y, and there are two other random variables f; and f,, such that
the values of f; and f, are uniquely determined by the values of X and
Y, and vice versa. For instance, we might have f; = X —Y and f, =Y,
or fi=X/Yand f, =Y (if Y = 0 is impossible), or f; and f, as latitude
and longitude in a different set of coordinates than X and Y. In such a
case, we can consider f; and f; as functions of the values of X and Y, and
represent points in () not as (wx, wy), but as (f1(wx, wy), f2(wx, wy)).

Assuming the functions f; and f, are measurable, we get a new density
function given by

dfi(x,wy) df2(wx,y)  dfa(x,wy) dfi(wx,y)
ox dy ox ay

d(wx, wy) -

To check the third condition, it’s useful to note that the A € X’ are generated by the sets
x1 < X < x2, and the probability of these sets is given by integrals like the denominator
of the right-hand-side, so that this denominator cancels in the integration, leaving just the
integral of the numerator over X, which is how we defined the unconditional probability
in the first place.
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This quantity on the right is the Jacobian associated with the relevant
change of variables. When fi(wx, wy) = wx and f»(wx, wy) = wy, so that
the “new” variables are the same as the old, the Jacobian is equal to 1, so
the density is unchanged, as expected. But the fact that this Jacobian is
not generally equal to 1 indicates that corresponding points in the two
representations of the probability space will have different densities with
respect to the two different sets of variables. Thus, even if one value of one
variable occurs exactly when a corresponding value of a different variable
occurs (such as X = 0 occurring iff X/Y = 0, or latitude is 0 in one set of
coordinates iff longitude is 0 in another set of coordinates), the densities
may have been transformed in some non-uniform way, so the Regular
Conditional Probability may take different values.

A slightly different introduction to this sort of method is discussed by
Chang and Pollard (1997). They argue that in most cases where Regular
Conditional Probabilities are of interest, they can be calculated by a method
like this one. Although their discussion is still quite technical, it may be
more usable and friendly than some others.

2.2 Philosophical Application

As before, I define a “partition” to be a collection A of subsets of () such
that every member of () is in exactly one member of A. In Section 1.4.3,
I argued that in order to maintain Conglomerability, while respecting
the roles of conditional probability as posterior for conditionalization,
or Jeffrey update, or as likelihood, or as action probability for decision
theory, we need a notion of conditional probability that defines p(B | A, A)
whenever A is a partition. However, the formal theory given above defined
a random variable p(B, A)(w), where A is a sub-c-algebra rather than a
partition, and where w is an element of () rather than a subset of it. In
this section, I show that the formal definition of a Regular Conditional
Probability is sufficient to give us what we need.

Partitions can be related to o-algebras in two importantly different ways.
One is that we can say that a c-algebra B is generated by a partition if
it is the smallest r-algebra with respect to which every element of A is
measurable. In this case, B consists of the set of all unions of countably
many elements of A, and their complements.’> However, in many cases,
the more useful o-algebra to consider is a slightly different one. I will say
that a o-algebra B is compatible with a partition A iff every element of A is

We also talk about c-algebras generated by collections of subsets other than a partition,
and in those cases there can often be much more complex elements of the generated o-
algebra, such as countable unions of complements of countable unions of complements of
countable unions of elements. But in the case of a partition, these more complex elements
already exist just at the level of countable unions or their complements.
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an element of B, and no proper subset of an element of A is an element
of B, except for the empty set.” Then, if B is any c-algebra and A is any
partition, I will say that the restriction of B to A is the largest sub-c-algebra
of B that is compatible with A. This consists of all elements of B whose
intersection with any element of A is either empty or the full element of
A—it is the set of all B-measurable sets that don’t crosscut any element of
A.

Given these definitions, for A,B € F and A C F a partition containing
A, Iwill define p(B| A, A) as p(B| A)(w), where w is any element of A and
A is the restriction of F to A. If A is empty, then p(B | A, A) is undefined.
This corresponds to the fact that conditional probability is intended to
be an indicative conditional for updating rather than revision of beliefs,
as discussed in Section 1.3. Otherwise, since p(B | A)(w), considered as
a function of w, is required to be .A-measurable, it must be constant on
the atoms of A. But because A is the restriction of F to A, the atoms
are the elements of A. Since A is an element of A, this means that it
doesn’t matter which w € A is chosen. Thus, as long as p(B | A)(w) is
a well-defined function, so is p(B | A, A), whenever A is non-empty. The
stipulations in the definition of a Regular Conditional Probability then
mean that p(B| A, A) satisfies the probability axioms (including Countable
Additivity) when A and A are fixed, and that Conglomerability is satisfied
over A. Thus, if conditional probability should be defined relative to
any partition, and Conglomerability must be satisfied, then conditional
probability must be related to a Regular Conditional Probability in this
way.

2.3 Existence and Uniqueness of Regular Conditional Probabilities

The question motivated by the arguments of Section 1.3 is whether uncon-
ditional probabilities suffice to determine a notion of conditional proba-
bility, or whether conditional probability should be taken as fundamen-
tal. The mathematical definition of a Regular Conditional Probability as
p(B|A)(w) is as a function that satisfies some axioms connecting it to the
unconditional probability space (), F, p). In some cases, we have been
able to demonstrate that Regular Conditional Probabilities exist. If they
don’t exist in probability spaces that are philosophically important, then

In more standard terminology, A consists of the “atoms” of B, where an atom of a o-
algebra is any non-empty element of the -algebra such that no non-empty proper subsets
are also members of the -algebra. Not every c-algebra has atoms, but if there are any
atoms, they are disjoint. The atoms form a partition iff every element of the space is a
member of some atom, in which case the c-algebra is said to be “atomic.”

Section 2.3.2 will show what goes wrong if we try to use the sub-c-algebra generated by A
instead of the restriction to it.
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Conglomerability must be given up. And if Regular Conditional Probabili-
ties are not unique, then we must either accept that conditional probability
is at least as fundamental as unconditional probability, or give some fur-
ther conditions that suffice to uniquely determine the Regular Conditional
Probability uniquely. In this section I will consider some mathematical
problems of particular Regular Conditional Probabilities and argue that
they don’t arise in philosophical application, so they will always exist and
have the desired features. Furthermore, I will show that unconditional
probability is almost sufficient to define all conditional probabilities in the
relevant probability spaces, and give some ideas of what else might suffice
to define conditional probability uniquely from unconditional probability.

2.3.1 In Bad Sub-c-algebras There Is No Regular Conditional Probability

It is mathematically well-known that there are probability spaces (Q2, F, p)
and sub-c-algebras A for which there is no Regular Conditional Probability.
A classic example is the case where () is the set [0,1] of real numbers
between 0 and 1, A is the set of all Borel subsets of this set,  is generated
by A plus one set that is not Lebesgue-measurable, and p is Lebesgue
measure on A and assigns probability 1/2 to the additional set generating
A. (This example is discussed in Billingsley, 1995, Exercise 33.11.)

However, Theorem 33.3 of Billingsley (1995) states that when F is the
o-algebra generated by the values of a random variable, this problem
can never arise. There will always be a Regular Conditional Probability
for every sub-c-algebra. This result generalizes to cases where F is the
o-algebra generated by the values of finitely many random variables, as
appears to be the case for most scientific applications of probability.

Furthermore, due to the finitistic limits of the human mind, I claim that
this in fact includes all epistemically relevant cases. As I suggested near
the end of Section 1.3, I think the right interpretation of human finitude
doesn’t mean that the probability space is finite. Rather, it means that the
probability space is generated by the countably many sentences of some
finitary language. I claim that the sentences in this language fit within
the o-algebra over this space generated by a particular artificial random
variable.

To see this, define the random variable T by enumerating the sentences
of the language as ¢; and letting

¢; is true
Any possibility w will make infinitely many sentences true and infinitely

many sentences false, and no two such possibilities can result in the same
real value, so this random variable distinguishes all possible worlds. We
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need to check further that the set of values that are logically consistent is
itself measurable. But by the Compactness Theorem of first-order logic,
any logically inconsistent set contains one of the countably many logically
inconsistent finite sets, and each of these sets is an intersection of finitely
many closed sets of values. Thus, the set of consistent values is the comple-
ment of a countable union of closed sets, and is thus measurable. Thus, I
claim that any epistemically reasonable probability space uses a c-algebra
generated by a random variable, conditionalized on a measurable set.
Thus, Theorem 33.3 of Billingsley (1995) entails that Regular Conditional
Probabilities exist.

Even without this sort of argument, the existence theorem can be gen-
eralized. These generalizations are investigated by Hoffmann-Jergensen
(1971), Faden (1985), Pachl (1978).

2.3.2  In Bad Sub-algebras, the Regular Conditional Probability Behaves Badly

Another problem that sometimes arises is highlighted by Blackwell and
Dubins (1975) and Seidenfeld, Schervish, and Kadane (2001). They seem to
show that in certain partitions A, there is an event A with p(A|A,A) =0,
which would seem to be quite bad. However, I claim that this problem
only arises in cases where A is used in a mathematically improper way.

The mathematical result they show is that p(B | A)(w) = 0 even though
w € B. As an example, let Q) be the set [0,1] of real numbers between
0 and 1, let F be the collection of all Borel subsets of this set, and let p
be the standard Lebesgue measure on F. Let A be the collection of all
countable subsets of [0,1] and their complements. It is straightforward
to check that p(B| .A)(w) = p(B) is a Regular Conditional Probability.">
However, if B = {w} (or any other countable set containing w) then
p(B|A)(w) = p(B) = 0. Given my translation of p(B | A, A), this would
seem to mean that p({w} | {w}, A) = 0, where A is the partition into
singletons.

However, this is the point at which the distinction between the o-algebra
generated by A and the restriction of F to A is important. The c-algebra A
above is the algebra generated by the partition into singletons, but it is not
the restriction of F to the partition into singletons. The restriction of F to
the partition into singletons just is F (as it is for any F—recall that the
restriction of F includes all elements of  that do not crosscut any element
of the partition, and no set crosscuts a singleton). Although p(B | A)(w) =
p(B) is a Regular Conditional Probability, it is straightforward to show that
the parallel does not work for p(B | F)(w). In fact, any Regular Conditional

The first two conditions are trivial. The third condition requires that [, p(B|.A)(w)dp =
p(ANB) for all A € A. However, since p(B | A)(w) = p(B) for all w, the left side of the
integral just is p(A)p(B). But if A is countable, then p(A) = 0, as does p(A N B), while if
A’s complement is countable, then p(A) = 1 and p(A N B) = p(B).
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Probability for this conditioning algebra must have a set C with p(C) =1
such that whenever w € C, p(B| F)(w) = 1if w € B and 0 otherwise, as
expected. And Theorem 2 of Blackwell and Dubins (1975) and Theorem 1
of Seidenfeld et al. (2001) show that this is quite general. Whenever A is
countably generated, for any Regular Conditional Probability p(B | A)(w),
there is a set C with p(C) = 1 such that whenever w € C and B € A4,
p(B| A)(w) = 1.1 Thus, in my translation, p(B| A,A) = 1if A C B, as
expected, whenever the restriction of F to A is countably generated. This
will automatically be the case if A is the partition of possible values of a
random variable. But I claim that it should hold generally for any partition
that is graspable by a finite human mind.

2.3.3 The Regular Conditional Probability is Almost Unique

Now that we have established that Regular Conditional Probabilities
exist and are well-behaved, it remains to see when they are uniquely
determined by the unconditional probability space (Q), F, p). It turns out
that the answer is never in any interesting case. However, the different
Regular Conditional Probabilities that exist are almost identical in a natural
sense. Furthermore, for some sets of niceness conditions, exactly one of
them will be nice, and this can be designated as the correct one.

If p(B|A)(w) is one Regular Conditional Probability, and S € A is any
set with p(S) = 0, then we can let p’(B | A)(w) = p(B | A)(w) whenever
w ¢ S and replace the function with any other probability function we
like within S, and the result is also a Regular Conditional Probability.
This is because the only constraint on the values of a Regular Conditional
Probability are through its integrals, and changing a function on a set of
probability 0 does not change any of its integrals. Translating to p(B | A, A),
this means that we can change the values of the conditional probability
function on any collection of A € A whose total probability is 0 and still
satisfy Conglomerability.

Conversely, if p(B | A)(w) and p’(B | A)(w) are two Regular Conditional
Probabilities for a given unconditional probability, then we can show that
for any B and A, the set of w for which they differ must have probability
0. If it had positive probability, then there would be some € such that
the set C of w on which they differ by at least € would have positive
probability, and would be a member of .A. But this would contradict the
condition that [.p(B|A)(w)dp = p(BNC) = [.p'(B|A)(w)dp. Thus,

Of course, this assumes that a Regular Conditional Probability exists, which requires that
F be a nice algebra, such as the algebra generated by a random variable. See Blackwell
(1956) for more on these conditions. In fact, for these sorts of spaces, Yu (1990) proves
that existence of the relevant function can be proven in the system “ACA(” of reverse
mathematics, so that strong set-theoretic hypotheses like the Axiom of Choice are not
required.
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although the Regular Conditional Probability is not exactly unique, it is in
a sense “almost” unique. These different Regular Conditional Probabilities
are often called “versions” of the Regular Conditional Probability for the
given unconditional probability.

This almost uniqueness is not quite enough to satisfy the idea that con-
ditional probability is defined by the unconditional probability function.
However, in some cases there is a prospect that by specifying a further
condition, we can pick out a unique version of the Regular Conditional
Probability. For instance, consider the case of the Borel paradox. As I
showed in Section 2.1, one version of the Regular Conditional Probability
for this example can be generated by integrals of a probability density
that also generates the unconditional probability. In this case, there is a
continuous density function that generates the unconditional probability
(namely, the density function that was given there, with d(x,y) = cosy).
Furthermore, it is easy to see that no other continuous density generates
the same unconditional probability function. (If two continuous density
functions differ at some point, then they must differ on some neighbor-
hood of that point, which would have non-zero probability.) Thus, if an
unconditional probability function is generated by some continuous den-
sity on the values of some random variables, then we can require that
the version of the Regular Conditional Probability used be the one that is
generated by this integral calculation from the unique continuous density
that generates the unconditional probability.'”

Oddly, if we just consider the partitions into longitudes through various choices of poles,
we may be able to take advantage of this non-uniqueness to find a Coherent Conditional
Probability that satisfies Disintegrability. If we assume the Axiom of Choice and the
Continuum Hypothesis (or Martin’s Axiom—both assumptions entail that the union of
any collection of fewer than continuum-many sets with probability 0 is also a set of
probability 0), then we can do the following. Choose some well-ordering of the points on
the sphere such that each has fewer than continuum-many predecessors. For any great
circle A, find the point x € A that comes earliest in this ordering. Let p(B | A) take the
value given by integration with respect to the continuous density where x is chosen as the
north pole of the coordinate system.

Now if we consider any particular partition into longitudes with x as a pole, we can see
that each line of longitude will give rise to a conditional probability that agrees with the
one required for Disintegrability in this partition iff there is no point on the line earlier
than x in the chosen ordering. However, because of the way the ordering was set up, there
are fewer than continuum-many points earlier than x in the ordering, so the union of all
the lines of longitude that contain such a point has probability 0. Thus, enough of the
conditional probabilities agree with integration with respect to the relevant continuous
density that Disintegrability is satisfied in this partition.

Of course, this particular method only satisfies Disintegrability over partitions into lines of
longitude, and not into lines of latitude, or other partitions. Furthermore, the particular
Coherent Conditional Probability produced over these conditioning events is highly
asymmetrical and requires the Axiom of Choice for its construction. But it is useful to
observe that this sort of construction is at least sometimes possible.
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However, while I think it is not that implausible to think that all realistic
epistemic spaces are generated by some density on the values of some
random variables, I don’t see any good reason to believe that there must
always be a continuous density function that generates the unconditional
probability. Perhaps there is some similar requirement that could be used
to find the “right” Regular Conditional Probability to go along with
any unconditional probability function. But I have no idea what that
requirement might be. So for now, we have some reason to believe that
the existence of uncountable (though countably generated) probability
spaces, together with Conglomerability, force us to use Regular Conditional
Probabilities, which suggests that conditional probability is in some sense
at least as fundamental as unconditional probability. However, if one is
only given the unconditional probability function, then for any countably-
generated partition A one can find some Regular Conditional Probability
p(B| A, A) for all propositions B on the elements of A, and one can be
sure that almost all of the values given by this function will line up with the
“correct” conditional probability function. The question is just whether this
“almost all” can be turned into “all,” or whether conditional probability
needs to be specified along with unconditional probability in defining a
probability space.

3 COHERENT CONDITIONAL PROBABILITIES

Recall that Coherent Conditional Probability is conditional probability
defined as a function just of two events, with no dependence on a par-
tition or sub-c-algebra or anything else. If Additivity fails at some level
(possibly beyond the countable), then Conglomerability and Disintegrabil-
ity will also fail. There are several different formal theories of Coherent
Conditional Probability that have been proposed by philosophers, mathe-
maticians, and statisticians. In this section I will describe three of the most
prominent ones.

3.1 Popper

The first, which is both oldest and probably most familiar to philosophers,
was developed by Karl Popper in his (1955). Popper considered this
formulation of conditional probability important enough that he included
a revised and simplified version in new appendices *iv and *v to the
second edition of The Logic of Scientific Discovery (1959a). Popper’s axiom
system is particularly well-suited to an interpretation of probability as a
logical (or even semantic) relation. But I claim that it is not sufficient for
general epistemological applications, particularly for scientific purposes.
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In this section I will describe Popper’s later version of the system, and the
features it has.

Popper postulates a finite or countable set of sentence letters A, B,C, ...,
and two uninterpreted connectives—a binary connective ‘A” and a unary
connective ‘=", (I have replaced his notation with a more modern one.) He
then postulates a two-place conditional probability function mapping pairs
of formulas in the language generated by these letters and connectives to
real numbers. He then postulates six conditions on the function expressible
with these uninterpreted connectives. (I will discuss these conditions
later.) Finally, he defines unconditional probability in terms of conditional
probability.

One of the important things Popper does along the way is to develop
a probabilistic notion of equivalence. He says that two formulas ¢ and
¢ of the language are probabilistically equivalent iff replacing ¢ with
¢ anywhere in any statement of probability will yield the same value.
He then proves that if two formulas are classically logically equivalent,
then they are probabilistically equivalent. He doesn’t explicitly assume
commutativity and associativity for A, or the double negation rule, or
anything of that sort, but is able to derive probabilistic equivalents of them
from his probability axioms.

Popper’s axioms entail that some elements i are such that for all ¢,
p(¢ | ) = 1. (Among other things, this means that p(—y | ¢) = 1!) Fol-
lowing van Fraassen (1976), we call such elements abnormal and all others
normal. Popper’s axioms entail that if x is normal, then 0 < p(¢ | x) <1,
and that p(¢ | x) +p(¢ | x) = p(= (¢ A=) [ X) + p(¢ A x), so that con-
ditional on any normal event, we have a standard probability function. Fur-
thermore, they entail that if ¢ is abnormal, then for any x, p(—¢ | x) = 1.
Finally, they entail that whenever ¢ is a classical logical contradiction, ¢ is
abnormal.

Importantly, this means that Popper’s notion of conditional probability
(like all the others I am aware of) is of no help in using conditionalization
to represent belief revision rather than just update. Consider an update rule
that says py (¢ | ) = pe(¢ | ¢ A x), where x is the conjunction of everything
that one has learned between t and t'. Now imagine a person who, between
time 0 and time 1 learns A, and between time 1 and time 2 learns —A.
If update can include revision of past learning (which implicitly means
that learning is fallible), then this should result in something reasonable.
However, what we see is that for any ¢ and ¢, p2(¢ | ) = p1(¢|p AN —A) =
po(¢ | (p A =A) A A). But since (p A 7A) A A is a contradiction, it is
abnormal. Thus, po(¢ | (y A —A) A A) = 1. So by updating on the negation
of something that one previously learned, one’s degrees of belief have
become unusable, because all probabilities are equal to 1. This is why
I focused in Section 1.3 on the role of infinity in generating events of
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probability 0, rather than Hajek’s examples of conditionalizing on the
negation of something that has already been learned.

However, one important thing to note for Popper’s system is that
p(1) = 0 does not entail that ¢ is abnormal. However, if p(¢) = 0 but ¢ is
normal, then unconditional probabilities alone do not suffice to determine
the probabilities conditional on . Thus, conditional probability really is
primitive in this system. For instance, consider models of Popper’s axioms
with sentence letters A and B, with p(A) = 1/2 and p(B) = 0. Every
formula of the language is classically equivalent to a contradiction, or
to a disjunction of some of A A B,AA—-B,~AAB,—~A A —B. The stipu-
lated values determine all the unconditional probabilities, and thus all the
probabilities conditional on formulas of positive unconditional probability.
However, it is consistent with these values that A A B and —A A B be either
normal or abnormal. If both are abnormal, then so is B, and probabilities
conditional on any of the three of them are all equal to 1. If one is abnormal
and the other is normal, then probabilities of any formula conditional on
the normal one are 1 or 0 depending on whether the formula is entailed
by it or not. If both are normal, then any value for p(A | B) is possible,
but this value then suffices to determine the rest of the probabilities in the
model.

And in fact, Kemeny (1955) proves that something like this holds fairly
generally for finite languages. If we only have n sentence letters, then
there are 2" “state descriptions” in the language (conjunctions of each
sentence letter or its negation), and every formula is either a contradiction
or equivalent to a disjunction of some of these. The Popper axioms are
then equivalent to the following stipulation. There are k functions m; for
i < k, and each of these functions assign a non-negative real number to
each state description. For each m;, the sum of the values it assigns to
the state descriptions is 1. For each state description X, there is at most
one m; such that m;(X) > 0. A proposition is abnormal iff it is either a
contradiction, or it is a disjunction of state descriptions that are assigned
value 0 by every m;. If 1 is normal, then let i be the lowest number such
that there is a state description X with m;(X) > 0 and X entails ¢. Then

ZX entails A ml(X)
L_X entails o Mi (X )

In this system, unconditional probabilities are just equal to the sums of the
values of m, but they put no constraints on the values of the succeeding
functions, which are needed to define the full conditional probability
function.

For infinite languages, things can be slightly more complicated. Consider
a language with sentence letters A; for natural numbers i. Consider just
the models M; where M; satisfies sentence A; and none of the others. It

p(e|y) =
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is not hard to check that every formula of the language is either true in
finitely many of these models and false in the rest, or false in finitely many
of these models and true in the rest. If ¥ is true in infinitely many models,
then let p(¢ | ) = 0 if ¢ is true in finitely many models and 1 otherwise.
If ¢ is true in none of these models, then ¢ is abnormal. Otherwise, if ¢
is true in finitely many models, then define p(¢ | ) as the ratio of the
number of models in which ¢ A ¢ is true to the number of models in
which 1 is true. This definition satisfies Popper’s axioms, but cannot be
represented by a lexicographically ordered set of probability functions
as Kemeny shows in the finite case. (This example is one that Halpern,
2009 attributes to Stalnaker.) Halpern also discusses a slight variant of this
case where the probability function agrees with this one in all cases except
where ¢ is true in finitely many models. In the variant, p(¢ | p) = 1 if ¢
is true in the highest numbered model in which 1 is true, and 0 otherwise.
This probability function also satisfies Popper’s axioms but cannot be
represented by a lexicographically ordered set of probability functions. But
again, these functions have the same unconditional probabilities and the
same abnormal propositions, but different conditional probabilities, so that
conditional probability must be specified separately from unconditional
probabilities.

Popper’s six conditions are the following (Popper, 1959a, Appendix iv¥).

1. For all ¢, there are x,0 with p(¢ | ) # p(x | ).

2. If forall x, p(¢ | x) = p(¥ | x), then for all 6, p(6 | ¢) = p(6 | ).
3. Forall g, ¢, p(¢| ) = p(¢ | ¢).

4 poAYlx) <p(¢lx)

5. (@AY LX) =pl@leAxX)p(¥]x).

6. For all ¢, ¢, either p(¢ | ) +p(—¢p |yp) = p(¥ | ), or for all y,
P ) =pxly).

In Appendix v* of Popper (1959a), he derives a sequence of consequences
of these postulates. Importantly, he doesn’t assume any logical features
of A and — in these derivations—he only uses the explicit probabilistic
assumptions made above.

First, using condition 3, he defines k = p(¢ | ¢) for any formula ¢. Using
4 and 5 he then proves that k2 <k ,s00 < k < 1. After a few more
steps, he then proves that 0 < p(¢ | ¢) < k for any ¢, ¢. From this, he
is then able to derive that k = k?, so k = 0 or k = 1, but condition 1
rules out k = 0. Condition 4 then tells us that 1 = p(¢ A |pAP) <
p(¢ | Ap), sop(¢p|pAp) = 1. With condition 5 this then proves that
p(@AN¢|¢) = p(¢]|¢). Abit more manipulation allows him to derive that
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p@AY|x)=p¥A¢lx) and that p(@ A (P AX) [ (@AP)AX) =1, and
after several more steps, that p(¢ A (Y A x) |0) = p((¢ A ) A x| 6). Thus,

he has derived that A is commutative and associative, up to probabilistic
equivalence.

He then turns his attention to negation and derives several important
results. First, he derives that p(—(¢ A —¢) | ) = 1. Then he derives that

p(o(=p A=) [x) = p(@ [ x) + P | x) = p(¢ A Y[ x). If we introduce an
abbreviation V such that ¢ V i just stands for =(—¢ A —¢), this becomes

peVylx) = pl@¢lx)+p@lx)—pl@Ayg|x) whichis a version of
the standard law of Additivity. He then derives that p(¢ A (Y A x) | 6) =
p((@AP) A (@AX)[6), and p(¢ A (pV x)[0) = p((PAY)V (A X)|6).
Using this, he derives that p(=—¢ A ¢ | x) = p(¢ AP | x) and that if
p(¢x) = p(¢[x) then p(=¢ [ x) = p(=¢ | x). He then derives that
p(oV ¢ |p) = p(¢| ). And finally, he proves that if for all k, p(¢ | k) =
p( [x), and p(x |x) = p(6 ] ), then for all x, p(¢ A [x) = p(x A0 |x).

With these conditions, he is then able to show that logically equivalent
formulas are probabilistically equivalent, and derive the facts I mentioned
above about abnormal formulas, and probabilities conditional on normal
formulas.

For Popper, one of the important features of this characterization is
that probability can play the role of giving the meanings of the logical
symbols. This is quite a natural desideratum for a logical interpretation
of probability, though it may not be as natural for other interpretations.
This program is developed further by Field (1977), who gives a method for
giving meanings to quantifiers (though this is substantially more clumsy
than Popper’s method for the connectives).

One thing to note about Popper’s formalism is that infinitary versions of
Additivity (and Conglomerability, and Disintegrability) can’t even be stated,
much less satisfied or violated. First, every formula is finite, so that even if
the language is expanded by adding a disjunction symbol, there are no
infinite disjunctions explicitly expressible in the language. Second, by the
Compactness Theorem of propositional logic, no formula in this language
is logically equivalent to an infinite disjunction of formulas expressible
in the language unless it is also logically equivalent to a disjunction of
finitely many of those disjuncts. One might wonder whether this holds
for probabilistic equivalence, but probabilistic equivalence is only defined
for formulas within the language, and infinite disjunctions aren’t in the
language, so the question doesn't arise.

While some might find this to be an advantage of the sentential for-
mulation of probability, many have found it to be a limitation and have
given what they call versions of Popper’s system where the bearers of
probability are sets rather than formulas of a language, and the operations
are set intersection and complement rather than (uninterpreted) A and —
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(Roeper & LeBlanc, 1999; Héjek & Fitelson, 2017). But since Popper’s goal
was at least partly to characterize the sentential operations in terms of
probability, rather than using facts about sets to prove some results about
probability, I think of these systems as significantly different.

Versions of these systems are given by van Fraassen (1976), Spohn (1986),
McGee (1994), and Halpern (2009), among others. Because the bearers of
probability are sets, these authors are able to prove more general character-
izations than Kemeny. In particular, Spohn shows that if we add Countable
Additivity to Popper’s axioms, then these probabilities can always be
represented as a lexicographically-ordered set of Countably Additive mea-
sures m;. However, because of the results mentioned in Section 1.4.2, there
must be failures of Conglomerability and Disintegrability in certain parti-
tions, even if Countable Additivity is assumed. These authors also show
several results relating these set-theoretic versions of Popper’s system to
probabilities involving infinitesimals (as discussed by Wenmackers, this
volume). However, while McGee claims that the two systems are equiva-
lent, Halpern shows that there are some subtleties to consider. But once
we start looking at Countably Additive set-based systems that are like
Popper’s it is useful to consider a slightly more general formalization that
includes all of the above as special cases.

3.2 Rényi

Alfréd Rényi gave the first English-language version of his system for
conditional probability in his (1955), though it also appears briefly in the
second chapter of the posthumous textbook (1970a) and is developed in
somewhat greater detail in the second chapter of his (1970b). I will gener-
ally follow his (1955) in my discussion, though the structural requirements
on B only appear in the later books. Some of the theory appears slightly
earlier in publications in German or Hungarian.

Although philosophers often lump Popper and Rényi together, Rényi’s
early theory is much more flexible than Popper’s. It does include a set-
based version of Popper’s system as a special case, but it also includes a
version of Kolmogorov’s Regular Conditional Probability as a special case
as well. However, Rényi’s major aim in developing his theory is to account
for a very different application from either of these (and in fact, his later
theory explicitly rules out non-trivial versions of Popper and Kolmogorov’s
systems in favor of these other applications). In statistical practice it is
sometimes relevant to work with an “improper prior”—something much
like a probability function, that can turn into a probability function by
conditioning on some event, but for which the unconditional “probabil-
ities” are infinite. This flexibility also allows Rényi’s theory to include
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actual relative frequencies, as a system where there is no unconditional
probability and all probabilities are conditional.

3.2.1  Overview

The background theory for Rényi’s conditional probabilities (just like for
Regular Conditional Probabilities) is the traditional Kolmogorov axiom-
atization of probability. There is some set () of “possibilities,” and the
bearers of probability are subsets of this set. (Different interpretations of
probability will interpret these possibilities and sets of them differently.)
Not every subset of the space of possibilities is a bearer of probability, but
there is some collection A of them that are. A is assumed to be a o-algebra
or o-field, which means (as before) that the empty set is an element of A,
the complement of any element of 4 is an element of 4, and if A; for
i € N are any countable collection of elements of A, then [J;cp A; is also
an element of 4.1

A is the set of bearers of probability. But unlike in Popper’s theory, not
every bearer of probability can be conditioned on. Instead, Rényi considers
a collection B C A subject to the following conditions. For any B; and B,
that are both in BB, B; U B, € B. There exists a countable sequence B; for
i € IN of elements of B such that ;e Bi = Q. And @ ¢ B. While A is a
o-algebra, B is a “bunch,” that may lack complements and infinite unions,
as well as (), and definitely lacks the empty set.

He then defines a conditional probability function p(A | B) for A € A
and B € B to be any function satisfying the following conditions. For
all A€ Aand B € B, p(A|B) > 0 and p(B|B) = 1. For any count-
able sequence of disjoint sets A; € A, p(Ujen 4i | B) = Lien P(Ai | B)—
conditional on any fixed element B, probability is Countably Additive.
Finally, if B,C,BNC € B, then p(ANB|C) = p(A|BNC)p(B|C). (In
the later book he adds one more condition, which I will discuss later.)
Although there is no official notion of unconditional probability, if () € B,
then we can use p(A | Q) as a surrogate for p(A). (The fact that B may
lack (2 may make this formalism of particular interest for interpretations
of probability where some positive amount of information is needed to
generate any probabilities, like actual relative frequency, and perhaps
logical and evidential probability. See Section 1.2.)

In the previous section, ‘F” was used for the field of all bearers of probability and ‘A’ was
used for the sub-field that we are conditioning on. In this section I follow Rényi in using
‘A’ for the field of all bearers of probability, and ‘B’ for the subset that can be conditioned
on. I hope that the change in notation is not too confusing—readers should expect still
other choices of letters in other sources on this topic.
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3.2.2  Simplest Examples

Rényi gives several basic examples of conditional probability spaces satis-
fying these axioms. Many of these examples use the notion of a “measure,”
which is very much like a probability function. A measure is just a Count-
ably Additive function y assigning non-negative extended real numbers to
elements of a c-algebra A of subsets of some set (). To say that the values
are “extended real numbers” is just to say that in addition to all the non-
negative real numbers, +co is also a possible value of the function, with
Countable Additivity defined to include this value in the obvious ways (as
the sum of any non-convergent series of positive real numbers, or as the
sum of any set including +o0). The difference between a measure and a
probability function is that for a standard probability function, p(Q)) =1,
while for a measure, 3(()) can be any non-negative extended real number.
A measure is said to be finite if 11(Q) is a positive real number, and o-finite
if there is a countable collection of sets S; for i € IN with each u(S;) finite
and Q) = U;en Si-

The most basic example of a Rényi conditional probability space is to
let u be any finite measure, and let B be the collection of all elements
of A whose measure is positive. Then define p(A | B) = u(ANB)/u(B),
and it is straightforward to see that all axioms apply. Of course, this
example is of no help to the problems discussed in Section 1.3, because
it leaves probabilities conditional on many elements of A undefined, and
in particular on any element whose measure is 0, which are exactly the
elements that have unconditional probability 0.

A slightly more general example is to let  be any measure at all on
0, and let B be the collection of all elements of A whose measure is
positive and finite. Then define p(A | B) = u(A N B)/u(B). Interestingly,
if 4(Q) = o0, then this means that there is no notion of unconditional
probability—all probability is conditional probability. However, in addition
to leaving out probabilities conditional on (), this sort of example also still
leaves out p(A | B) when u(B) = 0. However, this sort of example is the
one that motivated Rényi’s development of the theory, and in his later
books he adds an axiom that entails that every conditional probability
space is of this type, with y being o-finite. I will come back to the features
of this class of examples later.

3.2.3 Popper and Kolmogorov

In the slightly more general system defined in his earlier paper, he also
gives several other interesting examples. Instead of a single measure
i we can consider a countable set of measures y; for i € IN. Then we
let B be the collection of all members of A such that there is exactly
one & with u,(B) > 0, and no « such that y,(B) = +oo. If we define



CONDITIONAL PROBABILITIES

p(A|B) = ua(ANB)/uy(B) for this unique a, then we have another
example of a Rényi conditional probability function. By Spohn’s result
mentioned in Section 3.1, this means that every Countably Additive Popper
function is an example of a Rényi conditional probability function (where
we leave probability conditional on abnormal sets undefined, rather than
saying it is uniformly equal to 1).

Rényi also considers cases in which Disintegrability or Conglomerability
might be satisfied. Starting on p. 307 of his (1955), he discusses both what
he calls “Cavalieri spaces” and then “regular probability spaces.” These
are spaces in which A is the o-algebra generated by a random variable
V, and B contains all the sets of the form x < V < y as well as the
sets of the form V = x, and in which the probability function satisfies
Conglomerability with respect to the partition in terms of V = x. As he
notes, his basic definition of a conditional probability space allows for
Conglomerability over A to fail. However, he gives several examples in
which it holds, including an instance of the Borel paradox where B is the
set of longitudes and wedges built up from longitudes. This shows a case
where he allows for non-trivial probabilities conditional on some events of
probability 0. But it leaves conditional probability undefined for any event
that is not composed of longitudes.

As I discussed in Section 1.4.3, if we consider not just one conditional
probability function, but have many, each with its own B, such that every
non-empty set is in one of the 3, then we can get an adequate notion of
conditional probability that responds to the problem of conditioning on
events of probability 0 (from Section 1.3) while satisfying Conglomerability.
However, p(A | B) will then depend on which probability function is being
used, which corresponds to the question of which bunch B of sets is
the base of conditioning. Regular Conditional Probability is a special
case of Rényi’s theory, where B ranges only over sub-c-algebras and
Conglomerability is required to hold.

Thus, Rényi’s theory is mathematically more general than the theory
of Regular Conditional Probability. However, this generality leaves many
choices open to us. If the philosophical interest is in preserving a unique
notion of conditional probability that doesn’t depend on B at all, then
most of this generality is unwanted. Restricting to the case where B just is
the set of all non-empty sets is the subject of Section 3.3.

3.2.4 Infinite Measure

Despite the interest of these sorts of conditional probability spaces, Rényi’s
primary interest is in the second example from Section 3.2.2, where the
conditional probability is defined from a single measure y that is o-finite
but not finite. This is made clear by the discussion in the first two pages
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of his (1955) of the importance of unbounded measures in statistical
practice. In his (1970a) he adds an extra axiom to the definition of a
conditional probability space, requiring that for any B,C € B with B C C,
p(B|C) > 0. And in his (1955), most of his discussion is confined to
spaces that satisfy it.

As Theorem 8 in his (1955), and as Theorem 2.2.1 of his (1970a), he
proves that for every conditional probability space satisfying this further
condition, there is a o-finite measure y such that p(A|B) = u(ANB)/u(B)
for all A € A and B € B, and that this measure is unique up to constant
multiple.

The proof is not terribly difficult. Recall that there is a countable se-
quence B; € B, for i € IN with ;e Bi = Q. Without loss of generality,
we can assume that B; C B, for any i < j. (If they don’t already satisfy
this condition, just replace B; with the finite union U;<; B;.) Now we can
define y(By1) = 1, and p(B,) = 1/p(B1 | By). Then, for any A € A, we can
define u(A) = limy o p(Bn)p(A | By). Verifying that this definition of y
is well-defined and gives a measure is somewhat tedious, but not terribly
difficult. It is substantially easier to verify that any other measure giving
the same conditional probability function must be a constant multiple of
this one, and that this one is o-finite.

By restricting consideration to this sort of probability space, Rényi
eliminates all of the non-trivial Popper functions. This is because under
this new characterization, whenever p(A | B) is defined, p(B | C) will be
positive whenever it is also defined, unless C N B = &. However, Popper’s
notion of conditional probability was intended to capture cases where
p(B) = 0 and yet B is normal.

Some philosophers have grouped Popper and Rényi together as giving
similar notions of primitive conditional probability. However, Rényi re-
quires Countable Additivity where Popper can’t even state it, and Rényi’s
mature theory rules out all interesting Popper functions, as well as ruling
out any resolution to the problem of conditioning on events of probability
0. Although Rényi’s theory even more so than Popper’s makes conditional
probability the basic notion (because () can fail to be in B), it addresses
only the motivating problem from Section 1.2 (the conceptual requirement
that all probabilities are conditional) and not the one from Section 1.3
(conditioning on events of probability 0).

This mature theory works well for the actual relative frequency inter-
pretation of probability. In fact, one of the standard examples that Rényi
considers has exactly this form. Let () be some countable set, let A be
the collection of all subsets of this set, and let y(A) be the number of

He appears to have this same restriction in mind in his (1970b), though he writes the
requirement in a way that is conditional on p(B| C) > 0 rather than requiring it. But that
book develops very little of the theory.
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elements of A. (Since () is countable, we see that u is o-finite, since ()
is the union of countably many sets with finitely many elements each.)
If we let B be the set of all non-empty finite subsets of (), and define
p(A|B) = u(ANB)/u(B), then this just is the definition of finite relative
frequency.

3.2.5 Improper Priors

Another more characteristic example lets () be the set R? of pairs of real
numbers. Let A be the collection of all Lebesgue measurable subsets of
this set, and let u be standard Lebesgue measure. Then let B be the set of
all Lebesgue measurable subsets of this set with positive finite measure.
The resulting probability measure is uniform conditional on any finite
region, and undefined on infinite or null regions.

If we return to the generality of the early theory (so that we allow B to
contain elements whose probability is 0 conditional on large elements of B),
we can generalize to a slightly more interesting set 53 as follows. Let R;f;y/f
be the rectangle of points {(x,y): x1 < x < xp,y1 <y < y»}. Let B be the
set of all such rectangles. When x1 < x; and y1 < y2, we define p(A | Ry23?)
as before, as the ratio of the standard two-dimensional Lebesgue measure
of AN Riﬁf% to the measure of Rii%, which is just (x2 — x1)(y2 — y1). How-
ever, when x; = x, or y; = 1, the “rectangle” is actually a line segment.
In such a case we use the relevant one-dimensional Lebesgue measure to
define the conditional probability. (This is effectively an example where
we have a sequence of three measures—two-dimensional Lebesgue mea-
sure Jiy,;, one-dimensional Lebesgue measure y, with respect to x, and
one-dimensional Lebesgue measure p, with respect to y.) Again, our prob-
ability is uniform conditional on finite rectangles of positive size, but it
is also uniform conditional on finite line segments parallel to the x or y
axis. But again, there is no unconditional probability, because the space as
a whole has infinite measure.

The motivation for this sort of example comes when we generalize it still
further. Instead of using Lebesgue measure, we use a measure with a non-
uniform density. Then the formulas for calculating conditional probabilities
are exactly those given in Section 2.1 for Kolmogorov’s Regular Conditional
Probabilities, except that some of the integrals might be infinite, and we
only officially allow for probabilities conditional on sets where the integrals
are finite. In that section, since there was an unconditional probability
function, the integrals were always guaranteed to be finite, but here we
allow for them to be infinite. When they are infinite, it is standard to say
that the conditional probability function arises from an “improper prior,”
which is not itself a probability function.
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This is the foundation of much Bayesian statistical practice. For instance,
one might be interested in estimating the distribution of values of V in
some population. One might antecedently be sure that, over the relevant
population, V is distributed according to a normal distribution with some
unknown mean u and variance ¢2. In the absence of information one
wants an “uninformative prior,” which should be invariant under changes
of measuring scale of V. (For instance, we might convert feet to meters, or
Fahrenheit to Celsius.) It turns out that the only such prior is one where
the probability that x; < y < xp and 0 < y; < 02 < y is proportional to
(x2 — x1) log % But without antecedent bounds on how large x and ¢?
might be, this gives rise to an improper prior. In particular, since

X2 ry2 Y2
—dydx = (xp — x1) log ==,
/Xl /yl y Y (2 1) gyl

this means that we can do the calculations with a density given by
d(u,0?) =1/02.

In this case, in addition to the population mean and variance, there are
further random variables given by the observed values of V on samples
from the population. We have assumed that each of these samples is
taken from the same normal distribution with mean y and variance o2.
If we represent the density of the normal distribution by N, ,2(x), then
our overall density is given by d(x,u,0?) = Ny (x)/ 2. Interestingly,
although this density yields an improper prior, it turns out that conditional
on any possible observed value of x, the integral over all values of y and
0? is finite (because the normal distribution dies off fast enough in each
direction). It is a classic result of Bayesian statistics that the posterior
distribution of # conditional on observed x values is given by Student’s ¢-
distribution. There are many other cases like this, where a density function
over some parameters gives rise to an improper prior, but the natural
likelihood function for some observable evidence yields a proper posterior
conditional on any possible observation.

Of course, all of this Bayesian analysis only works when it is possible
to calculate probabilities by integrating densities. This only works when
the conditional distributions satisfy Conglomerability (and thus Count-
able Additivity) wherever they are defined. Thus, this sort of statistical
application requires both Rényi’s idea that “unconditional probabilities”
can be unbounded, and Kolmogorov’s idea that conditional probabilities
might be relativized to a partition.

However, the notion of an improper prior is also in some ways closely
conceptually related to failures of Countable Additivity. This can be seen
by looking back at the first example we gave of an improper prior. This
was the conditional probability space given by finite counting over a
countable set. There is some sense in which this conditional probability
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space is aiming to represent a uniform unconditional probability over the
countable set, like the de Finetti lottery that (for some) motivates rejection
of Countable Additivity. By the technique of improper priors, Rényi is
able to represent this distribution in a way that captures much that is
important, though it does not give any notion of unconditional probability.
Because the total space is o-finite, there is a countable sequence of sets
B; € B for i € IN such that Q) = [J;cy Bi- We can define a merely Finitely
Additive probability function over Q) by defining p(A) = lim; ;. p(A | Bi),
though for many sets A this limit is undefined, and in general the limit
will depend on the specific choice of the sequence B;.

3.3 De Finetti/Dubins—Full Coherent Conditional Probabilities

The final theory of Coherent Conditional Probabilities to be considered
here takes seriously the motivation in these cases to have well-defined
unconditional probabilities while giving up on Countable Additivity. This
theory arises from de Finetti (1974) and Dubins (1975, section 3). However,
it may be useful for many readers to also consult the expositions of this
theory by Seidenfeld (2001), Seidenfeld et al. (2013), or the book length
treatment by Coletti and Scozzafava (2002).

The basic background system is the same as that of Kolmogorov and
Rényi, but I repeat the definitions here so that readers don’t have to flip
back. There is a set () of possibilities, and we consider some collection A
of subsets of Q). If A contains the empty set, as well as complements and
pairwise unions of its members, then A is said to be an algebra. If it also
contains unions of any countable set of its elements, then it is said to be a
o-algebra. An algebra B is said to be a sub-algebra of A iff every member of
B is a member of A, and a sub-o-algebra of A if B is a o-algebra.

Unconditional probability for an algebra A is assumed to be given by
a function p(A) defined for A € A subject to the three basic principles.
p(Q)) =1, p(A) > 0forall A € A and p(AUB) = p(A) + p(B) when
A and B are disjoint members of A. If B is a sub-algebra of A, then a
conditional probability for (A, B) is a two-place function p(A | B) defined
for A € A and non-empty B € B subject to the following constraints.
For any A € A and non-empty B € B, p(A|B) > 0 and p(B|B) = 1.
For any A1, A; € A and non-empty B € B, if A; N Ay N B is empty,
then p(A; | B) + p(A2 | B) = p(A1 U Ay | B). For any B,C € Bwith BNC
non-empty, and any A € A, p(ANB|C) =p(A|BNC)p(B|C).

These axioms are much like Popper’s axioms, but formulated in terms of
sets rather than sentences of a language. They are much more like Rényi’s
axioms, but without Countable Additivity (and without the requirement
that A be a o-algebra), and with the additional requirement that p(A | Q))
be defined (since () is a member of any algebra B).
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One further notion is of great interest here. If B = A, then the Coherent
Conditional Probability is said to be Full. The central results in the relevant
section of Dubins” paper show that for any probability function on an
algebra A there is a Full Coherent Conditional Probability agreeing with
it, and that for any conditional probability function on (A, B) there is an
extension to a Full Coherent Conditional Probability. In fact, he shows that
the same is true for any partial function, each of whose finite fragments can
be extended to a Full Coherent Conditional Probability function on its finite
algebra. In particular, this applies to any Rényi conditional probability
function, and even allows us to extend to the case in which A is the full
power set of (). Thus, we are able to get what Popper was after—a notion
of conditional probability that is defined for every non-empty set.

However, the techniques for proving that these Full Coherent Condi-
tional Probabilities exist are non-constructive. Dubins uses Tychonov’s
theorem (which is equivalent to the Axiom of Choice), and cites similar
results by Krauss (1968) arrived at using non-principal ultrafilters (whose
existence is proven using the Axiom of Choice). Similar results extend-
ing linear (i.e., finitely additive) functions on subspaces to full spaces
often appeal to the Hahn-Banach Theorem, which is also independent
of Zermelo-Fraenkel set theory without the Axiom of Choice. Given a
Full Coherent Conditional Probability on the surface of a sphere, one can
generate the paradoxical Banach-Tarski sets (Pawlikowski, 1991). Thus,
we are not usually able to work with these Full Coherent Conditional
Probabilities in any explicit way, if we really want them to be defined on
all subsets of a reasonably-sized probability space. I have argued elsewhere
(Easwaran, 2014) that mathematical structures depending on the Axiom of
Choice in this way cannot be of epistemic or physical relevance, though
they are surely of mathematical interest.

Given the results of Section 1.4.3, Full Coherent Conditional Probabilities
fail to satisfy Conglomerability when some Additivity fails. For instance,
let Q) be the set of pairs (m,n) of natural numbers. Let S, be the set
of all pairs whose first coordinate is m and let T, be the set of all pairs
whose second coordinate is 1. Let p be any probability function such
that p(S | Tn) = p(T | Sm) = 0 for all m and n. (We can think of this
probability function as describing two independent de Finetti lotteries.) Let
E be the event that m > n. Then we can see that for any m, p(E | S,;,) =0
(since, conditional on S, only finitely many values of n will satisty E), but
for any n, p(E | T,,) = 1 (since, conditional on T}, only finitely many values
of m will fail to satisfy E). Since the S,, and the T, are both partitions,
any value of p(E) will fail to satisfy Conglomerability in at least one of
these partitions. This sort of failure of Conglomerability is inevitable if
one allows failures of Countable Additivity and requires that sets like E
nevertheless have both unconditional and conditional probabilities.
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However, these Finitely Additive Full Coherent Conditional Probabilities
have the advantage of existing even for algebras that are not countably
generated, avoiding the problems for Regular Conditional Probabilities
mentioned in Section 2.3.1. They also always satisfy p(A| A) =1, even in
the bad algebras where Countably Additive conditional probabilities are
forced to allow for p(A | A) = 0, as mentioned in Section 2.3.2 (Seidenfeld
et al., 2001). In particular, in addition to the case where one adds a non-
measurable set to the collection of Borel sets, one might also consider the
algebra of “tail events,” defined as follows.

Let Q) be the set of all countable sequences (ag,a1,ay,...) of Os and 1s
(which can be taken to represent the set of all countable sequence of coin
flips). Let A be the c-algebra generated by the sets of the form

A =A{(ap,a1,az,...): a; = 1}.

Say that an element A € A is a “tail event” if, for any element of A,
changing any finitely many places in the sequence results in another
element of A. (The tail events are exactly those that depend only on the
long-run behavior of the sequence and not on any short-term behavior.)
Let B be the set of all tail events. It is clear that B is a sub-c-algebra of A.

A classic result of Kolmogorov shows that if the unconditional proba-
bility is that on which each event A; (“the i-th flip results in heads”) is
independent with probability 1/2, then every event in B has probabil-
ity 1 or 0. A further generalization by Hewitt and Savage shows that if
the unconditional probability is any “exchangeable” probability (in the
sense of de Finetti), then the events in B all have probability 1 or 0. As
a consequence of these results, and a theorem about algebras in which
all probabilities are 1 and 0, it turns out that any element B € B whose
unconditional probability is 0 must also have p(B | B) = 0, if conditional
probability is Countably Additive. (See Blackwell and Dubins, 1975, or
Seidenfeld et al., 2001. This is possible because the algebra of tail events
is not countably generated.) But if conditional probability is allowed to
be merely Finitely Additive, then we can have p(B|B) = 1 for these
tail events. Dubins and Heath (1983) show how to construct such a Full
Coherent Conditional Probability. However, this construction assumes a
particular merely Finitely Additive probability distribution over all subsets
of the natural numbers, and thus indirectly appeals to the Hahn-Banach
Theorem, and thus the Axiom of Choice.

Since these functions are defined on the full power set, there is a sense
in which we no longer need to limit ourselves to an algebra A of “mea-
surable” sets. Even the unmeasurable sets are assigned some probability.
We aren’t able to pin down precisely what the probability is of any such
set, but since the non-measurable sets themselves are only proved to exist
by non-constructive means using the Axiom of Choice, this may not be
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such a problem. The Banach-Tarski Paradox shows that if () contains
3-dimensional (or higher) Euclidean space, then any such Finitely Ad-
ditive probability function must fail to be invariant under rotations and
translations. But again, the sets under which these invariances must fail
are only proven to exist by means of the Axiom of Choice.*®

Thus, provided that one is not worried about working with non-
constructive methods, Full Coherent Conditional Probabilities can be of
interest when dealing with algebras that aren’t countably generated.

4 CONCLUSION

There are two main families of arguments that conditional probability
should be taken as the basic notion of probability, or at least as equally fun-
damental to unconditional probability. One set of arguments (Section 1.2)
is based on conceptual grounds, but apart from the interpretation of prob-
ability as actual frequency, it doesn’t appear to be decisive. For logical,
evidential, and perhaps even subjective probabilities (if we follow Levi), we
may be able to argue that nearly all probabilities are conditional. But if we
can make sense of conditioning on a tautology, then again the argument
is not decisive. Instead, this argument points out that many probability
functions depend on some background condition that is of a different type
than the events that have probabilities.

The other set of arguments (Section 1.3) is based on mathematical
grounds. Depending on how we treat vague or indeterminate probabilities
(if there even are any), these problem cases may not motivate anything
beyond a supervaluational treatment. I believe that supposed cases of
conditioning on an event with undefined unconditional probability are
either cases of maximally vague probability, cases where the “event” is
actually part of the background for a probability function rather than a
condition, or are cases where the conditional probability also does not
exist.

Instead, it is cases of probability 0 (and particularly those where the
0 arises from an infinite partition) that motivate a reconsideration of the
mathematics of probability theory the most strongly. To deny that these
cases exist is to assume something much stronger than Finite Additivity
or Countable Additivity—it is either to assume Full Additivity for all
cardinalities (and thus discrete probability, distributed only over countably
many possibilities) or else the even stronger assumption that there are only

If we replace the Axiom of Choice by the Axiom of Determinacy, then we lose the Hahn-
Banach theorem and the other means by which these Finitely Additive functions were
proven to exist, but Lebesgue measure turns out to already be defined—and Countably
Additivel—over all subsets of Euclidean space. See Bingham (2010, Section 8).
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finitely many possibilities. This seems to go against the meaningfulness of
scientific vocabulary discussing numerical parameters in the world.

I have discussed four different mathematical theories for conditioning
on events of probability 0. Regular Conditional Probabilities may allow
us to say that unconditional probability is prior to conditional probability,
while Popper’s theory, Full Coherent Conditional Probabilities, and the
most general version of Rényi’s theory require conditional probability to
be prior.

Popper’s theory is the one most familiar to philosophers. This theory
has the advantage of deriving the relations of deductive propositional
logic as special consequences of the probability axioms, so it may be
particularly well-suited to the logical interpretation of probability. But
because the bearers of probability are sentences in a language rather than
sets of possibilities, it can’t even express the circumstances that give rise
to the problem of probability 0, much less say anything useful about them.
In any case, it is effectively an instance of the more general Dubins/de
Finetti Full Coherent Conditional Probability.

Rényi’s theory is the most general, having versions of the others as spe-
cial cases (though some require dropping Countable Additivity). Rényi’s
theory is particularly well-suited to the account of probability as actual
relative frequency, and may well be particularly suited to interpretations
of probability where not every proposition can be conditionalized upon,
particularly if the tautology is one of these propositions (so that there is no
such thing as unconditional probability). It also has advantages for certain
calculations in a Bayesian statistical framework that depend on the use of
“improper priors.”

The Dubins/de Finetti Full Coherent Conditional Probabilities, and
the Regular Conditional Probabilities descending from Kolmogorov, have
competing mathematical virtues. Regular Conditional Probabilities can
satisfy Conglomerability in each partition, as well as Countable Additivity,
which appears to be the most well-motivated level of Additivity. However,
Full Coherent Conditional Probabilities allow each conditional probability
to be defined in a unified and coherent way (rather than one depending on
a partition in addition to a conditioning event). I suggested in Section 1.1
that actual applications of conditional probability always come with some
clear sense of the partition that is relevant, so this is not a cost of the theory
of Regular Conditional Probabilities. Full Coherent Conditional Proba-
bilities avoid some problem cases that arise on badly behaved algebras.
However, I claim these algebras are too complicated for a finite human
mind to grasp, so I think they don’t arise in epistemic application in any
case. Regardless, Full Coherent Conditional Probabilities are themselves
so complex that they can’t be proved to exist without some version of the
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Axiom of Choice, while Regular Conditional Probabilities can be given
constructively when the unconditional probability is defined by a density.

The Regular Conditional Probabilities associated with an unconditional
probability are generally only unique up to measure 0. Perhaps there could
be some constraint like continuity, or computability, that might uniquely
define conditional probabilities for each partition given unconditional
probabilities on countably generated algebras. If this is right, then we
may be able to say that unconditional probability is basic after all, and
conditional probability defined in terms of it. But otherwise, there must
be some sense in which conditional probability is either primitive, or at
least equally fundamental to unconditional probability. Or else we can
follow Myrvold (2015) and allow that we can’t always get what we want
in a theory of conditional probability.

Rényi’s fully general theory must be used in a few situations where
conditional probability is required to be independent of unconditional
probability (namely, for actual relative frequency in infinite worlds, and
in applications requiring “improper priors”). For other applications, the
situation is summarized in Table 1 (page 193).
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INFINITESIMAL PROBABILITIES Sylvia Wenmackers

Suppose that a dart is thrown, using the unit interval as a target;
then what is the probability of hitting a point?

Clearly this probability cannot be a positive real number,

yet to say that it is zero violates the intuitive feeling that,

after all, there is some chance of hitting the point.

—Bernstein and Wattenberg (1969, p. 171)

It has been said that to assume that 04+0+0+...+0+ ... = 1is absurd,
whereas, if at all, this would be true if
‘actual infinitesimal” were substituted in place of zero.

—de Finetti (1974, p. 347)

Infinitesimals played an important role in the seventeenth century devel-
opment of the calculus by Leibniz and—to a lesser extent—by Newton.
In the twentieth century, calculus was applied to probability theory. By
this time, however, Leibnizian infinitesimals had lost their prominence in
mainstream calculus, such that “infinitesimal probability” did not become
a central concept in mainstream probability theory either. Meanwhile, non-
standard analysis (NSA) has been developed by Abraham Robinson, an
alternative approach to the calculus, in which infinitesimals (in the sense
of Equation 1 below) are given mathematically consistent foundations.
This provides us with an interesting framework to investigate the notion
of infinitesimal probabilities, as we will do in this chapter.

Even taken separately, both infinitesimals and probabilities constitute
major topics in philosophy and related fields. Infinitesimals are numbers
that are infinitely small or extremely minute. The history of non-zero in-
finitesimals is a troubled one: despite their crucial role in the development
of the calculus, they were long believed to be based on an inconsistent
concept. For probabilities, the interplay between objective and subjective
aspects of the concept has led to many puzzles and paradoxes. Viewed
in this way, considering infinitesimal probabilities combines two possible
sources of complications.

This chapter aims to elucidate the concept of infinitesimal probabilities,
covering philosophical discussions and mathematical developments (in
as far as they are relevant for the former). The introduction first specifies
what it means for a number to be infinitesimal or infinitely small and
it addresses some key notions in the foundations of probability theory.
The remainder of the chapter is devoted to interactions between these
two notions. It is divided into three parts, dealing with the history, the
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mathematical framework, and the philosophical discussion on this topic,
followed by a brief epilogue on methodological pluralism. The appendix
(Section 16) reviews the literature of 1870-1989 in more detail.

Infinitesimals

In an informal context, infinitesimal means extremely small. The word
‘infinitesimal” is formed in analogy with ‘decimal’: decimal means one
tenth part; likewise, infinitesimal means one infinith part. As such, the
word ‘infinitesimal” suggests that infinitesimal quantities are reciprocal
to infinite ones, and that infinitely many of them constitute a unit. In
Wenmackers (2018), I have introduced the term “harmonious” as a property
of number systems such that “each infinite number is the multiplicative
inverse of a particular infinitesimal number, and vice versa.” In other
words, an harmonious number system does justice to the etymology of
‘infinitesimal.” Moreover, in such a number system, “neither the infinite
nor the infinitesimal numbers are conceptually prior to or privileged over
the other in any way.”

These suggestions can be formalised in non-standard analysis (NSA),
which allows us to work with so-called hyperreal numbers. The set of
hyperreal numbers, *IR, contains positive (and negative) infinite numbers,
larger than any (standard) number, as well as their multiplicative inverses,
which are strictly positive (or strictly negative, respectively) infinitesimal
numbers, smaller than any positive real number yet greater than zero.
The hyperreals are harmonious in the sense just defined.

Let us now state the formal definition for infinitesimals that we consider
in this chapter. A number x is infinitesimal if

VneN: \x|<%. (1)

According to this definition, zero is an infinitesimal and it is the only real-
valued infinitesimal.> Number systems that do not contain strictly positive
or strictly negative infinitesimals, such as R, are called Archimedean; num-
ber systems that do contain non-zero infinitesimals, such as *IR, are called
non-Archimedean. NSA is certainly not the only framework for dealing with
infinitesimals,? but currently it is the most common one for representing
infinitesimal probabilities, so that is what this chapter focuses on.

Actually, it is more accurate to write ‘a set of hyperreal numbers,” rather than ‘the set,’
since the definition is not categoric (unlike that of R) and there is no canonical choice
among the *R’s. See Section 16.2 for details.

Some authors exclude zero in their definition of infinitesimals, but for the exposition in
this chapter it will turn out to be beneficial to include it.

Section 11 mentions two alternative frameworks that deal with infinitesimal numbers.
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What is an infinitesimal probability value? The answer depends on
which number system you are using: we already observed that zero is
the infinitesimal number within the real numbers, whereas the hyperreal
numbers contain (infinitely many) strictly positive infinitesimals, which
could serve as strictly positive infinitesimal probability values.

One way to obtain a new number system is by considering a suitable
quotient space. In general, the definition of a quotient space relies on the
definition of some equivalence relation on a collection of objects, which
can be (generalized) sequences.* Informally, the equivalence relation ex-
presses a condition for two objects to be “indistinguishable” from each
other or for their difference to be “infinitesimal” or “negligible.” In the
case of (generalized) sequences, this condition has to specify (i) a crite-
rion to compare corresponding positions by and (ii) a selection rule that
specifies at which collections of indices said criterion has to hold. Both
the construction of the real numbers and that of the hyperreal numbers
fits this general description, but the relevant equivalence relations impose
different conditions for sequences to be indistinguishable from each other.

(1) The negligibility of a sequence can be formalised as “converging to
zero”: the sequence gets (i) arbitrarily close to the (rational) number
zero (ii) eventually.

(2) Another way to define negligibility of a sequence is as being (i)
exactly equal to the (real) number zero (ii) except for a small index set.

We will define the criteria and selection rules in italics later in this
chapter (see Section 8.5). For now, it suffices to know that two sequences
can be defined to be equivalent if they differ only by a negligible sequence
(in a well-defined sense). Using this equivalence relation, we can define
equivalence classes of sequences; the structure of the collection of these
equivalence classes is a quotient set. For some choices, this set may be
isomorphic to that of the set of real or hyperreal numbers. In particular, the
equivalence class of rational-valued Cauchy sequences that are negligible
in the sense of (1) is the real number zero (Or) and the equivalence class of
real-valued sequences that are negligible in the sense of (2) is the hyperreal
number zero (0-R).

Since being exactly equal to zero implies being infinitely close to zero,
but not vice versa, we may think of Or as the infinitesimal in the set of
the real numbers, which corresponds with an infinite equivalence class
of sequences, many of which belong to that of non-zero infinitesimals in
the hyperreal context. In this sense, the hyperreal numbers are capable of
representing finer distinctions (among sequences) than the real numbers
are.

4 For generalized sequences, see Section 9.2.
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After this brief introduction to infinitesimals, let us now give an even
briefer intro to probabilities.

Probabilities

In an informal context, probable means plausible or likely to be true.
Similar words were available in medieval Latin (‘probabilis’ for probable
and “verisimilis” for likely). As such, probability can be seen as a shorthand
for “probability of truth” and likelihood is a measure of appearing to be
true. This suggests that probability is a hybrid concept that combines
objective chances and subjective degrees of belief (or credences). We may
picture it as a two-layered concept with an objective ground layer, which
represents the objective state of affairs (truth), and an epistemic cover
layer, that deals with evidence presented to an agent and quantifying
the possibility of it being misleading concerning what is underneath it
(appearance).

Many authors have tried to capture this duality that is inherent in the
probability concept. Hacking (1975) describes it very aptly as the Janus-
faced nature of probability and Gaifman (1986) paints a colourful picture
of probability as living on a spectrum from purely objective to purely
epistemic forms. It may be helpful to imagine both layers as allowing for
different degrees of opacity. For an agent with limited epistemic (cognitive
and empirical) resources, the outer layer acts as a veil. First assume that
the underlying system is purely deterministic, such that there are no prob-
abilities “out there,” or, put differently, they are all zero or one. However,
the agent does not see things exactly as they are—only approximately so.
Hence, the probabilities that are relevant to such an agent may be other
than just zeros and ones.> If the underlying system is indeterministic, on
the other hand, even an agent with unlimited epistemic resources (such as
Laplace’s demon), who could see right through the outer layer, would still
need probabilities to describe the system.

Apart from its interpretation, the topic of this chapter also requires
us to pay attention to the mathematical representation of probabilities.
Probability is usually formalised as a function from the event space—a
collection of subsets (often a sigma-algebra) of a given set, the sample
space—to the unit interval of the real numbers or a non-standard extension
thereof. A probability distribution is called fair or uniform if the same
probability is assigned to any singleton from the domain. Depending on
other background assumptions, this may imply slightly stronger properties,
such as translation invariance.

This viewpoint helps us to understand that Laplace (1814) was strongly involved in the
development and popularization of probability theory, while also popularizing the idea of
a deterministic universe.
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In this chapter, we will encounter infinitesimals both in the context of
subjective probability (infinitesimal credences or degrees of belief) and in
the context of objective probability (infinitesimal chances), as well as in
contexts that are intermediate on this continuum.

PART 1
HISTORICAL OVERVIEW

In this part, we review some essential mathematical developments that
allow us to represent infinitely small probabilities as positive infinitesimals
in a hyperreal field. We also review philosophical discussions of the topic.
A much more detailed list of contributions from the period 1870-1989
can be found in the appendix (Section 16). More recent contributions are
discussed in Part IV.

The concept of infinitesimals was thought to be intrinsically problematic
and inconsistent for most of European history. An important exception
is the work of Archimedes, who allowed infinitesimals as a method to
find new results, though he did not regard them sufficient for establishing
rigorous proofs of those results. In the sixteenth century, a Latin translation
of many of the works of Archimedes was published in Europe, which led
to a revival of scholarly interest in infinitesimals, especially in Italy. (See
Alexander, 2014, for an overview of the seventeenth century response to
infinitesimals in Europe.)

In the second half of the seventeenth century, infinitesimals played a
crucial role in the development of the calculus, especially in the work of
Gottfried Wilhelm Leibniz (see, e.g., Katz & Sherry, 2012; Katz & Sherry,
2013). Whereas the guiding notion in Newton’s calculus was the “fluxion”
(the derivative of a continuous quantity), Leibniz developed his version of
the calculus starting from infinite sums (integrals). Newton’s and Leibniz’s
usage of infinitesimals was criticized early on, famously by Berkeley
(1734), who called them “ghosts of departed quantities.” Around the
1870s, the calculus received its formalisation in terms of real numbers and
standard limits, which do not allow non-zero infinitesimals. This further
consolidated the general belief that infinitesimals do not live up to the
rigour of modern mathematics, but we will see that a formalisation of this
concept was discovered later on, in the 1960s.

The current standard approach to calculus, which is used for instance in
college physics, is based on the nineteenth century formalisation, in which
the epsilon-delta definition of the limit operation takes a central place (see
Section 16.1). As a result, our standard calculus differs from both the New-
tonian and the Leibnizian version of it. The core idea of a limit operation is
closer in spirit to the Newtonian version, while Leibnizian notation proved
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to be more enduring, with, for instance, dx/ dt for the derivative of x to ¢.
(For Leibniz, this signified an actual ratio of infinitesimals, whereas our
standard calculus defines it as the limit of a ratio of real numbers.)

As we will see below, measure and probability theory was developed
based on the standard calculus. The non-standard approach, based on the
alternative formalisation of the calculus from the 1960s, is more recent.
(Hence the unfortunate name ‘non-standard’.) But, like infinitesimals in
general, also the more specific notion of infinitesimal probability was in
use long before its formal definition. For instance, in his famous wager
argument (Pensées L418/5680), Pascal specifically excluded them from his
argumen’c.6

1 THE PRE-ROBINSONIAN ERA: 1880-1959

Around 1880, the current foundations of the real numbers and the standard
calculus, with the epsilon-delta definition of the limit, were well in place.
Non-standard analysis was not developed yet.

Standard measure theory was being developed by mathematicians such
as émile Borel, Henri Lebesgue, Johann Radon, Maurice Fréchet, Giuseppe
Vitali, and many others. In response to the sixth problem of David Hilbert
(1900), also the first axiomatization of probability theory was developed:
Kolmogorov (1933) presented an approach that embedded probability the-
ory into standard measure theory. (His axioms are included in Section 7.)

After the foundational work by Kolmogorov, the measure-theoretic
approach to probability became the standard formalism, which represents
probabilities as real numbers. Strictly speaking, non-zero infinitesimal
probabilities (defined as non-Archimedean quantities) are incompatible
with this formalism. Nevertheless, informal usage of the term has remained
in fashion in at least two ways. First, in some contexts it is used to discuss
events that have zero probability but that are logically possible. Second, the
phrase “infinitesimal probability” is also used in the context of continuous
probability distributions, to refer to dp.”

At about the same time, Bruno de Finetti (1931) was developing a
qualitative theory for ranking events in terms of their probability. He
discovered that, in general, these rankings are non-Archimedean. His
rankings can be said to be more fine-grained than what is expressible

In Krailsheimer’s translation, the relevant sentence reads as follows (Pascal, 1670/1995,
p. 151, my emphasis): “[W]herever there is infinity, and where there are not infinite chances
of losing against that of winning, there is no room for hesitation, you must give everything.”
The notation stems from Leibniz, for whom dp indicated an infinitesimal increment
of a quantity p. In contemporary standard analysis, however, there are no non-zero
infinitesimals and dp merely indicates that the variable of differentiation or integration is

p.
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by the real-valued probability functions in Kolmogorov’s theory. Five
years later, de Finetti (1936) specifically addressed logically possible events
that receive probability zero in Kolmogorov’s theory. Here, we see that
de Finetti explicitly entertained the notion of infinitesimal probabilities,
but he ultimately chose to stick to real-valued probabilities and to reject
countable additivity.

Working on the subjective interpretation of probability, Frank P. Ramsey
and Bruno de Finetti developed the notion of coherence: in order for an
agent’s degrees of belief to be rational (at a given point in time), they
have to conform to Kolmogorov’s axioms for probability. Abner Shimony
(1955) aimed to strengthen this notion to strict coherence (now often called
regularity): it requires that the degree of confirmation of an hypothesis
h given a piece of evidence e is 1 if and only if / logically entails e.
Shimony was aware that strict coherence required infinitesimal betting
quotients—and thus was incompatible with Archimedean values—if the
sample space was infinite. Inspired by this proposal, Rudolf Carnap (1980)
set out to develop a theory for non-Archimedean credences. Although
this interesting approach was written before Robinson’s work, it was only
published afterwards. As a result, it has not been very influential.

Meanwhile, Thoralf Skolem (1934) had discovered non-standard models
of the natural numbers (Peano arithmetic), which we now call hypernatu-
ral numbers. By applying similar model-theoretic techniques to the real
numbers, Robinson would be able to develop non-standard analysis. This
brings us to the next period.

2 ROBINSON’S NON-STANDARD ANALYSIS: 19605

Abraham Robinson (1961, 1966) founded the field of NSA: he applied ear-
lier results from mathematical logic (such as that of Skolem) to real closed
fields in order to develop an alternative framework for differential and
integral calculus based on infinitesimals and infinitely large numbers. This
allowed for a formal and consistent treatment of infinitesimal numbers
and provided a harmonious number system (as defined in the introduc-
tion). Soon enough, NSA was applied to measure theory in general and to
probability theory in particular.

For our current purposes, it is good to be aware of two modes of op-
eration of NSA: in one, the hyperreal numbers merely serve as a means
to prove results about the real numbers, but in the other, obtaining a
hyperreal-valued function or some other non-standard object is the final
goal.® The first mode of operation represents the oldest and still the most

This situation is similar to that of the complex numbers. On the one hand, as Painlevé
(1967, pp. 1-2) writes: “entre deux vérités du domaine réel, le chemin le plus facile et le plus court
passe bien souvent par le domaine complexe” (“between two truths of the real domain, the
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common application of NSA, which is to make proofs about standard
analysis shorter, easier, or both—mainly by alleviating epsilon-delta man-
agement (Tao, 2007).2 Although the most common one, this is not the only
application of NSA. The second mode of operation allows us to investigate
non-standard objects in their own right, including those that (roughly
speaking) do not have standard counterparts.’® In particular, if we are
interested in developing a probability theory that allows us to assign
non-zero infinitesimal probabilities to some events, we cannot achieve this
if we move back to the real domain in the final step.

An early example of a non-standard measure was provided by Bernstein
and Wattenberg (1969), who attempted to measure the infinitesimal proba-
bility of hitting a particular point when playing (infinitely precise) darts on
the unit interval of the real numbers. This result was a very important first
step in the development of probability theories in which the numerical
values respect the non-Archimedean ordering of the events (as studied by
de Finetti, 1936). Hence, Bernstein and Wattenberg (1969) have often been
cited by philosophers who work on the foundations of probability theory.
However, since they focused on a particular case, their result is not fully
general: they did not present a non-standard probability theory, although
their approach can be generalized and does in fact contain many of the
essential ingredients present in later developments.

3 POST-ROBINSONIAN DEVELOPMENTS: 1970—-1989

Seminal contributions to non-standard measure theory were obtained
by Peter A. Loeb (1975). The dominant line of research in non-standard
measure and integration theory is based on real-valued functions that
have a non-standard domain and the main application (like for all of
NSA) is finding new results in standard measure and integration theory.
Although the well-developed theory of Loeb measures has proven fruitful
in many applications, and therefore should not go unmentioned, it is not
of immediate interest to the topic of this chapter (but see Herzberg, 2007,
2010). For, although infinitesimal probabilities do occur in the construction

easiest and shortest route quite often passes through the complex domain”). This analogy
is also employed by Bartha and Hitchcock (1999, p. 416), who write: “Just as imaginary
numbers can be used to facilitate the proving of theorems that exclusively concern real
numbers, our use of nonstandard analysis will be used to facilitate and motivate the
construction of purely real-valued measures.” On the other hand, complex numbers are
also useful by themselves (for instance, to represent phasors in physics).

An early expression of this (prior to the development of NSA) can be found with Joseph-
Louis Lagrange, as cited in Blaszczyk, Katz, and Sherry (2013, p. 63). Recent examples are
given by Terence Tao in his blog posts (see, e.g., Tao, 2007-2012).

10 These are “external” objects, as will be defined in Section 4.
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of Loeb measures, the end goal is to obtain real-valued measures, thereby
eliminating all non-zero infinitesimal probabilities.

Although de Finetti lived long enough to see the advent of NSA and was
aware of its existence, he never used it to continue his 1936 observations
regarding infinitesimal probabilities and he did not show much interest in
applying it in his own work on probability.**

To make the earlier, often technical, work accessible to a larger audience,
including philosophers, it was important to summarize and interpret
it. Brian Skyrms played an important role in this regard. For instance,
in Skyrms (1980, Appendix 4), he discussed the trade-off between four
demands—additivity, translation invariance, everywhere-definedness, and
regularity—for standard and non-standard measures. In the same year,
David Lewis (1980) discussed infinitesimal credences, in the same spirit as
Shimony and Carnap had done prior to Robinson’s work. Later on, Lewis
(1986a) also mentioned infinitesimal chances, in wordings very reminiscent
of Bernstein and Wattenberg (1969).

Observe that at this point, there still was no non-Archimedean alter-
native to parallel Kolmogorov’s Archimedean probability theory. It was
Edward Nelson (1987) who provided the first axiomatic approach for a
probability theory with infinitesimal values. His “radically elementary
probability theory” is indeed very simple, but it requires an entirely dif-
ferent mindset than, for instance, Loeb’s approach. In particular, Nelson’s
theory cannot be used to assign probability measures to any standard
infinite set. Instead, one has to go one step back in the modelling process
and represent the set of possibilities by an infinite hyperfinite set rather
than a standard infinite set. We will introduce the notion of hyperfinite
sets in Section 4.3. Since hyperfinite sets are very similar to discrete finite
ones, after that choice, everything resembles Kolmogorov’s theory for
finite sample spaces.

At this point, we end our historical overview. More details can be found
in the appendix (Section 16). Some of the more recent approaches and
debates will be discussed in Section 8, Section 9, and Section 14.

11 See Section 16.3 for details.
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PART II
MATHEMATICAL PRELIMINARIES

In this part, we will briefly review some common non-standard tools
and the dual notions of filters and ideals. We will apply these notions in
the ultrafilter construction of the hyperreals. We also present the axioms
of standard probability theory. After that, we will be properly equipped to
address infinitesimal probabilities in the context of countable lotteries as
well as other cases.

4 COMMON NON-STANDARD TOOLS

In this section, we review some common tools that appear in (nearly) all
approaches to non-standard analysis.**

4.1 Universe

By a universe, we mean a non-empty collection of mathematical objects,
such as numbers, sets, functions, relations, etc.—all of which can be defined
as sets by working in Zermelo-Fraenkel set theory with the Axiom of
Choice (ZFC). This collection is assumed to be closed under the following
relations and operations on sets: C, U, N, \, (+,), %, P(+), -". Furthermore,
we assume that the universe contains R and that it obeys transitivity (i.e.,
elements of an element of the universe are themselves elements of the
universe).

In particular, we are interested in the standard universe, which is the
superstructure V(IR), and a non-standard universe, *V (RR).

4.2 Star-map

The star-map (or hyperextension) is a function from the standard universe
to the non-standard universe.

x: V(R) = "V(R)
A—="A
We assume that Vn € IN, *n = n and that N # *IN.
In the literature, two notations occur for the star map: before or after
the standard object. In this chapter, I have opted for the former notation,

because it allows us to read the *-symbol as the prefix ‘hyper-". For instance,
“R are called “hyperreals.”

12 For further information, see also Benci, Di Nasso, and Forti (2006, section 1) and Cutland

(1983, section 1.2).



INFINITESIMAL PROBABILITIES

4.3 Internal and External Objects

It is important to realize that the star-map does not produce all the objects
in the superstructure of *IR; it only maps to the internal objects, which live
in *V(R) € V(*R).

Some examples of internal objects (¢ *V(R)):

o any element of *IR, so in particular any element of IN or IR;

o any hyperfinite set, such as {1,..., N} with N € *IN (which can be
obtained via the hyperextension of a family of finite sets);

o the hyperextensions of standard sets, such as *IN and *IR;

o the hyperpowerset of a standard set, A: *P(A), which is the collec-
tion of all internal subsets of *A.

Some examples of external objects (¢ V(*R) \ *V(R)):

o elementwise copies of standard, infinite sets (notation for the ele-
mentwise copy of A in the non-standard universe: ?A), such as “IN
or “R (due to the embedding of N and R in *IR, the “-prefix is often
dropped);

o the complements of previous sets, such as *IN \ “IN and *R \ “R;

o the halo or monad of any real number, r: hal(r) = {R € *R | |r —
R| is infinitesimal }—in particular hal(0), which is the set of all in-
finitesimals;

o the standard part function st (also known as the shadow), which
maps a (bounded) hyperreal number to the unique real number that
is infinitesimally close to it (Goldblatt, 1998, section 5.6);

o the full powerset of the hyperextension of a standard, infinite set, A:
P(*A), which is the collection of all subsets of *A, both internal and
external.

4.4 Transfer Principle

Consider some standard objects Ay, ..., A, and consider a property of
these objects expressed as an elementary sentence (a bounded quantifier
formula in first-order logic): P(A1,..., A,). Then, the Transfer principle
says:
P(Ay,...,Ay)is true & P(*Aq,...,"A,) is true.

Observe: this is an implementation of Leibniz’s “law of continuity” (or
souverain principe) in NSA (see Katz & Sherry, 2012, section 4.3). It may be
helpful to consider two examples.
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EXAMPLE 1: WELL-ORDERING OF IN  Consider the following sentence:
“Every non-empty subset of IN has a least element.” Transfer does not
apply to this, because the sentence is not elementary. Indeed, we can find
a counterexample in *IN: the set of infinite hypernatural numbers, *IN \ N,
does not have a least element. (Of course, this is an external object.)

If we rephrase the well-ordering of IN as follows: “Every non-empty
element of P(IN) has a least element,” then we can apply Transfer to this.
The crucial observation to make here is that *P(IN) C P(*IN).

EXAMPLE 2: COMPLETENESS OF R Consider the following sentence:
“Every non-empty subset of R which is bounded above has a least upper
bound.” Again, Transfer does not apply to this, for the same reason as
in Example 1. A counterexample in *R is hal(0), the set of infinitesimals.
(Again, an external object.)

If we rephrase the completeness property of R as follows: “Every non-
empty element of P(R) which is bounded above has a least upper bound,”
then we can apply Transfer to it. Similarly as before, the crucial remark is
that *“P(R) € P(*R).

5 FILTERS AND IDEALS

The introduction mentioned two ingredients for a new number system:
the second one is a selection rule. This idea can be formalised using either
filters or ideals. These are dual notions, and both are collections of subsets
from an index set that fulfil additional criteria.

Intuitively, a filter on a set is a collection of its subsets that are “large
enough,” whereas an ideal is a collection of its subsets that are “small
enough” or “negligible.” The meanings of “large enough” and “small
enough” are given by the formal definitions. The ultrapower construction
of the hyperreal numbers crucially relies on the application of a particular
kind of filter: a free ultrafilter. We review the relevant definitions here."3

F is a proper, non-empty filter on X if

F CP(X), (collection of subsets)
& F, (proper)
XeF, (non-empty)
ABe F=ANBeF, (closure under finite meets)

13 Definitions are given, e.g., in Schechter (1997, Ch. 5). For a further discussion of filters,

including free ultrafilters, see, e.g., Goldblatt (1998, p. 18-21) and Cutland (1983, section 1.1).
For an introduction to the meaning and application of ultrafilters, see Komjath and Totik
(2008).
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(Ac FABDA)=BeF. (upper set property)

The smallest non-empty proper filter is simply {X}. A filter F is principal
(or fixed) if 3xg € X : VA € F, xp € A.

A filter F is free if it is not principal, or equivalently: if the intersection
of all the sets in F is empty. For an infinite set X, its Fréchet filter is the
filter that consists of all the cofinite subsets of X. Such a filter is free, but it
is not an ultrafilter. (For a finite set X, the Fréchet filter is not proper.)

F is an ultrafilter on X if F is a filter on X and

VACX(A¢F=X\AcF).

F is a free ultrafilter on X if F is an ultrafilter on X and F is free. This
definition implies that a free ultrafilter contains no finite sets. Given the
ultrafilter condition, it is equivalent to say that it does contain all cofinite
sets. In other words: an ultrafilter is free if and only if it contains the
Fréchet filter. Hence, free ultrafilters do not exist for finite X.

Given a (proper) filter on X, F, the corresponding (proper) ideal in the
Boolean algebra P (X), Z, is obtained as follows:

T={X\F|FeF}

The smallest proper ideal is simply {@}. The ideal corresponding to a free
ultrafilter is called a Boolean prime ideal.

6 APPLICATION OF FREE ULTRAFILTERS: HYPERREAL NUMBERS
6.1 Constructing the Real and Hyperreal Numbers

In the introduction, we indicated that both the standard real numbers
and the hyperreal numbers can be defined as equivalence classes of se-
quences.* They differ in the collection of sequences on which they operate
and in the equivalence relation that they impose.

The real numbers can be constructed based on rational-valued Cauchy
sequences. The set of such functions is defined as follows:

C=1{(qn) €QN|Ve € Qso, INEN: Vn,m > N (|gs — qum| <€) }.

Two sequences in this space are considered to be equivalent to each other
if their difference (which is defined member-wise) is a sequence that gets
arbitrarily close to (the rational number) zero, eventually. This means that for
each target, from some position in the sequences onwards (i.e., eventually

14 We will not consider Dedekind cuts or other constructions.
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or cofinally), their member-wise difference is strictly smaller than the
target. Symbolically, where (g,,), (sn) € C:

(qn) ~ (su) & Ve € Qsp, IN € N : Vi > N (|gn — su| <€).

The hyperreal numbers can be constructed based on real-valued se-
quences (all of RN)—this is called the ultrapower construction of *R.*
Two sequences in RN are considered to be equivalent to each other if their
member-wise difference is exactly equal to (the real number) zero, except
for a small set of indices. In this case, the first part of the condition is clear
and all we are left to specify is what counts as a “small” set. If we choose
to define small sets as finite sets, and thus large sets as cofinite ones, this
coincides with the “eventuality” condition used in the construction of the
real numbers. This is equivalent to imposing the Fréchet filter, consisting
of the cofinite subsets of IN (the complements of “small” sets, these are
“large” sets), to the indices of the sequences. This setup does allow us to
construct a non-standard model of the real numbers; in fact, it was the first
one that was ever constructed and it is still of interest because it yields a
constructive non-standard model.*® However, such a system is rather weak
(too weak for some of the questions we are interested in). According to
the Fréchet filter, many sets (such as arithmetic progressions'?) are neither
small nor large. Usually, small and large sets are defined by fixing a free
ultrafilter on IN: a set is large if it is in the ultrafilter and small if it is
not, and the ultra-condition guarantees that for each set either it is in the
ultrafilter, or its complement is.

Informally, the sequence-based construction of the hyperreals can be
thought of as follows. Consider the old equivalence class of the sequences
that we have come to regard as the real number zero and define new
equivalence classes on it, making distinctions among the infinitesimal
sequences depending on their rate of convergence. As such, we dissect
the single infinitesimal real number into infinitely many infinitesimal
hyperreal numbers. In fact, we perform a similar dissection for each of the

The ultraproduct construction is a general method in model theory: see Keisler (2010)
(including the references in the introduction) for more information. To see how the
ultrapower construction is related to the existence proof of non-standard models using the
Compactness theorem (see Section 16.2), observe that one way to prove the Compactness
theorem is based on the notion of an ultraproduct (cf. Goldblatt, 1998, p. 11).

Schmieden and Laugwitz (1958) were the first to give a construction in this style and they
used a Fréchet filter on IN rather than a free ultrafilter. Unlike a free ultrafilter, the existence
of a Fréchet filter does not require any choice axiom. However, in strictly constructivist
approaches, the framework of classical logic as used by Schmieden and Laugwitz (1958)
also has to be replaced by intuitionist logic (Martin-Lof, 1990). More recently, Palmgren
(1998) has investigated constructive approaches to NSA. For an accessible introduction to
a weak system of NSA based on Fréchet filters, see also Tao (2012).

Arithmetic progressions are sets of the form aN+b = {n € N | n mod a = b} for some
a € N and some b € {0,1,...,a —1}.
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real numbers simultaneously. Does this give us old wine in new packages?
Not quite: it is more like breaking the chemical bonds in the molecules
of the wine, and maybe even breaking the atoms—tearing apart the very
fabric of what the original numbers are made of, and recombining the
fragments in a novel way (with a completely different order structure): we
get an entirely new set of numbers out of the operation. Observe that we
still have infinitely many real-valued sequences in the equivalence class
of the hyperreal number zero (those that differ from zero at only finitely
many positions), but—in as far as they converge in the standard sense at
all—only a strict subset of them converge to the real number zero.

6.2 Remarks on the Ultrapower Construction

When a free ultrafilter is applied in the ultrapower construction of the
hyperreal numbers, its various properties affect the properties of the
hyperreals in the following ways (see Section 8.5):

o the upper set property of a filter is required to obtain an equivalence
relation on RN;

o the property of an ultrafilter, which ensures that each set is either
large (in the filter) or small (in the corresponding ideal), is required
to obtained trichotomy on *IR (i.e., for each r,s € *R either r < s or
r=sorr>s);

o the property of being free in combination with being ultra, which
ensures that every finite set is small, is required to ensure that
R & *R.

Although free ultrafilters can be proven to exist (given the usual set-
theoretic assumptions), it can also be proven that no explicit example
of them can be given; they are inherently non-constructible objects or
“intangibles” (Schechter, 1997).

If we drop the condition of being free, and apply the Fréchet filter
instead, we obtain a weaker but constructive model of the hyperreals
numbers. Let us consider the implication for probability by considering
the example of a fair lottery on IN. On the one hand, using a Fréchet filter
would still allow us to obtain probability functions that take infinitesimal
values for finite events. On the other hand, the system is too weak to
obtain probability functions that are defined on all of P(IN). For instance,
the subset of odd numbers and the subset of even numbers are neither in
the Fréchet filter nor in the corresponding ideal, so according to this filter
and ideal they are neither large nor small, such that these events would
not receive any probability value.

213



214

18

19

SYLVIA WENMACKERS

7 KOLMOGOROV’'S AXIOMS FOR PROBABILITY THEORY

Since standard probability theory does not contain actual infinitesimals,
it may seem of less importance for the topic of this chapter. However,
Kolmogorov’s approach was very successful and influential: it lies at the
basis of the contemporary presentation of probability theory as a special
case of measure theory, which itself is a branch of real analysis (calcu-
lus).™® Hence, any later proposal for a new theory of probability, possibly
including infinitesimals, has to compete with it. Therefore, we do include
Kolmogorov’s axioms here, or at least an equivalent formulation thereof
(taken from Benci, Horsten, & Wenmackers, 2013). P is the probability func-
tion and () is the sample space, a set whose elements represent elementary
events:

(Ko) DoMmAIN AND RANGE. The events are the elements of 2, a o-algebra
over (),'9 and P is a function P : 2l — R.

(K1) NoN-NEGATIVITY. VA € 2, P(A) > 0.
(K2) NormaLizaTION. P(Q)) = 1.

(K3) Apprrivity. VA, B € 2 such that AN B = &,

P(AUB) = P(A) + P(B).
(Kg) ContinurTY. Let A = |J Ay, where Vin € N, A,, C A, 11 C 2. Then

nelN

P(A) = 5161111\)I P(A,).

Kolmogorov’s assumption of Countable Additivity was crucial for the incorporation of
probability theory into measure theory. This move was motivated by mathematical conve-
nience, rather than by philosophical reflection on the meaning of probability. Kolmogorov
stated (with original italics):

Infinite fields of probability occur only as idealized models of real random
processes. We limit ourselves, arbitrarily, to only those models which satisfy Axiom
VI. (Kolmogorov, 1933, p. 15)

Later, de Finetti (1974, Vol. I, p. 119) would write about Countable Additivity:

it had, if not its origin, its systematization in Kolmogorov’s axioms (1933). Its
success owes much to the mathematical convenience of making the calculus
of probability merely a translation of modern measure theory [...]. No-one
has given a real justification of countable additivity (other than just taking it
as a “natural extension” of finite additivity)

Compare to Schoenflies” reaction to Countable Additivity in Borel measure (footnote 58).
2 is a o-algebra over () if A C P (Q) such that 2 is closed under complementation,
intersection, and countable unions. 2 is called the event algebra or event space.
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The triple (Q, 2, P) is called a probability space.

For our present purposes, the continuity axiom is the most important
one, so let me briefly mention two aspects of it. First, (K4) uses a supre-
mum, which is defined in terms of a standard limit; this limit is guaranteed
to exist for real-valued functions, but not on the hyperreal numbers. Still,
the gist of this axiom can be phrased without reference to the specific
limit operation. It can be regarded as a specific form of a more general
idea: that is, to define the absolute probability of any event from an in-
finite domain as the limit (in some sense) of a sequence of conditional
probabilities associated with that event, conditional on a suitable family
of finite events. This more general principle was called the “Conditional
probability principle” in Benci et al. (2013, section 3.2) and Benci, Horsten,
and Wenmackers (2018, section 3.2), where it was further shown how the
same idea can be applied to hyperreal-valued probability functions (using
a different kind of limit operation). Second, assuming the other axioms,
(K4) is equivalent to requiring countable additivity, which is not compati-
ble with hyperreal-valued probability functions (except in the trivial case
of a finite domain).

PART III
AXIOMATIZATION OF INFINITESIMAL PROBABILITIES

In the historical overview, we have already encountered two approaches to
probability theory that allow infinitesimal probabilities: the axiomatization
of Nelson (1987) and the work of Loeb (1975). What is missing so far
is an axiomatization of a theory that assigns probabilities to standard
infinite sets (such as IN, on which Nelson’s approach is silent) and that
allows infinitesimal or other hyperreal values in the final result (unlike
Loeb’s approach, which is geared toward obtaining results in the standard
domain). This is the purpose of the current part.

8 INFINITESIMAL PROBABILITIES AND COUNTABLE LOTTERIES

Within philosophy, infinitesimal probabilities have often been discussed
in the context of the following example: a lottery on the natural numbers,
N, in particular a fair one (i.e., a lottery in which each individual ticket
receives the same probability as any other one). Since this example is so
common, we discuss it first, before setting up a more general framework in
the next section.?® We start from a real-valued approach (in which zero is

In order to describe probability functions on infinite sample spaces, focusing on IN as
the sample space may seem like a very natural starting point, because IN is the canonical
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the only infinitesimal) and investigate which modifications are required in
order to allow for the assignment of non-zero infinitesimal probabilities.**

8.1 Lotteries on Initial Segments of IN

Ultimately, we want to describe a lottery, fair or weighted, on IN, but
we start by considering a lottery, fair or weighted, on an arbitrary initial
segment of IN: the sample space (set of atomic possible outcomes) is
Q, = {1,...,n}. First, we introduce weights: a real number w; for each
of the elements i of (),,. Without loss of generality, we may assume these
weights to be normalized, such that } ;' ; w; = 1 (e.g., in a fair lottery
w; = 1/n for all i). Then, we define the probability on ),, P,, of an
arbitrary subset of IN, A, as follows:

Pu(A) = éwi < #(AN (i),

where # is the counting measure for finite sets. (This suffices: although
A can be an infinite set, A N {i} is empty or singleton.) In the case of a
fair lottery, the probability P,(A) is just the relative frequency of A: the
fraction of elements of A within (),. That P, is finitely additive follows
directly from the counting measure being finitely additive.**

8.2 Taking the Limit

Now, we want to consider a lottery on (2 = IN, rather than on (), =
{1,...,n}. The idea is to consider the lottery on IN as the limiting case

example of a set with the smallest infinite cardinality. It will turn out that in some sense
this problem is not the easiest one to describe, because it is in lockstep with other (less
obvious) occurrences of IN. Among the infinite sets, IN is our usual benchmark, so we
use it in and out of season. As a result, there are hidden symmetries in the problem of a
(fair) lottery on IN, which make it harder to analyze it. To understand this statement, we
first need to encounter the problems alluded to, so we will progress as planned, but I will
return to this observation in the middle of Section 8.3.

The current section presents some of the ideas originally developed in Wenmackers and
Horsten (2013) in a more straightforward way.

For, consider a finite family of mutually disjoint subsets of N, {A; | k € {1,...,m}, A, C
N} (for some m € IN) such that for each i # j, A;N A; = &. Defining the union of
members of the family A = [J;Z; Ay, we obtain for the probability of A:

Py(A) = YiLjwix#(UL; Axn{i})
= L wi x 5l #(Acn{i})
= L X wi x #(Agn{i})
= Xt Pu(Ap).
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of a sequence of finite lotteries. This idea seems apt, since we have () =
lim;, 0 U} 1€2;.23 We will define the probability, P, for an arbitrary subset
of IN, A, analogously to the limiting relative frequency:

P(A) = lim P,(A).

n—o0

Remarks:
o P is not defined for all subsets of IN.?4

o Taking the limit of fair lotteries on (), (where P({i}) = 1/n for any
i € )y) results in a fair lottery on IN, with P({i}) = 0 for all i € IN.

o For a fair lottery on IN, P is the natural density (also known as the
arithmetic density or the asymptotic density).

o In a fair lottery, P is zero for all finite subsets as well as for some
infinite ones (such as the set of squares and the set of primes),>
unity for cofinite sets as well as for some infinite ones (such as the
complements of the previous examples), and intermediate values
for other infinite sets (such as arithmetic progressions® that receive
probability 1/n for some n; e.g., 1/2 for the set of even numbers and
for the set of odd numbers).

For those who have the intuition that the probability of a particular
outcome in a fair lottery on the natural numbers ought to be infinitesimal,
the above real-valued function P that assigns probability zero to such
outcomes does fine: zero is the infinitesimal probability, the only one in the
[0,1] interval of R. Nevertheless, it may bother some that this function does
not allow us to distinguish between the impossible event (represented by
A = &) and some infinitely unlikely but possible events. The worry is that

On the other hand, the ordered set (N, <) is qualitatively different from any (Q,, <):
unlike all of its initial segments, IN does not have a last element. This observation is
suggestive of taking a different kind of limit, which involves a hyperfinite set (which does
have a last element) rather than a standard infinite one.

The collection of subsets for which P is defined does not form a c-algebra. P can be
extended to all of P(IN) but the extension relies on Banach limits and is not unique.
Whereas the usual limit relies on the notion of “eventuality” that can be captured by the
Fréchet filter, which is a free filter that is constructively available, the Banach limit depends
on a free ultrafilter on IN, which relies crucially on a non-constructive axiom (the ultrafilter
principle, UF). See Section 8.5 below for more details.

As such, this probability function can help us to make sense of Galileo’s paradox, which
revolves around the question of whether or not the set of perfect squares is smaller than
the set of natural numbers (see Mancosu, 2009). As measured by the natural density, the
answer to that question is affirmative: it assigns probability unity to the set of natural
numbers and probability zero to the set of perfect squares. On the other hand, the function
does not discriminate between a finite set, the set of perfect squares, and the set of primes.
See footnote 17.
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the probabilities of these events are represented by the same infinitesimal,
and since there can only be one zero (i.e., neutral element under addition),
this observation may motivate a search for non-zero infinitesimals. However,
this worry may be partially addressed by considering a non-Archimedean
ordering of the events, which is a question for qualitative probability
theory?®” rather than for quantitative probability theory. Despite this, there
is an underlying issue that cannot be addressed without considering
numerical probabilities: it is that of additivity. We consider this in the next
section.

8.3 Additivity of P: Finite, Countable, or Ultra

It was mentioned (Part I) that Leibniz’s approach to the calculus was
based on infinite sums (integrals), unlike Newton’s, for whom the notion
of “fluxions” (derivatives) was more basic. Since infinitesimals were most
prominent in Leibniz’s approach, it should come as no surprise that the
concept of infinitesimal probabilities is closely connected to foundational
discussions concerning the additivity of probability values.

Skyrms (1983b) interprets the intuition that measures should be regular
(that only the null set should receive measure zero) as a Zenonian intuition
(cf. Section 16.3): a whole of positive magnitude should not be made up of
parts of measure zero. He argues that a principle of “ultra-additivity”?3
has been present, albeit often implicitly, in discussions concerning mea-
sures at least since the times of Zeno and Aristotle. Since the belief in
ultra-additivity appears to be so deeply rooted in Western thought about
measures, it should not surprise us if it is present, whether presented as an
explicit assumption or a tacit one, in many discussions about probability
measures, too.

In fact, it was exactly such a principle that motivated my own search
for a fair probability function on IN. My main motivation for wanting
to assign non-zero probability to non-empty sets is that it should allow
us to make arbitrary unions of events and obtain their probability by an
addition rule for the individual probabilities (in the case of disjoint events,
by taking the analogous arbitrary sum).*

Recall the work by de Finetti (1931) as discussed in Section 1. See also Pedersen (2014),
Easwaran (2014, p. 17), and Konek (this volume).

Ultra-additivity means additivity for arbitrary collections of disjoint events; it is sometimes
called perfect additivity (see, e.g., de Finetti, 1974, Vol. II, p. 118) or arbitrary additivity
(Hofweber, 2014).

Wenmackers (2011, p. 36): “Intuitively, one could expect probabilities to exhibit perfect
rather than countable additivity. However, this is clearly not possible with real-valued
probability functions. Even the weaker requirement of countable additivity may be prob-
lematic, as we have seen in the example of the infinite lottery. Yet, the property of perfect
additivity may be attainable by non-Archimedean probabilities.” Unaware of the work
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Let us return to the probability functions of the previous sections. Finite
additivity obtains for such a P, like it does for all the functions P,. Since
the function P is the limit of the sequence of functions (P, ), each member
of which has the property of finite additivity (FA), one might suspect P
to have the limiting property of FA: countable additivity (CA). However,
this is not the case: limiting relative frequencies are not CA, because the
relevant limiting operations (from the construction of P and from the
condition of CA) do not commute. To illustrate this, consider a countably
infinite family of mutually disjoint subsets of IN, {Ay | k € N, Ay C IN}
such that for each 7 # j, A; N Aj =@, and define the union of members
of the family, A = Jycn Ax. We say that CA holds for a function p if the
following equality holds:

p(A) = lim 3 p(A)). (2)

In the case of P, we find for the lefthand-side of Equation 2:

P(A) = lim P,(A)

n—+00
_ }E{}o;wi « ngr;okf‘i#mkm ().
Let us now consider a fair lottery (substituting w; = 1/n) with Ay = {k}
such that A = IN; we find:
P(A) = nlgrolo(n x 1/n)

=1

Then, we consider the righthand-side of Equation 2, applying it to P in
the fair case, where P(A;) = 0 for all i:

n n
Jim, 2 P(A) = Jim )0
= 0.

Clearly, 0 is not equal to 1, so CA does not obtain for P, the real-valued
probability function for a fair lottery on the natural numbers.

by Skyrms (1983b), Wenmackers and Horsten (2013, p. 40) clumsily referred to a “SUM”
intuition: “SUM [is the intuition that] [t]he probability of a combination of tickets can be
found by summing the individual probabilities. [...] The assumption SUM is motivated
by the intuition that the probability of a set containing the winning number supervenes
on the chances of winning that accrue to the individual tickets. The usual assumption of
countable additivity (CA, sometimes also called c-additivity) is one attempt of making the
intuition that is encapsulated by SUM precise. We will argue, however, that this is not the
right way to do it in this case. In other words, we will argue that the implementation of
SUM is not as straightforward an affair as is commonly thought.”
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The righthand-side requires us to consider the function P and thus to
take the limit of n to infinity of P,({i}) = 1/n first, which is zero; taking
the limit of a sum of zeros is zero. The lefthand-side requires us to consider
P,. Sure, as n increases, P,({i}) tends to zero for any i € ), (like 1/n),
but the sum of all singleton probabilities is in lock-step with this decrease:
n x 1/n =1, such that the sum of probabilities of all singletons equals
the probability of the entire sample space (total number of tickets times
probability of each ticket), which is unity. This is just FA and it holds for
any n, no matter how large. It also holds that lim, (17 x 1/n) = 1, but
this cannot be read as “the number of tickets times the probability of each
ticket.” It is no additivity principle and it does not suggest an alternative
way of obtaining a real-valued probability function either.3° Yet, it does
suggest the following: that the singleton probabilities in a fair lottery on the
natural numbers ought to be non-zero infinitesimals, such that some sort
of infinite sum over them can result in a non-zero (and non-infinitesimal)
value corresponding to the probability of the corresponding union of
events. In particular, the sum can be unity if we add the probabilities of
all point events.3"

There is another strange aspect to setting P({n}) = 0 for all n € N: it is
not so much that it can be used to represent a fair lottery on IN, but rather
that it can also represent the limit of many kinds of non-fair probability
distributions. Consider, for instance, finite lotteries in which (i) the set of
even numbers is double as likely as the set of odd numbers, (ii) all even
numbers are equally likely and (iii) all odd numbers are equally likely.
For the limit of such weighted lotteries, too, we would have to assign
probability zero to all singleton events (and thus obtain a fair distribution
in the limit).3?

8.4 Diagnosis

Within the context of standard probability theory, we have a single in-
finitesimal probability at our disposal: zero. Even for a lottery on a sample
space that is countably infinite, the lowest infinite cardinality, this turns
out to be too little for three reasons.

1. Across lotteries, it does not allow us to obtain different singleton
probabilities for limits of sequences of qualitatively different finite

Although this idea is suggestive of a procedure for assigning probabilities in such a way that
we can make sense of infinite sums, it does not allow us to define a probability function.
Recall the quote on p. 199 by de Finetti (1974, p. 347) concerning the absurdity of 0 + 0 +
0+4...+0+... = 1. It turns out that this idea is false if the sum represents the usual,
countably infinite sum: such a sum is not defined for infinitesimal terms.

As far as I know, this worry has not yet appeared in the literature.
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lotteries (e.g., finite lotteries that assign equal probability to even and
odd versus finite lotteries that do not).

2. Within a fair lottery, it does not allow us to discriminate between the
probability of many events that are strict subsets of each other (e.g.,
all perfect squares versus a single perfect square).

3. Within a fair lottery, it does not allow us to define an adequate
infinite additivity principle; alternatively, if we insist on countable
additivity, it does not allow us to describe a fair lottery on the natural
numbers.

The first reason is related to a more general observation: like any real
number, zero is the limit of qualitatively different sequences (of rational
or real numbers). In particular, sequences may differ in their speed of
convergence. This suggests that within the collection of sequences that
are considered to be infinitesimal, and thus to converge to zero, some
are smaller than others (even though their limits are all defined to be
zero when working within the real numbers). This brings us to reconsider
what the real number zero is, continuing along the lines set out in the
introduction, and to define an alternative limit operation on sequences.
One way to achieve this is found in the construction of a non-standard
model of a real closed field as was shown in Section 6.

8.5 Alternative Approach with Non-Zero Infinitesimal Probabilities

We apply the equivalence relation that is used to construct the hyperreals
(Section 6) to the sequence of relative frequencies belonging to initial
segments of IN. This results in a different kind of probability function,
which takes its values in the [0, 1] interval of the hyperreal numbers.33

Wenmackers and Horsten (2013) assumed all of NSA as given, whereas
we mainly needed this alternative equivalence relation on the sequences
of relative frequencies in order to obtain a hyperreal-valued probability
value on IN that allows for an infinite additivity principle.

Now that we know the outlines of our labyrinth, we can drastically
reduce the length of our escape route. With the benefit of hindsight, we
see ways to obtain our results with much less baggage. One way, which is
suitable only for fair lotteries and which is alluded to in the 2013 paper, is
to assume a numerosity function on IN and to normalize it. Numerosity
theory has been developed to address some of the very same problems

Actually, it is more accurate to say: a set of hyperreal numbers (cf. Footnote 1), because
the result of the construction depends on the free ultrafilter and there are uncountably
many. We do not dwell on the issue of non-uniqueness now, but we will come back to it in
Section 14.
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that are also discussed in the literature on a fair lottery on IN (Benci &
Di Nasso, 2003; Mancosu, 2009). The main difference is that it is not a
probability function but a measure of set size that should coincide with
the usual counting measure for finite sets, so it is not normalized and
assigns unity to singletons rather than to IN. However, because of the nice
algebraic properties of numerosity theory, normalizing the numerosity
function, in order to obtain a fair probability measure, does not cause any
complications at all.

Alternatively and more elegantly, one could set up an axiomatic system
that states the existence of probability functions on IN that may assign
non-zero values to singleton outcomes (possibly all equal) and repurpose
the previous results in order to prove its consistency.

For instance, consider this proposal for the axioms governing P.

EVERYWHERE DEFINED. P is defined on all subsets of IN: its domain is
the powerset of N, P(IN).

HYPERREAL-VALUED. The range of P is the unit interval of some
suitable field R.

REGULAR. P(A) = 0iff A = @.
Normatrizep. P(N) = 1.

FINTTELY ADDITIVE. VA, B € P(N) if ANB = &, then P(AUB) =
P(A) + P(B).

ULTRA-ADDITIVE. For any collection of mutually disjoint subsets of
IN3# an analogous additivity property holds.

We do not prove the joint consistency of the proposed axioms here: it is a
consequence of what preceded and can be viewed as a special case of the
proof in Benci et al. (2013).

8.6 Examples

Now that we have seen that there exists a hyperreal measure that captures
the idea of a uniform probability distribution over the natural numbers,
let’s illustrate some consequences. In this section, P always refers to such
a distribution. (For proofs, see Benci et al. 2013.)

By assumption, P assigns the same infinitesimal probability to any
singleton outcome of the lottery. If we regard P as a normalized numerosity
function, we see that Vn € N, P({n}) = 1/a, where « € *IN \ N is the
numerosity of IN.

The collection can have an arbitrary cardinality, although, of course, at most countably
many of its members can be non-empty.
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For any finite set A C IN, the numerosity equals the finite cardi-
nality (#), so: P(A) = #(A)/a, which is an infinitesimal. For example,
P({1,2,4,8,16,32}) = 6/a.

For an infinite subset B, P(B) differs by at most an infinitesimal from
the natural density of B (if the latter exists). For example, if B is the
set of even numbers, the natural density is 1/2 and either P(B) = 1/2
(if the even numbers are in the free ultrafilter used to construct P) or
P(B)=(1—-1/a)/2.

For a set that lacks a natural density, P is infinitesimally close to some
Banach limit. Different Banach limits of the same set and Ps constructed by
a different free ultrafilter can differ by more than an infinitesimal amount.
(See Kerkvliet and Meester, 2016, for an example.) In particular, there are
subsets of IN for which the possible P-values range from an infinitesimal
to one minus an infinitesimal. This range can be regarded as a measure of
how pathological a set is.

9 MORE SCENARIOS INVOLVING INFINITESIMAL PROBABILITIES

In the previous section, we discussed one particular scenario that involves
infinitesimal probabilities: a lottery on the set of natural numbers. In this
section, we give a more comprehensive overview of common examples
that feature in discussions of infinitesimal probabilities. Then we show
how we can generalize the approach of the previous section to an all
encompassing theory that is able to assign infinitesimal probabilities to all
of these scenarios.

9.1 Common Examples

We list the examples involving infinitesimal probabilities below, sorted
by increasing cardinality of the sample space: finite, countably infinite, or
uncountably infinite.

First, there are some examples with finite sample spaces that allow for
infinitely small differences in probability among the possible outcomes.
The simplest such case is that of an almost fair coin toss, in which there is
an infinitesimal advantage to one of the sides.

Second, there are examples with countably infinite sample spaces, in
particular with uniform probability distributions. We already discussed the
most common example of this kind: a lottery on the set of natural numbers,
in particular a fair one. A fair lottery on IN is also known as the de Finetti
lottery (Bartha, 2004) or God’s lottery (McCall & Armstrong, 1989). In
this category, there are also fair lotteries on other countable sets, such as
Z, Q, and the unit interval of the rational numbers: [0,1]q. Discussions
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of non-uniform probability distributions on countable domains are less
common, but they do exist, especially in the context of discussions of
the incompatibility between CA and uniform probability distributions on
countable domains.3>

Third, there are examples with uncountable sample spaces, with uniform
and arbitrary probability distributions. Two popular ways of presenting
this is as throwing darts uniformly at the unit interval of the real numbers,
[0,1]r (e.g., Bernstein & Wattenberg, 1969) or as a fair spinner with unit
circumference (e.g., Skyrms, 1995; Barrett, 2010).3° Variations on this theme
include the uniform probability on a unit sphere and the associated Borel-
Kolmogorov paradox of a meridian versus the equator. A different way of
obtaining an uncountable domain is by considering a countably infinite
sequence of stochastic processes, each with a countable number of possible
outcomes. The most common example of this kind is an infinite sequence
of tosses with a fair coin (in which the outcomes of the tosses are taken
to be statistically independent: an infinite Bernoulli process; e.g., Skyrms,
1980; Williamson, 2007; Weintraub, 2008).37

Categorizing a probabilistic problem by one of these three labels need
not be final. Once we have a method of representing probability distri-
butions on uncountable domains, we may arrive back at the finite and
countably infinite case by conditionalization (assuming the relevant events
are measurable; cf. Skyrms, 1983b). It may also happen that we want to
replace a finite sample space by an infinite refinement of it (for instance,
a suitable product space of the initial sample space). For instance, Ped-
ersen (2014, p. 827) mentions a case in which “an agent’s state of belief
cannot rule out arbitrarily deep[ly] nested subdecompositions of a finite
decomposition of a dartboard.”

Some of these scenarios cannot be described by standard probability the-
ory, whereas others—it has been argued—cannot be described adequately
by it, or would benefit from an alternative treatment involving infinitesimal
probabilities. So far, we have seen isolated recipes for hyperreal-valued
probability functions: Bernstein and Wattenberg (1969) gave a recipe to
assign uniform probabilities to subsets of the unit interval of the real

For instance, Kelly (1996) has reflected on the consequences of denying the existence of a
fair infinite lottery: this would have the strange implication that when one wants to test
a universal hypothesis by repeated experiments, one would—in the case in which the
hypothesis is false—encounter a counterexample sooner rather than later.

This example was also mentioned in Lewis (1980), and many others.

It should be noted that Skyrms (1980) refers to the work of Bernstein and Wattenberg
(1969), but they only described a hyperreal-valued probability measure on subsets of [0,1].
However, for assigning infinitesimal probabilities to infinite sequences of coin tosses, a
hyperreal-valued probability measure on subsets of {0,1}N would be needed instead.
Yet, the informal account given by Skyrms (1980, pp. 30—31) is consistent with later
developments of hyperreal probability functions on {0,1}N (see, e.g., Benci et al., 2013).
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numbers. And, in the previous section, we discussed a recipe for assigning
regular probabilities to the canonical countably infinite sample space, IN.
In the end, we would like to have a method that is fully general, which
can be applied to all the examples above, and more. We describe such a
method below.

9.2 Non-Archimedean Probability (NAP) Theory

In this section, we will review some crucial elements that allow us to
generalize the approach from Section 8.3 In Section 8.5, we replaced the
standard limit operation that associates at most one real number with a
sequence of (possibly weighted) relative frequencies by a non-standard
limit that associates a hyperreal number with each of these sequences.
Sequences can be thought of as functions from IN (the index set) to some
set, X. In the case of relative frequencies X = Q, but in general we
allow real-valued weights, so then X = R. Both the standard and the
non-standard limit operation can be understood such as to involve a
filter on the index set (the Fréchet filter on IN and a free ultrafilter on IN,
respectively).

A probability function has to assign values to sets in P(IN), not to IN
itself, so the appropriateness of using countable sequences and filters on IN
to set up such a function is not immediately clear, even in cases in which
the sample space is countable. Observe that we used the countable indices
to correspond to the relative frequencies of initial segments of IN. Since
the usual ordering of the natural numbers induces a natural ordering on
this collection of initial segments, we are able to work with sequences of
the corresponding relative frequencies and with filters on IN.

Our choice for the collection of initial segments may seem self-evident,
because we are familiar with it from the context of natural density, but it
is not canonical: we could have considered Py, (IN), the collection of all
finite subsets of IN (or those except the empty set, Pg,(IN) \ @). In that
case, we can slightly generalize the approach: Py, (IN) with the subset
ordering forms a directed set.3 We can use this directed set as an index
set, instead of IN, obtaining a generalized sequence, also called a net (see,

38 The information given here suffices to get a rough idea of the approach. Further details
(for instance, restrictions on the free ultrafilter to secure certain properties of the resulting
probability functions) can be found in Benci et al. (2013).

39 A directed set (X, %) is a special case of a preordered set (see, e.g., Schechter, 1997, p. 52).
A preordered set is a pair (X, <) consisting of a set X and a preorder < on X, i.e., a relation
on X that is transitive (for all x,y,z € X, if x < y and y < z then x < z) and reflexive (for
all x € X, x < x). For a directed set, there is an additional condition on the preorder:

Vxp,xpeX, JyeX: (xpxyAxn=<y).
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e.g., Schechter, 1997, pp. 157-158): a function from a directed set, which
serves as the index set, to a set, X. Filters on IN are a special case of this
more general setup, since they are collections of subsets of IN that can be
directed by the subset relation.

If we want to assign probability functions to subsets of some sample
space () other than IN, we can follow a similar approach: change the
relevant index set to Py, (Q) \ @. In this case, we also have to consider
free ultrafilters on Q.

These are the axioms for Non-Archimedean Probability (NAP) theory
from Benci et al. (2013), where the triple (Q), P, ]) is called a NAP space:

(No) DoMAIN AND RANGE. The events are all the elements of P (Q2) and P
is a function
P:P(Q)—R

where R is a superreal field.
(N1) NoN-NEeGATIVITY. VA € P (QQ), P(A) > 0.
(N2) NORMALIZATION. VA € P (Q0), P(A) =1 A= Q.

(N3) Apprrivity. VA, B € P (Q) such that ANB = &,

P(AUB) = P(A)+ P(B).

(N4) NoN-ARCHIMEDEAN CONTINUITY. VA, B € P (Q)), with B # &, let
P(A|B) denote the conditional probability, namely

_ P(ANB)
P(A[B) = “P(B)
Then
o VA € P2 (Q)), P(A]A) € RY, and

¢ there exists an algebra homomorphism
J:3 (Ph(Q)R) >R

such that VA € P(Q), P(A) = J(¢pa), where ¢4(A) =
P(AJA) for any A € P2 (Q).

Axiom (N4) specifies P for an infinite sample space (2 as a non-standard
limit of probability functions restricted to (or conditionalized on) finite
subsets of ().

Some properties of NAP theory:
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o NAP theory produces regular probability functions. Hence, they
allow us to conditionalize on any possible event by a ratio formula
(i.e., any subset of the sample space, except the empty set).

o Within NAP theory, the domain of the probability function can be
the full powerset of any standard set from applied mathematics (i.e.,
of any cardinality), whereas the general range is a non-Archimedean
field. Hence, there are no non-measurable sets.

o Kolmogorov’s countable additivity (which is a consequence of the
use of standard limits) is replaced by a different type of infinite
additivity (due to the use of a non-Archimedean limit concept).

o For fair lotteries, the probability assigned to an event by NAP theory
is directly proportional to the numerosity of the subset representing
that event.

o NAP functions are external objects: they cannot be obtained by taking
a standard object (such as a family of standard sets) and applying
the star-map to it.

A price one has to pay for all this is that certain symmetries, which
hold for standard measures, do not hold for NAP theory. This theory is
closely related to numerosity and has a similar Euclidean property: a strict
subset has a smaller probability, as is necessary by regularity. Hence, for
infinite sample spaces, NAP is bound to violate the Humean principle of
one-to-one correspondence. This principle requires that if the elements of
a given set can be put in a one-to-one correspondence with the elements of
another set, then their “sizes”—or in this case, probabilities—will be equal.
Translation symmetries require that P(A) = P(A +t) (with A, A+t C Q
and A+t = {a+t|a € A}). Since this amounts to a particular type of
one-to-one correspondence, these symmetries are not guaranteed to hold
in NAP (cf. Williamson 2007; Parker 2013; and Section 14.1), although they
can hold up to an infinitesimal (Bernstein & Wattenberg, 1969). Bartha
(2004) and Weintraub (2008) have pointed out before that these measures
are strongly label-dependent, but it is probably more accurate to say that
once events have been embedded in a sample space (i.e., each event is
described as a particular subset of a particular sample space (), this
embedding needs to be applied in a consistent way henceforth (Hofweber,
2014; Benci et al., 2018).

For more details and proofs, see Benci et al. (2013). The next part
elaborates on the motivation for and the philosophical discussion of these
results.
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PART IV
PHILOSOPHICAL DISCUSSION

10 MOTIVATIONS FOR INFINITESIMAL PROBABILITIES

In the foregoing parts, we have encountered motivations for introducing
infinitesimal probabilities as given by various authors. Most of these moti-
vations occurred in the context of a particular interpretation of probability,
with some arguing for the relevance of infinitesimal chances and others
advocating for the introduction of infinitesimal credences. In this section,
we search for the leitmotifs that arise from this polyphony.

Let us first revisit Bernstein and Wattenberg (1969): although they gave a
probabilistic scenario as the motivation of their paper, the technical details
of their results do not depend on the interpretation in terms of probability.
If we want a measure that allows us to represent the length of countable
collections of points as a non-zero infinitesimal, we can use the result of
Bernstein and Wattenberg (1969) without modification. On the one hand,
it may fit even better in such a context, since the Lebesgue measure was
originally motivated as an idealization of length measurements. Hence,
obtaining a non-standard measure that is infinitely close to Lebesgue
measure (at least, where the latter is defined) can be regarded as an
alternative idealization of length measurements. On the other hand, the
request for representing the measure of non-null countable sets as an
infinitesimal may seem especially pressing when this measure is a measure
of probability (rather than length). This motivation may be formulated as
follows: probability measure should be maximally sensitive to distinguish
possibility from impossibility. Indeed, we have encountered this motivation
for infinitesimal probabilities via regularity at various instances throughout
this c