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1 Introduction

I began questioning the nature of compositeness within Quantum Field Theory (QFT) when writ-
ing my first literature review. When talking about different particles, papers classified them as
conventional hadrons, exotic hadrons, hadronic molecules, and so on. I could not find a convincing
explanation of the difference between these categories of particles.

As bound states manifest themselves as poles in a scattering amplitude [1], their properties (such
as mass, width, or even just their existence) cannot be calculated using a perturbative framework.
An alternative approach would be to use lattice field theory for these calculations (these techniques
are covered in many books such as [2] or in relevant review articles such as [3]).

As an example, (which is only chosen as it is related to what I was reading at the time): in lattice
field theory calculations the existence and mass of a stable bound state can be found from an
appropriate time-dependent (Euclidean) correlator. A bound state of mass M causes the correlator
to exhibit the following time dependence, up to discretization and volume effects:

C(t,P ) = ⟨σ(t,P )σ†⟩ ∝ e−t
√
M2+P 2

+ scattering states (1.1)

where σ is an interpolation operator with a specified set of quantum numbers of the single-particle
state.

The details are unimportant, except that all stable bound states show the same behaviour, inde-
pendent of if they would be considered conventional hadrons or not. At the time, it felt as if these
methods obscured the difference between the different categories of particles - in hindsight, I would
say it emphasized the similarities.

Eventually, I came to the conclusion that the different types of bound states are actually just a
form of cataloguing: conventional hadrons are those whose quantum numbers can be produced
from a simple combination of valence quarks whereas hadron-hadron molecules have the quantum
numbers of a two-hadron channel, and have a mass that is just below this two-particle threshold
[4, 5]. However, cataloguing based on phenomenological characteristics does not always give a good
picture of the underlying reality.

Biology is full of different categories, but there are always exceptions and ambiguous cases (as
exemplified by the name of the podcast “No Such Thing as a Fish" [6] or that at first people
didn’t believe in the existence of a duck-billed platypus due to it not fitting into the pre-established
categories of animals [7] - despite the overwhelming evidence of 129 Phineas and Ferb episodes [8]).
Categorization is useful for sorting our observations, but not so useful for providing a fundamental
understanding.

In this work, I explore the notion of compositeness and its relation to QFT, and come to the po-
tentially unsavoury conclusion that no satisfactory, exact, and rigorous definition of compositeness
exists that is compatible with QFT. I start by justifying why it is reasonable to take the unobservable
aspects of a physical theory seriously. I then go on to elucidate what I require from a satisfactory
definition of compositeness. I then present two arguments as to why this satisfactory definition is
not compatible with QFT and explain a few corollaries of this result, the first argument is best
considered as a warm-up using perturbation theory, and the second argument as the main result of
this work. I then go through a range of possible objections and show that they don’t save the notion
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of compositeness. I then show how it is possible to define an approximate notion of compositeness
and how it can be included in the ontology of higher-level theories such as molecular or solid-state
physics. Finally, I relate this to the problem of ordinary objects [9] as encountered in introductory
metaphysics courses and show that many of these problems dissolve if compositeness is rejected.

I assume the audience of this work is familiar with QFT, at the level of a graduate course, with
some knowledge of its applications to particle physics and some of the formal aspects of scattering
theory such as the LSZ procedure and the analytic structure of the S-matrix (chapter 7 of ref. [10]
should suffice).

2 Why should we take the unobservable seriously?

Questions about interpreting scientific theories, or about the ontological status of certain aspects of
a scientific theory (that is, questions about if and how the features of a scientific theory exist) often
seem to be ignored by working physicists - at least in their professional work. In fact, personally,
I have found many people to dismiss such questions as ‘too philosophical’ and not really worth
thinking about. In this section, I explain why I feel this dismissal is often too premature.

QFT is hopefully not a theory that merely relates the center of mass energy of a hadron collider to
some numbers on the screen; hopefully it is not just a theory relating free particles from infinitely
in the past to free particles infinitely in the future - even if this is what is directly observable
and well-defined via the LSZ procedure. Something happens, in the real physical world, between
starting an experiment at the Large Hadron Collider (LHC) and seeing numbers on a screen (or
rather, something is going on between the asymptotic past and future states).

We may never be able to directly observe what is going on, we may never be certain about what
is going on, we may never have a unique theory1 to tell us what is going on. But something is
going on. It would be remarkable if a theory that gave such accurate observational predictions was
also completely wrong about everything else. A general introduction to the questions of scientific
realism can be found in ref. [11, 12].

There is a nice analogy (taken directly from the introduction of ref. [13]) that highlights that this
dismissal can often happen inconsistently, with people much less willing to take the realism of
quantum mechanics as seriously as other theories.

When we look at distant galaxies - so distant we will probably never get to them and the only thing
we can do is look from afar - all we can see is a sort of hazy glow. Using our understanding of galactic
structure, we can infer that these galaxies are made from hundreds of billions of stars, that these
stars will have planets around them, and that some of these planets will have atmospheres. Even
though we will never see these planets, I believe they exist and I believe they do have atmospheres,
and I have not yet met a physicist who would claim to doubt this either.

We believe in these atmospheres, on the ground that they are inferred from taking our best scientific
theory seriously. Why are they given a privilege when quantum fields are not? Even though the
unobservability of extra-galactic atmospheres is due to practical limitations, no one will observe
them in my lifetime and so when making the individual assessment of their existence, I can still
only infer from the current best theory. I now do the same with QFT.

– 3 –



3 What is a satisfactory definition of compositeness?

I take the following to be necessary requirements for a satisfactory definition of compositeness.
These requirements are asserted in a loose manner as these are taken to be minimal requirements
and having an overly precise definition would lead to this work rejecting a definition of compositeness
that is too specific.

• For X to be a composite object made of A and B we need to be able to refer to
A and B, in a well-defined way, whilst X is in existence.

For example, a research group is made out of a collection of people, I can refer to both the
research group and the members of the research group in a completely unambiguous way.
The members do not define the group, specific individuals can join and leave the group;
however the group, at any given time, contains a set of individuals which can unambiguously
be referred to.

In non-relativistic quantum mechanics, the hydrogen atom is a composite object containing
an electron and a proton. We can unambiguously refer to the coordinates of the electron and
proton separately to the whole atom.

• If A is made of B, then B is not made of A - that is, compositeness is not reflexive2.

If an atom is made of a proton and an electron, then it would be absurd to say that the proton
contained an atom as then an atom would contain a proton which would contain an atom ad
infinitum.

If you have a desire to save the notion of compositeness due to the historically successful
explanatory power of reductionism, then this axiom is needed to save reductionist explanations
from circularity.

• Reality cannot depend on arbitrary choices.

In QFT, there are a huge range of choices I could make: gauge, renormalization scheme, I
can rewrite the Lagrangian in a range of different ways, I could split up the Hamiltonian into
a ‘free’ and ‘interacting’ part in a range of different ways and so on. If I want to make a
meaningful statement about the external world, then that statement can’t depend on any of
these arbitrary choices made.

4 The incompatibility of compositeness and QFT

In this section we justify the following statement:

No satisfactory, exact (in the sense of being non-perturbative) and rigorous definition of
compositeness exists compatible with QFT.
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Figure 1: At leading order, the fully dressed electron propagator just consists of the propagator
for the bare electron field.

Figure 2: At higher order the physical electron gets contributions from a range of different free
particles

4.1 A warm-up from perturbation theory

To explore compositeness exactly, any core argument cannot rest upon perturbation theory. That
being said, it lays the groundwork for most working physicists and we will see that hidden in
perturbative calculations was a prophecy of the argument in the next section.

Take the standard example of the self-energy of the electron (a complete calculation can be found
in 18.2 of [14]), the 2-point function for an electron travelling with fixed 3-momentum p is:

C(t,p) = ⟨ψe(p
0 =

√
p2 +m2

e,p)ψ̄e(x = 0)⟩. (4.1)

At leading order, this is given by the propagator of the free electron field as shown in figure 1. At
higher orders, the case is not so simple, the full electron propagator gets contributions from other
fields in the theory, as shown in figure 2. In fact, if the Weak Force is included, then there are
graphs in which the electron field is replaced by the neutrino!

The problem here is not that the physical electron contains a superposition of a range of different
fields, none of the criteria given in section 3 rule a superposition out of a well-behaved definition of
compositeness.

The problem lies in the fact that the relative contribution from the different diagrams depends on a
range of different choices. For the most striking example of this, compare the on-shell renormaliza-
tion scheme, where all higher-order diagrams get removed, to the MS scheme, where higher-order
loop diagrams do contribute. If we took these perturbative diagrams seriously when defining com-
positeness, we would find that the physical electron contains a W-boson - until we switch to the
on-shell scheme and find that the contribution from this diagram cancels (when the electron is
on-shell).

A final, but tangential, point I want to emphasize is that the physical electron (associated with a
single particle state) is not a priori the same as either the electron field or the electron degree of
freedom in the Lagrangian nor is the interpolating operator the same as either physical electron or
the electron field.
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4.2 The full, non-perturbative argument

In this section, I present what I consider to be the main result of this work: the full non-perturbative
argument showing the incompatibility of QFT and compositeness. An outline of the argument is
given below and will be further justified throughout the rest of this section.

P1) All S-matrix poles have the same ontological status. That is, all S-matrix poles exist in
the same way and don’t carry enough information to create a hierarchy of fundamentality.

P2) Two objects, X and Y , are each individually associated with an S-matrix pole.

C) The objects X and Y therefore have the same ontological status. Neither is privileged over
the other, the existence of one cannot depend upon or be contained within the other, and
neither can be composed of the other. ∴

To justify the first premise, note that a pole only carries 3 pieces of information [5]. None of these
provide the relevant information needed to create any form of ontological hierarchy. The location
of the pole gives the mass and width of the bound state or resonance, the residue of the pole
determines the coupling strength to a given channel, and all S-matrix poles are believed to be first
order and hence the order gives no extra information (no full proof has been found but real axis
poles are associated with physical states and necessarily simple and these can, under certain choices
of the coupling, become resonances and all poles should have the same structure).

The second premise is merely a matter of computation. Hadron Spectroscopy calculations have
confirmed the existence of S-matrix poles associated with a range of low-mass states [3]. There is,
however, no reason to believe that there is (in principle) an upper mass limit to the methods of
Hadron spectroscopy. With a big enough computer, one could calculate the mass or other interesting
quantity of everyday objects directly from the underlying field theory.

Not everything that could be colloquially called an object is associated with an S-matrix pole (I go
into more detail about what could constitute an object in section 6.1). However, I do claim that
any collection of matter that is somehow stuck together is associated with a pole in the S-matrix:
specific atoms, molecules, chairs and people are all associated with a pole.

4.3 Consequences of rejecting compositeness

By rejecting compositeness, we have to accept that all bound states (or rather all poles of the
S-matrix) have the same ontological status in QFT. Electrons, photons, Pions, atoms, molecules,
chairs and people are all as fundamental as each other3.

Without a well-defined notion of ‘made of’, we cannot rigorously say ‘atoms are made of a proton
and an electron’ or that ‘chairs are made of atoms’ or even that ‘an Ikea chair is made of a selection
of screws and bits of wood’4, all of these objects are equally fundamental in QFT.

5 Possible objections

In this section, I present a range of objections to the argument above and show how these objections
ultimately fail to save compositeness as a well-defined notion.
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5.1 Objection 1: The usefulness of phenomenological models

Phenomenological models based on the assumption of compositeness are widespread and it seems
that every time a particle is discovered it gets categorized as a hadronic molecule, penta-quark,
exotic hadron, or so on. At the time of writing, the most recent announcement of new particles
from the LHCb experiment immediately announced them as penta- and tetra-quarks [15–17].

The usefulness of compositeness in categorizing particles (not to mention the usefulness of compos-
iteness in atomic physics, chemistry and so on) suggests that there must indeed be some underlying
truth to the idea.

In response to this, firstly, none of the models based on compositeness are exact or rigorous. The
quark model can explain the quantum numbers of a particular bound state but can’t be used to
explain other quantities such as mass or form factor. These models also haven’t been derived directly
from the underlying field theory [18] and are just (well-motivated) constructions. Without the rigour
that would necessarily accompany an ab inito derivation, these models can’t be taken seriously
to provide a deep understanding into the nature of compositeness. I discuss the effectiveness of
approximate composite models later in section 6.

Secondly, I would also claim that such models beg the question. There is more than sufficient
freedom in constructing composite models that they cover the phenomenological landscape5. This
lack of falsifiability makes it hard to view agreement with observation as evidence for compositeness.
These composite models are useful for categorization, but not for understanding the underlying
physics.

5.2 Objection 2: Quantum numbers as fundamental building blocks

Along similar lines to composite models, we could take the quantum numbers to elucidate the
constituents of a given bound state. For example, a helium nucleus has baryon number 4 and so
is made from 4 baryons, it has charge +2 so it must contain 2 positive and 2 neutral baryons -
i.e. 2 protons and 2 neutrons. It is not necessarily concerning that the constraints imposed by the
set of quantum numbers don’t uniquely specify the constituents, a bound state could always be a
superposition of different constituents.

This would, however, lead to a notion of compositeness that is reflexive. As an extreme example,
a neutron star would be considered a composite state of many neutrons, but in reverse, a neutron
would be a composite object made of a neutron star and a (slightly smaller) anti-neutron star.

It might be possible to break this reflexivity by choosing a set of particles that span all conserved
quantum numbers and conclude that all bound states are composite objects of this subset of par-
ticles. Although, I would argue that this choice is arbitrary - even if there are intuitive choices for
this set of particles - defining the set would still be an external choice imposed upon the underlying
field theory.

Even if a consensus on which particles get chosen to be part of this fundamental set of building
blocks could be reached, it wouldn’t completely save our everyday notion of compositeness. Fully
rejecting compositeness would lead to all bound states being ontologically equivalent; by instead
choosing a fixed subset of fundamental particles - say we choose the particles stable in the full
standard model: protons, neutrons and electrons in this set - then all bound states would be made
out of these and only these. A chair could be considered a bound state of protons, neutrons and
electrons, but there would still be no satisfactory way to conclude a chair is made of atoms or
molecules (or even quarks) without running into all the problems above.
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5.3 Objection 3: Bethe-Salpeter wavefunctions and the Weinberg Compositeness Cri-
terion

This section contains two objections, even though they are separate, the mathematics behind them
is very similar and hence my response to them will be related. I will illustrate these objections
using Quantum Electrodynamics, however, none of the specifics of the theory are actually relevant.

In the e+e− channel, the full interacting Hamiltonian H contains a near-threshold6 bound state,
Positronium. We denote a Positronium state with fixed 3 momentum P |B,P ⟩ (the B is for Bound
state as P is stolen by momentum), this obeys the eigenvalue equation:

H|B,P ⟩ =
√
M2

B + P 2|B,P ⟩. (5.1)

We can use this to define a set of Bethe-Salpeter (BS) wavefunctions for the constituent particles.
If ϕe+(x) and ϕe−(x) are interpolating operators with the quantum numbers of a positron and
electron respectively, then the momentum-space BS wavefuntion is defined as:

ΦP
e+,e−(q, q

′)δ(P − q − q′) =

∫
d3xd3y eiq·xeiq

′·y⟨0|ϕe+(t = 0,x)ϕe−(t = 0,y)|B,P ⟩. (5.2)

These can be constructed for any set of particles that has the combined total quantum numbers of
the desired bound state. These BS wavefunctions can be interpreted as encoding the momentum
of the individual constituents7.

Decomposing the full Hamiltonian into a free and interacting part, H = H0 + V , the eigenstates of
H0 form a basis that is the Fock space constructed from free particles. We can expand the bound
state above in terms of these free multi-particle states:

|B,P ⟩ =
∫
d3q̄ ΦP

e+e−(P − q̄, q̄) |e+(P − q̄)e−(q̄)⟩0

+

∫
d3q̄d3q̄′ ΦP

e+e−γ(P − q̄ − q̄′, q̄, q̄′)|e+(P − q̄ − q̄′)e−(q̄)γ(q̄′)⟩0 + . . .

(5.3)

Where we have included the subscript 0 as a reminder that the Fock states are eigenstates of the
free Hamiltonian. The BS wavefunctions are therefore the probability amplitude for the bound
state to contain a certain set of free particles. The proof of this result can be found in appendix A.

In short, the BS wavefunction tells us the behaviour of the constituent parts. Further details of
this idea can be found in refs. [1, 19, 20].

A similar objection is related to an idea from Weinberg which has come to be known as the Weinberg
Compositeness Criterion - further details can be found in [21, 22]. In the above example, it is
perfectly possible for the eigenstates of the free Hamiltonian to include a free positronium state
|B,P ⟩0 - even though this is not usual for perturbative QED calculations.

He defines a quantity Z as the overlap between the interacting bound-state and the equivalent free
state:

Z := |⟨B,P |B,P ⟩0|2 =⇒ 1− Z =

∫
multi-particle states, α

dα |⟨B|α⟩0|2. (5.4)
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If Z ≈ 0 then the bound state couples mainly to the multi-particle states and so is composite, and
if Z ≈ 1 then it couples strongly to the single particle state and is elementary.

For weakly bound states (such that the binding energy is small) he showed that this Z can be
related to the S-wave scattering length:

a0 ∝ 2(1− Z)

2− Z
(5.5)

making compositeness directly observable.

In summary, it seems like it is possible to expand a bound state in terms of free particle states,
with this expansion containing information about the composite structure. Furthermore, the com-
positeness of a bound state can, for weakly bound states, be calculated from the scattering length.

Both of these objections rely on a decomposing the Hamiltonian into free and interacting pieces.
Despite the excellent successes of perturbative QED calculations, this decomposition is often not
mathematically well-defined. More rigorous treatments of scattering theory, such as that given in
chapter 9 of [1], bypass this decomposition altogether and instead the "free-ness" of multi-particle
states in the asymptotic past is defined in terms of transformation properties and the inner-product.

There are two responses to the objections above, firstly there is freedom in choosing the free Hamil-
tonian8 which results in the constituents of a given bound state being dependent on this choice, and
secondly I will show that this result is reflexive and that we can just as easily expand the electron
in terms of a Fock space that includes positronium.

To show how much freedom we have when decomposing the Hamiltonian we can choose to construct
the free single-particle sector out of the single-particle states of the full Hamiltonian. Again, sticking
with the positronium channel of QED, the free Hamiltonian can be constructed as9:

Hsingle
0 =

∫
d3p

2(2π)3
(
|e+,p⟩⟨e+,p|+ |e−,p⟩⟨e−,p|+ |B,p⟩⟨B,p|+ . . .

)
(5.6)

where the multi-particle Fock Space is constructed from tensor products of these states. Different
Fock states are orthogonal and hence the BS wavefunction expansion given in equation 5.3 will take
the form

|B,P ⟩ = |B,P ⟩+ 0× . . . (5.7)

This construction would automatically set Weinberg’s compositeness factor in equation 5.4 to Z = 1.
Using the expression for the scattering length in equation 5.5, Z = 1 would seem to imply that
a0 = 1. The freedom we have in H0, which affects the value of Z, has an effect on the observed
scattering length. Although I don’t go into the full derivation here, this oddity can be reconciled.
Weinberg’s derivation is perturbative and makes assumptions about the relative strength of the
2 → 2 vertex relative to the 2 → 1 vertex (equation 29 of [22]). The strength of these vertices is
also dependent on the choice made when defining H0 and therefore equation 5.5 is only valid for
particular decompositions of the Hamiltonian.

The reflexivity in these constructions comes from noting that being able to expand (fully-dressed)
positronium in terms of (bare) electrons and (bare) positrons doesn’t rule out the possibility of

– 9 –



expanding the (fully-dressed) electron in terms of (bare) positronium and other states. Alternatively,
the expansion of the (fully-dressed) electron will contain (bare) positrons and then the expansion of
(fully-dressed) positrons will contain (bare) electrons. The repeated use of brackets indicating which
quantities are bare or fully-dressed, may seem overkill, but is needed to emphasise the difference
between the two types of quantities.

If we reject the association of bare states with physical particles the BS wavefunction expansion can’t
be used to provide information about constituents. In order to view the expansion as pertaining to
compositeness, we must accept some association between bare and fully-dressed states.

For the second response, the value of Z for positronium doesn’t necessarily constrain the value of
Z for the electron. In equation 19 of [22], Weinberg shows that Z obeys the relation:

1− Z =

∫
dα

| 0⟨α|V |B⟩|2

(Eα +B)2
(5.8)

and therefore if the bound state is well below the relevant multi-particle threshold then Z ≈ 1 -
that is composite objects are most prevalent just below threshold.

Firstly, this doesn’t enforce Z ≡ 1. Considering the electron as a bound state that contains
Positronium, the electron would be noticeably below the multi-particle threshold however would
still partly consist of positronium (just less so than positronium would consist of an electron).
Secondly, comparing the Z values for different states in this way, saying that 1 − Z scales as the
inverse of binding energy, assumes the leading order 3-point vertex is constant in all cases. This
assumption does not necessarily hold over the energy scales we are discussing - after all, a major
result of renormalization is the scale dependence of the coupling.

6 An Approximate Notion of Compositeness

The world looks composite of course: Ikea chairs are clearly made of planks of wood and screws
and condensed matter physics has made amazing progress in explaining the properties of materials
in terms of the atoms they are made of. Individual atoms in a crystal lattice have even been
photographed [23].

In terms of measurable results, what matters is not association with a particular S-matrix pole, but
interactions with the measuring device. Taking the electromagnetic force as an example - it is after
all the force that most directly affects our experience - the interaction depends on quantities like
charge density. If a slightly mischievous deity were to replace every electron in an Ikea chair leg
with a muon - and constantly interfere with and control the motion of these muons such that they
obey the same dynamics as the electrons - then the chair would look the same to any shopper that
walks past. The muonic chair would have the same interaction with the electromagnetic field as a
standard chair and hence to any instrument detecting electromagnetic radiation (like our eyes), the
two chairs would be indistinguishable.

Compositeness is most useful when the object is weakly bound, that is the binding energy B is
much less than the total rest mass M10. I claimed earlier that compositeness is well-defined in
non-relativistic quantum mechanics, which has no requirements on the interaction strength (and
hence no requirements on the binding energy). Compositeness breaks down when QFT becomes
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necessary, that is, the relativistic regime. However, the expected speed of the constituents of a
bound state scale with the binding energy. This can be seen classically by considering two oppositely
charged objects placed infinitely far apart, as they come together and orbit each other, their speed
will increase with the charge. Alternatively, in non-relativistic quantum mechanics, the expected
energy of the electron in a coulomb potential scales as Z2e4.

When B = 0 (or negative) then the object is not bound at all and is actually two separate objects,
just below the multi-particle threshold there is a sliding scale of how composite something appears.
Starting with an everyday example of screwing some Ikea chair legs together, the binding energy
is on the order of maybe a couple of Joules but the rest mass is on the order of 1018J. As the
binding gets stronger we enter the realm of condensed matter and chemistry, here the "atoms" can
still be resolved from scattering experiments or electron microscopy [24]. Getting stronger, objects
like hadronic molecules show some signs of compositeness but this must be otherwise inferred [5].
Finally, the strongly bound quarks "inside" a pion are almost entirely best understood as a metaphor
for categorizing the quantum numbers of the hadron.

An explicit example of this can be found in ref. [20], the author shows that the Schrodinger equation
for the electron-positron constituents of a positronium bound state via an expansion in terms of the
momenta of the individual electrons and positrons (which scales as p ∼ αme where α is the QED
coupling).

6.1 Can the Dennett Criterion save compositeness?

For observational purposes, the localized charge densities in a molecule or a sheet of metal are
identifiable with atoms. The work of a condensed matter physicist will not be directly affected
by this work - atoms would still be a physical part of their models. The Dennett Criterion nicely
encapsulates when something can be considered a real part of a particular model of the world (the
criterion was formalised by Wallace in [25] and was based off Dennett [26]):

A macro-object is a pattern, and the existence of a pattern as a real thing depends on the usefulness
— in particular, the explanatory power and predictive reliability — of theories which admit that
pattern in their ontology.

This doesn’t quite save compositeness. Figure 3 shows a series of frames made of small black and
white squares. In most of them you should be able to make out a larger checkerboard pattern,
some are more obvious than others. When developing a theory that predicts the location of the
little black and white squares, it would seem a good idea to start with the larger checkerboard.
According to the Dennett Criterion, the acceptance of this checkerboard pattern as real depends on
the margin of error you want from the theory. A fundamental theory (which should have no margin
for error if it describes everything) will have to go deeper and will not contain this checkerboard
pattern as part of its ontology.

7 The problem of ordinary objects

There are well-established philosophical problems that accompany our common sense understanding
of what defines the term "object" - a summary of these problems can be found here [9]. I show
that, at least for some of these problems, rejecting compositeness and defining an "object" as a pole
in an S-matrix11 resolves some of these problems.
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Figure 3: Six different objects, in each case the ability to describe the pattern as a checker-board
varies. Whether or not we want to take the existence of the pattern as real depends on our desired
margin of error [26]

.

7.1 Problem Of The Many

P1) Call the chair you are sitting on "Chris". Now consider an object consisting of all of
Chris except for one particular plastic molecule, called Molly. The new chair, with Molly
removed, is called Chris Jr

P2) Chris, Chris Jr and Molly all exist.

C) You are sitting on (at least) 3 different objects. ∴

The problem here is that if an object like a chair is just a collection of atoms, then you can choose
to group the constituent atoms up in any way you like - this leads to any ordinary object being
spatially coincident with an extremely large number of different sets of objects.

By rejecting compositeness as a well-defined concept, it no longer makes sense to abstractly isolate
and name one of the specific molecules.

7.2 Trogs

You are walking through a forest and you see a frog hopping merrily along by a tree.

P1) Both the frog and the tree are just an arrangement of atoms
P2) You define a new object, called a trog, which consists of the frog and the tree. A trog is
also just an arrangement of atoms.

C) Trogs exist in the same way as trees and frogs. ∴
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My initial objection is, maybe predictably, with premise 1, frogs and trees are poles in an S-matrix
and hence cannot be rigorously thought of as being an arrangement of atoms. A trog, however, is
not a pole in an S-matrix and although I am not necessarily against extending the meaning of the
word "object" to include entities like trogs, the fact that a trog is not an S-matrix pole means it
exists differently to trees and frogs.

An alternative way of seeing this is to note that the argument above rests on the fact that trees,
frogs and trogs are all just arrangements of atoms - and all arrangements of atoms exist in the same
sort of way - and it is this fact that must be rejected without a rigorous definition of compositeness.

7.3 Material Constitution

P1)A piece of clay is made into a statue, both the statue and the piece of clay exist. If both
of these exists then then the piece of clay is equivalent to the statue

P2) Statues and pieces of clay have different properties and if they have different properties
then they cannot be equivalent.

C)There is a contradiction between these two points. ∴

In many ways this problem highlights the difficulty of relating particulars and universals - something
I won’t get into - however looking at this problem with the framework we have built up is insightful.
As the piece of clay gets moulded there is not a continuous process from clay to statue, instead,
the piece of clay jumps from pole to pole. Each of these jumps causes one object to stop existing
and a new one to start existing. There is still the difficulty of categorizing some of the poles as
pieces of clay and some as statues - but as we saw at the start of this paper, categorizations based
on phenomenology is not a good path to fundamental understanding.

8 Conclusion

To sum up, compositeness is not a rigorous notion within the framework of Quantum Field Theory.
Taking the mathematical structure of QFT seriously, we find that all bound states are ontologically
equivalent and that different ways of trying to define the constituent parts of a bound state are
either arbitrary or reflexive.

An approximate notion of compositeness can be recovered: as the mass of a bound state approaches
the multi-particle threshold, the different quantum number densities (flavour, charge etc) approach
the sum of the densities of the two constituents. As these densities determine the interaction,
the bound state interacts almost as if it were a set of separate constituent parts. This may allow
compositeness in higher-level disciplines such as chemistry or solid state physics, but it doesn’t
recover compositeness in a rigorous or exact way.

Finally, we saw the consequences of rejecting compositeness on the philosophical problems of or-
dinary objects and found that many of the problems get resolved. Although defining the term
"object" to refer to a pole in an S-matrix is maybe too restrictive, it does highlight a difference
between different uses of the term.
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A Expanding a bound state in terms of Bethe-Salpeter wavefunctions

In this appendix, we prove equation 5.3 which shows that the fully-interacting bound state with
momentum P , |B,P ⟩ can be expanded as a sum of free particle states with the BS wavefunction
denoting the contribution of that specific state. We only calculate the details for the e+e− terms
but the calculation generalizes nicely. All interpolation operators will be inserted at equal time,
which we will set to be t = 0.

The most general expansion of the bound state is of the form:

|B,P ⟩ =
∫
d3q̄ f(P − q̄, q̄)|e+(P − q̄), e−(q̄)⟩0 + other particle content (A.1)

where f is some arbitrary function of the momenta of the two particles. Momentum conservation
requires that the total momenta of the two-particle state is equal to the momenta of the bound
state.

Therefore, the inner product with a free state of two particles with arbitrary momentum is:

0⟨e+(q)e−(q′)|B,P ⟩ =
∫
d3q̄ f(P − q̄, q̄) 0⟨ϕ+(q)ϕ−(q′)|e+(P − q̄), e−(q̄)⟩0 (A.2)

=

∫
d3q̄ f(P − q, q)(2π)6δ(P − q̄ − q)δ(q̄ − q′) (A.3)

=f(q, q′)(2π)6δ(P − q − q′). (A.4)

We have chosen a non-relativistic normalization of states in order to simplify the presentation. We
now need to relate f to the BS wavefunction.

Starting with the definition of the momentum-space BS-wavefunction as given in equation 5.2:

ΦP
e+,e−(q, q

′)δ(P − q − q′) =

∫
d3xd3y eiq·xeiq

′·y⟨0|ϕe+(x)ϕe−(y)|B,P ⟩ (A.5)

This is equivalent to the definition given in [1] except we have Fourier transformed to momentum
space and included an extra delta to account for having two free coordinates12. The RHS has an
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implicit delta function coming from translation invariance, and hence this is included on the left as
well.

The interpolation operators are inserted at equal time, which we set to t = 0, as the energy is
determined by the particle content of the state. Insert a complete set of non-interacting states
between the interpolation operators and the bound state. The only non-interacting states that
couple to the interpolation operators include an e+, e− pair

ΦP
e+,e−(q, q

′)δ(P − q − q′) =

∫
d3q̄

(2π)3
d3q̄′

(2π)3

∫
d3xd3y eiq·xeiq

′·y

× ⟨0|ϕe+(x)ϕe−(y)|e+(q̄)e−(q̄′)⟩0 0⟨e+(q̄)e−(q̄′)|B,P ⟩.
(A.6)

As the states are free we have the following result

⟨0|ϕe+(x)ϕe−(y)|e+(q̄)e−(q̄′)⟩0 = e−ix·q̄e−iy·q̄′
(A.7)

where the interpolation operators are assumed to have unit normalization. This becomes

ΦP
e+,e−(q, q

′)δ(P − q − q′) =

∫
d3q̄

(2π)3
d3q̄′

(2π)3

∫
d3xd3y ei(q−q̄)·xei(q

′−q̄′)·y

× 0⟨e+(q̄)e−(q̄′)|B,P ⟩
(A.8)

= 0⟨e+(q)e−(q′)|B,P ⟩ (A.9)(
= δ(P − q − q′) 0⟨e+(q)e−(P − q)|B,P ⟩

)
. (A.10)

Comparing this to equation A.4 we find that:

f(q, q′) = ΦP
e+,e−(q, q

′) (A.11)

and thus the bound state can be written as an expansion in terms of free particle states where the
coefficient is proportional to the BS wavefunction.
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Notes

1Here I use the word ‘unique’ differently to physicists. In physics, two theories are considered equivalent if they
always give the same observational outcomes, but here I take a much stronger definition, two theories are unique if
all content (observable and unobservable) is the same. In this sense, a single mathematical formalism can give rise
to several distinct theories depending on how it is interpreted. More details on this are given in chapter 2 of ref. [27].

2Within this I also exclude the possibility of a circle of compositeness. We cannot have A containing B, B

containing C and then C containing A.

3I have purposefully excluded quarks from this list due to asymptotic confinement - even in pure QCD they are
not stable.

4although it is indeed made from these things in the sense that by combing screws and wood results in a chair

5especially since they only explain the quantum numbers

6The near-threshold doesn’t actually affect the overall logic, but only near-threshold bound states can be well
described by perturbation theory.

7They are not the standard wavefunctions from NRQM as they cannot be given a probabilistic interpretation.

8Although not mentioned in referenced papers, Weinberg textbook [28] does enforce that the free Hamiltonian
does have the same spectrum as the interacting Hamiltonian

9Many of the factors are a choice of normalisation, I use the choice ⟨p|p′⟩ = 2ωp(2π)3δ(p− p′)

10We saw when discussing the Weinberg composites criterion that Z ≈ 0 when the composite particle is near
threshold.

11The word "object" has a much broader range of validity, but this definition creates an ontological difference
between different types of objects

12In the reference, they pick a coordinate system where the particles are at ±x/2, or equivalently they both have
equal momenta
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