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1. Introduction

Deflationism about truth is a trending cluster of claims about the meaning
and the role of the truth predicate in natural language, as well as the nature of
truth itself. Different versions of deflationism pick different claims as part of the
core and belt of the position. The most popular version, which will be the focus
of this paper, takes the two theses we describe next to constitute its core. Its most
vocal contemporary advocates are Horwich and Field.

The first core thesis is that the content of a truth ascription to a given
sentence or proposition can be entirely articulated in terms of the equivalence
between the ascription and the sentence or proposition itself. Thus to assert
that ‘snow is white’ is true, or that the proposition that snow is white is true, is
simply to assert that show is white. We will often refer to this as the ‘equivalence
thesis’. It has its origins in the redundancy theory of truth, a proto-deflationism
advanced by Frege, Ramsey, and Ayer.

The second core thesis concerns the role that the truth predicate plays in nat-
ural language. Like the redundantists, deflationists hold that, despite appearing
grammatically as an adjective, the role of the truth predicate is not descriptive.
But unlike redundantists, deflationists argue that it has an important expressive
function. For example, it allows for blind ascriptions such as ‘Goldbach’s con-
jecture is true’ and generalisations that otherwise would be very hard or perhaps
impossible to express, such as ‘All theorems of arithmetic are true’. According to
deflationism, this function is the sole reason for the existence of a truth predicate
in natural language.

Oddly enough, in spite of its central role in deflationism, the expressive
function of the truth predicate has rarely been subjected to a rigorous inves-
tigation. This is highly regrettable because there are many controversial issues



Deflationism and The Function of Truth / 327

concerning the interpretation of the deflationary account of truth that are, un-
surprisingly, directly or indirectly affected by one’s view on this function. An
important question is whether, in light of the semantic paradoxes that emerge
within classical truth theories, deflationists are compelled to adopt non-classical
logics; and whether these logics allow the truth predicate to perform its expres-
sive function. Another issue, which we address in section 5, revolves around the
so-called conservativity requirement. Some deflationists have claimed that truth
is an insubstantial, metaphysically thin, or lightweight notion. This is often taken
to imply that truth cannot yield new knowledge about the world or have any ex-
planatory power. What this precisely amounts to has remained largely unclear. A
number of philosophers have suggested that this impossibility binds deflationism
to the conservativity of their truth theories. It has been argued that adding a
deflationary truth predicate to a theory must yield a conservative extension of
the latter, which means that every sentence not containing the truth predicate
that is derivable in the extended theory must already be derivable in the original
theory. This generates a conflict, because most interesting theories of truth do
not lead to a conservative extension.

In this paper we put forward a precise analysis of the function of truth. This
analysis has interesting implications on several matters concerning deflationism,
including the conservativity issue and the question whether deflationists should
reject classical logic, which we leave for later work. The central claim of this paper
is that the truth predicate is best understood as a tool for mimicking higher-order
quantification in a first-order framework. In other words, the truth predicate
allows us, in an indirect way, to quantify into sentence and predicate position
without introducing sentential or predicate quantifiers.

Actually, this is not an entirely novel claim, and several results concern-
ing the intertranslatability between languages with higher-order quantifiers and
languages with a truth predicate have emerged in the more formal literature on
truth. However, these results are partial and limited in scope, and therefore have
not lead to a clear understanding of the function of truth. First, they often relate
predicative fragments of higher-order logic to theories of truth, leaving the wrong
impression that impredicative higher-order quantification cannot be handled by
a truth predicate. Second, they often relate these fragments of higher-order logic
to compositional theories of truth, suggesting that they cannot be handled by
a disquotational truth predicate. Third, in the philosophical literature there is
an almost exclusive focus on the relation between sentential quantifiers and the
truth predicate, neglecting the fact that the truth predicate actually allows us to
mimic quantification into predicate position as well.

We provide formal results showing that (i) languages with impredicative
sentential quantifiers can be translated into languages containing a disquota-
tional truth predicate and vice versa, and that (ii) languages with impredicative
predicate quantifiers can be translated into languages containing a disquota-
tional truth predicate as well and vice versa. In particular, one can show that the
whole simple theory of types is reducible to disquotational principles of truth.
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Moreover, our results lead to natural answers concerning the conservativity de-
bate. Roughly, if we are to understand the truth predicate as a tool for simulating
higher-order quantification in a first-order framework, we should not expect that
the addition of a truth predicate leads to a conservative extension because, in
general, the addition of higher-order quantifiers does not lead to a conservative
extension either.

This paper is organised as follows. In section 2 we briefly review and criti-
cise some accounts of the expressive function of truth that one can find in the
literature, and motivate our own approach, which we back up with formal re-
sults in sections 3 and 4. In section 3 we will show that languages with sentential
quantifiers can be translated into languages containing a truth predicate and vice
versa. In section 4 we will show that languages with predicate quantifiers can
be translated into languages containing a truth predicate and vice versa. Since
this paper is intended for a general philosophical audience, technicalities will be
kept to a minimum. Formal details and proofs of our results can be found in our
forthcoming companion paper “Truth and Higher-Order Quantification”. In the
penultimate section of the paper, we turn to the conservativity debate, arguing,
as indicated above, that deflationists are not committed to the conservativity of
their theories of truth. In the final section, we point to a number of further philo-
sophical consequences of our results. A proper discussion of these consequences
must be relegated to a separate paper.

2. The Function of the Truth Predicate

Grammatically, the word ‘true’ works as an adjective in natural language.
In the cases we are interested in it applies to sentences, propositions, statements,
or other similar kinds of objects with propositional content. Accordingly, in
the logical structure of sentences containing truth ascriptions, ‘true’ is in the
vast majority of cases taken to be a predicate, with a few notable exceptions
(cf. Grover et al. [9]). In this paper we follow the tradition.

Being a predicate, ‘true’ applies to noun phrases. When it’s attached to a
transparent name, i.e. to a name that allows us to read off the truth bearers
they are names of, as in “‘Caesar was murdered” is true’ or ‘It is true that
Caesar was murdered’, we say that the truth ascription is explicit. In those cases,
the truth predicate seems redundant, for the same information could have been
conveyed without it, simply by uttering ‘Caesar was murdered’. It looks like the
word ‘true’ is just being used for emphasis; it has merely a rhetorical or stylistic
function.

By contrast, when the truth predicate is attached to a non-transparent name,
its function can go beyond a matter of style. Although sentences like

Goldbach’s conjecture is true (1)



Deflationism and The Function of Truth / 329

are equivalent to the sentence they ascribe truth to, the truth predicate might
not be as redundant and easily eliminable as before. For one might not be in a
position to explicitly articulate Goldbach’s conjecture, e.g. because one doesn’t
know its content, or because it would take too long to do so. Thus, it is often
said that the truth predicate has an epistemic use, as well as a lazy use. Truth
ascriptions like (1) are usually referred to as ‘implicit’ or ‘blind’ ascriptions.
Similar effects can be achieved by a different kind of implicit ascription, in
which the truth predicate is attached to general terms instead. They are often
called ‘generalisations’ or ‘general truth ascriptions’. These are, for instance,

The last thing Tarski said about truth is true

where a definite description is used to refer to the object we wish to ascribe truth
to, or

Everything Tarski said about truth is true (2)

where a predicate is employed to restrict the class of objects we say are true. The
last example differs from the previous ones in that truth is ascribed not just to
one but to many sentences or propositions at once.

All the examples we have considered so far involve finite truth ascriptions,
that is, truth is ascribed only to finitely many objects. When blind, these as-
criptions are frequently described as devices for indirect endorsement or indirect
assertion. However, none of these descriptions adequately reflects the nature
of the function that the truth predicate is playing here. Endorsing or assert-
ing the content of a sentence is just one among many other things one can
do with a truth ascription of this kind. Certainly, one can endorse Goldbach’s
conjecture without explicitly articulating it, by affirming (1). But one can also
deny the conjecture, by negating (1), assume it, by assuming (1), state a nec-
essary condition for it, by embedding (1) in the antecedent of a conditional,
etc., all without explicitly articulating Goldbach’s conjecture. For similar rea-
sons it would be misleading to limit the function of truth in blind ascriptions
to the expression of agreement and disagreement. In blind ascriptions the truth
predicate serves the more general purpose of allowing us to blindly or indirectly
express the content of one or many sentences, without explicitly articulating these
sentences.

This is also true of generalisations in which truth is ascribed to infinitely
many objects, as in

All theorems of arithmetic are true (3)
or

Some theorems of arithmetic are true (4)
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We may call these generalisations ‘infinite truth ascriptions’. Although they can
also serve an epistemic function – for instance, when we don’t know the infinitely
many sentences we wish to ascribe truth to – they can hardly be said to have a
lazy use. It’s not out of laziness of explicitly articulating, e.g. the infinitely many
theorems of arithmetic that we may use a sentence such as (3), but due to the
actual impossibility of explicitly articulating them all. This impossibility entails
an indispensability of some sort, that singles out the role of truth in infinite truth
ascriptions as the most important one from a logical standpoint. In Quine’s
famous words,

We may affirm the single sentence by just uttering it, unaided by quotation or by
the truth predicate; but if we want to affirm some infinite lot of sentences that
we can demarcate only by talking about the sentences, then the truth predicate
has its use. (Quine [27, p. 12])

In what sense does the truth predicate allow us to affirm (or express) an infinite lot
sentences? A popular account has it that infinite truth ascriptions are equivalent
to infinite conjunctions and infinite disjunctions (e.g. Putnam [26, p. 15)], Gupta
[10, pp. 60-61], Horwich [20, p. 3)]). For example, Putnam writes:

If we wanted to say ‘what he said is true’, for example, we could say:

(1) [He said ‘p1’ and p1] or [He said ‘p2’ and p2] or . . .

where the disjunction in (1) contains one disjunct for each sentence ‘pi ’ of the
object language. But we can’t, as a matter of fact, speak in infinite disjunctions.
So instead we look for a finite expression equivalent to (1). Now,

(2) For some x he said x & x is true

will be equivalent to (1) provided for each i (i = 1, 2, 3, . . .)

(3) ‘pi ’ is true if and only if pi

is correct. But this is just Tarski’s ‘Criterion T’ [ . . . ] [26, p. 15]

Similarly, this account has it that a generalisation like (3) is equivalent to the
infinite conjunction ‘[If ‘p1’ is a theorem of arithmetic then p1] and [If ‘p2’ is a
theorem of arithmetic then p2] and . . . ’

There is a sense in which this is correct: under the intended interpretation
of the language, generalisations like (3) and the set of its instances have the
same truth conditions, because the range of the quantifier is precisely the class
of sentences of the language under consideration. From a logical point of view,
however, understanding these generalisations as infinite conjunctions is as mis-
guided as understanding any general claim as the infinite conjunction of its
instances. Quantifiers and infinite conjunctions serve the common purpose of
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collecting infinite information into one single expression, but do so in different
ways. Their inferential behaviour diverges in several respects, and so does their
meaning. For one thing, quantified claims may belong themselves to the range
of their own quantifiers, whereas infinite conjunctions and disjunctions are not
allowed to have themselves as proper subformulae. For another, unlike infinite
conjunctions, universal generalisations are not generally entailed by the class of
their instances, due to compactness considerations.

In light of these issues, Halbach [11], [14] has suggested an alternative way of
understanding Quine’s talk of ‘affirming some infinite lot of sentences’. In order
to avoid problems with the semantic paradoxes, Halbach limits his attention to
sentences that do not contain the truth predicate themselves, that is, he works
with a restricted version of the T-schema. Consider sentence (3) again. Given the
(restricted) T-schema, (3) implies all sentences of the form:

If ‘p’ is a theorem of arithmetic then p (5)

Of course, (3) is not the only sentence that will imply them; any contradiction will
do the same job. But, as Halbach observes, (3) implies no sentence in the language
without the truth predicate that does not already follow from some instances of
(5). In other words, given the T-schema, (3) and the set of all instances of (5)
are equivalent in their truth-free consequences. One can say, then, that the general
truth ascription (3) finitely axiomatises the infinitely many instances of (5) relative
to the T-schema.

While this is an insightful observation, it falls short of providing a full anal-
ysis of the role the truth predicate plays in infinite truth ascriptions. First, as we
observed in [25], the equivalence of the truth-free consequences of generalisations
like (3) and those of the set of instances of (5) can be established using only one
direction of the T-schema, namely, its elimination half,

If ‘p’ is true, then p (T-Out)

That is, (3) finitely axiomatises the set of sentences of the form (5) relative to
T-Out alone. This seems to indicate that there is something missing in Halbach’s
account. Second, the account is silent on the expressive function of truth when
generalisations like (3) are embedded in a conditional or conjoined with another
sentence.1 Third, an account of the role of the truth predicate in infinite gen-
eralisations should also be able to explain its utility if we want to generalise
on sentences that contain the truth predicate themselves. A natural extension
of Halbach’s approach to cases in which the sentences p may contain the truth
predicate themselves would require that the general truth ascription and the set
of its ‘instances’ have the same consequences simpliciter. Since the general truth
ascription is a consequence of itself, this means the set of its ‘instances’ would
need to imply the generalisation as well. However, again, this is not generally to
be expected.
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But then what role is the truth predicate playing in infinite truth ascriptions?
The following quote by Quine is insightful:

We can generalise on ‘Tom is mortal’, ‘Dick is mortal’, and so on, without talking
of truth or of sentences; we can say ‘All men are mortal’. We can generalize
similarly on ‘Tom is Tom’, ‘Dick is Dick’, ‘0 is 0’, and so on, saying ‘Everything
is itself’. When on the other hand we want to generalize on ‘Tom is mortal or
Tom is not mortal’, ‘Snow is white or snow is not white’, and so on, we ascend
to talk of truth and of sentences, saying ‘Every sentence of the form ‘p or not
p’ is true’, or ‘Every alteration of a sentence with its negation is true’. What
prompts this semantic ascent is not that ‘Tom is mortal or Tom is not mortal’
is somehow about sentences while ‘Tom is mortal’ and ‘Tom is Tom’ are about
Tom. All three are about Tom. We ascend only because of the oblique way in
which the instances over which we are generalizing are related to one another.
[27, p. 11]

We can learn two lessons from this passage. First, the truth ascription ‘All
sentences of the form “p or not p” are true’ is to the instances of the law of
excluded middle what ‘All men are mortal’ is to its corresponding instances, that
is, ‘Tom is mortal’, ‘Dick is mortal’, and so on. Thus, the relation between an
infinite truth ascription and its corresponding ‘instances’ is akin to the relation,
not between a conjunction and its conjuncts, or between an axiomatisation and
the sentences it axiomatises, but between a universal claim and its instances.

Second, and more importantly, the truth predicate allows us (indirectly) to
generalise on a syntactic position that first-order quantifiers are incapable of,
namely, that of a sentence. We cannot replace the clause ‘Tom is mortal’ in
‘Tom is mortal or Tom is not mortal’ with a pronoun (or variable) – or rather,
we cannot do so in English (or in a first-order language). Of course, this is
just a contingent fact about English. We can imagine an alternative history in
which English developed in such a way that pronouns can occur in sentential
positions while still referring back to the quantifiers, and we can devise artificial
languages that do contain sentential variables and quantifiers. The point is that
such quantifiers can be dispensed with in the presence of a truth predicate.
Given that each sentence p is equivalent to “‘p” is true’, we can substitute ‘Tom
is mortal’ with “‘Tom is mortal” is true’, yielding

‘Tom is mortal’ is true or ‘Tom is mortal’ is not true

Since in the displayed sentence the clause ‘Tom is mortal’ is mentioned rather
than used, we can replace the term by a variable, yielding ‘x is true or x is
not true’, and that in turn allows us to formulate the generalisation ‘For every
sentence x, x is true or x is not true’. Thus, the truth predicate allows us, in
combination with our ordinary quantifiers, to quantify (indirectly) into sentence
position – circumventing the need to introduce sentential quantifiers, i.e. quan-
tifiers that directly bind sentence places in our language. This is the nature of
the role that the truth predicate plays both in finite and infinite truth ascriptions
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according to deflationism. The truth predicate is a useful syntactic restructuring
device. Its value stems from the ungrammatical character of sentential quan-
tification in English, and the ubiquity of first-order languages in science and
philosophy. We may say, following Horwich [20, p. 125], that ‘the value of our
concept of truth [is] that it provides, not the only way, but a relatively ‘cheap’ way
of obtaining the problematic generalizations– the way actually chosen in natural
language’ (our emphasis).

The idea that the truth predicate allows for quantification into sentence
position was anticipated by Ramsey, who claimed that truth could be eliminated
if sentential quantifiers were in our toolbox [28, p. 158]. Akin ideas can also be
found, for instance, in Tarski [33] (cf. Carnap [4, p. 50]), where a definition of
truth in terms of sentential quantifiers is considered (and ruled out for technical
reasons); in Grover [8] and Grover et al. [9], who equate sentential quantifiers
and the truth predicate by ascribing both a prosentential role; and in Azzouni
[2], [3], who replaces the truth predicate with a special kind of quantifier which
simultaneously binds variables in sentential and nominal position.

In the next section we will present a formal result that languages with
sentential quantifiers can be translated into languages with a disquotational
truth predicate and vice versa. This translation is novel as it preserves not
only theorems but also inferences, as well as it improves upon earlier results
in that it shows that the truth predicate can even handle impredicative sentential
quantification, i.e. quantification of sentences that contain themselves sentential
quantifiers.

However, mimicking sentential quantification does not exhaust the capacity
of a disquotational truth predicate: it also allows us to mimic quantification into
predicate position. This often overlooked fact has far-reaching consequences.
Consider again the sentence

Tom is mortal (6)

First-order languages do not allow us to generalise on the syntactic position of
predicates, and natural languages such as English do not allow us to do so in
general either. Again, this is just a contingent fact about English. If we want
to generalise predicate places, we can turn to some artificial framework such as
the language of second-order logic or its infinite iteration, the simple theory of
types. In such languages, we can formulate sentences such as ∃X X(Tom). But we
can turn to the truth predicate as well to achieve a similar effect. Disquotation
implies that (6) is equivalent to

‘Tom is mortal’ is true

Since the sentence ‘Tom is mortal’ is the result of concatenating the name ‘Tom’
with the predicate ‘is mortal’, (6) is also equivalent to

The concatenation of ‘Tom’ with ‘is mortal’ is true
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In the last formula, the predicate ‘is mortal’ is mentioned rather than used, so
we can replace the term with a variable – allowing us to say, for example,

There is a predicate x such that the concatenation of ‘Tom’ with x is true

This statement corresponds in an obvious way to the second-order sentence
∃X X(Tom).

In the section 4 we will present a formal result that languages with im-
predicative predicate quantifiers can be translated into languages with a dis-
quotational truth predicate and vice versa. But before moving on to the next
section, there is a restriction that is worth pointing out. Truth theories can han-
dle quantification into predicate position by talking about the concatenation
of certain terms with certain formulas being true, as indicated above. But this
means that truth theories can only simulate predicate quantification for those lan-
guages that contain a name for each individual in the domain of the first-order
quantifiers – thus, the domain needs to be countable. However, this restriction
can be dropped if we operate with a satisfaction predicate instead of a truth
predicate.

3. Truth and Sentential Quantification

We proceed with the presentation of our formal results connecting truth
predication and quantification into sentence position. As this paper is intended
for a general philosophical audience, we will keep our exposition as simple
as possible, deferring a detailed presentation of our results to our companion
paper “Truth and Higher-Order Quantification”. However, technicalities cannot
be avoided altogether: technically less inclined readers may skim through the
following material, focusing merely on the definition of the higher-order theory
QPL, the definition of the truth theory UTB[τ ], and Theorem 1, which relates
the two.

Let L be a first-order language with the usual logical vocabulary including
identity and possibly enumerably many non-logical operators �1, . . . ,�n, . . . We
will be interested in several extensions of L. The first extension, LQ, is the
result of augmenting L with sentential variables αi for each natural number i .
Every sentential variable αi is a formula of LQ and, if ϕ is a formula of LQ,
so is ∀αi ϕ. The existential sentential quantifier can be defined in terms of the
universal quantifier and negation, as usual. Sometimes we write α, β, . . . instead
of α0, α1, . . ., for readability.

We extend classical first-order logic with sentential quantifiers by adding the
following rules to the calculus:

(∀αI)
ϕ

∀αi ϕ
(∀αE)

∀αi ϕ

ϕ[ψ/αi ]
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provided that αi in (∀αI) is arbitrary and ψ is free for αi in ϕ in (∀αE). In
(∀αE), ψ can be any formula of the language without free individual variables,
as sentential variables are intended to range over sentences. ψ may, however,
contain any number of bound individual variables and any number of free and
bound sentential variables. Let QPL be the extension of first-order logic with
the rules (∀αI) and (∀αE), plus Necessitation and the K-axiom for each of the
operators �1, . . . ,�n �1, . . . ,�n .

It is easy to see that (∀αE) entails the following comprehension principle:

∃α (α ↔ ϕ) (Sentential comprehension schema)

where α doesn’t occur free in ϕ. Again, ϕ may contain any number of bound
individual variables and any number of free and bound sentential variables,
though no free individual variables. In other words, the Sentential comprehen-
sion schema is highly impredicative, and so is (∀αE). Of course, if one preferred
to work within a predicative framework, one could simply restrict (∀αE) to for-
mulas ψ containing no bound sentential variables (and perhaps no free sentential
variables either). In this system the Sentential comprehension schema will also
be restricted to such expressions.

We can turn to QPL to generalise into sentence position in the expected
way. For instance, we can express that every sentence of the form ϕ ∨ ¬ϕ is true,
as in Quine’s example, by the formula ∀α (α ∨ ¬α). Here, α can be instantiated
with any formula of LQ (not containing free individual variables), including
the sentence ∀α (α ∨ ¬α) itself. We might also want to express more contingent
matters, e.g. that everything Angela Merkel said about the refugee crisis is true.
To do so we may take a monadic operator � of language to apply only to
sentences about the refugee crisis uttered by Angela Merkel (and their logical
consequences) and write ∀α (�α → α).2 Note that the same effect can hardly
be achieved using predicates instead of operators, for sentential variables are
formulas and predicates can only be syntactically attached to terms.3

Since we want to relate languages with sentential quantifiers to languages
with a truth predicate, let us proceed by describing the latter. As truth applies
to specific objects, the truth bearers, formal principles of truth are normally not
formulated directly over logic, but over an underlying theory that has names for
those objects and proves facts about them. As is usual in the literature on formal
theories of truth, we choose sentences as truth bearers. Should propositions be
preferable to sentences, one could understand our truth predicate as applying not
directly to the sentences but to what these sentences express. As a consequence,
our underlying system will be a theory of syntax, which we assume to be suffi-
ciently rich to be able to interpret a decent amount of arithmetic, as is usual –
interestingly, we need not assume that principles of induction are available in
the syntax theory. Let LT be the result of augmenting L with unary predicates
T, for truth, and D, for the domain of objects L talks about, and the vocabulary
needed to formulate a theory of syntax, �, for the whole language, including a
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unary predicate S for the domain of the syntax theory. To keep the ontology of
L apart from the syntactic objects � brings about, we assume all axioms in �
are relativised to S.

It is possible to show that there exists an effective translation, τ , of ex-
pressions of LQ into expressions of LT that has the following natural proper-

ties. First, atomic formulas of the form Pt1 . . . tn are translated into
∧

D(�t) →
Pt1 . . . tn and their negations into

∧
D(�t) → ¬Pt1 . . . tn , where D (as mentioned

above) is a predicate applying to all and only those objects in the domain of
things that L talks about, and

∧
D(�t) is short for D(t1) ∧ . . . ∧ D(tn) (and simi-

larly for other predicates). This relativisation is required because the quantifiers
of the target language LT range over both the objects of L and those of the
syntax theory.

Second, sentential variables α are translated into Trsl(x) → Tx and their
negations into Trsl(x) → ¬Tx. Here, Trsl(x) is a predicate of LT that applies
exactly to (the codes of) those formulas of LT that are translations of formulas
of LQ under τ .4 Again, this relativisation is required because as LT cont-
ains the vocabulary of the syntax theory, its quantifiers range over more
sentences than the sentential quantifiers of the original language LQ. In order to
preserve all inferences, the truth predicate only needs to apply to (the translation
of) sentences of the original language. However, putting the relativisation aside,
note that our translation replaces each sentential variable with a truth ascription
to a first-order variable, restructuring expressions just as we anticipated in the
previous section. Soon we will show how this truth predicate, combined with
ordinary quantifiers and disquotational principles, actually allows us to quantify
into sentence position just like sentential quantifiers.

Finally, the translation of complex formulas is determined by their logi-
cal structure: for example, ϕ ∧ ψ is translated as τ (ϕ) ∧ τ (ψ), while ¬(ϕ ∧ ψ)
is translated as τ (¬ϕ) ∨ τ (¬ψ). ∀α ϕ is translated as ∀x τ (ϕ), while ¬∀α ϕ is
translated as ∃x τ (¬ϕ).5

We now introduce a truth theory that is able to simulate the logic of QPL.
Let UTB[τ ] be the truth theory formulated in LT that results from extending the
syntax theory � with all instances of the following schema:

∀�x
(∧

Trsl(�x) → (T�ϕ(�̇x)� ↔ ϕ(�x))
)

(UTB[τ ])

where ϕ is a formula in the range of τ . Here, �x is short for x1, . . . , xn and the
dot in T�ϕ(�̇x)� indicates that the variables �x are bound by the quantifiers ∀�x.

The reason why the variables �x are relativised to the predicate Trsl is straight-
forward: the formula ϕ is a translation of some formula ψ of LQ. The variables
�x correspond to the free sentential variables �α that may occur in ψ . Since the
sentential variables �α range over sentences of LQ, the corresponding variables
�x need to range over the translation of sentences of LQ, if our translation is
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to preserve inferences. That this is indeed so is the content of the following
fundamental result of this section.

Theorem 1 If ϕ1, . . . , ϕn, ψ are formulas of LQ then there is a derivation ofψ
from ϕ1, . . . , ϕn in QPL if and only if τ (ψ) is derivable from τ (ϕ1), . . . , τ (ϕn)
in UTB[τ ].

This shows that any inference that we can draw using sentential quantifiers
can be mimicked in a language with a disquotational truth predicate in a fairly
natural way, that is, roughly as it was described in the previous section. This
means one can use our theory of truth as a higher-order logic. In particular,
if � is a theory formulated in LQ, then ψ is a theorem of � if and only if
τ (ψ) can be derived from τ (�), i.e. the set of translations of all non-logical
axioms of �. Theorem 1 also entails the consistency of our truth theory UTB[τ ].
Moreover, one can show that UTB[τ ] is sound, in the sense of having a standard
model for the underlying syntax theory (see our companion paper [Authors] for a
proof).

Note also that an analogous result holds between predicative fragments of
QPL, where the Sentential comprehension schema is restricted to formulae not
containing sentential quantifiers (and possibly no free variables), and subsystems
of UTB[τ ] in which the instances of disquotation are restricted to the correspond-
ing translations. In the specific case where no free variables are allowed in the
instances of the comprehension schema, the corresponding theory of truth will
be a typed system. However, as soon as free variables are permitted, the truth
system needs to be type-free.

We do not necessarily recommend UTB[τ ] as the ultimate truth theory, as
it’s rather artificial, being parasitic on LQ. However, it is good enough to make
our philosophical point. Having instances of disquotation for every translation
allows us to mimic quantification into sentence position ranging over sentences
of LQ. This point can be generalised in an obvious way. If a truth theory contains
instances of (uniform) disquotation for a certain class of sentences, one may say
it enables quantification into sentence position ranging over this class. This, we
would like to suggest, is the nature of the function of truth deflationists have in
mind when they claim the truth predicate allows us to ‘affirm some infinite lot
of sentences’.

Of course, one has to be careful not to fall prey to paradoxes. To quantify
over absolutely every sentence of the language including those containing the
truth predicate, an unrestricted version of disquotation is required. Since in
classical logic this principle leads to contradiction in combination already with a
fairly weak syntax theory, one must adopt a weaker logic instead. However, note
that not every logical system that guarantees consistency would do. One must
take care that the rules and principles required to allow the truth predicate to
perform its function still hold and, further more, one should ponder costs and
benefits of adopting a weaker notion of logical consequence.
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4. Truth-of and Higher-order Quantification

As indicated at the end of section 2, the function of the truth predicate is not
exhausted by its ability to simulate sentential quantification. It also allows us to
simulate quantification into predicate position as well. However, we mentioned
a limitation: the truth predicate allows us to handle predicate quantification for
any first-order theory whose intended interpretation has a countable domain but
not for theories with an uncountable domain. This restriction could be dropped
if we worked with a satisfaction predicate instead.

As before, let L be a first-order language and let L2 extend L with n-place
predicate variables Xn

i for each natural number n and i . If t1, . . . , tn are individual
terms, Xn

i t1 . . . tn is a formula of L2, and if ϕ is a formula of L2 then so is ∀Xn
i ϕ.

We often drop the indices and write X,Y, . . . instead of Xn
i , for perspicuity.

Second-order logic (SOL) extends first-order logic with the following axioms:

(A5) ∀Xn ϕ → ϕ[T/Xn ], if T is an n-ary relation variable free for Xn in ϕ or
an n-ary

(Comprehension schema) ∃Xn∀�x (Xn �x ↔ ϕ(�x)), if Xn is not free in ϕ
(Second-order generalisation) ϕ→ψ

ϕ→∀Xψ , if X is not free in ϕ or in a premise.

In the Comprehension schema, as in its sentential version, ϕ may contain
free variables (other than x1, . . . , xn). But in this case the variables can be both
first- and second-order, for second-order quantifiers allow us to quantify into
predicate position.

As before, we can consider (predicative) fragments of SOL in which the in-
stances of the comprehension schema are restricted to formulas ϕ of a particular
form (e.g. formulas containing no bound predicate variables).

Warning. When using the phrase ‘second-order logic’, some authors refer
to the second-order logical consequence relation that is given by the so-called
standard semantics for second-order languages, where the predicate variables
are interpreted to range over the full power set of the domain. However, unless
otherwise stated, in this paper ‘second-order logic’ simply refers to the calculus
described above, which is sound and complete with respect to the class of so-
called faithful Henkin models.6 Thus, we understand second-order logic here
as a theory of quantification into predicate position, and not as a theory of
pluralities, properties, classes, sets, or concepts.

L2 allows us to bind predicate places in the language directly, as we men-
tioned in section 2. For instance, one can turn to second-order quantifiers to
provide a finite axiomatisation of the principle of mathematical induction, as
follows:

(Induction axiom) ∀X ((X0 ∧ ∀x (Xx → X(x + 1))) → ∀x Xx)

The second-order theory that consists of the axioms of first-order Peano Arith-
metic (PA) except that the usual Induction schema is replaced with the Induction
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axiom is known as ‘second-order arithmetic’ or Z2. In what follows we show
that one can translate second-order variables and quantifiers employing a truth
predicate pretty much as indicated at the end of section 2 in such a way that
all inferences are preserved if suitable disquotational principles are available. In
particular, one could formulate a system of arithmetic as strong as Z2 in a theory
of truth instead.

Indeed, using similar techniques as in the previous section, it is possible
to show that there is an effective translation, σ , from expressions of L2 to
expressions of LT that satisfies some natural properties. First, atomic formulas
for the form Pt1 . . . tn (where P is a predicate symbol) and their negations are
translated just as before, relativising the terms to D(x)– a predicate applying to
all and only those objects in the domain of things that L talks about. Second, we
can again find a predicate Trsl(x) of LT that applies exactly to those formulas
of LT that are translations of formulas of L2 under σ . Formulas of the form Xt
are then translated into

D(t) ∧ Trsl(x) → Ts(x, t)

where s represents the function that, applied to a formula ϕ(v) and a term t,
yields the formula ϕ[t/v]. In more informal terms, σ translates Xt as ‘If t is in
the domain of L and x is the translation of a formula of L2, then x is true of t’.
Similarly, formulas of the form ¬Xt are translated as

D(t) ∧ Trsl(x) → ¬Ts(x, t)

Formulas of the form Xt1 . . . tn and ¬Xt1 . . . tn are dealt with in an analogous
way. As before, the translation of complex formulas is determined by the logical
structure of a formula.

Let UTB[σ ] be the truth theory formulated in LT that results from extending
the syntax theory � with all instances of the following schema:

∀�x ∀�y (
∧

D(�y) ∧
∧

Trsl(�x) → (T�ϕ(�̇x, �̇y)� ↔ ϕ(�x, �y))) (UTB[σ ])

where ϕ is a formula in the range of σ .
Again, the reason for the antecedent in the axioms is straightforward: ϕ

must be the translation of some formula ψ of L2. ψ may contain free individual
and free predicate variables. The variables �y correspond to the free individual
variables and the variables �x correspond to the free predicate variables. Since
the predicate variables of in ψ range over predicates of L2, the variables �x
need to range over the translation of these predicates. Similarly, since the free
individual variables of ψ range over the domain of things that L talks about, the
variables �y need to be relativised to the predicate D, which applies exactly to those
objects.
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We can now state the main result of this section:

Theorem 2 If ϕ1, . . . , ϕn, ψ are formulas of L2 then there is a derivation of ψ
from ϕ1, . . . , ϕn in SOL if and only if σ (ψ) is derivable from σ (ϕ1), . . . , σ (ϕn)
in UTB[σ ].

As before, we note that an analogous result holds between predicative frag-
ments of SOL, where the comprehension schema is restricted to formulae not
containing bound predicate variables (and possibly no free variables), and sub-
systems of UTB[σ ] in which the instances of disquotation are restricted to the
corresponding translations.

Again, we do not recommend UTB[σ ] as our ultimate truth theory, but
our results show that second-order reasoning can be simulated in a first-order
framework. In particular, if � is a theory formulated in L2, then ψ is a theorem
of � if and only if σ (ψ) is a theorem of σ (�), the set of all translations of
non-logical axioms of �. This implies that our truth theory UTB[σ ] is consistent.

Moreover, our method can be extended to show that it is possible to mimic
n-th-order logic in a disquotational theory of truth, for every natural number
n. One can extend L2 to L3 by adding new predicate symbols that may be
applied to the predicate symbols and individual terms of L2. Third-order logic
extends second-order logic by a comprehension axiom schema in which the
relevant formula ϕ may now contain third-order quantifiers as well. We can
move from L3 to a language L4 by admitting further predicate symbols that may
be applied to the predicate symbols of L3, and add appropriate comprehension
axioms. In this way, we can construct Ln and formulate n-th-order logic for every
natural number n. Using techniques similar to those discussed before, one can
show that for each n, one can find a suitable disquotational theory of truth in
which n-th-order reasoning can be carried out. Hence, the function deflationists
ascribe to the truth predicate should not be limited to the simulation of sentential
quantification in a first-order setting but should also extended to quantification
into predicate position in general, for predicates of arbitrary (finite) order.

5. The Conservativity Debate

One of the claims attributed to deflationism and often considered funda-
mental to the view is that truth is a ‘thin’, ‘lightweight’, or ‘insubstantial’ notion.
Many have taken this ‘lightness’ to mean that the concept of truth does not con-
tribute anything to our knowledge of the world and has no explanatory power.
Thus, the insubstantiality of truth has often been wedded to the idea that adding
a deflationary truth predicate to a given theory must always lead to a conservative
extension of it.

The notion of conservativity is one that will be familiar to readers of Hartry
Field’s book Science without Numbers, and has received some attention in recent
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discussions about metaontological deflationism (e.g. Schiffer, Thomasson, Hale
and Wright). In the present context, it can be defined as follows:

Definition 3 (Conservativity). A theory of truth� formulated in the language
LT is conservative over its base theory � formulated in L if and only if all
consequences of � that do not contain the truth predicate are consequences
of � as well.

In other words, � is conservative over � just in case any truth statable in
the language of L that can be derived from � must already be available in �.

That the lightness of truth should be cashed out in terms of conservativity
has been suggested by Horsten [17], Shapiro [30], and Ketland [21]. For example,
Ketland [21, p. 79] writes that ‘if truth is non-substantial – as deflationists claim
– then the theory of truth should be conservative. Roughly: non-substantiality ≡
conservativeness.’ Shapiro presents the following argument for the conservativity
requirement:

I submit that in one form or another, conservativeness is essential to deflationism.
Suppose, for example, that Karl correctly holds a theory B in a language that
cannot express truth. He adds a truth predicate to the language and extends
B to a theory B′ using only axioms essential to truth. Assume that B′ is not
conservative over B. Then there is a sentence ϕ in the original language (so that
ϕ does not contain the truth predicate) such that ϕ is a consequence of B′ but
not a consequence of B. That is, it is logically possible for the axioms of B to
be true and yet ϕ false, but it is not logically possible for the axioms of B′ to
be true and ϕ false. This undermines the central deflationist theme that truth is
insubstantial. Before Karl moved to B′, ¬ϕ was possible. The move from B to B′

added semantic content sufficient to rule out the falsity of ϕ. But by hypothesis,
all that was added in B′ were principles essential to truth. Thus, those principles
have substantial semantic content. [30, p. 498]

Admittedly, the conservativity requirement has some intuitive force. How-
ever, it generates a conflict because most prominent formal theories of truth on
the market are not conservative over their respective base theories. For example,
consider the theory CT (for ‘compositional truth’). Roughly speaking, this theory
is obtained by turning the clauses of Tarski’s semantic definition of truth into
axioms and adding them to PA with induction for all formulas of the language,
including those containing the truth predicate. For instance, one of CT’s truth-
theoretic axioms is ‘For all sentences x of L, the negation of x is true if and only
if x is not true’. PA, the base theory, serves as well as syntax theory, as is usual
in the literature.7

CT is considered by many as a philosophically sound truth theory. But the
theory is not conservative over its base theory. The reason is quite simple. Once
we have a well-behaved truth predicate on board, we can prove that all the
axioms of PA are true, and that the logical inferences preserve truth. Hence we
can show that the base theory must be true, which implies that it is consistent,
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a statement that can be expressed in the language of PA. But by Gödel’s second
incompleteness theorem, PA cannot prove its own consistency, provided it is
indeed consistent. Thus, CT allows us to prove a statement in the base language
that is not provable in the base theory. (Indeed, Shapiro [30, p. 499] suggests that
any adequate theory of truth will allow us to carry out this argument; otherwise
it could hardly be called ‘adequate’.) Therefore, CT counts as a substantial theory
of truth according to those who equate conservativity with insubstantiality.

Some philosophers might be willing to bite the bullet in this case, arguing
that CT is not a disquotational but compositional theory truth, and that com-
positional axioms for truth are not compatible with deflationism anyways. We
do not agree with this assessment, but it is worth pointing out that one can also
find examples of disquotational theories of truth that are not conservative. One
of them is the theory PUTB of positive uniform disquotation (cf. Halbach [13]).
It contains an instance of the uniform T-schema for every formula in which the
truth predicate occurs only positively, i.e. for every formula that does not contain
negated occurrences of the truth predicate.8

Unsurprisingly, the conservativity debate has spanned a literature of its
own in recent years.9 For example, Field [6] does not reject the conservativity
requirement but claims that CT is conservative if properly understood. In order to
prove the consistency of PA in CT one needs to rely not only on the compositional
axioms for truth but also on the principle of induction (for formulas containing
the truth predicate). Without them, the theory would conservatively extend PA.
According to Field, the relevant instances of induction are not purely truth-
theoretic, but rather mathematical principles.

This defence has been regarded by many as problematic. On the one hand, it
might be difficult to draw a clear line between truth-theoretic and mathematical
content (cf. Horsten [18], Halbach [14, pp. 315-316]). On the other, it has been
suggested that, if the relevant instances of induction are taken to be mathematical,
they should be considered as part of the base theory. In that case, adding the
compositional truth principles yields again a non-conservative extension of the
base theory.10

A different solution was entertained (but ultimately rejected) by Shapiro
[31]. He suggests that the notion of consequence employed in the definition of
conservativity could be reconceived as second-order logical consequence with
so-called standard semantics, where in a model second-order quantifiers are
understood as ranging over the full power set of the domain. Now suppose that
our base theory is second-order arithmetic. Since this theory is categorical, that
is, has only one model up to isomorphism, every true arithmetical sentence is a
second-order consequence of the base theory. So there is no way that the truth
theory could prove an arithmetical sentence that is not already a second-order
consequence of the base theory. Hence the conservativity requirement is satisfied.

Many philosophers have taken issue with this proposal. First, one may be at
unease about the notion of second-order logical consequence, e.g. for Quinean
reasons: second-order logic comes with ‘staggering existence assumptions’.
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Second, one may have worries about the epistemic tractability of the relation of
second-order logical consequence: it is not effective, and the validities of second-
order logic are not recursively enumerable. Third, even if one deems second-order
logical consequence acceptable, one may doubt whether it is compatible the with
deflationary account of truth (cf. Shapiro [30] and Murzi & Rossi [24]).

We do not share any of these worries; nevertheless, we reject Shapiro’s pro-
posal. A minor issue is that even if one is ready to embrace Shapiro’s solution
in the case where a truth theory is added to arithmetic, it is not obvious that it
will work if we add a truth predicate to some other base theory. For assume that
� is a second-order theory that is not categorical. Then there are sentences that
are undecided by �, i.e. there are sentences such that neither the sentence nor its
negation are implied by �. Thus there is a theoretical possibility that combining
� with a truth theory leads to a non-conservative extension. One may think that
it is unlikely that a theory of truth will decide a sentence that is undecidable
in � (given that � is closed under second-order logical consequence), but as
McGee [23] has shown, any sentence whatsoever can in principle be decided by
an instance of the T-schema.

What really concerns us though is that one reads so much into the in-
substantiality of truth that it forces the deflationist to appeal to a notion (i.e.
second-order consequence) that has sparked so much controversy. Whether the
notion of second-order consequence is in good standing or not is a difficult
question: embracing a deflationary view on truth should not force one to adopt
a particular position on this issue.

Waxman [34] has proposed an interesting disjunctive strategy. Our concep-
tion of arithmetic is either a categorical one or an axiomatic one, based e.g.
on PA. We need not take a stand on which conception is the right one, but
whichever it is, Waxman argues, we will end up with a truth theory that satisfies
the conservativity requirement. Assume first our conception of arithmetic is the
categorical one. Then we must be in possession of resources that allow us to rule
out all non-standard models. Whatever these resources are, they will induce a
notion of consequence that goes beyond the proof-theoretic one, and we should
adopt that notion in our definition of the conservativity requirement. As we have
seen above, our truth theory will not conflict with the conservativity requirement
if the latter is defined that way. Now assume that our conception of arithmetic
is a non-categorical, axiomatic one instead. Then we have a principled reason
to rule out any truth theory that proves arithmetical sentences that are not en-
tailed by our axiomatic theory of arithmetic (say, PA). Thus, if our conception
of arithmetic is the axiomatic one, we should adopt a proof-theoretic notion of
conservativity and adopt a theory of truth that satisfies the constraint. Either
way, we will end up with a truth theory that meets the conservativity requirement.

We are not satisfied with the disjunctive strategy. To begin with, the disjunc-
tive strategy seems somehow to presuppose (or only works if we presuppose)
that we either have a categorical conception of arithmetic or one based on some
particular axiomatic theory. But couldn’t it be that we have some ‘open-ended’
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understanding of arithmetic which allows us to endorse stronger and stronger
axiom systems as we go along without, however, ever being in a position to rule
out each and every non-standard model? If this were the case, we could neither
appeal to the notion of second-order consequence in the definition of the con-
servativity requirement, nor would we be able to say of some truth theory in
advance whether it meets the proof-theoretic conservativity requirement or not:
a truth theory might seem unacceptable because it proves sentences that are not
provable in our current system of arithmetic, but later on we discover that it was
acceptable after all because meanwhile we have adopted a stronger system of
arithmetic (or perhaps the status of the truth theory switches from unacceptable
to acceptable in the moment we adopt the stronger system).

Even if we put this possibility aside, the disjunctive strategy cannot tell us
whether CT, say, is an acceptable theory of truth or not. It would seem that
we first need to find out what our conception of arithmetic is. Do we all share
the same conception of arithmetic, and is it an empirical question which one
it is? Or does everyone have their own conception of arithmetic, depending on
one’s philosophical inclination? If the former is the case, should we all abstain
from using a theory like CT until we have found what our common conception
is? If the latter is the case, should everyone just pick their own truth theory,
in conformity with the conservativity requirement that follows from their own
conception of arithmetic?

Moreover, we suspect that what the proponents of the conservativity re-
quirement have in mind is that a truth theory is deflationary as long as it is
conservative, not over logic, for that is impossible, but over any base theory
containing enough syntax, as discussed by Halbach [12]. Regardless of our epis-
temic preferences, a deflationary truth predicate, they would maintain, should
not inform us of any new facts about the ontology of the base theory. We
therefore think that the disjunctive strategy does not rise to the conservativity
challenge.

It turns out there is a much easier way out for the deflationist. Indeed, we
would like to suggest that conservativity is not a reasonable requirement to be-
gin with, and its association with (the version of) deflationism (we laid out in
section 1) is the consequence of a misinterpretation of the insubstantiality
claim.

Assume, for example, that one wishes to generalise into predicate position in
the context of PA. The most popular option is to work within the framework of
second-order logic. Once second-order quantifiers are available, it’s fair to exploit
their expressive power to provide finitary reformulations of the axiom-schemata
of the original theory; in this case, to replace the Induction schema with the
Induction axiom. As a result, we obtain the theory Z2. As is well known, Z2

is a non-conservative extension of PA, for it proves PA’s consistency statement
expressed in the language of PA itself. It does so in virtue of the principles
and rules of inference added for the second-order quantifiers, that increase the
deductive power of the underlying logic, but also due to the fact that some
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axioms of the original theory were reformulated in terms of these new logical
operators.

We have argued at length that the role deflationists ascribe to the truth
predicate should be taken to include the ability to mimic second-order quan-
tification. If we are right, we should be able to find a disquotational truth
predicate in terms of which we can provide finitary reformulations of the ax-
ioms of PA and that allows us to draw inferences from these new axioms, just
as in the case of Z2. If the job is properly done, it is only to be expected that
the reformulated arithmetical principles in our truth theory entail sentences not
containing the truth predicate that were not provable already in PA, just as Z2

does. Indeed, this is exactly what Theorem 2 shows. The translation, σ , maps
formulas of PA into truth-free expressions. Thus, in UTB[σ ] σ (Z2) will entail
the translation of PA’s consistency statement, which is not provable from σ (PA)
itself. In other words, reformulating arithmetic availing of our disquotational
truth predicate does not yield a conservative extension of the original theory.
This should be neither disappointing nor surprising, but actually desirable. The
adoption of second-order resources occasionally results in non-conservative ex-
tensions of first-order theories. If a disquotational truth predicate allows us
to simulate those resources, as we maintain, then disquotational truth theo-
ries will occasionally result in non-conservative extensions of first-order theo-
ries as well. Not only is deflationism untied to the conservativity requirement,
but also deflationist should in certain cases actively seek non-conservative truth
theories.

Is our analysis of the function of truth incompatible with the insubstantiality
claim, so pervasive among deflationists? We don’t think so. If it were, there
would either be a serious flaw in our proposal or in the deflationist position as
a whole. However, as we indicated a few paragraphs above, the association of
the insubstantiality claim with the conservativity requirement is a product of a
misguided interpretation of the former, which should be understood instead in
the context it originated. In what follows we examine the three versions of the
insubstantiality claim we could identify in the deflationist literature and argue
that none of them really entails the conservativity requirement.

Proto-versions of the insubstantiality claim can be traced back to redundan-
tism. In light of the equivalence thesis, many exponents of the view, including
Frege [7], Ramsey [28], Ayer [1], and Strawson [32], saw in the truth predicate
a rhetoric device rather than an expression standing for a legitimate property –
at least according to the sparse conception of properties. For instance, Frege [7,
p. 293] wonders, ‘may we not be dealing here with something which cannot, in
the ordinary sense, be called a quality at all?’ Following some sort of inference to
the best explanation, redundantists rejected the need and possibility of finding
a real definition that would unveil the metaphysical nature of truth, for there
is none. At least not one that could be described in terms of correspondence,
coherence, serviceability; no essence that would make truth a concept in the
traditional sense. As Ayer puts it,



346 / Lavinia Picollo and Thomas Schindler

the words ‘true’ and ‘false’ are not used to stand for anything, but function
in the sentence merely as assertion and negation signs. That is to say, truth
and falsehood are not genuine concepts. Consequently, there can be no logical
problem concerning the nature of truth”. ([1, p. 28-29])

Contemporary versions of this idea can be found, e.g. in Horwich [20], according
to whom truth is a property only in the abundant sense, as it lacks a constitution.

We hardly see how one could infer the conservativity requirement from
this version of the lightness claim. A predicate merely satisfying the equiva-
lence between each sentence and its truth ascription might be just an expressive
device that doesn’t express a (real) property. But, as our results show, its ex-
pressive powers are nonetheless strong enough to facilitate, in some cases, the
proof of statements in the language of the base theory that the latter does not
entail.

A second trace of the lightness claim that builds on the former can be found
already within deflationism properly understood. It emanates from the position’s
second core thesis, namely, that the truth predicate just plays an expressive role.
Although already implicit in Quine [27] (see section 2 above), modern deflation-
ists often maintain that the truth predicate is akin to a logical device and truth to
a logical property (cf. Horwich [20], Field [6], Horsten [18]). As such, truth has
no deeper metaphysical nature than, say, conjunction. Just like conjunction, it is
entirely truth-functional, for disquotational principles in the object language –
or, equivalently, corresponding semantic clauses in the metalanguage – suffice to
account for every role the truth predicate can play. This means, again, that there
is no room for a more intensional account of truth that would disclose a thick
essence. Actually, deflationism takes its name from this idea of deflating the sort
of metaphysical inquiry of truth pursued by correspondentists, coherentists, etc.
already present in the era of redundantism and bolstered by the assimilation of
the second core thesis.

Does assigning truth a quasi-logical status commit us to the conservativity
of our truth principles over their respective base theories? We believe this is
not the case. On the one hand, it is not even clear whether logical notions are
conservative. For example, consider the fragment of propositional intuitionistic
logic that only contains ∧, ∨, and →. The addition of the rules for the Boolean
negation ¬ to this logic does not yield a conservative extension of it, for the
extended logic proves Peirce’s law: ((ϕ → ψ) → ϕ) → ϕ, whereas the original
fragment does not. If classical negation is to be counted among the logical
expressions, conservativity cannot be a general requisite for logicality. However,
some authors do maintain that conservativity should be required, ruling out
classical negation as logical. From their point of view, if a truth predicate were
to be logical, it should be conservative as well.

But on the other hand, deflationists don’t claim that truth is logical but
only that it’s quasi-logical. For instance, Horsten maintains that ‘the notion of
truth is wrapped up with syntax, which is wrapped up with finite combinatorics,
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which finally reduces to arithmetic. Instead of being a purely logical notion,
truth should at least be called a logico-linguistic or logico-mathematical notion.’
[19, p. 85] Given our analysis of the function of the truth predicate, namely
that it enables us to simulate higher-order quantification within a first-order
framework, we would like to suggest the following:

The truth predicate has the same logical status as sentential and predicate
quantifiers.

We need not decide here whether sentential and predicate quantifiers are
indeed logical. This is perhaps just a matter of terminology. The point here
simply is: the truth predicate and sentential/predicate quantifiers fall into the
same category, they both serve the same purpose. As we mentioned already,
second-order logic certainly does not always yield conservative extensions over
some sets of premises, e.g. Z2 is not conservative over PA. So, again, if a truth
predicate can serve as a device for mimicking higher-order quantification, as we
submit, then it’s neither bad nor puzzling that the truth systems that are up
to the task are not conservative over their respective base theories. It is to be
expected.

Finally, explicit adherence to the insubstantiality claim can be found in
modern deflationism, also linked to the second core thesis of the view. It has
been argued that, if its only function is the logico-expressive one examined in
section 2, the truth predicate cannot play a central role, e.g. in explaining the
nature of meaning, knowledge, or the goals of belief and assertion, as is widely
believed. At least not a much more substantive role than that of the logical
operators that occur in such explanations. In Horwich’s [20, p. 4] words, ‘It is
just in this role, and not as the name of some baffling ingredient of nature, that
the concept of truth figures so pervasively in philosophical reflection.’ Deflation-
ists often encapsulate this idea under the slogan that truth has no explanatory
power.

This is perhaps the version of the lightness claim that most strongly suggests
conservativity should be required of deflationary truth predicates. The argument
typically goes along the following lines. Proofs of new facts about a certain por-
tion of reality are usually taken to have explanatory value. Thus, a deflationary
truth predicate is not allowed to play an essential role in such proofs. In other
words, the addition of deflationary truth principles to a base theory cannot entail
more statements in the language of the base theory than the base theory itself;
it must be conservative.

However, ‘no explanatory role’ is just a slogan. What was originally meant
by it, as we pointed out above, is that the only role the truth predicate can
play in any sort of explanation is the one discussed in section 2. To repeat, this
is essentially to mimic higher-order quantification. Since the latter occasionally
features in proofs of new facts about the ontology of the base theory, so does
the truth predicate; these cases do not contradict the version of the insubstan-
tiality claim under discussion. Furthermore, if deflationism is right and this is
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the only function of truth, in no circumstance will the truth predicate play a
substantive role. As Field [6, p. 537] puts it: ‘any use of “true” in explanations
which derives solely from its role as a device of generalization should be perfectly
acceptable’.

6. Conclusion

We have thoroughly examined the function deflationism attributes to the
truth predicate and argued that it is best understood as simulating higher-
order quantification in a first-order setting. Our analysis has many important
consequences for our understanding of deflationism. In the last section we have
touched upon the conservativity requirement for deflationary truth theories and
argued that it’s inappropriate. There are many more consequences. They will be
dealt with in subsequent articles. However, let us close this paper by at least
briefly mentioning some of them.

Properties. Some authors take second-order quantifiers to range over prop-
erties, and understand second-order logic as a theory of properties (e.g. Hale
[15]). Above we have seen that second-order quantification is reducible to a
truth theory. This seems to suggest that property talk could also be a means for
quantifying into the predicate position and, accordingly, leads to a deflationary
understanding of property talk as well.

The lightness of truth. A slogan that is often associated with deflationism
is that ‘truth is simple’. However, this should be understood as referring either
to the predicate or to the concept of truth, but not to the truths themselves;
let alone to the procedures for finding out whether a given statement is true.
Deflationism is in no way committed to the view that the extension of ‘is true’ is
of low computational complexity.

Classical v non-classical logics. Many philosophers have argued that defla-
tionists are committed to the unrestricted T-schema and therefore to a non-
classical logic, in order to block the paradoxes. Based on our analysis, one could
argue that deflationists are not committed to any particular logic. We have seen
that classical truth theories can give us the full expressive power of the simple
theory of types. A non-classical truth theory may allow us to generalise over
even more sentence/predicates in the language. On the other hand, adopting a
non-classical logic means that we have to reject some meaning postulates for
other logical devices such as negation or the conditional, which is likely to result
in a loss of proof-theoretic power overall. Therefore, all other things being equal,
deflationism motivates at best a logical pluralism of sorts, rather than a ban on
classical logic.

Semantic vs axiomatic approaches. It is often argued in the literature that
deflationism is committed to some form of inferentialism, as the truth predi-
cate should be introduced axiomatically. If semantic clauses are employed in-
stead, the argument goes, the truth theory commits one to non-deflationary,
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substantial truth principles. At the bottom of this kind of reasoning is the idea
that Tarskian compositional definitions of truth and satisfaction put forward
substantial notions. Based on our analysis of the function, and thus the essence,
that deflationists attribute to truth and satisfaction, we will argue to the
contrary.11

Notes

1. For more details on this, see Heck [16].
2. Moreover, the fact that we allow operators in L makes our relative interpretabil-

ity result below non-trivial. In the absence of non-logical operators, sentential
quantifiers can be defined in first-order logic: simply let ∀αi ϕ be short for
ϕ[�/αi ] ∧ ϕ[⊥/αi ], where � is a any logical truth and ⊥ any logical falsity.
However, this proof cannot be generalised to theories whose language contains
additional operators. For instance, consider the system S5 formulated in QPL
(cf. Kripke [22]), where � stands for necessity. If ϕ is a sentence of the lan-
guage that is neither necessary nor impossible, then ∃α�(α ↔ ϕ) is not provably
equivalent to �(� ↔ ϕ) ∨ �(⊥ ↔ ϕ).

3. One could consider extending the language with a term-forming operator � . �,
such that if ϕ is a formula, �ϕ� is a name for ϕ, i.e. a term. However, this move is
highly controversial, as it would jeopardise the consistency of the system. See, for
instance, Tarski [33, §1]. Alternatively, Azzouni [2] has developed an interesting
(although predicative) system in which one can simultaneously bind sentential
and nominal places. We believe that our results can be extended to his system
as well, i.e. there is a natural translation from his system into a disquotational
theory of truth.

4. It might seem that the definition of τ is circular because in the translation of
certain formulas we need to rely on the predicate Trsl(x) that applies exactly
to those formulas that are in the range of τ . However, the existence of such a
translation is guaranteed by Kleene’s Recursion Theorem.

5. The translation of negated formulas are slightly different from what one would
normally expect. The straightforward procedure would be to translate ¬ϕ as
¬τ (ϕ). This is not possible because we did not translate negated atomic formulas
in this way. For example, we translate α as Trsl(x) → Tx but we translate ¬α as
Trsl(x) → ¬Tx rather than ¬(Trsl(x) → Tx).

6. For more on second-order logic, see Shapiro [29].
7. For further details, see e.g. Horsten [19, chap. 6] or Halbach [14, chap. 8].
8. An essential ingredient of the liar paradox is that it contains a negated occurrence

of the truth predicate. The idea behind PUTB is to avoid all paradoxes by banning
sentences with negated occurrences of the truth predicate. The theory is indeed
consistent in classical logic and proof-theoretically very strong: it interprets the
non-conservative Kripke-Feferman theory KF.

9. For an overview and more references, we send the reader to Cieslinski [5].
10. This needs some reformulation of the definition of conservativity because now

we have allowed the truth predicate to occur in the language of the base theory
(cf. Horsten [19, p. 80]).
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11. This paper was written while the second author held an ERC Marie Curie Fel-
lowship (792202, LOFUPRO).

References

1. Ayer, A. J. The Criterion of Truth. Analysis 3 (1935), 28–32.
2. Azzouni, J. Truth via anaphorically unrestricted quantifiers. Journal of Philosphical Logic

30 (2001), 329–354.
3. Azzouni, J. Anaphorically unrestricted quantifiers and paradoxes. In Deflationism and

Paradox, J. C. Beall and B. Armour-Garb, Eds. Oxford University Press, 2005, pp. 250–
273.

4. Carnap, R. Introduction to Semantics. Harvard University Press, 1948.
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