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Abstract. There is a long tradition in formal epistemology and in the psychology of

reasoning to investigate indicative conditionals. In psychology, the propositional calculus

was taken for granted to be the normative standard of reference. Experimental tasks,

evaluation of the participants’ responses and psychological model building, were inspired by

the semantics of the material conditional. Recent empirical work on indicative conditionals

focuses on uncertainty. Consequently, the normative standard of reference has changed.

I argue why neither logic nor standard probability theory provide appropriate ratio-

nality norms for uncertain conditionals. I advocate coherence based probability logic as

an appropriate framework for investigating uncertain conditionals. Detailed proofs of the

probabilistic non-informativeness of a paradox of the material conditional illustrate the

approach from a formal point of view. I survey selected data on human reasoning about

uncertain conditionals which additionally support the plausibility of the approach from an

empirical point of view.
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Introduction and overview

There is a long tradition in formal epistemology and in the psychology of
reasoning to investigate indicative conditionals.1 In the psychology of rea-
soning, the propositional calculus was taken for granted to be the correct
normative standard of reference for investigating conditionals [14]. The cho-
sen normative standard of reference guided the construction of psychological
theories like a roadmap [37]. Proof-theoretic semantics, for example, stim-
ulated the emergence of two prominent psychological theories of reasoning:
Rips’ theory of mental rules [47] and Braine and O’Brien’s theory of mental
logic [6]. Both are rule-based. Likewise, model-theoretic semantics influ-
enced Johnson-Laird’s psychological mental models theory [27].

Not only psychological theories but also the experimental paradigms for
investigating human conditional reasoning were strongly influenced by the
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1Indicative conditionals are of the form “If A, then C”, where the antecedent A and

the consequent C are propositions.
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A C A ⊃ C C|A

true true true true

true false false false

false true true void

false false true void

Table 1. Truth tables for the material conditional (A ⊃ C) and the conditional event
(C|A).

propositional calculus. Typical examples are the well-known Wason selec-
tion task [50] and the truth table task paradigm (e.g., [13]). Deviations
between the response patterns in the Wason selection task and the seman-
tics of the material conditional (A ⊃ C; cf. Table 1) interpretation of in-
dicative conditionals challenged logic-based conceptions of the rationality of
human conditional reasoning. Moreover, an important empirical finding in
the truth table task paradigm was already reported by Johnson-Laird and
Tagard in 1969. The authors observed that about 80% of the participants
evaluated a conditional “If A then C” as true if A ∧ C, false if A ∧ ¬C
but irrelevant if ¬A ([29, p. 370], for more recent studies see [2, 46]). This
response pattern was labeled “defective truth table” by Wason [50]. The
negative connotation associated to “defective” signals the divergence of this
response pattern from the truth table pattern of the material conditional:
The ¬A∧C and ¬A∧¬C cases are not irrelevant. They rather make A ⊃ C

true. Thus, propositional logic also provided rationality criteria for evalu-
ating human inference: Logical validity and the interpretation of indicative
conditionals as material conditionals were the most important rationality
criteria for assessing human reasoning performance. The participant’s inter-
pretation of indicative conditionals was classified as “rational” if, and only
if the participant’s interpretation is consistent with the semantics of the
material conditional.

For about ten years now, empirical work on indicative conditionals fo-
cuses on uncertainty. Consequently, the normative standard of reference has
changed: More and more psychological studies of reasoning adopted proba-
bilistic approaches as rationality frameworks (e.g., [3, 15, 25, 30, 34, 35, 39,
40, 45]). Many studies provided new evidence for the psychological plausibil-
ity of the conditional event interpretation of indicative conditionals. Thus,
there is nothing “defective” about the response pattern which Wason called
“defective truth table”: The responses are consistent with the semantics of
the conditional event (see Table 1).
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My paper is structured as follows: In Section 1 I argue why neither
logic nor standard probability theory provide appropriate rationality norms
for uncertain conditionals. I advocate coherence based probability logic as
an appropriate framework for investigating uncertain conditionals. After
presenting the framework, I illustrate—from a formal point of view—how
the coherence approach works by detailed proofs of the probabilistic non-
informativeness of a paradox of the material conditional (Section 2). Sec-
tion 3 surveys selected recent data on human reasoning about uncertain con-
ditionals which additionally support the plausibility of the approach from
an empirical point of view.

1. The rationality framework

Human reasoning about conditionals has to deal with uncertain, incomplete
and defeasible information. Propositional logic, however, is a language for
reasoning under certainty but not for reasoning under uncertainty. More-
over, the consequence relation of propositional logic is monotonic: Adding
premises to a logically valid argument can only increase but not decrease
the set of entailed conclusions. This makes retracting conclusions in the
light of new premises impossible. Monotonicity of propositional logic is also
reflected in premise strengthening (A ⊃ C logically implies (A ∧ B) ⊃ C),
which allows for adding formulas in the antecedent of a conditional. This
has many counterintuitive instantiations and is one of the paradoxes of the
material conditional. These paradoxes, as noted by Lewis in 1912 [33], show
that the material conditional is in most cases inappropriate for formalizing
everyday life conditionals. All these reasons against the application of the
propositional calculus as a rationality framework are of theoretical nature.
I discuss selected empirical data that speak for coherence based probability
logic as an appropriate rationality framework for reasoning about uncertain
conditionals in Section 3. The next sections introduce the proposed ratio-
nality framework.

1.1. Coherence based probability theory

The coherence approach to probability goes back to de Finetti [10, 11]. More
recent work includes, e.g., [4, 8, 16, 21, 32, 49]. A formal characterization
of coherence is given in Appendix A. The following paragraphs focus on the
underlying philosophical intuitions of coherence and on how the coherence
approach differs from standard approaches to probability (like Kolmogorov’s
approach to probability [31]).
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“Coherence” refers here to a foundation of probability theory.2 Specifi-
cally, coherence follows the tradition of subjective probability theory where
probabilities are conceived as degrees of belief and not as ontological objec-
tive quantities. The probability function is defined on an arbitrary family
of conditional events, which is another key feature of coherence based prob-
ability theory. Therefore, the assumption of a complete algebra—which is
made in standard approaches to probability—is not required in the context
of coherence.

Conditional probability, P (B|A), is a primitive notion.3 The probabil-
ity value is assigned directly to the conditional event, B|A (cf. Table 1), as
a whole. This is another difference between the coherence approach and
standard approaches to probability. In the latter approaches, conditional
probability is defined by the fraction of the joint and the marginal probabil-
ity,

P (B|A) =def.
P (A ∧B)

P (A)
, if P (A) > 0 .

P (A) > 0 is a necessary requirement here, otherwise P (B|A) is undefined
since divisions by zero are undefined.

Coherence, however, does not require positive probabilities of the condi-
tioning events: for the evaluation of P (B|A), A is assumed to be true but
the probability of A does not play any role in the evaluation. Thus, the
conditioning probability P (A) can be positive as well as equal to zero. If
(conditioning) probabilities equal to zero are available, they are exploited
to reduce the complexity in the probabilistic inference. One way to find
out whether sets of probabilistic assessments are coherent requires solving
systems of equations: zero probabilities reduce the complexity of this task
substantially (see Section 2).

In the coherence approach, the probability of a tautology must be equal
to one: P (⊤) = 1. The converse, however, does not hold: P (A) = 1 does
not imply that A is a tautology. Approaches that reserve probability one

2This meaning of “coherence” should not be confused with the epistemological prob-
lem of characterizing formally “how sentences hang together”, which is also denoted by
“coherence” (see, e.g., [12]).

3As pointed out by the editors, also Popper functions use conditional probability as a
primitive notion (see [26] for an introduction). The relationship between Popper functions
and coherence is discussed in [9]. In a nutshell, to compare both approaches, the coher-
ence approach needs to be extended by the possibility to conditionalize on ⊥. The only
extension compatible with Popper functions is P ⋆(A|⊥) = 1. Then, the conditional prob-
ability P ⋆(·|·) is a Popper function. However, the converse does not hold: If P (A) = 0,
the corresponding Popper function P ⋆(·|A) is not necessarily a probability [9, Theorem 1].
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(1) P (A) = x A

(2) P (B|A) = y If A, then B

(3) xy ≤ P (B) ≤ xy + 1− x B

Table 2. Probabilistic and non-probabilistic version of the modus ponens.

and zero for the extreme cases tautology and contradiction, respectively,
cannot assign probability one to a contingent A. Psychologically, probabil-
ity one seems appropriate for formalizing strong subjective convictions. I
am, for example, happy to assign probability one to my conviction that the
United States of America have currently more inhabitants than the Vati-
can City State, which is of course not a tautology. Reserving probability
zero and one to logical truth and falsehood is an unnecessary restriction.
By the way, probability one can be updated in the framework of coher-
ence [8, see, e.g., Section 11.6]. Moreover, since both P (hypothesis) = 0
and P (hypothesis | evidence) > 0 are consistent in the coherence approach
(see Section 2 below), it can also deal with the zero-prior problem, which is
well-known in the philosophy of induction.

The next section combines the coherence approach to probability with
logic.

1.2. Coherence based probability logic

The fundamental problem of non-probabilistic logics consists in determining
if a conclusion C is entailed by a premise set {P1,P2, . . . ,Pn}. In contrast,
probabilistic logics attach probabilities to the premises and the inference
problem is to determine what (set of) probabilities should be attached to
the conclusion [22, 24]. In coherence based probability logic the inference
problem consists in determining the tightest coherent probability bounds
on the conclusion [8, 18, 20, 42]. The coherent lower (l) and upper (u)
probability bounds on a conclusion C are tight if and only if they are the
best possible coherent probability bounds on C, i. e., there is no coherent
probability assessment of C less than l or greater than u. If the tightest co-
herent probability bounds on the conclusion are constrained by the premises,
then the argument is probabilistically informative. If the conclusion proba-
bility coincides with the unit interval for all probability assessments of the
premises, then the argument is probabilistically non-informative [41].

For an example of a probabilistically informative argument form con-
sider the probabilistic version of the modus ponens in Table 2. Here, the
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conditional premise (2) is interpreted as a conditional probability. If the
conditional premise is interpreted as the probability of the material condi-
tional (P (A ⊃ C)), then the coherent probability of the conclusion is of
course a different one, namely at least max{0, x+ y − 1} and at most y [23,
p. 203f]. Thus, the choice of the interpretation of the premise material is
crucial for probability-logical analyses of commonsense arguments.

Moreover, it is important to distinguish clearly between the premise set
and the conclusion. The following situation allows for at least two different
interpretations:

Consider someone is thinking: If A then C. Will not-A, if not-C?

What this person has in mind can be interpreted as an instance of modus
tollens (From If A then C and ¬C infer ¬A) or as a contraposition (From
If A then C infer If ¬C then ¬A). While both arguments are valid in
propositional logic, they differ substantially in probability logic [42]. Modus
tollens is probabilistically informative:

P (C|A) = x

P (¬C) = y

max

{

1− x− y

1− x
,
x+ y − 1

x

}

, if 0 < x < 1;

1− y, if x = 0;

y, if x = 1.



















≤ P (¬A) ≤ 1

Contraposition, however, is probabilistically non-informative:

P (C|A) = x

0 ≤ P (¬A|¬C) ≤ 1

Usually, standard approaches to probability and the coherence approach
yield the same lower and upper conclusion probabilities. However, there are
philosophically interesting cases where the approaches diverge and standard
approaches are at least incomplete. As an example, consider the following
argument:

(P) C, therefore If A, then C.

If the conditional in argument (P) is formalized as a material conditional,
then (P) is logically valid in the propositional calculus. However, it is easy
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to find natural language instances of (P) where the premise C is true but
the conclusion If A, then C is false. Therefore, (P) is one of the paradoxes
of the material conditional.

Intuitively—assuming only a degree of belief in C—it seems counterin-
tuitive to infer anything about the degree of belief in the conditional If A,
then C (if A and B are contingent4 and nothing is known about the rela-
tionship between A and C). This intuition is captured by coherence-based
probability logic, because (P) is probabilistically non-informative:

(P’) P (C) = x, therefore 0 ≤ P (C|A) ≤ 1 is coherent.

This blocks the paradox.

In the context of standard approaches to probability, however, (P’) is not
probabilistically non-informative: If P (C) = 1, then P (C|A) = 1.5 This is
counterintuitive: the conclusion probability should not suddenly jump to one
if P (C) = 1, whereas in all other premise assessments (0 < P (C) < 1) the
tightest lower and upper probability bounds on the conclusion are zero and
one, respectively. Thus, standard approaches to probability do not capture
adequately (P).

The next section gives a detailed proof of (P’), explains an alternative ge-
ometric proof procedure, and illustrates how the coherence approach works.

2. Detailed coherence proof

The proof of (P’) uses the second statement of Appendix A. By the theorem
of coherent extensions of conditional probability the assessment P (C) = x

propagates to 0 ≤ y′ ≤ P (C|A) ≤ y′′ ≤ 1. Firstly, I demonstrate that y′

is equal to zero if P (C) = 1. Secondly, I show that y′′ is equal to one if
P (C) = 1. As both P (C|A) = 0 and P (C|A) = 1 are coherent, if P (C) = x,
this completes the proof that for all probability values x: If P (C) = x,
then P (C|A) ∈ [0, 1] is coherent. Ω denotes the certain event6 and P (A) =
P (A|Ω), ∀A.

4The requirement for contingency excludes probabilistically informative but trivial rela-
tionships between the premise and the conclusion, like the following ones: P (C|⊤) = P (C),
P (⊥|A) = P (⊥) = 0, and P (⊤|A) = P (⊤) = 1 are coherent for contingent A and C.

5If P (C) = 1, then P (C|A) = P (A∧C)
P (A)

= P (A)
P (A)

. Thus, P (C|A) = 1 if P (A) > 0,

otherwise P (C|A) is undefined. Likewise, if P (C) = 0, then P (C|A) = 0 or P (C|A) is
undefined. In Adams’ approach, P (C|A) = 1 is assumed by default if P (A) = 0 [1, p. 57].
This is incoherent since it implies P (C|A) + P (¬C|A) = 2, which should equal to one.

6The certain event is equivalent to the disjunction of all n atoms, Ω =def. A1∨· · ·∨An.
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2.1. P (C|A) may be equal to zero if P (C) = 1

The problem: Is the following assessment on the list of conditional events
C = {C|Ω, C|A} coherent?

(C1) P (C|Ω) = 1

(C2) P (C|A) = 0

The set of the atoms A0 = {A1, . . . , A4} is generated by the following list of
atoms Ai:

A1 ⇔ A ∧ C

A2 ⇔ A ∧ ¬C
A3 ⇔ ¬A ∧ C

A4 ⇔ ¬A ∧ ¬C

xα
i
denotes the (unknown) probability value of the atom Ai. The (uncondi-

tional) probability function that assigns xα
i
to Ai is denoted by Pα(Ai) = xα

i
.

The index α indicates that the probability function and the probability value
are always relative to the respective system (Sα) in the sequence of the sys-
tems. The first system (S0) is the following:

(S0)















(1) (x01 + x03) = P (C|Ω)(x01 + x02 + x03 + x04)
(2) x01 = P (C|A)(x01 + x02)
(3) x01 + x02 + x03 + x04 = 1
(4) ∀i(x0

i
≥ 0)

In the next steps the information given in (S0) is transformed such that the
probability values of the atoms x0

i
are equal to zero.

(5) x02 + x04 = 0 (1), (C1)
(6) x01 = 0 (2), (C2)
(7) x03 = 1 (3), (4 − 6)

P0(C|Ω) = 1 is satisfied, since P0(C|Ω) =
x
0
1+x

0
3

x
0
1+x

0
2+x

0
3+x

0
4
= 0+1

0+0+1+0 = 1.

Since x03 is not necessarily equal to zero, equation (1) can be deleted. The
next systems is constructed as follows:7

(S1)







(1′) x11 = P (C|A)(x11 + x12)
(2′) x11 + x12 = 1
(3′) ∀i(x1

i
≥ 0)

(4′) x11 = 0 (1′), (C1)
(5′) x12 = 1 (2′), (3′, 4′)

7The condition “if
∑

r
Ar⊆Hi

xα−1
r = 0, α ≥ 1” is not satisfied because step (7) states that

x0
3 = 1 (see the second statement of the characterization theorem in Appendix A).
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P1(C|A) = 0 is satisfied, since P1(C|A) =
x
1
1

x
1
1+x

1
2
= 0

0+1 = 0. Therefore, the

assessments (C1) and (C2) on C are coherent.

2.2. P (C|A) may be equal to one if P (C) = 1

Is the following assessment on the list of conditional events C = {C|Ω, C|A}
coherent?

(C1) P (C|Ω) = 1

(C2) P (C|A) = 1

The set of the atoms A0 = {A1, . . . , A4} is generated by the following list of
atoms Ai:

A1 ⇔ A ∧ C

A2 ⇔ A ∧ ¬C
A3 ⇔ ¬A ∧ C

A4 ⇔ ¬A ∧ ¬C

The system (S0) is:

(S0)















(1) (x01 + x03) = P (C|Ω)(x01 + x02 + x03 + x04)
(2) x01 = P (C|A)(x01 + x02)
(3) x01 + x02 + x03 + x04 = 1
(4) ∀i(x0

i
≥ 0)

(5) x02 + x04 = 0 (1), (C1)
(6) x01 + x03 = 1 (3), (4 − 6)

A solution for the system (S0) is P0(x
0
1) = P0(x

0
3) = .5 and P0(x

0
2) =

P0(x
0
4) = 0. Then, P0(C|Ω) = 1 is satisfied, since P0(C|Ω) =

x
0
1+x

0
3

x
0
1+x

0
2+x

0
3+x

0
4
=

.5+.5
.5+0+.5+0 = 1. Moreover, P0(C|A) = 1 is satisfied, since P0(C|A) =

x
1
1

x
1
1+x

1
2
=

.5
.5+0 = 1. Therefore, the assessments (C1) and (C2) on C are coherent. In
this proof equation (2) is irrelevant. This completes the coherence proof of
(P’).

Geometrical proof There is also an alternative (geometrical) procedure
to prove (P’), which is based on coherence as well (see, e.g., [17, 19]). In a
nutshell, the four atomic events Ai of sections 2.1 and 2.2 can be represented
as points in a coordinate system (see Figure 1). These points represent
the truth values of C|Ω and C|A, where “true”, “false” and “void” are
denoted by “1”, “0” and by the corresponding conditional probability value,
respectively. The atom A1 (i.e, A∧C), for example, is located at (1, 1), since
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0
1

1
A ∧ C

A ∧ ¬C
P (C|Ω)

P (C|A)

¬A ∧ C¬A ∧ ¬C

0
1

1
A ∧ C

A ∧ ¬C
P (C|Ω)

P (C|A)

¬A ∧ C

¬A ∧ ¬C

(a) (b)

P(.6, .7)

Figure 1. Geometric representation of (P’). Bullets denote the locations of the atoms A1

and A2, which are represented by the points (1, 1) and (0, 0), respectively. A3 and A4 are
located at (1, P (C|A)) and (0, P (C|A)), respectively. Dashed lines in graph (a) indicate
that the point (1, P (C|A)) representing A3 may be located anywhere between (1, 0) and
(1, 1) (including (1, 0) and (1, 1)); similarly, the point (0, P (C|A)) representing A4 may
be located anywhere between (0, 0) and (0, 1). Graph (b) shows a concrete example:
P (C|Ω) = .6 and P (C|A) = .7 is coherent, since the point P = (.6, .7) belongs to the
convex hull I (indicated by the dotted lines) of the points (1, 1), (0, 0), (1, .7), (0, .7).

A1 makes both, C|Ω and C|A, true. Then the assessments P (C|Ω) = x and
P (C|A) = y are coherent if and only if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and the point
P = (x, y) belongs to the convex hull I of the points (1, 1), (0, 0), (1, y),
(0, y). As can be seen in Figure 1, for every 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, the point
P belongs to the convex hull. Then, the set of coherent assessments (x, y)
on the pair {C|Ω, C|A} is the unit square. Thus, for any value of P (C|Ω),
0 ≤ P (C|A) ≤ 1 is coherent.

3. Empirical evidence

In the previous sections I advocated theoretical reasons for using coherence-
based probability logic as a rationality framework for uncertain conditionals.
In this section I summarize selected key findings of how people reason about
uncertain conditionals. The empirical evidence serves as an additional qual-
ity criterion—beyond formal strength—for the proposed approach.

The following example of a cover story illustrates the kind of tasks which
were used in three paper-and-pencil experiments to investigate how people
reason about (P’) [38, 44]:

Katrin works in a factory that produces playing cards. She is responsible for what
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is printed on the cards.
On each card, there is a shape (triangle, square, . . . ) of a certain color (green,
blue, . . . ), like:

• green triangle, green square, green circle, . . .

• blue triangle, blue square, . . .

• red triangle, . . .

Imagine that a card got stuck in the printing machine. Katrin cannot see what
is printed on this card. Since Katrin did observe the card production during the
whole day, she is

A 90% certain: There is a square on this card.

Considering A , how certain can Katrin be that the following sentence holds?

If there is a red shape on this card, then there is a square on this card.

Here, line A denotes an instance of the premise of (P’) and the sentence
in the box denotes the respective conditional of the conclusion. Communi-
cating an informative degree of belief in the premise could pragmatically
invite the participant to respond by an informative degree of belief in the
conclusion. To avoid this possible pragmatic influence a two-step response
mode was installed, as follows:

Considering A , can Katrin infer—at all—how certain she can be, that the sen-
tence in the box holds?

� NO, Katrin cannot infer her certainty, since everything between 0% and 100%
is possible.

� YES, Katrin can infer her certainty.

In case you ticked YES, please fill in

Katrin can be certain from at least % to at most %, that the sentence in
the box is true.

Variations on this task were investigated in three experiments [38, 44].
The degrees of belief in the premise were presented in terms of percent-
ages (“60%”, “70%”, and “90%”) or in terms of verbal descriptions (“pretty
sure”, “absolutely certain”). In all experiments, (P’) tasks were investigated
among other reasoning tasks. All participants were tested individually under
careful experimental conditions.

The clear majority of participants responded by non-informative re-
sponses (see Table 3). The participants’ understanding of the probabilis-
tic non-informativeness of (P’) explains—in purely semantical terms—why
(P) is not endorsed. In the present context, the task item with the certain
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minimum maximum # of (P’) tasks study

60% 60% 1 [38, Experiment 2, n = 40]

63% 81% 5 [44, Experiment 1, n = 16]

68% 79% 2 [44, Experiment 2, n = 19]

Table 3. Lowest and highest percentages of non-informative responses, number of (P’)
tasks, observed in three samples.

premise deserves special attention. The degree of belief in the premise was
formulated verbally by “absolutely certain”, which corresponds to the high-
est degree of belief in the premise, P (C) = 1. This is the interesting situation
described above, where standard approaches and the coherence approach to
probability diverge: whereas the former predicts P (C|A) = 1, the latter
predicts 0 ≤ P (C|A) ≤ 1. 69% of the responses in this task corroborate the
coherence approach: the clear majority of the participants responded that
one cannot infer an informative probability interval of the conclusion [44,
Experiment 1, n = 16].

How are conditionals negated? The material conditional A ⊃ C can be
negated by a wide scope reading (¬(A ⊃ C)) or by a narrow scope reading
(A ⊃ ¬C). The conditional event C|A is negated by the narrow scope
reading (¬C|A). Recent experiments on Aristotle’s theses corroborate the
conditional probability hypothesis and that people negate conditionals by
the narrow scope reading of negating conditionals [38].

Further empirical data suggest that the inference from “A or B” to “If
not A, then B” is judged to be strong if the disjunction is justified non-
constructively, and weak if it is justified constructively [36]. This effect
can be explained within the framework of coherence by suitable measures
of “constructivity” and “closeness” [19]. As coherence requires that 0 ≤
P (C|A) ≤ P (¬A∨C), “strong” means here that the conditional probability
is “close” to the disjunction probability.

Coherence based probability logic also received further strong empirical
support by a series of experiments on other examples of the paradoxes of
the material conditional: (i) inferring If A, then C from ¬A [44] and (ii)
premise strengthening: from If A, then C infer If A∧B, then C [43]. Again,
the clear majority of participants responded by non-informative intervals,
which is predicted by coherence based probability logic. Empirical studies
on Gilio’s coherence semantics of the basic nonmonotonic reasoning Sys-
tem P [18] provide further empirical support: The clear majority of people
infer probabilistically informative and coherent responses in tasks that map
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the nonmonotonic argument forms of System P [40] but—as predicted—non-
informative probabilities in monotonic argument forms [43]. This validates
basic rationality norms for nonmonotonic reasoning which govern how con-
clusions should be retracted in the light of new evidence. But do people
actually retract conclusions?

This was demonstrated experimentally by the suppression task paradigm
[7, 48]. The data show that previously endorsed inferences can be suppressed
by adding conditionals to the premise sets. Most people, for example, infer
“Katrin studies late in the library” from the two premises “If Katrin has
an essay to write, then Katrin studies late in the library” (K1) and “Katrin
has an essay to write” (K2). If the conditional “If the library is open,
then Katrin studies late in the library” (K3) is added to the premise set,
modus ponens would be still applicable, but most people retract the initial
conclusion. The additional premise K3 generates an enthymeme which, if
made explicit, formally blocks the application of the modus ponens to K1
and K2.

Concluding remarks

In this paper, I advocated coherence based probability logic as a formally
strong and empirically endorsed rationality framework for uncertain condi-
tionals. As an illustrative example, I explained why standard approaches
to probability are unable to express the probabilistic non-informativeness
of (P) and I demonstrated how the coherence approach deals formally ade-
quately with the problem. As an additional quality criterion for coherence
based probability logic, which is independent of formal criteria, I surveyed
recent empirical work on how people reason about uncertain conditionals.
The data matches the predictions of the proposed approach.

While recent (non-probabilistic) psychological approaches use pragmatic
principles to deal with the paradoxes of the material conditional [5, 28],
I showed how the coherence approach allows for dealing with uncertainty
and how it explains the paradoxes in purely semantical terms. Thus, the
coherence approach allows for a more unified theory of conditionals. There
are, however, cases where the coherence approach should be enriched by
relevance and/or pragmatic principles. Consider, for example, the following
disjunction introduction inference:

(DI) P (C|A) = x, therefore x ≤ P (C ∨B|A) ≤ 1 is coherent.

(DI) is a trivial theorem of probability theory: a disjunction (whether con-
ditionalized on a contingent A or on Ω) is at least as probable as one of
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its disjuncts. However, under some natural language instances (DI) appears
counterintuitive, like the following one:

(DI’) If the letter is taken to the post office, then the letter will arrive
at address C. Therefore, If the letter is taken to the post office, then
the letter will arrive at address C or the moon is made of blue cheese.

Here, the conclusion seems absurd whereas in countries of reliable postal
services, the premise is highly probable. Future work is needed to investigate
to what extent adding relevance and/or pragmatic principles on a meta-level
to coherence based probability logic could block counterintuitive arguments
like (DI’).

Finally, as noted by Coletti & Scozzafava [8, p. 96f], the coherence
approach allows for revising plain belief expressed by probability one,
P (C) = 1. The proofs of argument form (P’) in Section 2 show that even
if an agent holds P (C) = 1, it is perfectly coherent to assign appropriate
degrees of belief less or equal to one to the conditional event C|A, where
“A” denotes some new evidence: then P (C|A) expresses the revised degree
of belief in C given the evidence A. As an example consider the initial belief
state (B1) and the revised (or currently hypothetical) one (B2):

(B1) P (Bill Gates is a billionaire) = 1
(B2) P (Bill Gates is a billionaire |Bill Gates is bankrupt) = 0

This is not possible in standard approaches to probability where (B2) must
either obtain probability one or is undefined. In the framework of coherence,
however, it is perfectly coherent to revise (B1) by (B2) or to hold beliefs (B1)
and (B2) simultaneously.
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A. Characterization theorem of coherence

This section reproduces the characterization theorem of coherence [8, Theorem 4, p. 81]:

Let C be an arbitrary family of conditional events and consider, for every n ∈ N,
a finite subfamily

F = {E1|H1, . . . , En|Hn} ⊆ C ;

we denote by A the set of atoms Ar generated by the (unconditional) events
E1,H1, . . . , En, Hn and by G the algebra spanned by them. For an assessment

on C given by a real function P , the following three statements are equivalent:

1. P is a coherent conditional probability on C ;

2. for every n ∈ N and for every finite subset F ⊆ C there exists a sequence of
compatible systems, with unknowns xα

r ≥ 0,

(Sα)































∑

r
Ar⊆Ei∧Hi

xα
r = P (Ei|Hi)

∑

r
Ar⊆Hi

xα
r ,



if
∑

r
Ar⊆Hi

xα−1

r
=0, α≥1



 (i = 1, 2, . . . , n)

∑

r
Ar⊆H

α
0

xα
r = 1
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with α = 0, 1, 2, . . . , k ≤ n, where H0
0 = H0 = H1∨ . . .∨Hn and Hα

0 denotes,
for α ≥ 1, the union of the Hi’s such that

∑

r
Ar⊆Hi

xα−1
r = 0 ;

3. for every n ∈ N and for every finite subset F ⊆ C there exists (at least)
a class of (coherent) probabilities {PF

0 , PF
1 , . . . , PF

h }, each probability PF
α

being defined on a suitable subset Aα ⊆ A0 (with Aα′ ⊆ Aα′′ for α′ > α′′

and PF

α′′ (Ar) = 0 if Ar ∈ Aα′) such that for every G ∈ G , G 6= ∅, there is a
unique PF

α , with

∑

r
Ar⊆G

P
F

α (Ar) > 0 ; (I)

moreover, for every Ei|Hi ∈ F there exists a unique PF
β satisfying (I) with

G = Hi and α = β, and P (Ei|Hi) is represented in the form

P (Ei|Hi) =

∑

r
Ar⊆Ei∧Hi

PF
β (Ar)

∑

r
Ar⊆Hi

PF
β (Ar)

. (II)


