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A B S T R A C T   

We argue that prediction success maximization is a basic objective of cognition and cortex, that it is compatible 
with but distinct from prediction error minimization, that neither objective requires subtractive coding, that 
there is clear neurobiological evidence for the amplification of predicted signals, and that we are unconvinced by 
evidence proposed in support of subtractive coding. We outline recent discoveries showing that pyramidal cells 
on which our cognitive capabilities depend usually transmit information about input to their basal dendrites and 
amplify that transmission when input to their distal apical dendrites provides a context that agrees with the 
feedforward basal input in that both are depolarizing, i.e., both are excitatory rather than inhibitory. Though 
these intracellular discoveries require a level of technical expertise that is beyond the current abilities of most 
neuroscience labs, they are not controversial and acclaimed as groundbreaking. We note that this cellular 
cooperative context-sensitivity greatly enhances the cognitive capabilities of the mammalian neocortex, and that 
much remains to be discovered concerning its evolution, development, and pathology.   

1. Introduction 

Mental life, and indeed our survival, depends upon maximizing valid 
perceptual inferences and minimizing invalid ones. In this sense, ‘pre
diction error minimization’ is a major goal for neural systems. However, 
it is often taken for granted that minimization of prediction errors 
subtracts predictions from ascending feedforward inputs such that the 
signals transmitted up a perceptual hierarchy code for the difference 
between descending predictions and ascending inputs. As we see it, that 
is neither necessarily so nor convincingly shown to occur in mammalian 
neocortex: the necessity of minimizing incorrect (and maximizing cor
rect) perceptual inferences does not imply any specific form of coding. 

In this paper, we show that certain classes of pyramidal cells with 
two points of integration can ‘minimize errors of predictive inference’ by 
amplifying relevant and suppressing irrelevant signals without using the 
error computations typical of predictive coding theories. Furthermore, 
we will argue that the hypothesis of predictive coding is neuro
biologically implausible. Though the notion of subtractive prediction 
error has become prominent within theories of predictive coding, the 
evidence and arguments reviewed below imply that predictive inputs 

regulate the salience of neuronal signals without changing that for 
which they code. The cellular mechanisms we briefly review below thus 
provide a sound neurophysiological basis for prediction error minimi
zation, but not for the use of predictions to change that for which the 
ascending signals ‘code’, i.e., that about which they transmit informa
tion. Predictions are then seen as changing feedforward transmission by 
changing which signals are amplified and which are attenuated, not by 
dynamically changing that for which they code.1 

As we see it, the conception of cellular cooperative context-sensitive 
predictive inference outlined in this paper preserves the strengths of 
previous research on ‘predictive processing’, even though it is skeptical 
of the notion of subtractive coding. The framework advocated here 
builds on discoveries in cellular neuroscience that are acknowledged to 
be groundbreaking milestones (e.g., by Ramaswamy and Markram, 
2015), and which are poised to become mainstream in cognitive and 
computational neuroscience. These discoveries can be seen as rooting 
conceptions of inference and prediction in their cellular foundations, 
while simultaneously contributing to emerging medical and deep 
learning technologies. 

In the following sections, we first state some of our working 
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assumptions concerning the notions of predictions and predictive 
perceptual inference (Section 2). In Section 3, we spell out shortcomings 
of the idea of subtractive prediction error coding, which is often pre
sented as being at the core of predictive coding theories. In Section 4, we 
briefly sketch the cellular processes that implement cooperative context- 
sensitive perceptual inferences. Section 5 explains how prediction error 
minimization can be achieved through such cellular processes. Section 6 
indicates how dominant conceptions of predictive processing could be 
updated in light of the cellular discoveries of pyramidal neurons with 
two points of integration. Section 7 discusses implications of our 
perspective for a recent application of subtractive predictive coding to 
hippocampal-cortical interactions in episodic memory (Barron et al., 
2020). Finally, Section 8 summarizes our conclusions and raises issues 
for future investigations. 

2. Conceptual clarifications and working assumptions 
concerning predictive perceptual inference in mammalian 
neocortex 

Despite the most natural reading of the word, ‘prediction’ does not 
necessarily concern the future. Although this default meaning of ‘pre
diction’ is often emphasized by philosophers of cognitive science (see, e. 
g., Clark, 2013a), the notion of prediction invoked in theories of 
perception is broader and includes predictive relations between 
concurrently observed datasets, e.g., to group data into coherent subsets 
and to disambiguate their interpretation. Many perceptual inferences do 
not aim to predict the future, but simply draw on stored inferential 
knowledge which is activated by incoming sensory data. Instead of 
‘predicting’, it would thus be more appropriate to speak about our visual 
system interpreting the current sensory data. 

In its contemporary forms, this inferential view of perception is 
infused with the Bayesian vision of evidential updating (Penny, 2012). 
But it is important to emphasize that, even in the Bayesian brain, pre
dictions are not always anticipatory, as often implied by predictive 
processing theorists. Though perception frequently uses information 
from earlier events to guide interpretation of later events, and vice versa, 
ascending feedforward signals often convey consciously accessible in
formation about events that could not have been either predicted or 
postdicted. 

In this paper we use the notion of prediction in a broad sense, and we 
assume that many perceptual inferences are predictive in this sense. 
Taken thus broadly, predictions not only draw on feedback from higher 
to lower levels of perceptual processing hierarchies, but also, for 
example, relate concurrent events across modality specific hierarchies of 
sensory processing (Phillips, 2023, Chapter 5). They extend to action 
generating circuits because motor commands must be coordinated, so 
are to that extent mutually ‘predictive’. Predictions in this broad sense 
can apply to events in the past. An exceptionally dramatic example of 
predicting the past occurred when observations of the crab nebula led to 
the prediction, subsequently confirmed, that a supernova had occurred 
in that part of the sky many centuries previously. More everyday ex
amples include the disambiguation of earlier by later phonemes, words, 
or phrases within a sentence. 

De-emphasizing the anticipatory sense of the notion of ‘prediction’ is 

therefore one of the ways in which we distance our proposals about 
predictive inferences from those accounts of predictive processing that 
insist that generative models always issue anticipatory predictions 
before the corresponding sensory data arrive.2 We also emphasize that 
higher levels of perceptual hierarchies do not necessarily predict the 
sensory details that are specified at lower levels of the hierarchy. Typi
cally, they generalize over them: higher level percepts, or inferences, can 
be instantiated in more than one way, and usually in many different 
ways, at lower levels of the cortical hierarchies of abstraction. 

A central aim of our paper is to provide grounds for supposing that 
perception does not depend upon the form of prediction error coding in 
which the output of individual pyramidal cells transmits information 
about the difference between the cell’s ascending feedforward receptive 
field inputs and its contextual inputs, including those from feedback or 
other top-down sources. We will refer to that as ‘subtractive coding’. In 
essence it is the form of coding used by communication engineers to 
greatly reduce the channel capacity required to transmit large amounts 
of slowly changing data. In contrast to that, we argue that in mammalian 
perceptual systems the predictive context is typically modulatory in that 
it either amplifies or attenuates transmission of information about its 
receptive field (RF) input. We, and many others, have referred to that as 
contextual modulation, but it could also be referred to as modulatory 
Predictive Processing (PP) to distinguish it from the subtractive coding 
that we dispute.3 From that perspective, evidence for contextual mod
ulation in cases where feedback provides the context can be seen as 
evidence for modulatory PP, including the many cases where it was not 
presented as being related to any form of predictive error coding (e.g. 
Lamme, 2004, 2020). 

Given our focus on contextual modulation from the cellular to the 
cognitive systems and psychological levels, the key distinction between 
subtractive coding and modulatory PP is of obvious importance. Recent 
advances in the foundations of information theory (Williams and Beer, 
2010; Wibral et al., 2015) have been used to define and quantify 
contextual modulation. Those advances in partial information decom
position quantify the information about which a local processor with 
two distinct sets of input transmits information uniquely about each of 
them (in addition to quantifying the transmitted information that de
pends on both subsets). They have recently been used to quantify the 
information transmitted specifically about contextual input to the apical 
dendrites of L5 cells in the cortex of mice (Kay et al., 2022). This directly 
confirms that under the conditions used apical input was modulatory 
rather than subtractive. In terms that are more explicitly related to 
research on predictive processing, the discoveries of Kay et al. (2022) 
directly and quantitatively demonstrate that in the conditions of that 
experiment modulatory PP occurred but subtractive coding did not. 

It is sometimes taken for granted that evidence for the construction 
and use of internal models, in either perception or thought, implies 
subtractive coding. On that assumption our arguments against subtrac
tive coding could be misinterpreted as implying that we doubt the use of 
internal models. We do not. We see the use of internal models as being 
crucial to perception and cognition in general. It is the assumption that 
evidence for the use of internal models is evidence for subtractive coding 

2 See, e.g., Clark (2019, p. 649): “Under that [Predictive Processing] schema, 
perception and action involve meeting the sensory flux with a stream of apt 
(generative-model based) top-down prediction.” Note that this view is simply 
the logical consequence of the idea that “the forward flow of information is 
solely conveying error, and the backward flow is solely conveying predictions” 
(Clark, 2013a, p. 187f.). If all that gets passed ‘upwards’ through the hierarchies 
of neocortical perceptual abstraction are prediction errors, it follows that 
top-down predictions must be issued some time in advance before the sensory 
data arrive. If that were not the case, the predictions could not ‘meet’ the 
feedforward sweep in the early stages of the hierarchy. 

3 The notion of modulatory PP is meant to cover both the process of pre
diction error minimization and of prediction success maximization. 
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that we deny. Furthermore, if the free energy principle underlying that 
conception of PP does indeed define ‘prediction error’ such that it is both 
necessary to survival and unfalsifiable it could be neither confirmed nor 
refuted by specific evidence such as that reviewed here (see Fiorillo, 
2008, 2010, 2012, and personal communication, 2023). Thus, as 
explained further below, we see our perspective as compatible with and 
complementary to basic insights expressed by the free energy principle. 

Another potential misunderstanding of our arguments could also 
arise from assuming that we are concerned with brains in general. We 
are not. Our focus is specifically on cellular mechanisms for contextual 
modulation in mammalian neocortex. We make no claims about whether 
or how contextual modulation occurs in other species, though we do 
note that sensitivity to context is a key feature of mammalian cognition, 
and especially of human language and thought. We also note that 
cellular mechanisms for context-sensitivity that have been discovered in 
mammalian neocortex have not yet been seen in either subcortical re
gions of mammalian brains nor anywhere in other species. Perhaps such 
capabilities do not exist at the cellular level in those systems, and 
perhaps that is why the behavior of many other species is less flexibly 
sensitive to context than is that of mammals, and of humans in 
particular. 

Information transmission as defined by Shannon implies that no in
formation can be transmitted by neuronal signals about things that are 
known. Their informativeness increases as their probability decreases. 
Our main concern here is with the use of internal knowledge to choose 
between alternative interpretations of ascending feedforward data. In 
many cases the interpretation that is more likely given the current 
context seems the best bet and seems to be the one that is most often 
taken. Ascending data that contradicts confident expectations will be 
highly informative, however, and may thus be selected in those special 
circumstances. To show how our view offers a new perspective on the 
role of predictions in neocortical function, Section 7 of this paper will 
relate it to one that applies currently influential views of predictive 
processing to the role of hippocampal-neocortical interactions in 
episodic memory (Barron et al., 2020). Though highly influential and 
supported by much empirical evidence, the conceptual framework of 
which the work of Barron et al. (2020) is a good example remains 
inconclusive because it does not clearly and consistently distinguish 
between modulatory PP and subtractive coding. That is crucial because 
subtractive coding clashes with the evidence from cellular physiology 
that we emphasize throughout this paper. The aim of Section 7 will 
therefore be to show how these issues may be resolved by our emphasis 
upon context-sensitive neocortical pyramidal cells with two points of 
input integration. 

The cellular mechanisms of modulatory PP, briefly sketched in Sec
tion 4, are able to build a system that minimizes errors in predictive 
inferences, a goal shared with predictive coding theories of brain func
tion, but they do so without recourse to subtractive coding. A conse
quence of subtractive coding is that there would be no feedforward 
output from any level when top-down predictions are in full agreement 
with the forward flowing sensory data. In stark contrast to that, exten
sive evidence indicates that the feedforward outputs of many pyramidal 
cells in the neocortex are often strengthened when coincident feedfor
ward and predictive contextual input agree in that both are depolariz
ing.4 In this quickly emerging picture, functional segregation of 
prediction and error units postulated by most predictive coding theories 

is replaced by a delicate interplay of amplification and attenuation that 
changes signal salience without changing what the cell’s output trans
mits information about, i.e., its receptive field selectivity, other than by 
making it more precise in some cases. 

To forestall further possible misunderstandings, we also note that 
some of our key working assumptions contradict other ideas that are 
widely taken for granted, often implicitly. These ideas, we argue, can be 
deeply misleading. Widely held assumptions in which readers must 
suspend belief if they are to understand what follows, are therefore 
explicitly listed here. 

First, although the primary aim of this paper is to argue against 
subtractive coding, what we say still supports the hypothesis of pre
diction error minimization. We also argue for the objective of prediction 
success maximization. That objective is not equivalent to the objective of 
prediction error minimization, and is not open to the ‘dark-room prob
lem’ (Sun and Firestone, 2020). There is evidence that neocortex uses 
predictions to amplify signals that contradict confident expectations, but 
that does not imply that what they code for is changed; indeed, that 
evidence is more plausibly interpreted as implying that what is coded for 
remains the same while becoming more salient when amplified. As we 
see it, the applied mathematicians and computer scientists who first 
proposed a theory of neocortex based on the notion of subtractive coding 
were misled by oversimplified views of the neocortex as having a purely 
hierarchical structure with feedback coming only from the next level up 
and without inputs from outside that hierarchy. They were also misled 
by assuming a major function of neocortex to be that of data reduction in 
the service of information transmission. 

It is often taken for granted that information transmission is pivotal 
in the neocortex. We see that as seriously misleading. Transmitting in
formation must be distinguished from the interpretation and use of in
formation. Transmission is indeed the primary function of the optic 
tract, which transmits information about retinal input to the thalamus. 
Lossless data compression, such as that produced by Kalman filtering or 
Huffman coding, is indeed the primary function of the retinal micro
circuitry that greatly reduces the channel capacity required of the optic 
tract. Information transmission is also the function of communication 
systems such as radios and TV sets, but, in contrast to neocortex, they do 
not interpret the information that they transmit, nor do they use it for 
any purpose. Neocortex both interprets and uses the information that is 
transmitted. Sensory information, and information from internal sour
ces, is used to decide what to think and what to do but the purpose of 
those thoughts and actions is rarely, if ever, to simply transmit back to 
the world the information received from it. Overemphasis on informa
tion transmission is thus misleading when we are trying to understand 
the structure and function of neocortex. 

When information theory is used in the sciences of brain and mind it 
is usually taken for granted that the more information transmitted the 
better. In stark contrast to that, we argue that selecting the currently 
relevant information for feedforward transmission is a crucial require
ment of all neural systems, including mammalian neocortex. 

Finally, the 20th century sciences of mind and brain took it for 
granted that neurons in general operate as integrate-and-fire point 
neurons. As argued in detail below, it is now known that many 
neocortical pyramidal cells have a second point of input integration near 
the top of the apical trunk. In contrast to proposals based on subtractive 
error coding, this second point of input integration is used as a context- 
processor which amplifies response to coincident basal and perisomatic 
activation. 

In addition to rejecting these widely held assumptions, our 
perspective also advocates two other radical advances. Firstly, it is often 
implicitly taken for granted that, even if apical inputs to pyramidal cells 
can be distinguished on anatomical and functional grounds from that of 
basal/perisomatic inputs, they contribute to action potential generation 
in essentially the same way across time and hierarchical levels. In 
contrast to that, our perspective is open to the possibility that the exact 
form of the modulatory influences may vary across time and level in the 

4 When talking about ‘coincidence’ or ‘agreement’ between apical and basal/ 
perisomatic input, we do not mean to imply that there is a match in repre
sentational ‘content’ at the level of single cell responses. Action potentials per se 
do not have content. They can be seen as simply saying, with various degrees of 
salience, ‘There is evidence for the receptive field criteria to which I am 
selectively sensitive’. Truly representational properties only appear at the level 
of populations or networks of cells that jointly signal the presence of a 
perceptual feature. 
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hierarchy. Secondly, perception of the external world is sometimes 
thought of as being ‘controlled hallucination’ (e.g., in Seth, 2021). 
Controlled hallucination uses internal resources to interpret and sys
tematize sensory data. If that process is restricted to higher perceptual 
levels, which perform what Ludwig Wittgenstein (1953) described as 
‘seeing as’, then our perspective is also open to that possibility. Thus, a 
rich panorama of possibilities arises from the conception of neocortical 
pyramidal cells as having two functionally distinct points of input 
integration whose modes of operation may vary across time and level in 
the hierarchy. 

3. Against subtractive prediction error coding 

Theories of predictive coding ambitiously propose a general view of 
brain architecture and function: at each level of cortical signal pro
cessing, perceptual hypotheses are issued from level-specific generative 
models which represent how portions of sensory data are produced by 
hidden external causes of sensory input; these predictive hypotheses are 
sent as a feedback down the hierarchy to the preceding levels where they 
meet feedforward signals containing information about the stimulus. 
They typically propose that residual prediction errors are computed by 
subtracting descending predictions from feedforward sensory input. 
Signals coding for these prediction errors are then sent upwards to the 
next level in the perceptual hierarchy to correct activity at that level. In 
this way, prediction errors are continuously minimized, at every level of 
a predictive hierarchy (Mumford, 1992; Rao and Ballard, 1999; Huang 
and Rao, 2011; Bastos et al., 2012; Clark, 2013a; Hohwy, 2013). 

The idea of prediction error coding was initially hypothesized by an 
eminent applied mathematician, Mumford (1992), and applied to the 
primary visual cortex by Lee and Mumford (2003) and by the computer 
scientists Rao and Ballard (1999). All of them were strongly influenced 
by anatomical and physiological evidence for hierarchical organization 
of neocortical regions. As we see it, they were misled by that evidence, 
however. Hierarchical aspects of neocortical structure and function are 
indeed important, as established most convincingly for primates by 
Markov and Kennedy (2013). Nevertheless, those hierarchical aspects 
are clearly embedded within a heterarchical system in which feedback 
from higher to lower hierarchical levels is inextricably intermingled 
with modulatory input from various other sources. Apical dendrites in 
layer 1 of neocortical pyramidal cells whose soma lie in deeper layers 
have a central role in mediating this diverse modulatory input. This 
contextual input is not restricted to feedback from higher levels (Schu
man et al., 2021), let alone to feedback from the next level in a cortical 
hierarchy (cf. Litwin and Miłkowski, 2020), but includes contributions 
from subcortical centers such as the thalamus and amygdala. There is 
also clear evidence that this contextual modulation amplifies currently 
relevant neural signals and attenuates irrelevant signals. 

We will look at some of this evidence more closely in the following 
sections. In this section we aim to spell out the main shortcomings of the 
subtractive coding hypothesis which are relevant for our argument. The 
simple idea underlying the notion of subtractive coding is that infor
mation transmission is more efficient if lower levels of abstraction do not 
tell higher levels what those higher levels ‘know’ already. So predictive 
coding accounts assume that feedback tells the lower levels what is 
already known at the higher levels, and that is subtracted from the 
feedforward input to the lower levels. As a result, all that needs to be 
transmitted forward to the higher levels is the ‘error’, i.e., the difference 
between feedforward input and feedback predictions. Prediction errors 
are then propagated through the perceptual hierarchy, until high-level 
perceptual hypotheses are accordingly adjusted. 

A distinctive feature of theories based on subtractive coding is that 
subtractive coding does not just sometimes happen in the neocortex; it 
always happens. According to predictive coding views, all feedforward 
processing consists solely in the transmission of prediction errors defined 
as feedforward input minus feedback from a higher level in the hierar
chy (Clark, 2013a, p. 187f.; Clark, 2019, p. 647; Sprevak, 2021). 

However, the abstract idea of prediction error calculation by suppres
sion of correctly anticipated information needs to be operationalized in 
neurobiological terms. The most natural way to operationalize the 
cancellation of successful predictions in neurobiologically realistic terms 
is to invoke neural inhibition, in which feedback from higher levels 
‘dampens’ somatic action potentials at previous levels. In line with this, 
most predictive coding theories assume that feedback is in effect 
inhibitory. However, as noted by Spratling (2019) and by Aru et al. 
(2020a), that requirement puts those models of predictive coding at 
odds with single-cell neurophysiological data. That data shows that the 
effects of cortical feedback are often excitatory or disinhibitory as out
lined further below (see also Johnson and Burkhalter, 1997). This is 
especially clear in the case of feedback and other types of input to layer 1 
cortical terminals. Much of that input is conveyed by either direct 
excitatory synapses or by disinhibition. 

One may attempt to reconcile such facts with subtractive coding by 
saying that excitatory feedback can be made negative through inhibitory 
interneurons (see Bastos et al., 2012; Kanai et al., 2015). The idea is that 
as feedback reaches the neurons carrying the feedforward information, 
activated inhibitory interneurons stop the production of action poten
tials in these neurons according to the computed (i.e., subtracted) pre
diction errors. But this attempt, too, is unconvincing. As noted, much of 
the input to layer 1 is either directly excitatory or disinhibitory. 
Although some of the input to layer 1 is indeed to inhibitory in
terneurons, some of these interneurons such as the vasoactive intestinal 
peptide-expressing (VIP) interneurons, activated by long-range inter-
regional connections, disinhibit apical dendrites by inhibiting the local 
tonic inhibition that is produced by SOM/SST interneurons (predomi
nantly activated by local intra-regional connections). VIP interneurons 
disinhibit apical dendrites by making small holes in the inhibitory 
blankets cast over them by SOM/SST cells (Karnani et al., 2014). So 
instead of suppressing action potentials, as predictive coding requires, 
activation of VIP interneurons increases the amplifying or driving effects 
of apical depolarization. 

Our skepticism about the validity of neural architectures proposed by 
predictive coding theories is complemented by failures of studies 
designed to directly test predictions based on subtractive coding in the 
lab. Although some publications report positive evidence for subtractive 
coding (for overview, see Walsh et al., 2020; Shipp, 2024) other studies 
reached more pessimistic conclusions. For example, Alilović et al. 
(2019) report that the first transient wave of feedforward processing 
(<80 ms post-stimulus) is impenetrable by predictive effects. Solomon 
et al. (2021) purported to isolate the markers of subtractive predictive 
coding in the cortex, and found almost none (see also the negative re
sults of Ouden et al. 2023). Given the lack of convincing empirical 
support, the popularity of predictive coding models may be surprising. 
Our simple argument here is that the hypothesis of subtractive coding 
may have gained much of its current popularity by being conflated with 
modulatory PP and by the necessity of prediction error minimization, 
neither of which necessarily imply subtractive coding. 

4. A brief sketch of cooperative context-sensitive intracellular 
processes 

The hypothesis of predictive coding was developed within a systems 
neuroscience based on the assumption that all neurons function as 
‘integrate-and-fire’ processors in which all inputs are integrated to 
compute a single data point about which information is transmitted 
downstream for further processing. If cells are point processors, then 
they must transmit information about everything that affects them. For 
such processors, any differences in input will necessarily change what 
they transmit information about, including a possible change from 
representing a stimulus feature to conveying a prediction error. 

In stark contrast to the integrate-and-fire point neuron assumption 
there is now convincing evidence for pyramidal cells that can act as 
processors with two distinct points of integration, somatic and apical. 
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The apical integration zone was first discovered by the technically 
demanding investigations of pioneers such as Larkum et al. (1999), Xu 
et al. (2012), Larkum (2013), Beaulieu-Laroche et al. (2018), Williams 
and Fletcher (2019), Harnett et al. (2015) and others. The potential 
functional utility of the apical integration zone was demonstrated by 
computational models such as those of Siegel et al. (2000) and Körding 
and König (2000). The functional specialization of the apical integration 
zone has been directly observed by multisite patch-clamping studies in 
rodents (Schulz et al., 2021). Further analysis of those observations 
confirms that they reveal modulatory effects as defined by Kay and 
Phillips (2020) using state-of-the-art three-way mutual information 
decomposition (Kay et al., 2022).5 

Here we concentrate on the mode of apical function referred to as 
‘apical amplification’ (AA), which is central to the perspective advo
cated by Larkum and Phillips (2016, 2017), Phillips et al. (2018), 
Marvan et al. (2021), and by the Dendritic Integration Theory (Aru et al., 
2020a; Bachmann et al., 2020). In a nutshell, AA is that mode of oper
ation in which pyramidal cells amplify transmission of information 
about their basal and perisomatic input when it is useful to do so in the 
context of input from diverse cortical and sub-cortical sources as 
signaled by input to their apical dendrites in layer 1. Thus, we and others 
interpret the discovery of AA as implying that the strength of the cell’s 
output is increased when the basal and the apical inputs are both 
depolarizing (Phillips et al., 2015; Larkum and Phillips, 2016; Phillips, 
2017; Aru et al., 2020a). The direct long-range inter-regional excitatory 
input to layer 1 (containing apical dendrites of pyramidal cells in layers 
5, 3 and 2), whatever its origin, typically amplifies the cell’s response to 
coincident feedforward basal and perisomatic excitation. The signature 
of a successful match between apical and basal inputs is the generation 
of a brief burst containing 2 to 4 spikes within about 20 msec separated 
by silence for approximately 100 msec and usually synchronized across 
a sparse subset of cells (e.g., as described by Naud et al., 2023). 

Fig. 1 sketches some of the things that are now known about intra
cellular processes within context-sensitive neocortical pyramidal cells 
and about their (dis)inhibitory regulation. For reviews of evidence on 
which this sketch is based and of its implications for cognition see Lar
kum (2013, 2022), Phillips (2017, 2023), and Tantirigama et al. (2020). 
For a review of evidence showing that dysfunctions of the mechanisms 
sketched in Fig. 1 are central to the way in which cognition is impaired 
by the various genetic and environmental origins of Fragile X, Down 
Syndrome, and Fetal Alcohol Spectrum Disorders see Granato et al. 
(submitted). Though Fig. 1 is typical of cells whose soma lie in layer 5, 
and is thus applicable to all neocortical regions, it may, in some cases, 
also apply to cells in more superficial layers, as discussed in Section 8. 

Apical amplification provides a mechanism by which information 
about basal and perisomatic inputs can be amplified when appropriate 
without being contaminated or corrupted by inputs coming from the 
modulatory context. Thus, apical input can function in a way that keeps 
its effects separate from those of feedforward inputs. Two-point pro
cessors can use their contextual input, including feedback, to modulate 
the strength, or salience, with which feedforward information is trans
mitted. Importantly, two-point processors do not trade in prediction 
errors. What is transmitted through perceptual hierarchies is the infor
mation about current sensory input to basal and perisomatic synapses. 
Apical depolarization amplifies the transmission of relevant signals 
without changing what those signals code for, i.e., what they transmit 
information about. Thus, in contrast to the hypothesized subtractive 
effects of predictive coding, the evidence for cellular cooperative 
context-sensitivity implies that the cell’s output is strengthened when 
dendrites receiving predictive contextual input are activated at about 
the same time as dendrites receiving the feedforward input. AA thus 

supports the common view that feedback signals are functionally 
distinct from feedforward signals, but the picture of brain function it 
offers is not that proposed by subtractive coding. 

It is also possible that, in addition to the mode of apical amplifica
tion, there is also a mode of operation in which fictive percepts are 
generated by apical input instead of by RF input. One form of ‘apical 
drive’ could provide a cellular mechanism for dreaming (Hobson et al., 
2014; Aru et al., 2020b). Other forms may provide mechanisms for 
imagination and thought when awake. If so, then refinements of those 
modes of apical operation might be involved in the creative and lin
guistic capabilities that are distinctively human (Phillips, 2023, Chapter 
6). 

When operating in the amplifying mode the apical site of these py
ramidal cells regulates the salience of the somatic output without 
directly generating its own output. Modulatory effects of apical input are 
not limited to being either fully amplifying or fully driving, however. 
The outputs of context-sensitive pyramidal cells can be amplified to 
various extents depending upon their current relevance and informa
tiveness. Signals known to be highly probable in a specified context 
carry little information in that context; so processing resources would be 
saved if amplification of those signals by apical dendrites were attenu
ated in that context. Indeed, there is direct evidence that such signals are 
attenuated by increased activation of the SOM interneurons, as first 
reported by Larkum et al. (1999). The signals transmitted in those 
conditions will therefore be attenuated relative to conditions in which 
amplification is not reduced. Signals that contradict context-dependent 
predictions will be highly informative, and there is direct evidence that 
in such cases the signals are amplified by disinhibiting the apical den
drites (Harris and Shepherd, 2015; Wang and Yang, 2018). Modes of 
operation intermediate between amplification and drive are also 
possible, so in that case the distinction between reality and imagination 
would become problematic. 

Again, note that making a message less salient because it is not highly 
informative, or amplifying it because it is, implies that the message 
being conveyed remains the same. Thus, ‘context-sensitivity’ refers to 
modulatory effects that do not fundamentally change the information 
transmitted by the cell other than by making it more precise. ‘Cooper
ativity’ implies that if apical and basal/perisomatic inputs are both 
excitatory, i.e., depolarizing, then the cellular output generated is 
amplified, which implies a supra-linear interaction between the two 
sites. This cooperation implies an asymmetric interaction between the 
two input sites because the apical contribution depends on the presence 
of basal/perisomatic activation, but not vice versa (Kay et al., 2022). It 
may also be that if net apical input is inhibitory, cellular output gener
ated by excitatory input to basal and perisomatic synapses is attenuated, 
but the physiological evidence on that is less clear. 

Although not explicitly related to the distinct roles of basal and 
apical dendrites, the theory of Coherent Infomax was based on local 
processors with two functionally distinct points of input integration (Kay 
et al., 1998; Kay and Phillips, 2011). That theory defines RFs and 
contextual fields (CFs) mathematically and shows that together they 
provide computational capabilities of great generality, including figure 
ground organization and contextual disambiguation. It must not be 
confused with the theory of Infomax (Linsker, 1992), which simply 
maximizes the transmission of all information, whether currently rele
vant or not. In contrast to that, Coherent Infomax shows how it is 
possible to amplify only the transmission of information that is coher
ently related to that being transmitted by other cells, thus maximizing 
agreements between them and minimizing mismatches between them. 

5. Predictive inferences do not imply subtractive prediction 
error coding 

This section argues in more detail that increase of prediction success 
and reduction of prediction error do not imply subtractive coding. The 
cellular mechanisms of cooperative context-sensitivity sketched in the 

5 For overviews of the functional capabilities of pyramidal neurons with two 
sites of integration see Phillips (2017, 2023); Phillips et al. (2018); Aru et al. 
(2020a); Marvan et al. (2021); Aru et al. (2023). 
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last section can achieve these objectives by amplifying coherent subsets 
of signals in the short-term, and by learning what predicts what by 
adapting the strengths of the apical and basal synapses in the long-term 
(Kay and Phillips, 2011).6 

Shannon’s information theory quantifies information as the reduc
tion of uncertainty. Known signals carry no new information, and the 
salience with which features are signaled tends to increase as their 
improbability increases.7 When feedforward input carries no new in
formation, levels higher in the hierarchy can be seen as in effect saying 
to lower levels: ‘Message received and understood, so no need to keep 
making that information salient’. This explains why onsets and offsets of 
new information usually produce far stronger internal responses than do 
sustained patterns of stimulation following their onset. 

There is much evidence that unpredicted sensory information evokes 
greater neuronal response in relevant parts of the cortex, especially in 
omission responses, expectation suppression, and repetition suppression 

(Walsh et al. 2020). Prima facie that may sound like subtractive coding, 
according to which unpredicted stimuli trigger stronger response in 
hypothetical ‘error units’. However, there is an alternative explanation 
of these response profiles. The features about which the cells in V1 and 
other sensory areas transmit information, i.e., their receptive field se
lective sensitivity, remain the same, whether they were predicted or not. 
That is also the case in the mathematical model being developed by 
Mikulasch et al. (2023), so relations between our perspective and theirs 
merits close examination. In both their perspective and ours, cells in 
sensory areas tend to amplify their outputs when they are currently 
deemed to be relevant, including amplification that occurs because they 
contradict confident predictions, and are thus highly informative. 
Amplification of unexpected signals is by no means an unbroken prin
ciple of cortical function, however, because there is plenty of evidence 
for what is known as ‘confirmation bias’ in which interpretations of new 
data that confirm current beliefs are prioritized over interpretations that 
do not. How that evidence can be reconciled with evidence for the 
amplification of signals that contradict confident predictions remains to 
be clarified. 

Hence, findings that have been interpreted as supporting subtractive 
coding can now be seen as providing further information on the context- 
sensitivity of pyramidal neurons. Instead of emphasizing prediction er
rors, AA distinguishes between contextual amplification of important 
sensory signals and contextual attenuation of irrelevant or incoherent 
signals by dedicated perceptual mechanisms. Note that just as amplifi
cation could be misinterpreted as the transmission of prediction errors, 

Fig. 1. A sketch of a context-sensitive pyramidal cell and its (dis)inhibitory regulation. The idealized diagram of a pyramidal cell shown on the left is adapted from 
Larkum and Phillips (2016). In the modulatory mode of operation, contextual input, which comes from diverse sources, amplifies transmission of information from 
the cell’s RF, i.e., the specific set of feedforward sources to which the cell is selectively sensitive. Ih: hyperpolarization activated current flow through HCN ion 
channels. AIZ: apical integration zone. FF: Feedforward. SIZ: somatic integration zone. IINs: four classes of inhibitory interneuron, i.e., PV, SST, VIP, and NGF. The 
output of NGF cells is shown in a highlighted form and without a well-specified target because they inhibit nearby pyramidal cells and IINs via volume release of 
GABA mainly in the upper layers, but also to a lesser extent in deeper layers. 

6 Though we have here considered only a generic conception of context- 
sensitive pyramidal cells, it is becoming clear that there are anatomical, 
physiological and functional differences between those in different layers, re
gions and species. Developing conceptions of such cells in ways that help us 
understand those differences is a major task for the future.  

7 Although we focus here on amplification, we also assume that correctly 
predicted sensory information can be made more precise; see, e.g., Teufel et al. 
(2018). 
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so attenuation could be misinterpreted as error subtraction in cases of 
successfully predicted sensory data. Yet, in contrast to subtractive cod
ing, it is possible to interpret these cases of reductions of signal strength 
as being due to a form of attenuation that does not change the infor
mation transmitted by the signal that is attenuated. 

Note that amplification and attenuation can occur concurrently in 
different cells. To take one example, the pulvinar conveys diverse 
contextual information to V1 that amplifies transmission of information 
about changes in the visual scene that are not predicted by the animal’s 
own actions (Roth et al., 2016). This increases the response of V1 to 
non-self-generated events within a background of responses to 
self-generated events that are not amplified, and are usually to some 
extent suppressed. Similar principles lie behind a common neocortical 
process of ‘normalization’: amplification of selected signals automati
cally attenuates the transmission of their competitors. In fact, given that 
sensory signals in the neocortex typically have several competitors, if 
follows that amplification of selected signals in the neocortex entails 
attenuation of more signals than are amplified.8 

As already noted, amplification of selected signals does not require 
that their message be anticipated by higher-level cell assemblies. For 
example, processes of spatial attention can increase the salience of 
selected signals, but that does not imply that attention anticipated the 
signals; amplification of the signals can be conditional upon their 
occurrence. By the same token, there is no need to assume that visual or 
auditory search is predictive in the anticipatory sense. Search operates 
as though it were simply saying: “If there is evidence of the thing 
searched for, then send it downstream loud and clear!” So, spatial 
attention could operate by amplifying the transmission of whatever 
(feedforward) information is present at the target location. 

The mathematically explicit model of hierarchical inference in 
neocortex being developed by Mikulasch et al. (2023) shows that it can 
be efficiently implemented using spiking neurons with feedforward 
input to basal and top-down input to apical dendrites. Though they refer 
to ‘coding’ throughout, Mikulasch et al. (2023) do not imply that the 
signals transmitted are a code for errors. Indeed, they state clearly that, 
as in Spratling’s models, it is inferences that are transmitted, not errors. 
The model of Mikulasch et al. (2023) has so much in common with the 
perspective presented here that the two approaches are strongly mutu
ally supportive. The various differences between them may be worth 
exploring when their shared assumption of a distinct and crucial func
tional role for apical input receives the attention that it deserves. 

6. Upgrading popular conceptions of predictive processing by 
reference to mechanisms of cellular cooperative context- 
sensitivity 

The hypothesis of subtractive coding within conceptions of predic
tive processing has been used to explain many psychological and elec
trophysiological findings. Nevertheless, despite its widespread 
popularity, subtractive coding faces several difficulties which, we argue, 
can be overcome by combining the concepts of inference and prediction 
with the evidence for cooperative context-sensitive pyramidal cells. The 
empirical discoveries and conceptual advances outlined here and else
where support aspects of the predictive processing perspective, but they 
require it to be reinterpreted as being more concerned with enhancing 
the salience of coherent or relevant signals, rather than with changing 
the information for which the signals code, as the hypothesis of sub
tractive coding requires. 

The extensive evidence for diverse sources of modulatory contextual 
input to the apical dendrites in layer 1 is a problem for the predictive 

coding hypothesis because feedback from hierarchical level n+1 to level 
n is inextricably intermingled with inputs from a diverse range of other 
sources. That becomes a strength from the viewpoint of cooperative 
context-sensitivity because it puts local processing in a broader context, 
which is not limited to activity at level n+1 in the same hierarchy. One 
direct upgrade of PP and the free energy reduction (FER) theories would 
then be that context-sensitive cellular and synaptic mechanisms could 
provide mechanisms for the precision weighting postulated by those the
ories (see, e.g., Clark, 2013b; Rigoli et al., 2019; cf. Shipp, 2016, sect. 
11). Precision weighting is more concerned with the salience of sensory 
signals than with changes in coding. As has been noted several years ago, 
“the predicted precision has an excitatory modulatory effect, consistent 
with mediation through voltage-dependent NMDA receptors in pyra
midal cells of the superficial layers” (Kanai et al., 2015). This conception 
of precision weighting is thus consistent with the predominantly excit
atory consequences of input to layer 1 as noted above. 

Conceptually, linking precision weighting to contextual amplifica
tion makes good sense because inputs that effect precision within PP and 
FER frameworks can be seen as being part of the modulatory contextual 
input. However, the discoveries showing that apical activation amplifies 
the cell’s responses to feedforward basal activation contradicts the hy
pothesis of subtractive coding, as Aru et al. (2020a), amongst others, 
acknowledge. Our emphasis on maximizing agreement, rather than 
minimizing disagreement, between cellular activities is directly inheri
ted from the theoretical perspective of Coherent Infomax, which focuses 
on interactions between local processors that, in addition to their RF 
inputs, receive CF inputs from diverse sources (including but not limited 
to feedback), with the RFs and CFs being integrated separately. 

The perspective of Coherent Infomax is far more closely rooted in 
cellular neurophysiology than are current theories of predictive pro
cessing and free energy reduction. It largely ignores the hidden external 
states inferred by generative models, and focuses on the transactions 
between and within local neural processors. Nevertheless, despite these 
differences of emphasis, and despite the two perspectives having been 
developed independently, the agreements between them are more 
important than their disagreements. In essence they may therefore be 
more complementary than being opposed. Most importantly, both per
spectives assume that a fundamental objective of neocortical dynamics 
is to reduce differences between predictions and observations, where 
‘predictions’ are to be interpreted as specified by the working assump
tions stated above (in Section 2). But the agreement between the two 
perspectives probably runs even deeper because unpublished work in 
the 1990s by John Hertz, a statistical physicist with advanced knowl
edge of neural computation (see Hertz et al., 1991), derived a proof, now 
sadly lost, that the theory of Coherent Infomax implies the reduction of 
free energy. Furthermore, Karl Friston has more recently shown that free 
energy reduction can be seen as a special case of the general objective on 
which Coherent Infomax is based. Unfortunately, that proof also re
mains unpublished. 

What we in effect propose here is that modulatory contextual 
mechanisms can in principle do all the work entrusted to subtractive 
prediction error computations in previous conceptions of predictive 
processing and of the free energy principle. Relinquishing the emphasis 
upon subtractive coding would, of course, be a major concession on the 
part of many predictive processing theorists. However, the change of 
perspective that we advocate implies that one can preserve much of the 
core of those perspectives if they are presented in a way that does not 
depend on subtractive coding. This is clearly seen in those versions of 
‘active inference’ theory that do not depend upon subtractive error 

8 For rigorous and extensive accounts of how perception, attention and 
working memory depend on competitive normalization combined with coop
erative recurrent amplification, see Heeger and Zemlianova (2020) and Heeger 
and Mackey (2019). 
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coding (e.g., Linson et al., 2020).9 We see the current advances in 
cellular physiology and multivariate information decomposition as of
fering adherents of subtractive error coding the opportunity to free 
themselves from the shackles of the point neuron and subtractive as
sumptions. Given the widespread influence of those two misleading 
assumptions, however, we do not expect that opportunity to be imme
diately popular. 

7. Our view of predictive processing as applied to hippocampal- 
cortical interactions in episodic memory 

Assuming that predictive processing depends on subtractive coding, 
Barron et al. (2020) seek to reconcile that assumption with ample evi
dence that input to the neocortex from the hippocampus generates 
neocortical activity during episodic memory recall. In essence, they 
conclude that during perception descending projections, including those 
from the hippocampus, directly inhibit feedforward output from 
neocortical pyramidal cells, whereas during recall hippocampal input 
facilitates or generates output. They propose that which of those two 
different processing modes operates at any moment depends on regu
lation by the classical neuromodulators, with NMDA receptors for 
glutamate also having a major role. 

We strongly agree with many aspects of the case that Barron et al. 
present. First, we agree that precision has a central role. We see it as 
being much the same as what we call salience except that it could also 
include the width of the cell’s RF tuning. Second, we agree that precision 
is increased by disinhibition. Third, we agree that attention involves 
disinhibition. Fourth, we agree that it is important to distinguish apical 
from basal inputs, and that the hippocampal input is predominantly to 
the apical tufts in layer 1. Fifth, we agree that there are different modes 
of neuronal operation, which are dynamically regulated by the classical 
neuromodulators and in ways that involve NMDA glutamate receptors. 
Finally, we agree that during episodic recall fictive percepts are gener
ated in the higher perceptual regions that were activated during the 
perceptual experiences being recalled. 

Some aspects of the hypothesis presented by Barron et al. (2020), 
however, are contradicted by direct evidence from anatomy and cellular 
physiology. Most, if not all, of them arise from their commitment to 
subtractive coding. Given that commitment, they bravely state that 
“descending projections that convey predictions must therefore either 
be inhibitory (e.g., long-range GABAergic projections) or target local 
inhibitory interneurons (e.g., in superficial cortical layers)” (Barron 
et al., 2020, p. 5). Despite the data that they interpret as supporting that 
inference, there is ample evidence that descending input is often either 
excitatory via direct glutamatergic synapses to pyramidal cells and/or 
disinhibitory via VIP mediated inhibition of somatostatin positive in
terneurons (e.g., Karnani et al., 2014; Wang and Yang, 2018; Khan and 
Hofer, 2018). Anatomical and physiological findings on inhibitory 
microcircuitry and its role in the plasticity of visual cortex is convinc
ingly reviewed in quantitative detail by van Versendaal and Levelt 
(2016). In contrast to the purely inhibitory effects of feedback hypoth
esized by Barron et al. (2020), Figure 2 in van Versendaal and Levelt 
(2016, p. 3681) shows quantitatively the consensus view that VIP pos
itive interneurons receive long-range input including feedback from 
higher levels and predominantly inhibit somatostatin positive in
terneurons that receive their input from local rather than from distant 
sources. Thus, there is much evidence that descending and other 
long-range inputs often amplify pyramidal cell outputs either directly or 

by attenuating the local suppression that normalizes pyramidal cell 
outputs (Heeger and Zemlianova, 2020), which is consistent with the 
findings of Zhang et al. (2014).10 

The extensive overlap between our view of predictive processing and 
more conventional perspectives is clear in a recent multi-scale multi- 
species overview of the microcircuitry underlying prediction and 
context-sensitivity (Muckli et al., 2023). That overview by 26 leading 
experts focuses on high-resolution fMRI recordings of neocortical ac
tivity in humans under conditions in which context-dependent activity is 
separated from feedforward activity and relates the data in detail to 
studies using monkeys and rodents in analogous conditions. Muckli et al. 
(2023) conclude that context-sensitivity observed using multiple 
methodologies in monkeys and rodents is conserved in humans, and that 
it has many properties compatible with conventional views of predictive 
processing. The overlap between our view of modulatory PP and those 
views is also clear in that our view is in essence much the same as that of 
Mikulasch et al. (2023) who present modulatory PP as being function
ally equivalent to classical predictive coding, even though feedforward 
signals in their model transmit inferences, not errors. Such revised view 
of error computation and signaling is now explicitly being seen as 
compatible with the general predictive processing framework (Brouillet 
and Friston, 2023). 

As Barron et al. (2020) claim that predictive coding is known as 
Kalman filtering in engineering, we note that we too are committed to 
the use of insights offered by principles or algorithms that have proven 
useful for data compression in real-world applications. Engineering 
techniques for data compression use various mathematical functions for 
transmitting information through the local processing nodes, however. 
Typically, those functions use subtraction combined with other simple 
arithmetic operators. The combination of subtraction with other arith
metic operators is crucial because the key properties of transfer func
tions specified by combinations of simple arithmetic operators are 
fundamentally different from those of the simple operators alone (Kay 
and Phillips, 2020). In contrast to what some readers may assume, 
though, modulatory PP cannot be interpreted as multiplicative predic
tive processing. Multiplication is intrinsically symmetric whereas mod
ulation is intrinsically asymmetric (Kay and Phillips, 2020). 
Context-sensitive pyramidal cells transmit much unique information 
about basal input but little or none about apical input – even in cases 
where apical input has a large effect on the cell’s output via its contri
bution to synergy, a component of output that depends on both apical 
and basal input (Kay et al., 2022). 

Barron et al. (2020) focus largely on macroscopic imaging evidence 
and say explicitly that they are not concerned with how errors are coded 
neurally. Therefore, we note that macroscopic neuroimaging typically 
confounds axonal with dendritic currents, so it provides ambiguous 
evidence on events at the cellular level. It is of course possible that both 
subtractive coding and modulatory PP occur in neocortex. It is impos
sible to prove that subtractive coding does not. We do not contest the 
evidence that Barron et al. (2020) cite in support of their hypothesis. 
Interpretations of it as evidence for subtractive coding will not be 
convincing, however, unless they explicitly refute the more 

9 Leading proponents of the free energy reduction principle, such as Karl 
Friston, have from the outset noted that error coding is a way to implement that 
principle, not the only way. Furthermore, the work of Mike Spratling (such as 
Spratling, 2008, 2017) is often cited in support of subtractive coding even 
though its key contribution is to show that feedforward transmission of errors is 
not crucial to predictive coding. 

10 Christiaan Levelt (personal communication) notes that although neuro
gliaform (NGF) cells also receive descending input and inhibit cells in their 
vicinity, they do not prevent cells from responding to their ascending input as 
implied by predictive coding. He also tells us that inhibitory interneurons that 
do so have not yet been identified, though he is still looking for them. Even if 
cells that can do so with the required local specificity are discovered, however, 
that would not resolve the issue with which we are here concerned. Showing 
that feedback can attenuate, or even fully, prevent, feedforward transmission 
would not show that when there is transmission it codes for the feedforward 
signal minus the feedback signal. Nor would such a discovery weaken the direct 
evidence that descending and other contextual input can also be amplifying, 
and that under some conditions can even generate output by itself. 
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straightforward interpretation of it as evidence for modulatory 
interactions. 

8. Concluding remarks 

The hypothesis of predictive coding posits two sets of pyramidal cells 
that are distinguished by what they represent, i.e., what they transmit 
information about: those representing predictions, and those repre
senting subtractive prediction errors. Our claim in this paper is that this 
functional bifurcation is not necessary to implement the general goal of 
maximizing the success of predictive perceptual inferences, and of 
minimizing the overall prediction error. We do not assume, though, that 
all inputs to the apical dendrites in layer 1 are usefully interpreted as 
being predictive, even when prediction is conceived broadly. In many 
cases it is more appropriate to think of input to apical dendrites in layer 
1 not as a prediction but as saying: “If your RF is being activated then 
transmit that information loud and clear”. For example, that is a more 
natural way of thinking of selective attention and emotional prioritiza
tion. Sensory inputs to a selected location in space can be attended to 
without predicting what, if anything, occupies that location. Signals 
with highly emotional connotations can be amplified without being 
predicted (although some disorders, such as PTSD for example, may 
arise because that prioritization becomes a self-fulfilling prophecy). 

Conceptions of predictive error coding are so many and so various 
that we cannot discuss all of them. Our perspective shares so much with 
the version proposed by Shipp (2024), however, that it is worth seeking 
to reconcile the differences between his views and ours in a way that 
preserves the best of both. Our claims agree in the following ways 
(Shipp, personal communication). We both claim that receptive field 
selectivity is not changed by feedback. We both claim that FB can in
crease the strength, or salience of feedforward transmission to higher 
levels. We both claim that input to L1 cannot operate as a route for 
‘subtractive’ prediction error coding. As the way in which those agree
ments are expressed implies, reconciliation of the differences between 
Shipp’s views and ours will require some approximate terminological 
translations. From our perspective ‘error cells’ could be much the same 
as ‘cells whose outputs are strengthened or weakened by context’. 
‘Feedback’ could be much the same as ‘context’ with the proviso that 
context includes but extends beyond feedback and ‘top-down’. ‘Preci
sion’ could be much the same as salience, strength, or exactness of 
feedforward receptive field selectivity. Shipp’s model proposes that 
backward precision signals are applied to apical dendrites (plus in
terneurons) in layer 1, specifically to those of error neurons; whereas the 
signal that is applied to basal dendrites of deep-layer cells is the 
information-predictive component of backward messaging that is then 
routed toward superficial error cells for the purpose of subtractive 
coding (Shipp, 2016, 2024; Shipp and Friston, 2023). The subtlety and 
complexity of that model is now so great, however, that understanding, 
testing, and developing it is far from easy. As we see it, however, the role 
of basal/perisomatic dendrites in predictive processing could be clari
fied by using partial information decomposition to quantify the 
distinction between receptive field selectivity and modulation as done 
by Kay and Phillips (2020). On the basis of this quantification it has 
already been demonstrated, both physiologically (Kay et al., 2022) and 
by high resolution modeling (Graham et al., 2024), that apical inputs 
can be modulatory. It might be possible to do something analogous to 
that for basal/perisomatic synapses by dividing them into two subsets, 
such as the proximal and distal parts of each dendrite (see Jadi et al., 
2014), for example. If that were done, and if it turned out that a subset of 
basal/perisomatic synapses are modulatory, as so quantified, then that 
would show that apical dendrites in L1 are not the only route by which 
context can modulate feedforward transmission in a way that does not 
corrupt feedforward selectivity. 

We fully acknowledge that subtractive prediction error coding can, 
in principle, be implemented in models of neocortical microcircuitry, 
such as that of Bastos et al. (2012). Indeed, it may be that some modified 

version of them does apply to circuits outside of the neocortex, or even 
to the neocortex itself in early stages of development. As argued in detail 
above, however, we doubt its applicability to mature neocortex. The use 
of codes that change from moment to moment and are interpretable only 
if a prediction is known would raise serious difficulties in systems as 
heterarchical and dynamically adaptable as neocortex. Given the 
strength of the evidence for a functionally distinct apical site of inte
gration, that evidence should either be disputed or explicitly incorpo
rated into conceptions of neocortical microcircuitry. Capone et al. 
(2023) show in detail how it can be incorporated in ways that provide 
cellular mechanisms for target-based learning that propagates targets or 
inferences rather than errors. They show explicitly how that enables 
effective performance in real time of context-dependent spatiotemporal 
tasks, imitation learning, and the decomposition of long-horizon de
cisions into simpler sub-tasks. As shown by the direct physiological 
studies of Kay et al. (2022), a key property of the outputs of 
context-sensitive cells, including those whose capabilities are demon
strated by Capone et al. (2023), is that it consists of brief bursts of 2–4 
spikes within about 20 ms separated by silent intervals of about 100 ms. 
That is compatible with evidence interpreted as implying that layer 2/3 
cells have more power in high gamma band whereas cells in the deeper 
layers have more power in the alpha-beta band, because those relations 
depend on the number of spikes in the burst and the duration of the 
intervals between them. Further study of how the traditional decom
position of output power across spike frequencies relates to analyses of 
bursting in microcircuit models is therefore a major task for the future. 

As our arguments focus on context-sensitive neurons with two 
functionally distinct points of input integration, their prevalence is a 
crucial issue. Empirical study of that by direct multisite patch-clamping 
is no easy matter because relatively few labs have the technical skills 
that it requires. Nevertheless, wherever it has been studied in layer 5 
cells it has usually, though not always be found to be present. A quan
titative study of that issue in mouse V1 found that pyramidal cells had a 
distinct apical point of integration if their apical trunks were more than 
0.460 mm long (Williams and Fletcher, 2019). A useful rule of thumb for 
estimating their likely prevalence is thus that the two-point mode of 
input integration is likely to apply if apical trunk-length exceeds about 
half a millimeter, which is the case for the majority of layer 5 cells, and 
also for many superficial cells in human neocortex (Kalmbach et al., 
2018). Our assumption of a high prevalence for context-sensitive cells is 
greatly strengthened by high resolution multicompartmental modeling 
(Shai et al., 2015). That kind of modeling has now been used to show 
explicitly that the distinct capabilities that we assume for 
context-sensitive cells is a direct consequence of their biophysics (Gra
ham et al., 2024). Though interaction between the apical and somatic 
input integration sites has till now been described as active ‘coupling’ 
the calcium spikes by which it is achieved are excitatory. Modeling and 
physiological studies of that coupling typically consider excitatory api
cal inputs only because there are no known mechanisms whereby 
inhibitory apical inputs are actively transmitted to the soma. That is 
unlikely to occurs because of the distance involved and because of ion 
flow through HCN ion channels which opposes such transmission. 
Nevertheless, explicit physiological and modeling studies of the condi
tions under which inhibitory apical inputs are conveyed to the soma are 
now needed to further clarify this issue. 

Another major issue that now requires in-depth investigation con
cerns the role of amplification in the processing of rewards that can be 
either positive or negative. One possibility is that basal and apical syn
apses are strengthened when feedforward transmission leads to positive 
reward and weakened when they lead to negative reward. Feedforward 
transmission might then become less context-sensitive if they do not 
depend on context, and more if they do. It is also possible that progress 
can be made on this issue by reconsidering the definition of ‘prediction 
error’ to align it more closely with information theory and with broader 
notions of probabilistic inference (Christopher Fiorillo, personal 
communication). Whether these speculations are useful is not yet clear, 
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however, so, as we see it, this is a major issue for the future. 
The discovery of neurons with two functionally distinct sets of input 

is uncontroversial and at last being given the widespread attention that 
it deserves. This is witnessed by recent empirical findings supporting the 
two-point architecture (e.g., Takahashi et al., 2016; Dowdle et al., 2023; 
Pujol et al., 2023) and also by practical applications of this new view of 
cortical function. Perhaps most importantly, the discovery of two-point 
neurons is beginning to provide the basis for a far clearer understanding 
of various pathologies (Phillips, 2023, Chapter 7). Unbroken paths can 
now be mapped all the way from genetic mutations and environmental 
insults that influence apical function to their various cognitive conse
quences in various neurodevelopmental disabilities (Granato et al., 
submitted). 

The two-point neuron view is beginning to inspire major advances in 
computer vision (Schmid et al., 2023) and in neuromorphic machine 
learning algorithms that are far more effective and energy-efficient than 
standard deep learning algorithms (see, e.g., Adeel et al., 2022, 2023; 
Capone et al., 2023) – although whether the net effect of such advances 
in neuromorphic computing will be for good or ill remains to be seen. 
Further concrete computational studies of real-world big-data process
ing are now required. The difficulties to be overcome in doing that are 
far from trivial, however, because as things are at present they require 
high performance computational capabilities. Current chip technology 
has been leveraged to provide a highly flexible model of 
context-sensitive cells with distinct modes of operation (Pastorelli et al., 
2023). Further advances in our understanding of their capabilities are 
likely to arise from such models even though they require high perfor
mance computing power. In the medium-term, if not the short-term, 
even faster advance may arise from the development of new chip de
signs that are purpose-built for use as adaptive cooperative 
context-sensitive neural information processors. Advances such as those 
in optomemristor technology (Sarwat et al., 2022) may make that 
possible in the not too distant future. 

Thus, the revolutionary discovery of context-sensitive two-point 
neurons briefly summarized here matters much more than just within 
the narrow context of competing theories of brain function and pre
dictive inference. In the long run, it may well be that descriptions of 
context-sensitive capabilities enabled by distinctively human pyramidal 
cell morphologies (Beaulieu-Laroche et al., 2018) and by inhibitory in
terneurons in layer 1 (Boldog et al., 2018) will come to be seen as 
enhancing our understanding of neural mechanisms and cognitive ca
pabilities that are distinctively human. These capabilities include lan
guage production and interpretation, which depend on context to an 
exceptionally high extent, and which may arise, not simply from bigger 
brains, but also from advanced forms of contextual modulation at the 
cellular level.11 However, we acknowledge that if future research shows 
modulatory PP to be far less common in mammalian brains than is 
subtractive coding, then that will provide strong grounds for supposing 
that the modulatory capabilities that have been observed at a cellular 
level in the mammalian neocortex are far less important than we claim 
them to be. 

The discovery of cellular mechanisms for cooperative context- 
sensitive computation raises a host of unresolved genetic, cellular, 
network, and psychological issues that are far too extensive to be listed 
here but many of them are clearly stated and motivated in Phillips 
(2023). Empirical and conceptual advances outlined in this paper, and 
the emerging field of cellular psychology based on them, may even be 
taken as supporting Kuhn’s (1962, 1970) notion of scientific revolutions. 
Kuhn presents a vision of science as consisting of periods of exploration 
and careful hypothesis testing that are occasionally punctuated by 
radical replacement of an underlying conceptual framework, or 

paradigm, by a more adequate framework. Observations of ocean-floor 
spreading in the 1960s initiated a revolution in geology that is now 
taken for granted. Presenting those observations as hypothetical con
structs would have been misleading. Similarly, presenting the func
tionally distinct site of apical integration that has been observed by 
cellular physiologists as a hypothetical construct, rather than as a dis
covery, would be misleading. Given the long and lasting belief in the 
integrate-and-fire point neuron assumption in systems and cognitive 
neuroscience, it was correct to infer that the many descending inputs 
received by neocortical pyramidal cells must be an integral part of that 
about which those cells transmit information – as in subtractive coding. 
Since the discovery of the functionally distinct site of apical integration, 
however, the point neuron assumption can no longer be taken for 
granted. Furthermore, that assumption is directly contradicted by 
demonstrations that neocortical pyramidal cells can operate in a way 
such that much unique information is transmitted about basal input but 
little or none about apical input, even when it has large effects on output 
(Schulz et al., 2021; Kay et al., 2022). The theoretical implications of the 
abundant input to apical dendrites from descending and other diverse 
sources must therefore be re-assessed, as advocated here. 
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