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Abstract

Higher-order logic, with its type-theoretic apparatus known as the simple
theory of types (STT), has increasingly come to be employed in theorizing about
properties, relations, and states of affairs—or ‘intensional entities” for short. This
paper argues against this employment of STT and offers an alternative: ordinal
type theory (OTT). Very roughly, STT and OTT can be regarded as complementary
simplifications of the ‘ramified theory of types” outlined in the Introduction to
Principia Mathematica (on a realist reading). While STT, understood as a theory
of intensional entities, retains the Fregean division of properties and relations
into a multiplicity of categories according to their adicities and ‘input types” and
discards the division of intensional entities into different ‘orders’, OTT takes the
opposite approach: it retains the hierarchy of orders (though with some modifi-
cations) and discards the categorization of properties and relations according to
their adicities and input types. In contrast to STT, this latter approach avoids
intensional counterparts of the Epimenides and related paradoxes. Fundamental
intensional entities lie at the base of the proposed hierarchy and are also given
a prominent part to play in the individuation of non-fundamental intensional
entities.

Keywords: Properties; relations; states of affairs; type theory; higher-order meta-
physics; fundamentality
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1 Introduction

[O]ne can maintain in effect an impredicative point of view
for extensions, while maintaining the predicative (ramified)
point of view for intensions.

— Kripke, ‘A Puzzle about Time and Thought’

1 Introduction

How should one go about describing the richness of the world, taking ‘richness’ in
the broadest possible sense? It will not in general suffice to say that there are so-
and-so many Fs and so-and-so many Gs: if every F is a G and vice versa, one will
also have to say (if it is true) that to be F is not the same as to be G. More generally,
one will have to count the ways there are for things to be, as well as the ways there
are for two or more things to be related to each other. To have a formal grasp of such
ways, philosophers have often resorted to the ‘simple theory of types” (STT), which
in various ways goes back to Frege (1884: §53, 1891/2008), Russell (1908), Chwistek
(1921; 1922), and Ramsey (1925/1931). In recent years, STT has been the standard
framework of ‘higher-order metaphysics’."

When employed in theorizing about the “ways there are for things to be”, or the
“ways there are for two or more things to be related to each other”, the types of STT
are naturally understood in a non-extensional manner: the semantic values of formu-
las are taken to be states of affairs (or “propositions’) rather than truth-values, and
the semantic values of predicates are taken to be properties and relations rather than
sets—though a proponent of STT will be quick to point out that this talk of ‘states of
affairs’, ‘properties’, and ‘relations’ should be regarded as a merely heuristic gloss.
Unfortunately, the non-extensionalistic interpretation of formulas and predicates, if
carried out in accordance with STT, leads to Epimenidean paradoxes, among other
difficulties. To some theorists, such as Thomason (1989), Church (1993), and Martino
(2001), this has suggested that it would be better to work instead with some version
of the ‘ramified” theory of types employed in Principia Mathematica, from which STT
was derived by omitting certain complications. My principal aim in this paper is to
motivate and develop a radically different approach, which consists not in adding
back onto STT the original complications of ramified type theory, but rather in giving
up STT in favor of a hierarchy of ‘orders” more or less akin to that employed by the
ramifiers. Accordingly, the type-theoretic apparatus that results from this alternative
approach might be best referred to as ordinal type theory (OTT).

A key aspect of the to-be-proposed theory is its reliance on a concept of funda-
mentality applicable to intensional entities—i.e., properties, relations, and states of
affairs.? Instantiations of fundamental properties or relations roughly correspond to

'I mainly have in mind Williamson (2013), Dorr (2016), Fritz & Goodman (2016), Goodman (2017),
Bacon (2019; 2020), Dorr, Hawthorne & Yli-Vakkuri (2021), and Bacon & Dorr (forthcoming). Major
influences on this literature include Prior (1971) and Williamson (2003). Skiba (2021) offers a survey.
Critical voices include Orilia & Landini (2019), Hofweber (2022), Whittle (2023: 1642—45), Menzel
(forthcoming), and Sider (MS). Also cf. Florio (forthcoming).

?In the literature of higher-order metaphysics, the term ‘state of affairs’ is usually avoided in



1 Introduction

the ‘atomic propositions” of the Principia. While I will here not attempt any defini-
tion of ‘fundamental’, I will formulate four assumptions that should go some way
towards narrowing down that concept. Very briefly, these are to the effect that: (i)
the identity relation is fundamental; (ii) for every fundamental relation, any converse
of that relation is also fundamental; (iii) everything is “fully analyzable” in terms of
particulars and fundamental intensional entities; and (iv) with certain exceptions,
having to do with (i) and (ii), there are no ‘necessary connections” among distinct
particulars or fundamental intensional entities. This last assumption will play a
crucial role in clarifying the individuation of intensional entities.

The mathematical bedrock of the theory will be ZFC with urelements. However,
rather than to let a vast universe of sets sit next to a galaxy of intensional entities, I
will follow Carnap (1947: §23) in identifying sets with properties (of a certain sort).
A major philosophical advantage of this identification lies in the fact that it integrates
the ontology of mathematics into the theory of intensional entities, thereby unifying
the overall ontological picture.

I should warn the reader that there are (at least) two flies in the ointment. First,
I have no proof that the theory proposed below is consistent. Second, the last of the
mentioned assumptions about fundamentality is quite unattractively complicated.
Much of its complexity stems from special provisions that have to be put in place
to enable an adequate treatment of relations. I take this to be a strong indication
that the present conception of relations is in some ways too naive and simplistic:
the term ‘relation” is defined on the basis of a multigrade instantiation predicate,
which is taken as primitive; and thus no attempt is made to understand what it
might mean for a state of affairs (henceforth simply ‘state’) to be an ‘instantiation’
of a given relation by some entities in a given order. One might reasonably hope
that a suitable account of instantiation, together with a conception of relations as
consisting of conceptually simpler constituents, may help to reduce the complexity
of that fourth assumption. This is left for future work.

The plan for the rest of this paper is as follows. Section 2 outlines some of the
discontents that arise when STT is put to use in theorizing about intensional entities.
Some of these criticisms also affect various generalizations of STT, such as the cal-
culus of constructions (Coquand & Huet 1988), if these are interpreted as theories of
intensional entities. Sections 3—5 introduce OTT. Section 3 specifies the syntax and
semantics of a formal language whose formulas and predicates will serve to denote
intensional entities, and outlines an ontology of such entities. Section 4 defines how
entities are assigned their respective orders, motivates the resulting hierarchy, and
describes how this approach avoids the intensional paradoxes. Section 5 contains the
mentioned assumptions about fundamental intensional entities, and derives some of
their consequences. A central result (stated in §5.1) will be the thesis that, for every
ordinal «, there are proper-class many ath-order entities. Section 6 addresses two
potential concerns, and Section 7 concludes.

favor of ‘proposition’. Nonetheless, I shall here speak of states of affairs (or simply ‘states’), as this
term goes more naturally together with ‘property’ and ‘relation’, whereas ‘proposition’ connotes
something more fine-grained and sentence-like. (Cf., e.g., Dorr [2016: 54n.].)
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2 Simple Type Theory and Its Discontents

2.1 The Types of Simple Type Theory

In the familiar language of first-order predicate logic with identity (hereinafter LFO),
we are used to distinguishing between predicates, individual constants, and individ-
ual variables. Predicates other than ‘=" are upper-case letters with adicity-indicating
superscripts; individual constants are lower-case letters taken from the beginning of
the Latin alphabet; and individual variables (which in LFO are the only variables)
are lower-case letters taken from the end of the Latin alphabet.3 In a well-formed
formula, any occurrence of an n-adic predicate (for any n > 0) stands at predicate-
position, i.e., at the head of an expression of the form ‘P"(t4,...,t,)’, while any
occurrence of a zeroadic predicate stands at sentence-position. In second-order logic,
predicate variables are added to the mix, and occurrences of these can be bound by
quantifier-occurrences just like occurrences of individual variables.

As we move beyond second-order to higher-order logic, the simple typographic
distinction between lower and upper case becomes insufficient, for we now have
‘super-predicates’ that stand to other predicates in the same way as ‘normal” pred-
icates stand to individual constants. Accordingly, we need a more versatile device:
type superscripts. On one possible implementation, each type superscript is either
‘e’ or a comma-delimited list, enclosed in angular brackets, of zero or more ele-
ments, where each element is in turn a type superscript.# Individual constants and
variables are given the superscript ‘e’, whereas the superscript of any n-adic predi-
cate or predicate variable (for any natural number n) is a list of length n. Predicates
and predicate variables can now appear as elements of argument lists, rather than
only at either predicate- or sentence-position. In this language of higher-order logic
(LHO), predicates and their arguments are related by the following constraint:

(C) For any expressions E and F and any n > 0: if E appears, in a well-formed
formula, as the nth element of an argument list immediately preceded by an
occurrence of F, then F is a predicate or predicate variable whose superscript
is a list that has E’s superscript as its nth element.

Thus, while ‘M’ and ‘R(@#) (a¢, b¢)" are well-formed formulas, ‘P{) (P{¢))" isn’t. Mi-
nor variations aside, it is this language—often augmented by modal operators and
a variable-binding operator ‘A" as a device of predicate abstraction—that practition-
ers of higher-order metaphysics tend to employ when theorizing about intensional
entities.

This gives rise to a number of concerns, not least of which is the worry that
from a philosophical point of view the restrictions of LHO are under-motivated. To
substantiate this worry, I will begin with a critical (albeit brief and unsystematic)

3A more detailed overview of LFO is given in Shapiro & Kouri Kissel (2018).

4This notation follows Williamson (2013: 221f.), whose notation is a variant of that used by Gallin
(1975: 68).
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discussion of several ways in which a defender of STT might take those restrictions
to be justified.

2.2 Unclear Motivation

In arguing for the thesis that a propositional function cannot have itself as argu-
ment, Russell in the Principia appeals to the vicious circle principle, which is in turn
motivated by the need to avoid certain kinds of paradox. In a similar vein, Hilbert
and Ackermann (1950: 152) thought that “we must differentiate the predicates ac-
cording to the kind of arguments they have” in order to avoid Russell’s paradox
of properties. However, as was soon pointed out by Behmann (1931), this paradox
can be avoided by other means than differentiating the predicates according to their
argument-types. Briefly put, Behmann’s proposal was that no predicate should be
regarded as predicable of a given object (or sequence of objects) unless it be pos-
sible for the predication to be rewritten using nothing but ‘primitive vocabulary’
(Grundzeichen). For example, if we introduce a property N (and the predicate ‘N’) by
declaring that ‘N (¢)’ is short for ‘—¢(¢)’, and then try to get a Russellian paradox
by considering ‘N(N)’, we find that the symbol ‘N’ can never be eliminated: from
‘N(N)" we are led to ‘~N(N)’, from here to ‘=—=N(N)’, and so on. Behmann took
this to show that the expression ‘N (N)’ is not a statement (Aussage) at all, and hence
not a contradiction.

Unlike STT, Behmann’s proposal did not take the form of a calculus with pre-
cisely specified rules of inference, and it has never caught on.> Nonetheless, insofar
as it points to an alternative way of avoiding intensional paradox, it can be reason-
ably regarded as an indication that the need to avoid paradox is not enough by itself
to justify the restrictions imposed by STT.

Another possible avenue towards motivating STT emphasizes the syntactic cat-
egories of certain natural languages. Arthur Prior took STT to be “at bottom little
more than a matter of being sensible about syntax” (1971: 40).% Just as English syntax
distinguishes between nouns and verbs (and does not allow a sentence to be formed
by putting a verb after a verb), and just as LFO distinguishes between individual
constants and predicates (and does not allow a predicate to appear as an element of
an argument list), so LHO distinguishes between “predicates, which form sentences
out of names, and higher-order ‘functions” which form sentences out of predicates,

5Thiel (2002) gives a brief overview and helpful discussion of Behmann'’s correspondence, relating
to his proposal, with Godel and Dubislav. Also cf. Feferman (1984). In a letter to Behmann, Ramsey
wrote that “the hierarchy of functions and arguments is the one part [of the Theory of Types] which I
feel can hardly be questioned” (Mancosu 2020: 24). He motivates this assessment by pointing out that
some functions are defined only on functions and some only on functions of functions (op. cit., p. 23).
But the existence of such functions—or of properties that have instantiations only by properties—can
be granted without having to embrace STT.

6Cf. also Tarski (1935: §4), who proposes a form of STT based on considerations about the “seman-
tical categories” of natural-language expressions. In his postscript, however, he abandons his earlier
standpoint and takes quite seriously the possibility that STT may need to be given up in the interest
of expressive power.
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and so on up this hierarchy” (ibid.). These “higher-order ‘functions’” are simply
the aforementioned super-predicates, or what one might call predicates of ‘higher’
types. But this trajectory of generalization—from a language like LFO, whose pred-
icates take as arguments only individual constants, to one like LHO, where we also
have those super-predicates—is not inevitable, for one can easily imagine as one’s
starting-point an alternative to LFO that does allow predicates (and formulas) to ap-
pear as elements of argument lists. For example, Menzel (1986; 1993) allows “pred-
icate terms”, which can take the form of constants, variables, and lambda-expres-
sions, to appear both as elements of argument lists and at predicate-position.

“But hasn’t Frege taught us”, the defender of STT might retort, “that there is
a world of a difference between, e.g., the predicate ‘is a horse” (as in ‘Secretariat
is a horse’) and ‘is instantiated” (as in “‘Horsehood is instantiated’)? It just doesn’t
make any sense to say that Secretariat is instantiated!” And so it might be thought
that STT is exactly what we need, since it allows us to say that ‘is a horse” is a
first-level predicate (superscript: ‘(e)’) and that ‘is instantiated” is a second-level
predicate (superscript: “({e))’). However, as an argument for STT this would be too
quick. From the observation that it “doesn’t make any sense” to say that Secretariat
is instantiated, little more follows than that the predicate ‘is instantiated” cannot be
meaningfully applied to such things as horses. While it would not be unreasonable
to conclude that some properties have instantiations only by properties, it hardly
follows that no property has instantiations by properties as well as by particulars.
An argument for having some kind of type theory is not automatically an argument
tor STT.7

Nominalists might be drawn to STT in the hope that adopting this kind of system
will make it impossible to formulate certain awkward questions. For example, the
question of where in the world the virtues are located turns out to be ill-posed, at
least if we assume that virtues and location-properties are equally of type (e). This
might be thought to dissolve the dispute between those who take properties to be
‘immanent’ and those who regard them as ‘transcendental’.® But one could wonder
whether STT gives nominalists what they actually want, or should want. On the one
hand, what they want is (mainly) to avoid ontological commitment to properties and
relations, and typically also states. On the other hand, it is hard to see why one could
not fairly describe STT as proposing a division of ontology into different branches:
apart from e-ontology (i.e., the study of what there is in the sense of ‘3x*’), there are
also ()-ontology, (e)-ontology, ({e,e), ())-ontology, and so on. Under the interpreta-

7A recent defense of STT that draws explicitly on Fregean ideas can be found in Button & True-
man (2022), which in turn invokes Trueman’s (2021) defense of ‘Fregean realism’. Trueman’s central
thesis is that “it is nonsense to suppose that a property might be an object” (p. 2n.). Here an object
is understood to be “anything which can be referred to with a singular term”, while a property is
“anything which can be referred to with a predicate” (pp. 1f.). Later in the book the relevant con-
cept of reference undergoes a bifurcation when Trueman distinguishes between ‘term-reference’ and
‘predicate-reference’. At a crucial juncture, Trueman’s argument appeals to the requirement that “the
notion of reference appropriate for predicates must allow us to disquote predicates” (p. 52). But it is
not very clear why this requirement should be accepted.

8Cf. Jones (2018: §4.2). The rest of this paragraph is largely in line with §3.3 of the same paper.
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tion of STT that is currently under consideration, the entities that fall under these
other types (i.e., other than e) may be aptly described as properties, relations, and
states; and thus anyone who holds that STT gives nominalists what they want will
have to claim that the only kind of ontological commitment of concern to the nomi-
nalist is e-ontological commitment. But if this is correct, then so much the worse for
nominalism, for it is unclear why the other kinds of commitment should not matter
just as much in assessing the ‘ontological costs’ of a theory. Moreover, the maneuver
of rendering certain awkward questions about intensional entities unformalizable
through the expedient of type-restrictions leaves many other questions about inten-
sional entities both formalizable and unresolved, so that the philosophical headache
caused by these entities is not all that much lessened by distributing them over a
roster of different types. For example, it might be asked whether every state s is

identical with its ‘double negation’ ——s{, or how many fundamental entities of type
(().e ((e))) there are.”

Finally, in view of the fact that much work in recent metaphysics bases itself on
STT, it might be suspected that there is a ‘broadly abductive” argument in the offing.
Very roughly, the idea is that STT might be motivated by its theoretical utility. To
give just one example: Bacon (2019; 2020) has relied on STT in a project that sheds
valuable light on, among other things, the concept of fundamentality. It might thus
be thought that, by giving up STT, we would stand to lose valuable insights—or at
least potentially fruitful ideas—about fundamentality, just as, by giving up set the-
ory, we would stand to lose valuable insights about cardinality and types of infinity.

9In §3 of his ‘A Case for Higher-Order Metaphysics’ (forthcoming), Andrew Bacon argues for the
virtues of STT over “property theory” in part by maintaining that such questions as ‘Is wisdom lo-
cated?’ or ‘Is wisdom concrete or abstract?” do not have “straightforward higher-order analogues”. It
is true that, in an STT-based setting, it is not obvious that these questions have higher-order analogues.
But this just means that we are faced with the difficult question of whether they have such analogues;
and here of course it is not enough to verify that they have no higher-order analogues in English. For
instance, there may (assuming STT) be a fundamental entity of type ((e), (e)) that behaves just like a
metaphysically primitive co-location relation among entities of type (e). Although considerations of
ontological parsimony give us a reason to think that there isn’t, this does not mean that the question
does not arise.

A second way in which Bacon regards higher-order metaphysics as separate from “property the-
ory” rests on the idea, which goes back at least to Prior (1971: ch. 3), that quantification into predicate-
position is a purely logical affair. For instance, the existential generalization ‘Socrates somethings’
is supposed to follow unproblematically from ‘Socrates is wise’; and since one can accept ‘Socrates
is wise” without having to believe in properties, ‘Socrates somethings” should be similarly free of
ontological commitment to properties. (Cf. also Liggins [2021: 10028].) But notice that, if this argu-
ment works at all, it cuts both ways: one can accept ‘Socrates is wise” without having to believe in
STT or any of the ‘higher-order entities” posited by higher-order metaphysicians. Hence, if ‘Socrates
somethings” does indeed follow logically from ‘Socrates is wise’, then that sentence should not carry
any commitment to such entities, either.

A final point worth noting is that Bacon uses as his foil a rather specific form of “property theory”,
whereas there are of course various possible ways to develop a theory of properties (and relations).
As far as I can see, nothing hinders our regarding STT as one of these ways; though obviously this is
not to say that STT, thus understood, will be unproblematic.

6
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This line of reasoning has undeniable appeal.’® Still, it does not constitute any com-
pelling argument for STT unless it can be shown that no analogous insights or ideas
could be developed within an at least equally viable alternative to STT. Specifically
with regard to fundamentality, we will see in Sections 5.3 and 5.4 how counterparts
of Bacon’s (2020) principles of ‘Fundamental Completeness” and ‘Quantified Logical
Necessity” (the latter of which links the concept of fundamentality to that of logical
necessity) can be formulated within the context of ordinal type theory.

This much may suffice as an at least preliminary articulation of our first worry.
While nothing that has been said here is meant to call into question STT’s usefulness
for a variety of purposes (such as the formalization of mathematical reasoning),
it remains unclear why STT should be adopted as a theory of, or framework for
theorizing about, intensional entities.

2.3 Ontological Profligacy and Procrusteanism

A second problem concerns the treatment of quantifiers, which function in STT as
names of higher-order entities. For instance, the symbol V)" (or something similar)
is effectively treated as the name of a “property of properties of states’ (i.e., of an
entity of type ((()))) that a given ‘property of states’ instantiates just in case it is in-
stantiated by every state.” For every type, STT provides in this way a corresponding
quantifier and posits a corresponding property. And each such property is ostensi-
bly treated as fundamental, since no analysis in interestingly different terms is either
given or sought. As a result, if ontological parsimony is measured by the number
of fundamental entities posited by a given theory, then STT appears to fare rather
poorly in this regard.

Related to the topic of quantification, there is also a third worry. Fundamental
properties are traditionally regarded as intrinsic. Yet intuitively, a property such as
that of being instantiated by every state is quite clearly extrinsic."? So it is at least
questionable that such properties should be treated as fundamental.

A fourth problem, analogous to the second, arises from the consideration of iden-
tity predicates. In the context of STT, talk of ‘identity’, as applied to the inhabitants
of a given type, is often understood in the sense of ‘Leibniz equivalence’. Thus the
symbol ‘=" might be explained by saying that it is the case that pl =) g% if and

only if, for all x{0?: x{0)(p0)) obtains just in case x{{(g")) obtains. But Leibniz
equivalence will amount to bona fide numerical identity only if, for each inhabitant
of the respective type, there exists a property that only that inhabitant has. Since it
would be extremely unparsimonious to say that for each entity there exists a funda-
mental property that only that entity has, the better course would be to let each of
these properties be ‘constructed” from an identity relation and the entity in question,

°Thanks to an anonymous referee for raising this issue.

'The subscript-less symbols V" and ‘3’ that are used throughout this section should be read as
abbreviatory devices. Cf., e.g., Church (1940: 58).

20n the intrinsic/extrinsic distinction, see, e.g., Plate (2018) and references therein.
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along the lines of Ax (x = y), where y is the respective entity. But now, given that
STT prohibits relations that can take as arguments (in the same argument-place) en-
tities of different types, the STTler will still need to posit infinitely many identity
relations, one for each type.

A fifth worry, which has already been alluded to in the previous sentence, has to
do with the fact that STT requires every property and every relation (every attribute
for short) to have a tightly restricted ‘range of application’. For instance, if R is a
dyadic relation that has an instantiation by some entity of type e and another entity
of type () (in this order), then every instantiation of R will be of this sort. The type of
R will be (e, ()), and there will simply not exist an instantiation of R by, say, a pair of
entities of types () and (e) (respectively). Under STT, there is consequently no place
for a relation of loving or thinking of that can hold not only among persons—usually
considered to be of type e—but can also be borne by a person to an entity of some
other type. This has often been perceived as counter-intuitive and Procrustean.*3

2.4 Paradox and Indeterminacy

A sixth worry arises from the fact that STT gives rise to paradoxical or at least
implausible consequences. For example, let P{{)) be a property that is instantiated by
exactly one state, namely Vx{ (P{0)(x0) — =x0). (For the sake of concreteness, let
us think of P{{) as the property of being Frege’s favorite state.) By a straightforward
argument, we are led to conclude that this state obtains just in case it doesn’t: a
contradiction.

This paradox—an intensional analogue of the Epimenides—hardly deserves to
be called a ‘paradox’ if we think of entities of type () as nothing other than truth-
values and of entities of type (()) as nothing other than functions from truth-values
to truth-values. For under this extensionalistic conception, when we say ‘Let x' be
vl (PAO) (x0) — —x{)’, we are not telling our audience in any straightforward way
what entity they are supposed to be considering. (To do that, we would have to
tell them either ‘Let x{ be the True’ or ‘Let x{ be the False’.) Rather, we are telling
them to let x{) be the True if everything!) that P{{)) maps to the True is not the True,
and the False otherwise. Under this extensionalistic interpretation, the “paradox’
amounts to nothing more than a proof by reductio of an unremarkable logico-mathe-
matical fact about functions: namely that there is no function f such that, for some
x, it’s both the case (i) that f maps only x to the True and (ii) that x itself is the True
iff everything that f maps to the True is not the True.™

However, once we adopt a non-extensionalistic interpretation, under which a for-
mula such as ‘Vx0 (P{0) (x0) — —x{)” does not denote a truth-value but a state, we

13Cf., e.g., Chierchia (1982), Menzel (1986: 3f.; 1993: 64f.), Bealer & Monnich (2003: §10).
& 9 906: 31.; 1993: 64 3

*4Similar remarks apply if one thinks of entities of type () as sets of possible worlds. Indeed it
might be wondered whether we should not, following Lewis (1986), conceive of intensional entities
along these lines; but here I shall be taking for granted that the answer is ‘no’. (For relevant critical
discussion, see, e.g., Schnieder [2004: 72f.].)
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have a very different situation. For now, when we say ‘Let x{ be Vx{ (P(0)(x0) —
-x{)’, our audience may rightly take the formula “Vx0 (P{0)(x0) — =x0)" to be
straightforwardly descriptive of what entity x{) is supposed to be: namely, the state
that every state that instantiates P{{)) fails to obtain. Accordingly they will want to
know how it is that this particular state cannot be the only state that instantiates
P{0). The paradox would seem to show that it just can’t. But in the absence of a
plausible mechanism, this is deeply unsatisfactory.'>

A seventh and final worry has to do with the fact that STT leads to awkward
indeterminacies akin to the truth-teller paradox. For example, suppose that some
property Q'{)) is instantiated by the state 3x¢ (Q{V) (x{) A x0) and by nothing else,
and consider the claim that the state just mentioned obtains. Is this claim true? Ex-
cept in certain special cases, there appears to be nothing that could determine the
issue.’® Arthur Prior, in discussing the same difficulty, in effect concludes that “it
can never be” that 3xV (Q{)(x0) A x0) is the only thing! that instantiates Q{{)
(1971: 91f.). But this is a hard doctrine to maintain. Short of resolving the indeter-
minacy by hoping that the puzzling case can never arise, the STTler appears to be
faced with a prima facie unappealing choice between dialetheism and epistemicism:
dialetheism if it is held that, while the claim in question “fails to be true and fails to
be false, nevertheless it is either true or false”,'” and epistemicism if it is held that the
claim is either true or false but there is no telling which.®®

SPrior (1961) and Bacon, Hawthorne & Uzquiano (2016: 532) describe essentially the same conun-
drum. By similar reasoning (also within STT), already Chwistek reached the puzzling conclusion
that “I cannot [...] consider as interesting those and only those propositions which I wish so to con-
sider” (1921: 344f.). Related problems include the Russell-Myhill paradox and intensional analogues
of, e.g., Grelling’s paradox and the ‘infinite liar’ paradox devised by Yablo (1993). A form of the
Russell-Myhill paradox will be briefly discussed in footnote 39 below. For relevant discussion of
Grelling’s paradox, see Church (1976).

One of the “special cases” just alluded to is the case in which Q{)) is the property of being
identical with s, for some state s. (For example, let s be the state that snow is white.) The question
of whether 3x{ (Q{)(x0) A x0) obtains will then come down to whether s obtains. Moreover, the
stipulation that Q{{) should itself be instantiated by 3x%) (Q{1) (x0) A x() “and by nothing else” will
be satisfied as long as states are individuated in a sufficiently coarse-grained manner. In particular,
s has to be identical with Jx{ (Q<<>>(x<>) A x<>)—i.e., with the state that some state identical with s
obtains. This requires a somewhat coarse-grained conception of states, but the required level of coarse-
grainedness is arguably far from implausible. So here we have a case in which, under not-implausible
assumptions, the question of whether Jx 0 (Q<<>>(x<>) A x<>) obtains is not left indeterminate. (Thanks
to Andrew Bacon and Jeremy Goodman for alerting me to this point.) Even so, it is clearly a rather
special case. If Q{{)) were instead, say, the property of being Quine’s favorite state, there would be no
such easy path to determinacy.

7The quotation is from Mortensen & Priest (1981: 385), who discuss a simpler truth-teller paradox.

8In this connection, cases of ‘reciprocal negation’—pairs of sentences, propositions, or states of
which each ‘says’ of the other that it is false—also deserve consideration. (For discussion, see, e.g.,
Sorensen [2001: ch. 11; 2018: §9], Armour-Garb & Woodbridge [2006], Greenough [2011]. As Sorensen
notes, the problem goes back to Buridan.) Let P{0) and Q<<>> be the properties of, respectively,
being Prior’s favorite state and being Quine’s favorite state, let p!) and ') be, respectively, the states
vl (PO (x0) = =x0) and Vx (QU0)(x0) — —x0), and suppose that p{ is the only thing that
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As we have seen, the simple theory of types, when interpreted as a theory of in-
tensional entities, faces various problems. The purpose of this and the next two
sections, and the main purpose of this paper, is to provide an alternative theory.
This calls for some expectation management. Qua theory of intensional entities, STT
must count as a piece of metaphysics, and metaphysics rather than logic will be our
primary concern in the following. Accordingly, although I will be introducing a for-
mal language, I will not be formulating any inference rules or logical axioms. Any
reasoning will be done in the meta-language, using classical logic.

The formal language in question will be simply called “L’. In the rest of this sec-
tion I will outline the syntax and semantics of £ as well as an ontology of intensional
entities. We have to begin with set-theoretic foundations and the conception of sets
as complex properties. Section 3.2 then specifies the syntax of £, while Section 3.3
will introduce a number of ontological assumptions. These will provide the basis
for the semantics of £, which will be laid out in Section 3.4.

3.1 Sets

Although sets are commonly thought of as particulars, i.e., entities that are neither at-
tributes nor states, this conception is by no means forced upon us. Carnap (1947: §23)
suggests a “reduction of extensions to intensions” under which sets are identified
with properties of a certain special sort. Alternatively, one might take an elimina-
tivist approach and let the theoretical work of sets be done by suitable properties,
as proposed by Bealer (1982: 116-19). The choice between these two approaches
will make little difference in practice. (Some suggest that it makes no difference
at all: see Oliver [1996: 19n.].) Either option achieves the unification, alluded to in
the Introduction, of the overall ontological picture: the first by assimilating sets, the
second by eliminating them. Here I will take the first route and, following Carnap,
identify sets with properties. More particularly, for any entities x1,xp,..., the set
{x1,x2,...} will be conceived of as the property of being identical with x1 or x, or ...,
while the empty set @ will be taken to be the uninstantiable property of not being
identical with anything. Using vocabulary and notation that will be more formally in-
troduced further below (although for the moment an intuitive grasp should suffice),
this identification can be expressed by a pair of definitions:

Definition 1. Something is a set iff it is either the property Ax =3y (x = y) or, for
some (one or more) entities x1, xy, ..., the property Ax ((x = x1) V(x =x2) V...).

Definition 2. An entity x is a member of a set y iff x instantiates y.

instantiates Q{0 while g0 is the only thing that instantiates P{). Question: Which of p0 and ¢
obtains? The symmetry of the situation strongly suggests that they either both obtain or both fail to
obtain, but either of these options leads to a contradiction.

10
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We need both of these definitions, because Definition 1 by itself does not tell us, e.g.,
that Ax =3y (x = y) is an empty set: a set without members. Nor does it tell us that,
for any y, the property Ax (x = y) has y as a member.

The syntax and semantics of lambda-expressions, which are relied on in Defi-
nition 1, will below be specified under heavy use of set-theoretic resources. Since
Definition 1 tells us what it is to be a set, this might at first look circular. However,
for the purposes of specifying the syntax and semantics of lambda-expressions, what
a set is will matter much less than what sets there are (e.g., whether there is an in-
finite set). With regard to this latter question, we will adopt the usual axioms of
Zermelo-Fraenkel set theory (including Choice), with quantifiers restricted to sets
where appropriate,’ and with the schemata of Separation and Replacement under-
stood in such a way that their instances may contain vocabulary from other parts of
the theory, such as ‘state” and ‘lambda-expression’.

3.2 Syntax
3.2.1 Preliminaries

In Section 3.3.3 below, we will adopt an existence assumption for attributes that
‘generates’ attributes from terms of L. As a result, the more restricted £’s syntax,
the more impoverished the resulting ontology of attributes. But our ontology has
to be at least rich enough to make it possible to regard all sets as properties, in
accordance with Definition 1; and, more generally, a more plenitudinous ontology of
attributes can be expected to be more useful as a background theory for metaphysical
theorizing. We thus have excellent reason to allow the expressions of £ to reach any
set-sized length—to allow, for instance, that there is a lambda-expression "Ax ((x =
v1) V (x = v2) V... ) for any sequence of variables v, vy, ... of a length greater than
zero. The natural way to do so is to let the expressions of £ themselves be sequences,
i.e., functions, conceived of as sets of ordered pairs, defined on initial segments of the
ordinals. For a simple example, an expression of length 2 will be a set {(0, x), (1,y)},
for some entities x and y. Ordinals, in turn, will be conceived of 4 Iz von Neumann
(1923/1967), meaning that every ordinal is the set of all its predecessors. Thus every
ordinal is itself an initial segment of the ordinals. If a function has as its domain
a given ordinal, then that ordinal will be called the ‘length’ of that function (qua
sequence). Since there are transfinite ordinals, it follows that sequences can be of
transfinite length.

Written representations of the expressions of £ will form part of the meta-language,
where they will function semantically in the same way in which the expressions of
L function in £. Quotation marks will be used ambiguously, serving to construct
names of expressions of £ as well as names of their written representations, with
disambiguation being left to context.?® These representations will be constructed in

9For example, the extensionality axiom will be to the effect that no two sets have all their members
in common.

2°For example, when below it is stipulated that ‘T’ abbreviates ‘&()’, the quotation marks should

11
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accordance with conventions detailed in Section 3.2.2.
A few general features of L’s syntax are worth flagging in advance:

¢ Formulas and lambda-expressions are terms and can appear as elements of
argument lists.

¢ Formulas can appear at predicate-position, and lambda-expressions can appear
at sentence-position. (So, e.g., “—~Ax F(x)’ is a well-formed formula. However,
the semantics of £ will ensure that this formula has a denotation only relative
to a variable-assignment relative to which ‘Ax F(x)” denotes a state. As a result
this formula has a denotation relative to any given variable-assignment only if
some property is also a state; which is ruled out by an assumption adopted in
Section 3.3.3.)

* We distinguish between typed and untyped variables. Typed variables will be
said to have positive (i.e., non-zero) ordinals as “types’.

So as to leave no questions about the relationship between typed variables and their
respective types, the nature of £’s atomic terms will be specified in a little more
detail than strictly necessary.

3.2.2 Atomic terms

From what has been said above, it follows that we take any L-expression of length 1
to be a set whose only member is an ordered pair (0, x) (i.e., a set {{0},{0,x}}), for
some entity x. Let us now stipulate that, for any positive ordinal &, a set {(i, x;) | i <
a} is an expression of L iff each x; satisfies one of the following three conditions:

(a) It is one of the ordinals 0, ..., 6.
(b) It is an ordered pair (0,«) or (1,«), for some ordinal a.
(c) Itis an ordered pair (&, B), for some ordinals « > 1 and > 0.

While in principle every (finitely long) expression of £ could be written using stan-
dard set-theoretic notation, this would not be very convenient to do. The following
list provides some conventions for an alternative way of writing expressions of L;
this also offers an opportunity to introduce some terminology that will become rel-
evant later on:

e If x is one of the ordinals 0, ..., 6, then the expression {(0, x)} will be written
as‘~’,'&’, '3, ‘A", "/, *(’, and *)’, respectively.

e If x is the ordered pair (0,0), then {(0,x)} will be written as ‘I’ and will be
called a logical constant.

be understood as serving to construct names of written representations of L-expressions. Using them
instead to form names of L-expressions, we would have to say that ‘T is identical with ‘&()’. Quinean
corner-quotes will be used in a similarly ambiguous way.

12
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e If x is an ordered pair (0,«), for some ordinal « > 0, then {(0,x)} will be
written as an unitalicized string and will be called a non-logical constant.

e If x is an ordered pair (1,&), for some ordinal &, then {(0, x)} will be written
as an italicized letter, possibly with sub- but without superscript, and will be
called an untyped variable.*

e If x is an ordered pair («, B), for some ordinals « > 1 and B > 0, then {(0,x)}
will be written as an italicized letter (possibly with subscript) that carries as
superscript a numeral or other expression representing 8, and will be called a
typed variable.

* Except for the use of abbreviatory devices (such as ellipses), expressions of
any length greater than 1 will be written by concatenating representations of
expressions of length 1.

Constants and variables together will be called atomic terms. An ordinal g will be
said to be the type of a given variable {(0, x)} iff, for some ordinal « > 1, x is identical
with («, ). Note that the variables that have a type in this sense are exactly those
that have above been labelled as ‘typed’. In a sense to be made clearer in Section 3.4,
untyped variables will be allowed to ‘range’ over everything there is,>* whereas a
variable of type « (for any a > 0) will range only over all entities whose respective
order is less than «.

3.2.3 Complex terms

There are in £ two kinds of non-atomic (or complex) terms, namely formulas and
lambda-expressions. Their syntax can be specified recursively:

(i) For any term t: " —t ' is a formula.

(ii) For any (possibly empty) sequence of terms tq,fp,...:3 "&(t1,t2,...) " is a
formula.

(iii) For any (one or more) pairwise distinct variables v,v,,... and any term t:
"Juq,0y,... t1is a formula and "Avy, vy, ... t ' is a lambda-expression.

(iv) For any term f and any (one or more) terms fy,tp,...: "(t)(t1,t2,...) " is a
formula.

(v) Nothing else is a formula or lambda-expression.

21 As for which letter is to be used to represent a given variable, any convention at all would do, and
so I shall leave this open. That there are far more ordinals than letters will not matter in practice.

22This formulation (“everything there is”) might give rise to meta-ontological qualms, as it appears
to presuppose an absolutely general (as opposed to ‘indefinitely extensible’) domain of entities. I
acknowledge this presupposition, but will here not be trying to defend it.

23Throughout this paper, unless otherwise specified, sequences may be of any set-sized length.
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Appropriate notions of predicate- and sentence-position, as well as of a bound or
free variable-occurrence, may be defined more or less as one would expect. Thus,
an occurrence of a term t will be said to stand at predicate-position iff it is the first
occurrence of f in an occurrence of " (t)(t1,f,...)", for one or more terms tq, ty,...;
and it will be said to stand at sentence-position iff it is immediately preceded by (a)
an occurrence of ‘=" or (b) an occurrence of ‘&(’ or (c), for one ore more terms
ty,ts,..., an occurrence of "&(t,tp,..., ' or (d), for one or more variables vy, vy, ...,
an occurrence of either "Jvy,vy,..." or "Avy,vp,...". For example, the variable “x’
has in ‘=&(x, —x)” exactly two free occurrences at sentence-position.

3.2.4 Abbreviations

Besides ellipses, we will make use of several other abbreviatory devices. “T” and "1’
will respectively abbreviate ‘& ()’ and ‘—~&()’. For any two terms t; and ¢, " (t; = t)
and "(t; # tp)" will respectively abbreviate "(I)(t1,t2)" and "—(I)(t1,t2)", while
"(t; — t2)" will abbreviate "—&(t1, ~tp) . Further, for any ordinal « > 1 and any
n-sequence of terms tq,fp,...: T(ty Atp A...)and T(t V £ V... ) will respectively
abbreviate "&(t1,tp,...) " and " =& (—ty, —tp, ... )", while " (f; <> £ <> ...) " will ab-
breviate " & (—&(t1, ta, ... ), 7&(—ty, 7ty ... )) . Lastly, for any (one or more) vari-
ables vy, vy, ... and any term t, "Vvy,0p,... t" will abbreviate "—dvy,v,,... —t.
Parentheses will often be omitted where no confusion is likely to arise, but will
always be left in place around occurrences of complex terms at predicate-position.

3.3 Ontology

When it comes to the metaphysics of intensional entities, the literature offers at least
six broad options. In no particular order we have, first, the higher-orderist approach,
which takes properties, relations, and states to be sui generis entities inhabiting var-
ious logical types in accordance with STT. Second, there is the possibilist approach
tamiliar from Montague (1969) and Lewis (1986: §1.5), under which properties are
identified with, e.g., sets of possibilia or functions from possible worlds to exten-
sions. A third approach, exemplified by Williams (1953), identifies properties with
equivalence classes of ‘tropes’. Fourth, there is the broadly Aristotelian approach that
takes properties to be in some sense ‘immanent’ to their respective bearers. (Typ-
ically this approach is somewhat at odds with the existence of relations; cf., e.g.,
Lowe [2016].) Fifth, we have the algebraic approach endorsed by, e.g., Bealer (1982;
1998), Zalta (1983; 1988), and Menzel (1986; 1993), under which intensional entities
are arranged in an algebra generated by (quasi-)logical operations. And sixth, there
is what Bealer (1989: 187) calls the semi-reductionistic approach, which takes particu-
lars and fundamental attributes as basic and identifies all other intensional entities
with set-theoretic constructions over a space of such ‘basic” entities. The ontology to
be proposed below may be considered something of a middle ground between the
higher-orderist and the algebraic approach: it deviates from the former in abandon-
ing STT, and it differs from the latter in that it (i) eschews the highly fine-grained
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conception of intensional entities that the algebraic approach usually goes along
with and (ii) relies on a meta-linguistic comprehension axiom, rather than algebraic
principles, to generate ontological commitment to non-fundamental attributes.

3.3.1 Basic concepts

The following concepts will be taken as primitive: being a state; obtaining; being a
negation of something; being a conjunction of some (or possibly no) things;** being
an existential quantification of something; being an instantiation of something by some
entities (in a given order); and the concept of the identity relation. The concepts of
attribute and relation, among others, can be defined on the basis of those of state
and instantiation, as follows:

Definition 3. An entity x is an attribute iff, for some non-empty sequence of entities
X1,X2,..., there exists an instantiation of x by x1,xp,..., in this order.

Definition 4. Something is an intensional entity iff it is an attribute or state.
Definition 5. Something is a particular iff it is not an intensional entity.

Definition 6. An ordinal « is an adicity of an intensional entity x iff the following
two conditions are satisfied:

(i) If « = 0, then x is a state.

(ii) If & > 0, then there exists an a-sequence (i.e., a sequence of length «) of entities
X1, X2, ... such that x has an instantiation by x1, x2,... (in this order).

Definition 7. A property is an attribute with an adicity of 1.
Definition 8. A relation is an attribute with an adicity of at least 2.

Definition 9. Some entities x1, xp, ... (in this order) instantiate an attribute A iff there
exists an obtaining instantiation of A by x1, xp,... (in this order).

These definitions call for a general hermeneutic remark. From the perspective
of higher-order metaphysics, it may seem natural to understand the present talk of
states and attributes as carrying a somewhat dubious commitment to certain special
kinds of ‘individuals’ or ‘first-order entities” (a.k.a. ‘entities of type e’) called ‘states’
and ‘attributes’,*> coupled with a failure to recognize the plethora of entities not of
type e. This interpretation should be resisted. Although talk of ‘individuals” may
prima facie sound perfectly innocent, it is unclear how it should be understood in

24The conjunction of “no” things is the empty conjunction, symbolized as ‘&()" or “T’. It can be
thought of as the state that obtains “no matter what”.

25Cf., e.g., Goodman (forthcoming: §3.3).
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the context of higher-order metaphysics other than in a way that effectively presup-
poses STT, as referring to the members of one of the latter’s most basic categories.2
Having rejected STT, the proponent of the present theory is consequently justified
in suspecting that the higher-orderist’s talk of ‘individuals’ is semantically defective,
similar to an 18th-century chemist’s talk of ‘phlogiston’; and so it should strike her
as equally problematic if her own claims about intensional entities are characterized
as claims about certain kinds of ‘individuals’.

But if the present theory’s talk of states and attributes cannot be understood
as talk about ‘individuals’, how else is the STTler to interpret this theory? This
question will seem perplexing only to someone who thinks that it should somehow
be possible to interpret the present theory within STT. But it isn’t, and nor should it
be: the present theory is a rival to STT, and must be understood as such.

3.3.2 States
With regard to states, we adopt, to begin with, the following five assumptions:

(S1) For any state s, there exists exactly one negation of s.

(S2) For any set of states S, there exists exactly one conjunction of the members of
S.

(53) For any attribute A, there exists exactly one existential quantification of A.

(S4) For any attribute A and any sequence of entities x1, x3, ..., there exists at most
one instantiation of A by x1, x2,... (in this order).

(S5) For any entities x and vy, there exists an instantiation of the identity relation by
x and y (in this order).

It should further be understood that: anything that obtains is a state; only a state has
a negation; the negation of a state s is a state that obtains iff s itself doesn’t; only the
members of a (possibly empty) set of states have a conjunction; the conjunction of
the members of a set of states S is a state that obtains iff each member of S obtains;
only an attribute has an existential quantification; the existential quantification of an
attribute is a state that obtains iff that attribute has an obtaining instantiation; any

261t might be thought that talk of ‘individuals’ should be understood as referring to all and only
those things that can be denoted by singular terms; but this is hardly convincing. Let x be some non-
individual entity, for instance of type (e, ()): on the face of it, nothing prevents us from introducing
a singular term that denotes x. The STTler may point out that the relevant denotation relation would
have to be of a different type than that which holds between singular terms and individuals. But
this would be to presuppose, if not STT itself, then some similarly problematic division of entities
into logical types. (Likewise if it is suggested that the individuals are just those things that are
ranged over by ‘our first-order quantifiers’.) Alternatively it might be supposed that an individual
is simply anything that is neither an attribute nor a state. (Cf. Whitehead & Russell [1910: 53],
where individuals are understood to be “objects which are neither propositions nor functions”.) But
someone who takes this route can of course no longer maintain that a commitment to the existence
of attributes and states is a commitment to the existence of certain special kinds of ‘individuals’.
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instantiation is a state; and any entities x and y instantiate the identity relation iff x
is numerically the same entity as y.

So far, very little has been said about the individuation of states. To remedy
this, we first have to introduce a concept of ‘analytic entailment’, which rests on the
semantics of L (to be specified in Section 3.4).

In general, a term of £ will be said to have or lack a denotation only relative
to (i) an interpretation of non-logical constants and (ii) an assignment of entities
to variables. For brevity’s sake, I will simply speak of interpretations and variable-
assignments, meaning functions defined on sets of constants and sets of variables,
respectively. Reference to either of these functions may be omitted if the function
in question is just the empty set. (So, instead of saying that a certain term denotes
an entity x relative to the empty interpretation and a variable-assignment g, I will
simply say that it denotes x relative to g.) I shall write ‘denotes; " as shorthand for
‘denotes relative to I and g’. The concept of analytic entailment can now be defined
as follows:

Definition 10. A term f analytically entails a term t' iff (i) f denotes a state relative
to some interpretation and variable-assignment, and (ii) for any interpretation I and
variable-assignment g: if ¢ denotes; , a state, then so does t/, and if ¢ denotes; ;, an
obtaining state, then so does t'.

On this basis we can next define a concept of (‘analytic’) necessitation:

Definition 11. A state s necessitates a state s’ iff there exist an interpretation I, a
variable-assignment g, and terms t and #' such that (i) t and t’ respectively denote; ¢
s and s’, and (ii) t analytically entails #'.

As a straightforward consequence of the semantics of £, every entity is denoted by
some variable relative to some variable-assignment. Since every term that denotes
a state relative to some variable-assignment analytically entails itself, it follows that
every state necessitates itself. This will become relevant in Section 5.5. For now, let us
simply adopt the following assumption about the individuation of states:

(56) No two states necessitate each other.

This assumption encapsulates the (highly plausible) idea that, if two states are to be
distinct, there has to be some difference in what they require of the world—some
difference in what the world has to be like in order for them to obtain. To illustrate
this, consider a typical example of two terms that analytically entail each other: ‘p’
and ‘——p’. For any states s and s, if there exists a variable-assignment g such that
‘p’ and ‘—~—p’ respectively denoteg,, s and s’, then s and s" necessitate each other, so
that, by (S6), they are one and the same state. It follows that every state is identical

with its double negation.

3.3.3 Attributes

We now have to formulate three assumptions that are more specifically concerned
with attributes. The first of these reads as follows:
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(A1) Every attribute has at most one adicity.

That every attribute has at least one adicity follows already from Definitions 3 and
6. Given (A1), we have that every attribute has exactly one adicity.?” We can further
note:

Corollary 1. No attribute is a state.

For, from Definitions 3 and 6, it follows that every attribute has a positive adicity and
that every state has an adicity of zero. Hence, if a given attribute A were also a state,
then A would have at least two adicities, contrary to (A1).

To formulate our next assumption, and also for the purposes of Section 5 below,
we will first need a few definitions revolving around the notion of a converse:

Definition 12. For any ordinal « > 0, any permutation f on «, and any a-adic at-
tribute A: an entity x is an f-converse of A iff, for any a-sequence of entities xg, x1, . . .
and any state s, the following holds: s is an instantiation of x by x¢(g), X¢(1),..., in
this order, iff s is an instantiation of A by xg, x1, ..., in this order.

Definition 13. An entity x is a trivial converse of an attribute A iff, for some ordinal
a: A is a-adic, and x is an id,-converse of A, where id, is the identity permutation
on «.

Definition 14. An entity x is a non-trivial converse of an attribute A iff, for some
ordinal « and some non-identity permutation f on a: A is a-adic, and x is an f-
converse of A.

Definition 15. Something is a converse of an attribute A iff it is a trivial or non-trivial
converse of A.

It bears emphasis that a non-trivial converse of an attribute A is not simply a con-
verse of A that fails to be a trivial converse of A. Nothing in these definitions rules
out that an attribute may be both a trivial and a non-trivial converse of some other
attribute (or even itself).

Equipped with the concept of a trivial converse, we can formulate the following
assumption:

27An objector might argue that there are, or may well be, multigrade relations, which have more
than one adicity. (Cf. MacBride [2005: §2].) To adjudicate this issue, we would have to clarify what,
exactly, a relation should be taken to be. For now it may suffice to say that (A1) recommends itself at
least as a simplifying assumption, and that its main purpose within the present theory lies in settling
certain questions that would otherwise be left as glaring lacunae. For an example that will become
relevant in Section 5.4, consider the question of whether the tautologous formula ‘x = x” analytically
entails ‘x = Ayx(y)’. With the help of (A1), this can be answered in the negative. For, under the
semantics of £, ‘x = x” denotes a state relative to every variable-assignment that is defined on “x’,
whereas ‘x = Ay x(y)” has a denotation relative to a given variable-assignment only if the latter maps
‘x” to a property. Let now g be some assignment that maps ‘x” to the identity relation. By (S5), this
relation is dyadic, and hence, given (A1), not monadic: it is not a property. Consequently, relative to
g, ‘x = x" denotes a state while ‘x = Ay x(y)" denotes nothing at all. So “x = x” does not analytically
entail ‘x = Ay x(y)’".
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(A2) Every attribute has at most one trivial converse.

It is easy to verify, based on the relevant definitions alone, that every attribute is a
trivial converse of itself. With (Az2), it follows that every attribute is its own only
trivial converse. To appreciate the import of (A2), it may be helpful to unpack it
using the above definitions:

(A2’) For any attribute A, there exists at most one attribute B such that, for some
ordinal w, it is both the case that (i) A is a-adic and (ii) for any a-sequence of
entities xo, x1,... and any state s, the following holds: s is an instantiation of
B by xq, x1,..., in this order, iff s is an instantiation of A by xq, x1, ..., in this
order.

In the literature on higher-order metaphysics, an analogue of this thesis is known
as ‘Functionality’.® Given that instantiations are states, (A2) effectively ties the in-
dividuation of attributes to that of states: if states are individuated in a certain
coarse-grained manner (on which see (S6) above), then (A2) will ensure that the in-
dividuation of attributes is similarly coarse-grained. It cannot happen, for instance,
that triangularity and trilaterality are two distinct properties while, for any x, some-
thing is an instantiation of triangularity by x just in case it is an instantiation of
trilaterality by x.

Finally, we come to the present theory’s central existence assumption for at-
tributes, which is essentially a comprehension axiom:

(A3) For any ordinal & > 0, any a-sequence of pairwise distinct variables v, vy, ...,
any term £, any interpretation I, and any variable-assignment g: if t denotes; ¢
a state and, for each i < a, the following two conditions are satisfied—

(i) v; occurs free in t.

(ii) If v; is identical with ¢t or has in t a free occurrence at predicate- or
sentence-position, then v; is typed.

—then there exists at least one attribute A such that, for any a-sequence of
entities xg, x1,... and any state s: s is an instantiation of A by x¢, x1,... (in this
order) iff, for some variable-assignment / that is just like g except that it maps
each v; to the corresponding x;, s is denoted; ;, by t.

For a simple example of how this works, consider the formula ‘(I)(x,x)’, which
(by what has been said in Section 3.2.4) may also be written as ‘(x = x)’. By the
semantics to be specified below, this formula denotes, relative to any interpretation
I and any variable-assignment g that maps ‘x” to some entity x, the instantiation
of the identity relation by x and x—provided that such an instantiation exists. By
(S5) above, there does indeed exist such an instantiation. (For instance, let x be the

3BCf. Dorr (2016: 100). An earlier version can be found in Ramsey (1925/1931: 35). Anderson’s
(1986: §1) criticism can be answered by pointing out that the domain of quantification contains all
sets and hence contains proper-class many entities.
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identity relation.) Notice also that ‘x” does not have in ‘(x = x)” any free occurrences
at predicate- or sentence-position. So, if we let a be 1, let vy be “x’, let t be “(x = x)’,
and let I be any interpretation and g any variable-assignment that maps ‘x” to some
entity, then the antecedent of (A3)’s main conditional will be satisfied. From (A3),
it then follows that there exists an attribute A such that, for any entity xo and any
state s: s is an instantiation of A by x iff s is denoted by ‘(x = x)’ relative to I and
a variable-assignment that maps ‘x” to xp while otherwise being just like g. In other
words, a state is an instantiation of A by an entity x iff it is the instantiation of the
identity relation by xp and x(; and from (A2) it follows that there is only at most one
such attribute. We can accordingly regard A as the property of being self-identical.

3.4 Semantics

To specify the semantics of £, we have to specify what is denoted by a given term
of L relative to a given interpretation and variable-assignment. To this end, let us
stipulate that, for any interpretation I and variable-assignment g, the clauses (d1)-
(d8) below are satisfied. These are largely as one would expect, except perhaps for
the reference to orders in (d3):

(d1) ‘I’ denotes; ; the identity relation.
(d2) For any non-logical constant ¢ and any x: ¢ denotes;¢ x iff [ maps ¢ to x.

(d3) For any variable v and any x: v denotes; ¢ x iff (i) ¢ maps v to x and (ii) for any
ordinal a: if v is of type a, then x is of some order g < .

(d4) For any term ¢ and any x: " —t " denotes, x iff f denotes, a state of which x
is the negation.

(d5) For any (possibly empty) sequence of terms t1, ¢y, ... and any x: "&(t1,f2,...)"
denotes;, x iff there exists a set S of states such that: each ¢; denotes;, some
s € S; each s € S is denoted] ¢ by some t;; and x is the conjunction of the
members of S.

(d6) For any (one or more) pairwise distinct variables vy, v,,..., any term £, and
any x: "Jovy,0p,... £ denotesy o x iff "Avy, vy, ...t denotes;, some attribute
of which x is the existential quantification.

(d7) For any term ¢, ordinal « > 0, any a-sequence of terms t,f;,..., and any x:
"(t)(t1,t2,...)" denotesy, x iff t denotes;, an attribute A such that, for some
a-sequence of entities x1, xo, .. .: each t; denotes ¢ the corresponding x;, and x
is an instantiation of A by x1, x2,... (in this order).

*»9Note that, for any untyped variable v, this second conjunct is trivially satisfied. Hence, any
untyped variable will simply denote;, whatever entity it is mapped to by g, provided that g does
map it to some entity. (Since there are proper-class many variables, no variable-assignment is defined
on all of them.)
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(d8) For any ordinal « > 0, any a-sequence of pairwise distinct variables vy, v», ...,
any term t, and any x: "Avq,0,,... ¢ denotesy ¢ x iff x is an a-adic attribute
such that, for any a-sequence of entities xq,x2,... and any state s: s is an
instantiation of x by x1, x,... (in this order) iff, for some variable-assignment
h that is just like ¢ except that it maps each v; to the corresponding x;, s is
denoted; ), by t.

Not coincidentally, this last clause bears some similarity to the above assumption
(A3). As we have seen, that assumption—together with (S5)—has the consequence
that there exists a property whose instantiation by any given entity x is the instan-
tiation of the identity relation by x and x. From the above semantics, it can now be
inferred that that property is denoted (relative to any interpretation and variable-
assignment) by the lambda-expression ‘Ax (x = x)’.

A crucial fact about the above semantics, which will be made use of without com-
ment in the rest of this paper, is the following: if a term t contains a free occurrence
of some term that fails to have a denotation relative to some interpretation I and
variable-assignment g, then ¢ itself does not denote; ¢ anything, either. This can be
shown by induction over the complexity of terms.

4 The Order-Theoretic Hierarchy

4.1 The Assignment of Orders

Under the above semantics, no typed variable can denote (relative to a given inter-
pretation and variable-assignment) an entity of an order that is greater than or equal
to the variable’s type. Accordingly, for any typed variable v, the class of all entities
whose order is less than v’s type may also be called the range of v; whereas the range
of an untyped variable is simply the class of all entities.3°

We now have to proceed to the definition of ‘order of’, the basic idea of which
can be put as follows: an entity has as its order the least ordinal that puts it outside
the range of any variable that has a bound occurrence at predicate- or sentence-
position in a term denoting that same entity relative to some interpretation and
variable-assignment. (So far, so straightforward. However, to avoid the trivializing
result that every entity is zeroth-order, an additional condition has to be imposed on
the term in question, to the effect that any atomic term that is either identical with
it or has in it a free occurrence at predicate- or sentence-position denotes either a
particular or a fundamental intensional entity.)

Definition 16. An ordinal « is an order of an entity x (alternatively: x is of order «)
iff a is the least ordinal B such that, for some interpretation I, variable-assignment
g, and term t, the following three conditions are satisfied:

3°The concept of class serves here merely as an informal convenience; likewise the concept of a
variable’s range. I am introducing the latter only for the purpose of formulating the basic idea
behind the definition of ‘order of’, which is given below.
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(01) t denotesy ¢ x.

(02) Any atomic term that is either identical with ¢ or has in t a free occurrence at
predicate- or sentence-position denotes; ¢ either a particular or a fundamental
intensional entity.

(03) For any variable v: if v has in t a bound occurrence at predicate- or sentence-
position, then v is typed, and its type is less than or equal to B.

We can immediately note two corollaries:

Corollary 2. The states T and L are zeroth-order.3'

Corollary 3. Any particular and any fundamental intensional entity is zeroth-order.3*
With the help of (S6) (“No two states necessitate each other”), we can further infer:

Corollary 4. For any ordinal a and any state s: s is of order a iff —s is of order «.33
Analogously for attributes.

By contrast, it does not follow that any conjunction of two or more ath-order states
is again of order «. For example, let N be the state that Napoleon has all the zeroth-
order properties that make for a great general. Relative to a suitable interpretation,
N can be denoted by ‘Vx! (great-making(x!) — x!(Napoleon))’. Suppose for the
moment that great-making is fundamental. Then, under the above definition, N will
plausibly be classified as first- rather than zeroth-order.34 Yet, by (56), the conjunc-
tion of N with its own negation is nothing other than (N # N); and under the
assumption (to be adopted in Section 5.1 below) that the identity relation is funda-
mental, (N # N) is zeroth-order.

The semantics of £ invokes the concept of an entity’s order; and now we have

seen that the definition of ‘order of” relies heavily on the semantics of £, in that

3'To see this, note that ‘T’ and ‘L’ respectively abbreviate ‘&()" and ‘~&()’. (Cf. Section 3.2.4
above.) So T and L are respectively denoted, relative to any interpretation and variable-assignment,
by ‘&()” and ‘=&()’, which contain no occurrences of any atomic terms.

32Let x be any particular or fundamental intensional entity, let I be the empty set, let t be any
untyped variable, and let ¢ be any variable-assignment that maps ¢ to x. From clause (d3) of the above
semantics, it then follows that ¢ denotes ¢ x; so condition (01) on the right-hand side of Definition 16
is satisfied. Condition (02) is also satisfied. And since t contains no bound variable-occurrence,
condition (03) is satisfied for § = 0.

33Let s be any state and a any ordinal. To prove the left-to-right direction, suppose that s is of order
«. It is then clear that —s is of at most order w, since, for any interpretation I, variable-assignment g,
and term #: if t denotes;, s, then "=t denotes; o —s. Now let B be any ordinal such that —s is of
order B. By what has just been said, we have that B < «. Further, by an argument analogous to the
foregoing, it can be seen that ——s is of at most order B. But, by (S6), =—s is nothing other than s. This
shows that « < §, and so we have that « = j, as required. The right-to-left direction can be shown in
a similar way.

34Whether N will really be classified as first-order depends, roughly put, on what other formulas
it can be denoted by, and thus depends on how finely states are individuated. We will return to this
topic in Section 5.5.3.
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it makes the question of whether an entity is of a given order depend (to put it
very roughly) on what terms that entity can be denoted by. This may at first seem
objectionably circular. More concretely, a critic might worry that, for at least one
entity x and some ordinal &, when we ask whether x is of order «, the definition
will not produce any definite answer, because the question of what terms x can
be denoted by will depend on the original question of whether x is of order a—or
perhaps there will be an infinite chain of such dependencies. On closer inspection,
this possibility turns out to be quite remote; but for reasons of space I will have to
leave that inspection to the reader.

The same goes for the examination of alternative definitions of ‘order of’. The
above definition has the benefit of being relatively simple, but other, more complex
definitions, and the different hierarchies to which they give rise, may also be worth
discussing; and there may even be something to be said for an ontology that contains
multiple such hierarchies existing side-by-side. For now, however, I will stick with a
single hierarchy.

4.2 How the Paradoxes Are Avoided

According to Chihara (1979: 591), “nothing should be called a solution” of the se-
mantic paradoxes unless it successfully diagnoses the disease(s) of which the para-
doxes are merely, in Tarski’s (1969: 66) famous words, symptoms. In the case of the
liar paradox, Tarski’s own diagnosis was to the effect that the disease underlying this
particular malady is the semantic universality of natural language, as manifested in
the fact that “for every sentence formulated in the common language, we can form
in the same language another sentence to the effect that the first sentence is true
or that it is false” (p. 67). Although Tarski’s diagnosis has not been universally ac-
cepted, I take it to be reasonable to suspect that he was essentially right.3> It should
then seem natural to venture an analogous diagnosis in the case of the intensional
paradoxes. Tarski was looking at a pathological feature of natural language: a truth
predicate applicable to all declarative sentences. An analogous feature in the theory
of intensional entities would be the assumption of a property of obtainment that has
an instantiation by every state. Another instance of the same general pattern would
be the assumption that there exists a property of non-self-instantiation that has an
instantiation (obtaining or not) by any property whatsoever, including itself—an as-
sumption that would lead to Russell’s paradox of properties.

Suppose we accept a general diagnosis of the intensional paradoxes along these
lines. The natural way to avoid them will then lie in adjusting our ontology. STT
constitutes an approach in this vein, albeit a rather drastic one, since it institutes a
complete ban on self-instantiation by means of syntactic rules: already the expres-
sion "v(v) " is ill-formed (for any variable v), and so the same goes for "—v(v)" and
"Av-v(v)". Indeed, not only are properties of (non-)self-instantiation banned from

35For an overview of the main approaches to avoiding semantic paradox, see, e.g.,, Horsten
(2015: 687ff.) and Beall, Glanzberg & Ripley (2018: ch. 5). For more detailed critical discussion of
some recently popular approaches, see Murzi & Rossi (2020a;b). Also cf. Hansen (2021), Sher (2023).
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our ontology, but the very thought of them is supposed to be incoherent. The present
theory, by contrast, seeks to avoid intensional paradox not by way of syntactic rules
but rather by the weakening of an ontological assumption. This weakening is ef-
tected by the inclusion of clause (ii) in the antecedent of (A3)’s main conditional. Let
us first see how this bears on Russell’s paradox, and then turn to Epimenidean para-
doxes. Thanks to said clause, (A3) does not commit us to the existence of a property
Ax —x(x); that is, it does not commit us to the existence of a property P such that,
for any x and any state s: s is an instantiation of P by x if and only if s is denoted
by ‘—x(x)’ relative to a variable-assignment that maps ‘x” to x. For the term ‘—x(x)’
contains a free occurrence of ‘x” at predicate-position, and “x” is untyped. The exis-
tence of such a property would lead to Russell’s paradox if it could be assumed that
it had an instantiation by itself.

For a slightly different example, consider the property Ax!—x!(x!). Assuming
that it exists (which is to say: assuming that the term ‘Ax! =x!(x!)” has a denotation
relative to the empty interpretation and variable-assignment), it will have instanti-
ations only by entities of order zero.3® Hence, if this property is first- rather than
zeroth-order, then it will not have any instantiation by itself, thereby blocking the
paradox. For another example of this sort, let R be the relation Ax!,y x!(y), and let
P be the property Ax —R(x,x). A critic might wonder whether this won't lead to
a Russellian paradox as soon as we ask whether P instantiates itself. Now, for P
to instantiate itself is for there to be an obtaining instantiation of P by itself, which
would require that P have an instantiation by itself, which would require that R have
an instantiation by P and P. But since R = Ax!,y x!(y), this relation will have an
instantiation by P and P only if P is zeroth-order. And of course, even assuming that
P is zeroth-order, this will not guarantee that R has an instantiation by P and P.3”

At the beginning of Section 2.4 we supposed, working in the context of STT,
that some property P{{)) is instantiated by no other state than Vx0 (P{0)(x0) —
—x0). Tt then turned out that this state would obtain just in case it doesn’t, and
so we had a contradiction. As a first stab at constructing an analogous problem
within the present system, it might be supposed that, for any property P, there
exists a state Vx (P(x) — —x), or equivalently, ~3x (P(x) A x). If, for some property
P, the corresponding state is the only thing that instantiates P, then we can again
derive a contradiction. However, in order for there to be a state Vx (P(x) — —x),
there has to be a property Ax (P(x) A x). After all, ‘Vx (P(x) — —x)” abbreviates
‘—dx =& ((P)(x), m—x)’, wherefore Vx (P(x) — —x), if it exists, will be the negation
of 3x == (P(x) A =—x), which by (S6) will be nothing other than Jx (P(x) A x), which
will be the existential quantification of Ax (P(x) A x). But now, due to clause (ii) of
(A3), the present theory—assuming that it is consistent—is not actually committed to
there being a property Ax (P(x) A x), for any given P. (That is, it is not committed

36The reason for this lies ultimately in clause (d3) of the above semantics.

¥Incidentally, the property P, if it exists, will be nothing other than Ax! —x!(x!). This can be
seen from the semantics of lambda-expressions—given that P = Ax =R(x,x) and R = Ax!,y x!(y)—
in combination with (A2). Regarding the question of whether P does exist, cf. Section 5.1 below.
Regarding the question of whether it is zeroth-order, see Section 5.5.3.
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to there being a property Q such that, for any x and any state s: s is an instantiation
of Q by x iff s is denoted by ‘P(x) A x” relative to a variable-assignment that maps
‘P’ to P and ‘x” to x. For the term ‘P(x) A x” contains a free occurrence of ‘x’ at
sentence-position, and ‘x” is untyped.) As a result it is also not committed to there
being a state Vx (P(x) — —x), and the prospective paradox does not arise.

Let us now try to construct an Epimenidean paradox in a slightly different way.
Given any property P that has an instantiation by at least one zeroth-order state—
an example would be Ax (x = x), which is instantiated, among other things, by
T—the present theory is committed to there being a property Ax! (P(x!) A x!) and
hence also a state Vx! (P(x!) — —x!). Suppose now that P is instantiated only by
Vxl (P(x!) — —x!), and call this state ‘E’ (for ‘Epimenides’). Since ‘Vx! (P(x!) —
—x1)” is short for ‘=3x! ==& ((P)(x!), ~—x!)’, we have that

(1) E obtains iff the property Ax' =—(P(x!) A =—=x!)—which, given (A2) and (S6),
is just Ax! (P(x!) A x1)—fails to have an obtaining instantiation.3®

Further, with the help of the clauses (d3), (d5), (d7), and (d8) of the above semantics,
we can infer that:

(2) The property Ax! (P(x!) A x!) has an obtaining instantiation iff some zeroth-
order entity both instantiates P and is an obtaining state.

Putting (1) and (2) together, we have:
(3) E obtains iff no zeroth-order entity both instantiates P and is an obtaining state.

Given that, by hypothesis, only E instantiates P, it follows from (3) that, if E is zeroth-
order, then E obtains iff it doesn’t. In other words (since ‘E obtains iff it doesn’t’ is a
contradiction), it follows that E fails to be zeroth-order. And fortunately, nothing in
this argument or in our theory—assuming it is consistent—commits us to holding
that E is zeroth-order. So paradox is again averted.

In essentially the same way, the theory also avoids the Russell-Myhill paradox
and intensional versions of, e.g., the truth-teller and the reciprocal-negation paradox
(i.e., the 'no-no paradox’ in Sorensen’s [2001] terminology).3° This uniformity in the
avoidance of different yet related paradoxes constitutes one of the main attractions
of ordinal type theory.

BTo verify this, one has to consult clauses (d4) and (d6) of the above semantics, bearing in mind
that, as stated in Section 3.3.2, the negation of a state s obtains iff s itself doesn’t, and that the
existential quantification of an attribute obtains iff that attribute has an obtaining instantiation.

390n the reciprocal-negation paradox, cf. footnote 18 above. For a simple version of the Russell-
Myhill paradox as it arises in the context of STT, consider the property F of being Frege’s only favorite
entity of type (()). Surely, for any distinct entities x and y of that type, the world will have to be at
least a little bit different if F(x) obtains than if F(y) obtains; and so F(x) has to be distinct from F(y).
(I am here omitting superscripts for the sake of readability.) But now let M be a property of type (()),
of being an entity x of type () that is identical with the state F(y) for some entity y of type (()) such that y(x)
fails to obtain, or in symbols: M = Ax" Fy{0) (my (D (x0) A (x0 = FUON (y{0)))). Tf we ask whether
the state F(M) instantiates M, we are led to a contradiction. The upshot would seem to be that the
STTler has to reject the existence of such properties as being Frege’s only favorite entity of type (()). But
provided that one buys into STT and its type distinctions at all, this is certainly an awkward result.
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4.3 How the Hierarchy Is Motivated

It might now be urged that any restrictions enacted with a view to avoiding paradox
ought to “result naturally and inevitably from our positive doctrines”, as Russell
puts it (1908: 226). In contrast to Russell’s own ramified type theory, the present
approach does not strictly speaking involve restriction so much as ontological ab-
stention, in that it does not commit itself (as long as it is consistent) to the existence
of certain problematic entities. However, it also involves ontological expansion, in
the form of the order-theoretic hierarchy. Both aspects, abstention and (especially)
expansion, stand in need of motivation. The former, embodied by clause (ii) of (A3),
can be straightforwardly motivated by the need to avoid paradox. If a more ‘philo-
sophical” reason is needed, it can in addition be motivated by the “positive doctrine”
that the question of whether a given state obtains should never lead back to that
state itself or into an infinite regress.4° As for the order-theoretic hierarchy, it may
be taken to be embodied by the consequent of the mentioned clause. To motivate it
is to produce reasons as to why that clause should not simply be replaced with the
negation of its antecedent (in which case it might read: ‘v; is not identical with ¢ and
does also not have in ¢ any free occurrence at predicate- or sentence-position’). In
the rest of this section I will suggest two ways in which this might be done.

First, it might be argued that, even if there is no ‘generally applicable’ property
of obtainment (i.e., no property Ax x), there should still be something like it—call it
an ‘approximation’—that can in at least some contexts function as a semantic value
of our predicate ‘obtains” and thereby keep it from being semantically defective.*'
One such property, and indeed the first of a series, is Ax! x!. But in order to avoid
Epimenidean paradox (and in keeping with the aforementioned “positive doctrine”),
states like Vx! (P(x!) — —x!) will in some cases, as we have seen, be assigned an
order that puts them outside the class of entities by which Ax! x! has an instantiation.
So we need another, more generally applicable approximation that can function as

To see how the OTTist avoids being saddled with an analogous result, let G be the property of
being Godel’s only favorite entity. To construct an analogue of M, the best we can do is to let N be the
property of being an entity x that is identical with the state G(y) for some zeroth-order entity y such that
y(x) fails to obtain, or in symbols: N = Ax Iy (=y!(x) A (x = G(y'))). From the type of ‘yV’, it can
be inferred that N is at most first-order; yet nothing (on the face of it) commits us to holding that N
is zeroth-order. But if it isn’t, then it falls outside of the range of ’yl’, which is enough to block the
paradox.

4°This “doctrine” is loosely related to Russell’s vicious circle principle. It is also not too distantly
related to Behmann’s (1931) proposal, already briefly mentioned in Section 2.2 above, that no pred-
icate is predicable of a given object unless the predication can be rewritten in primitive vocabulary.
Behmann has presented a more sophisticated version of his proposal in his (1959). However, neither
this nor the original version offers an escape from Epimenidean paradoxes.

41t is tempting to envision a broadly similar approach to the semantics of vague predicates, such as
‘is bald’ or ‘is a table’. The idea would be that, even though there are no properties of tablehood and
baldness (i.e., no properties precisely corresponding to ‘is a table’ and ‘is bald’), there are properties
that may be said to be picked out by possible precisifications of these predicates, and this is enough
to keep them from being semantically defective—or at least enough to render them less semantically
defective than, say, ‘is phlogiston’ or ‘orbits Vulcan’'.
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the semantic value of our predicate ‘obtains” when we talk about such states. In
this way we are led to introduce the property Ax? x?; and so on up the levels of our
hierarchy.

Against this line of reasoning it may be objected that having a semantic value
is not the only possible way for a predicate to be semantically non-defective. In
particular one might interpret ‘obtains’ in a deflationistic spirit, as a syncategorematic
operator that (roughly speaking) takes a name of a state and yields a sentence that has
that same state as its truth-condition. Although this would be a somewhat unnatural
interpretation for a predicate, it cannot be dismissed out of hand; and so it may be
thought that we do not need any properties of obtainment, after all. However, there
is another way to motivate the hierarchy, using a slightly more complex example.

Consider the triadic predicate ‘is an instantiation of ... by ...". On the one hand,
if we committed ourselves to there being a corresponding ‘generally applicable” tri-
adic relation Ax,y,z3w ((w = y) A (x = w(z))), we would be faced with something
of a paradox.4* On the other hand it is not easy to see how that predicate might be
interpreted as syncategorematic. Unless we can appeal to some reductive analysis
of instantiation, the best we can do will (on the face of it) be to say that ‘is an instan-
tiation of ... by ...’ takes three names of entities x, y, and z and yields a sentence
that has as its truth-condition the state that x is an instantiation of y by z. In other
words, we are simply re-using the instantiation predicate, or using a synonymous ex-
pression in a meta-language; and so one could still ask how it is that that predicate,
or its synonym in the meta-language, is not semantically defective. And if, instead
of using a synonym, we are employing the terms of some reductive analysis, the
buck will similarly get passed on to those terms, since we may now ask in virtue of
what they fail to be semantically defective. (Other ‘non-denotationalist’ approaches
to semantics—such as success semantics, biosemantics, or the Wittgensteinian idea
that ‘meaning is use’—also seem to be of little help in this connection.)

The order-theoretic hierarchy offers a way out of this dilemma: while there is
no relation Ax,y,z3w ((w = y) A (x = w(z))), there is, for any positive ordinal «,

42Let R be the mentioned (hypothetical) relation, i.e., Ax, y,z 3w ((w = y) A (x = w(z))). The reason
why we are here considering this relatively complicated relation instead of the simpler Ax,y,z (x =
y(z)) lies in the fact that the latter relation would, if it were to exist, have an instantiation by entities
x, Y, and z, in this order, only if there actually existed an instantiation of y by z. It would thus not be
a ‘generally applicable’ relation, whereas R, if it were to exist, would have an instantiation by x, y,
and z, in this order, even if there were no instantiation of y by z.

To return to the paradox, let Q be the property Ax 3y (R(y, x,x) A (y # T)), and consider whether
the state Q(Q) obtains. We can first note that Q(Q) is the state 3y (R(y,Q,Q) A (y # T)), which,
given that R = Ax,y,z3w ((w = y) A (x = w(z))), and given (56), is identical with

Jyw((w=Q) Ay=w(Q)A(y#T)). (%)

From this it is easy to see that, if Q(Q) obtains, then it is distinct from T. However, R is denotedg o
by a term that contains no non-logical constants or free variables; and so the same goes for Q and
Q(Q). Consequently, if Q(Q) obtains, then it and T necessitate each other, which by (S6) means that
they are one and the same state. Since a state cannot be both distinct from and identical with T, we
can conclude that Q(Q) does not obtain. So it must be distinct from T (since T trivially obtains). But
from this it can be inferred that (x), i.e., Q(Q) itself, does obtain: contradiction.
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a relation Ax,y,z Jw* ((w* = y) A (x = w"(z))), and one of these may serve as the
semantic value of our instantiation predicate when we say, in a given context, that
something is an instantiation of some other entity by a third thing. (But, to be sure,
this only gives the barest hint as to how one might approach the task of constructing
a semantics for the language in which the present theory is formulated.43)

One more brief remark before we move on. The stratification of states or proposi-
tions into different orders is sometimes thought to be undermined by the restrictions
it imposes on our talk of such things (i.e., states or propositions). For example, if
we say that everything Socrates said is true, then on the present view we cannot be
sure that we thereby express a state. To stay within the bounds of the above ontol-
ogy, we have to pick some positive ordinal « and then express the higher-order state
Vx* (R(Socrates, x*) — x*), for some suitable relation R.4#4 This is admittedly incon-
venient; but so what? We generally have little reason to think that the metaphysics
of intensional entities is fully laid bare in our everyday habits of speech; and a little
inconvenience is surely a small price to pay for the avoidance of paradox.

5 Fundamentality

Although the concept of fundamentality has, in the assumptions and definitions listed
above, been invoked only in clause (02) of Definition 16, the role it plays there makes
it a crucial ingredient of the present theory, in that it helps to anchor the order-
theoretic hierarchy. In this section I will formulate four assumptions that will both
help to narrow down that concept and give it further work to do, most notably in
fleshing out the individuation of intensional entities. While particulars (i.e., non-
intensional entities) are treated in a way that is largely analogous to fundamental
intensional entities, I shall remain officially neutral on whether particulars are fun-
damental.

5.1 The Fundamentality of Identity

We begin with a straightforward thesis about the identity relation:
(F1) The identity relation is fundamental.

It might be wondered how we could ever tell whether this assumption is correct.
Here I propose to sidestep this worry by treating (F1) as a meaning postulate.

43An objector might argue that I have put the cart in front of the horse: rather than to justify the
hierarchy by relying on the assumption that my talk of instantiation is semantically non-defective,
I should have established the hierarchy before indulging in talk of instantiation. Arguably, however,
one can legitimately proceed in the opposite direction if there is independent reason to think that talk
of instantiation is non-defective. Such a reason is given by the theoretical usefulness of the concept
of instantiation in drawing up a theory of intensional entities. (Cf. also Section 6.1 below.)

#To be sure, the existence of R does not follow from the above ontology. But let us ignore this for
the sake of the example.

28
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From (F1) it follows nearly immediately that, for any y, the property Ax (x = y)—
a.k.a. the singleton of y—is zeroth-order. (More generally, we can infer that every
set is zeroth-order.) Consequently, the formulas ‘x = y” and ‘Vz! (z}(x) « z!(y))’
analytically entail each other. By (56), it now follows that the indiscernibility relation
Ax,yVz! (z!(x) < z!(y)) is a trivial converse of the identity relation; and so, by (A2),
the former is nothing other than the identity relation itself.

We can also infer the following generalization of Corollary 2:

Corollary 5. Any entity denotedg ¢ by a term that contains no bound variable-occur-
rence at predicate- or sentence-position is zeroth-order.4>

Let us say that an entity is purely logical iff it is denotedy » by some term of L.
Typical examples include the property Ax (x = x) (of being self-identical) and the
identity relation.

Another set of consequences of (F1) has to do with such properties as Ax! x!(x!),
or being a self-instantiating zeroth-order property. In order for the present view to be
committed, via (A3), to the existence of this property, there have to exist an interpre-
tation I and a variable-assignment ¢ relative to which the formula ‘x!(x!)” denotes
a state. This in turn means that there has to exist a zeroth-order property that has
an instantiation by itself. Since Ax (x = x) has an instantiation by itself and is (as
we have just seen) zeroth-order, it fits the bill; and so we can infer that there ex-
ists a property Ax! x!(x!)—as well as the further properties Ax? x2(x?), Ax3 x3(x3),
and so on. The existence of the ‘negations’ of these properties (i.e., Ax! —x!(x1),
Ax?—x%(x?), and so on) follows by a similar argument. And in just the same
way it can also be shown, for each positive ordinal «, that there exists a property
Ax —3y* (¥ = x) Ay*(y*)), of not being a self-instantiating property of some order less
than «.

Unlike Ax! —x!(x!) and its variants, these latter properties have instantiations by
themselves. To see this, let P be the property Ax —3y! ((y' = x) Ayl (y!)), of not
being a self-instantiating zeroth-order property. Then the self-instantiation of P is the
state =3y! ((y' = P) Ay'(y!)), whose existence can be proved with the help of (Ss)
and (F1). On this basis it can now be shown that P is not zeroth- but first-order.4® By

4SLet x be any entity, and let t be any term that denotesg ¢ x and contains no bound variable-occur-
rence at predicate- or sentence-position. By the semantics of £, it can be seen that any atomic term
that occurs free in t is identical with ‘I’ and hence denotesg o the identity relation. By (F1) (together
with Definition 16), it follows that x is zeroth-order.

46Suppose for reductio that P is zeroth-order, and let Q be the property Ay! ((y* = P) Ayl(y!)).
Since P = Ax ~Jy! ((y' = x) Ayl(y!)), the state P(P) obtains iff Q lacks an obtaining instantiation.
Given that P is zeroth-order, Q has an instantiation by P, namely ((P = P) A P(P)). Suppose now that
P(P) obtains. It then follows that Q lacks an obtaining instantiation, so that, in particular, Q(P) does
not obtain. But Q(P) is the conjunction of (P = P) and P(P). Since (P = P) trivially obtains, we thus
have that P(P) fails to obtain, contradicting the supposition. So we can conclude that P(P) does not
obtain. But clearly, Q does not have an obtaining instantiation by any entity distinct from P. Hence
Q does not have an obtaining instantiation, which means that P(P) obtains, after all: contradiction.
This completes the reductio. We can thus infer that P is not zeroth-order. So it must be first-order,
since it is denotedg g by ‘Ax =3y ((y! = x) Ayl(yh))".
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an analogous argument, it can be shown that Ax =3y? ((y* = x) A y?(y?)) is second-
order; and so on for the remaining properties in this series. We can accordingly
conclude that every level of the order-theoretic hierarchy is populated. In particular,
for any ordinal «, there exists at least one a-order property. This conclusion can be
readily generalized; for in essentially the same way one can prove, for any ordinal
B > 1, that there is an ath-order -adic relation. We thus arrive at the following;:

Proposition 1. For any ordinal «, there are proper-class many entities of order a.

5.2 The Equifundamentality of Converses

Our next assumption concerns fundamental relations and their converses:
(F2) Any converse of any fundamental relation is again fundamental.

Ideally, this assumption would fall out of an account of what it means for something
to be a fundamental relation; but even in the absence of such an account, (F2) should
seem a reasonable assumption to take on board. To deny it would be to hold that
nature draws certain ‘invidious distinctions’, treating, e.g., the relation longer-than as
fundamental while its converse, shorter-than, isn’t. By all appearances, nature does
not draw such distinctions, and that seems a tolerably good reason to think that in
fact it doesn’t.47

5.3 The Analyzability Assumption

We next assume that, roughly put, every entity can be ‘fully analyzed’ in terms of
particulars and fundamental intensional entities:#®

(F3) For any entity x, there exist a variable-assignment ¢ and a term ¢ that satisfy
the following two conditions:

(i) t denotesg ¢ x.

(ii) Any intensional entity in the range of g is fundamental.

This assumption is certainly controversial, as one may well doubt that everything has
an analysis that ‘bottoms out” in particulars and fundamental intensional entities. We
will return to this issue in Section 6.2.

The chief attraction of (F3), at least for present purposes, lies in the consequences
that can be derived from it in conjunction with (F4) below, such as the thesis that
no set is a fundamental property. (Cf. Section 5.5.2.) But in the meantime it would
clearly be wrong to claim for (F3) any kind of certainty. It may be best described
as a ‘default assumption’. For in effect it says that £ is sufficiently powerful as a
medium of analysis that every entity can in it be analyzed in terms of fundamental

47For related discussion, see, e.g., Sider (2011: 219), Bacon (2019: 1020; 2020: 569).

#8Bacon (2020: 566) has a roughly analogous principle of ‘Fundamental Completeness’.
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intensional entities and particulars; and, as formal languages go, £ is really rather
simple. From the viewpoint of ideological parsimony it is an attractive hypothesis
that indeed nothing more complicated is needed, but even so we should consider it
an open question how much more complicated £ would need to be in order for (F3)
to be true.

5.4 The Independence Assumption

Our final assumption, (F4), can be thought of as expressing the vaguely Humean
thought that—with certain exceptions, having to do with (F1) and (F2)—there are no
‘necessary connections” among any particulars or fundamental intensional entities.
This will become clearer when we look at its consequences. Stripped to its absolute
core, the assumption can be symbolized as follows:

s necessitates s’ =t analytically entails ¢/,

where, relative to the empty interpretation and some variable-assignment g, t de-
notes s and ' denotes s’.

For a fuller exposition, we first have to introduce the notion of a symmetry state-
ment. This is simply a formula "u = L, for some atomic term u and some lambda-
expression L such that, for some ordinal « > 1, some a-sequence of pairwise distinct
untyped variables v, vy, ..., all distinct from u#, and some permutation f on a: L
is identical with "Avg, vy, ... u(vf(o),vf(l), ...)". Further, we will say that a term is
ontologically conservative relative to another iff any variable or non-logical constant
that occurs free in the first also occurs free in the second. (For example, the for-
mula ‘R = Ax,y R(y, x)’ is a symmetry statement that is ontologically conservative
relative to the variable ‘R’.) And lastly, we will say that, for any interpretation I
and variable-assignment ¢, a given term is true relative to I and g—or truej, for
short—iff it denotes; ; an obtaining state.

The reason why (F4) has to make reference to symmetry statements lies in the
need to avoid the consequence that no fundamental relation (other than the identity
relation) is its own non-trivial converse. For example, let E be the equidistance rela-
tion, as expressed by “x is as far from y as z is from w’. Then E is plausibly identical
with Ax,y,z,wE(y, x,w,z), and is hence one of its own non-trivial converses. But
now let g be a variable-assignment that maps ‘E’ to E, and let t and ' be (respec-
tively) the formulas

Ax,y,z,wE(x,y,z,w) = Ax,y,z,wE(x,y,z,w)
and
Ax,y,z,wE(x,y,z,w) = Ax,y,z,wE(y, x,w, z).

In this case t and t' both denotey , the same state, namely (E = E). As we know,
(E = E) necessitates itself, whereas t does not analytically entail #. In this way
(F4) would threaten to rule out the fundamentality of relations like E. That would
be undesirable, since it would render the above assumption (F3) significantly less

31



5 Fundamentality

plausible; for (F3) requires that the fundamental intensional entities be sufficiently
abundant to allow everything else to be analyzed in terms of them (together with
particulars). To avoid this outcome, our independence assumption has to be suitably
weakened. In particular, rather than to require that t should analytically entail ¢’ all
by itself, we have to require only that the conjunction of t and zero or more ‘admis-
sible” symmetry statements should analytically entail #'. A symmetry statement is
here counted as admissible iff it is both trueg , and ontologically conservative relative
to t.49

With these modifications in place, one could describe (F4) as a thesis to the effect
that, if t and #' are terms that respectively denotey, states s and s’ such that s
necessitates s, then—provided certain further conditions (to be specified below) are
met—there are zero or more admissible symmetry statements in conjunction with
which t analytically entails . For instance, suppose that t and ¢’ are, respectively,
the formulas "t = 77 and "7/ = 7'7, for some terms T and 7’ that respectively
denoteg ¢ two entities x and y. What (F4) then in effect says is that, provided that
the to-be-specified further conditions are met, the self-identity of x necessitates that
of y only if " = T, possibly in conjunction with one or more admissible symmetry
statements, analytically entails "7/ = 7/7. Accordingly, (F4) imposes a constraint on
what pairs of entities x and y are such that the self-identity of x necessitates that of
y.

The “further conditions” alluded to above are needed to prevent (F4) from having
absurd or otherwise undesirable consequences. Thus it has to be required, in the
tirst place, that any intensional entity in the range of ¢ should be fundamental. If this
requirement were omitted, (F4) would be incompatible with the abundant ontology
of intensional entities outlined in Section 3.3. To see why, suppose that some state s
and its negation —s are respectively denotedg ¢ by two variables u and v. Then, since
the self-identity of s necessitates that of its negation—as can be seen from the fact that
‘s = s’ analytically entails ‘—s = —s’—it would follow from (F4), if the requirement
in question were not in place, that "u = u ', possibly in conjunction with one or more
admissible symmetry statements, analytically entails "v = v . However, since u and
v are distinct, it is not the case that "u = u', whether by itself or in conjunction
with one ore more admissible symmetry statements, analytically entails "v = v,
So we would have a contradiction. By contrast, with the mentioned requirement in
place, the argument that leads to this contradiction requires the additional premise
that s and —s are both fundamental; and so the argument then merely amounts to a

49The point of requiring the symmetry statements in question to be trueg ¢ is to avoid weakening
(F4) in such a way that, for any fundamental dyadic relation R that is distinct from its non-trivial
converse Ax,y R(y, x), (F4) no longer entails, e.g., that the state (R # Ax,y R(y, x)) does not necessitate
Vx,y R(x,y). This would leave an unwelcome lacuna. (On the other hand, if R were identical with
Ax,y R(y, x), then the state (R # Ax,y R(y, x)) would necessitate Vx,y R(x,y), as it would be nothing
other than the ‘impossible” state (R # R).) Similarly, the point of requiring the symmetry statements
to be ontologically conservative relative to t is to avoid weakening (F4) in such a way that it no longer
entails, e.g., that for any particular or fundamental property x and any fundamental relation R (other
than identity), the state (x = x) does not necessitate (R = R).
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reductio of this premise.>°

In the second place, it has to be required that no two variables should under g be
mapped to the same entity. For let x be any particular or fundamental intensional
entity, let u and v be any two variables, and suppose that g is the smallest variable-
assignment that maps both u and v to x. Then "u = u'and "v = v ' will both
denoteg , the state (x = x) (which, like any state, necessitates itself), yet "u = u",
even in conjunction with one or more admissible symmetry statements, does not
analytically entail "o = v ".

Two further conditions are needed to prevent (F4) from becoming incompatible
with (F1) and (F2). To ensure compatibility with (F1), we have to require that the
range of ¢ should not contain the identity relation. To ensure compatibility with
(F2),°* we have to require that no two variables should under g be mapped to rela-
tions that are converses of each other. And finally, we have to impose two at first
blush relatively arcane requirements. The first of these is to the effect that any vari-
able in the range of g should be of type 1. If this requirement were omitted, (F4)
would have the consequence that there are no particulars or fundamental intensional
entities other than the identity relation. For, by Corollary 3, any particular or funda-
mental intensional entity is zeroth-order. Hence, for any particular or fundamental
intensional entity x, the self-identity of x can be denoted by ‘x! = x!". Now let / be
some variable-assignment that maps ‘x!” to x, and note that the formulas ‘x! = x’
and ‘Jy! (y! = x!)” analytically entail each other. By (S6), it follows that the state
denotedg; by ‘Jy! (y* = x!) is nothing other than the self-identity of x. From this
it can further be seen that, relative to a variable-assignment that maps ‘x’ to x, the
self-identity of x will be denoted by both ‘x = x” and “Jy! (y! = x)’; yet, given that
not every entity is zeroth-order, the first of these formulas, even in conjunction with
admissible symmetry statements, does not analytically entail the second.

The remaining requirement is to the effect that, for any variable v that occurs
free in t and is under ¢ mapped to an intensional entity, at least one free occurrence
of v in t should stand at predicate- or sentence-position. To see the need for this,
note that, if x is a fundamental property, then its self-identity can be denoted not
only by ‘x! = x!" but also by “x! = Ay x!(y)’, whereas ‘x! = x!" (even in conjunction
with admissible symmetry statements) does not analytically entail ‘x! = Ay x!(y)’.
Analogously if x is a fundamental state; for then its self-identity can be denoted
by both ‘x! = x!” and “x! = &(x!)’, whereas ‘x! = x!” does not analytically entail

‘x! = &(x')’". Hence, if we were to omit the requirement in question, (F4) would have

59See footnote 56 below for a version of this argument that relies on (F4) in its fully developed
form.

5™More precisely: to ensure compatibility with (F2) in conjunction with the claim (which should
arguably not be ruled out a priori) that there exists at least one fundamental relation R with a distinct
converse R’. To see the problem, let u and v be two variables that are under ¢ mapped to (respectively)
R and R’. Then the formulas "u = u™ and "o = v will respectively denoteg , the self-identity of
R and the self-identity of R/, which necessitate each other. Moreover, by (F2), R’ is fundamental,
given that R is. Yet "u = u’', even in conjunction with admissible symmetry statements, does not
analytically entail "v = v
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the unwelcome consequence that there are no fundamental states or properties.
Putting all of the above requirements together, we arrive at the following:

(F4) For any variable-assignment g, any terms t and ¢/, and any states s and s’ re-
spectively denotedg , by t and #': if the following five conditions are satisfied—

(i) s necessitates s’.
(ii) Any variable in the domain of g is of type 1.

(iii) Any intensional entity in the range of ¢ is fundamental and distinct from
the identity relation.

(iv) No two variables are under ¢ mapped to the same entity or to relations
that are converses of each other.

(v) For any variable v: if v occurs free in ¢t and is under ¢ mapped to an
intensional entity, then at least one free occurrence of v in t stands at
predicate- or sentence-position.

—then there exist zero or more symmetry statements oy, 02, ..., each of them
trueg , and ontologically conservative relative to ¢, such that "t Aoy Ao AL
analytically entails #'.

So much for the statement of (F4). The consequences of this assumption deserve
their own subsection.>?

5.5 Consequences of the Independence Assumption

We can divide the consequences of (F4)—or at least those that will interest us here—
into three classes: independence results, non-fundamentality results, and distinctness
results.

5.5.1 Independence results

Let us say that an entity is independent of another iff the self-identity of the first does
not necessitate that of the second. Independence results may be obtained from (F4)
by a method that has already been illustrated above: to prove that x is independent
of y, simply find two terms t and #/, together with a variable-assignment g, such
that t and t' respectively denoteg , the states (x = x) and (y = y), clauses (ii)-
(v) are satisfied, and t (even in conjunction with one or more admissible symmetry
statements) does not analytically entail #'. In this way it can, e.g., be shown that, if x
and y are two particulars or fundamental intensional entities, then x is independent
of y, unless y is the identity relation or a converse of x.

52With some qualifications, (F4) can be considered a counterpart of Bacon’s (2020: 547) principle of
‘Quantified Logical Necessity’. An important difference (among several) lies in the fact that, where
Bacon’s principle invokes a monadic notion of logical necessity, (F4) relies instead on the dyadic notion
of necessitation.
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5.5.2 Non-fundamentality results

In order to prove that a given intensional entity x is non-fundamental, one can (in
principle) proceed as follows.>3 First, for some variable v of type 1, let p be either the
formula "&(v) (if x is a state) or (if x is an w-adic attribute) the lambda-expression
"Auq,uy, ... v(ug,uy,...)", for some a-sequence of variables uy,uy, ... distinct from
v, and let t be the formula "p = p'. Next, choose a variable-assignment ¢ and
a complex term T such that the following holds: ¢ maps v to x; T denotesg, x;
t, even in conjunction with one or more admissible symmetry statements, does not
analytically entail "p = 7 '; and, at least under the supposition that x is fundamental,
clauses (ii)—~(v) of (F4) are satisfied. Next, suppose for reductio that x is fundamental.
It then follows from Corollary 3 that x is zeroth-order, so that v denotes@,g x, so that t
and "p = 7 both denoteg , the state (x = x). Finally, let ' be "p = 7, and let s and
s’ both be (x = x). The antecedent of (F4)’s main conditional will then be satisfied,
but the consequent won't, and this will complete the reductio. The following are
some general results that can be obtained by this method:

e No set is fundamental.54
¢ No instantiation of a fundamental attribute is fundamental.5>
¢ No purely logical entity other than the identity relation is fundamental.

e The negation of a fundamental state is not fundamental.’® Analogously for
attributes.

* The conjunction of any two fundamental states is not fundamental. (Corollary:
no fundamental state necessitates another.57)

53] say “in principle” because there are cases in which the procedure cannot be carried out: after
all, given (F1), not every intensional entity is non-fundamental.

54The proof of this assertion requires the use of (F3), which is needed to guarantee that there exists
a term that denotes the respective set relative to a variable-assignment g that satisfies clause (iii) of
(F4). (For a similar reason, (F3) is also needed to prove the next assertion.)

55By contrast, there may be fundamental instantiations of non-fundamental attributes. For example,
suppose that there exists a fundamental state s. Then s is zeroth-order, so that the non-fundamental
property Ax! x! has an instantiation by s. But that instantiation is nothing other than s itself, and is
therefore fundamental.

5%Let s be any fundamental state (assuming that there is one), let # and v be two variables of type
1, let ¢ be the smallest variable-assignment that maps u to s and v to —s, and let T be the formula
T—u™. The reductio succeeds because "&(v) = &(v) ™ does not analytically entail "&(v) = —u™.

57Suppose for reductio that there are two fundamental states s and s’ such that s necessitates s’. By
the definition of ‘necessitates’, there then exist an interpretation I, a variable-assignment g, and terms
t and t' such that (i) t and ' respectively denote;, s and s” and (ii) ¢ analytically entails t'. Then t
also analytically entails "t A t'7. But "t A#'" denotes; ¢ (s As’), which is therefore necessitated by s.
Likewise, s is necessitated by (s As’). Hence, by (S6), s is identical with (s As”). So s is a conjunction
of two fundamental states. From the result stated in the text (namely, that the conjunction of any
two fundamental states is not fundamental), it now follows that s fails to be fundamental, contrary
to hypothesis.
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5.5.3 Distinctness results

While (56), the assumption that no two states necessitate each other, puts a lower
bound on the coarse-grainedness of states, (F4) imposes a complementary upper
bound. This manifests itself in distinctness results, i.e., results to the effect that certain
pairs of terms denote (relative to the same interpretation and variable-assignment)
distinct entities.

Distinctness results can be obtained by a procedure similar to the one described
above, only that now the term p would not need to be built around a typed variable
but could be any suitable complex term. (For an application of this method, see
footnote 59 below.) By a more complicated argument, but still relying on (F4), it
can be shown that Ax! —x!(x!) is not zeroth-order.5® From this inobvious result it
follows, by Corollary 4, that Axt xl(xl) is not zeroth-order, either. This is of some
relevance for the avoidance of a ‘truth-teller” version of Russell’s paradox; for, from
the fact that Ax! x!(x!) is not zeroth-order, we can infer almost immediately that this
property does not have an instantiation by itself. We may also note the following;:

Proposition 2. If there are no particulars or fundamental intensional entities other
than the identity relation, then T and _L are the only two states; but if there is at least
one particular or at least one fundamental attribute other than the identity relation,
then there are proper-class many zeroth-order facts (i.e., obtaining states).

58Let P be this property, let p be ‘Ax! =x!(x!)’, let t be "p = p7, and suppose for reductio that P
is zeroth-order. By Definition 16, there then exist an interpretation I and a variable-assignment g
relative to which P is denoted by a term 7 that satisfies the following two conditions:

(1) Any atomic term that is either identical with T or has in T a free occurrence at predicate- or
sentence-position denotesg , either a particular or a fundamental intensional entity.

(2) No variable has in T a bound occurrence at predicate- or sentence-position.

Without loss of generality, we may take I to be the empty set and suppose that ¢ and ¢ jointly satisfy
clauses (ii)-(v) of (F4). Given that T denotesg ¢ the property P, which is purely logical and hence (as
shown above) non-fundamental, it follows from (1) that T is non-atomic. Now assume the following
holds:

(3) At least one atomic term has in T a free occurrence at predicate-position.

Let u be any such term, and let ¢ be "p = 7. Evidently u does not occur free in p. Hence, unless u
is the constant ‘I’, any conjunction of ¢ with zero or more admissible symmetry statements will not
analytically entail #’; for there will exist an interpretation and variable-assignment relative to which ¢
has a denotation while #' doesn’t. But, since p and T denoteg o the same entity (viz., P), we have that
t and t' denoteg , one and the same state s. From (F4), it now follows that ¢, possibly together with
one or more admissible symmetry statements, analytically entails #'. By what has just been said, we
can thus infer that u is the constant ‘I'. But u was any atomic term that has in T a free occurrence
at predicate-position. Hence, given (2), we have that no atomic term other than ‘I’ occurs in T at
predicate-position. (At this point we can ‘discharge’ the above assumption (3).) Given (Ss), it can
now be seen, by induction over the complexity of 7, that any property denotedg ; by T must have an
instantiation by any zeroth-order entity. So, since T denotesg , P, which by hypothesis is zeroth-order,

P has an instantiation by itself. But since P is also denotedg ¢ by ‘Ax! =x!(x!)’, any instantiation of
P by itself obtains just in case it doesn’t. This completes the reductio.
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The first conjunct follows straightforwardly from (F3) and (S6), while the second
follows from (F4).59 The first conjunct describes a scenario that might be termed a
‘purely mathematical’ reality, whereas the second describes what is (at least from
an intuitive point of view) more likely to be the actual reality, i.e., the world as it
actually is.

6 Potential Concerns

In this section I will briefly discuss two worries to which OTT might be thought to
give rise. The discussion will be largely programmatic; a main objective will be to
round off the overall metaphysical picture.

59Let x be any particular or fundamental attribute other than the identity relation, let v be any
variable of type 1, and let g be the smallest variable-assignment that maps v to x. Further, let « and
B be any two ordinals, and let L and M be any two lambda-expressions that denotey  a and B,
respectively. We have to consider three cases.

First, suppose that x is a particular. We can then show, with the help of (F4), that the zeroth-order
fact (x # a) is distinct from the zeroth-order fact (x # B). For let p be "v # L7, let T be "v # M7,
and suppose for reductio that (x # a) is identical with (x # B). We then have that p and T denoteg ,
the same state, and so, with t = "p = p™ and #' = "p = 77, we also have that t and t' denotep,, the
same state. Moreover, clauses (ii)—(v) of (F4) are satisfied. Yet ¢, even in conjunction with one or more
symmetry statements, does not analytically entail #'. (To see this, let & be some variable-assignment
that maps v to «. Then p denotesy ), a non-obtaining state while 7 denotesg ), an obtaining state. As
a result, t denotesy ), an obtaining state while #' doesn’t.) This completes the reductio, and we can
conclude that (x # «) is distinct from (x # B). But « and B were any two ordinals. Hence there are
as many zeroth-order facts as there are ordinals.

Next, suppose that x is a fundamental property. The argument proceeds exactly as before, only
that, for some untyped variable 1, we let p be the formula "Auv(u) # L. Finally, suppose that x is
a fundamental y-adic relation, for some v > 1. The argument proceeds again largely as before, only
that now we are considering not (x # «) and (x # ) but rather the somewhat different zeroth-order
facts (x # Ry) and (x # Rg), where, for any ordinal J, R; is the y-adic relation Axg, x1,... (6(xp) A
M<icy Xi = xi). (The symbol ‘A" should here be read as an abbreviatory device for conjunctions.
Basically, R; is § with one or more ‘dummy’ argument-places tacked on.) Correspondingly, for some
y-sequence of pairwise distinct untyped variables ug,u1,..., we let p and T be (respectively) the
formulas ¢; and ¢p;, where, for any term ¢, ¢; is the formula

Aug, ug, ... v(ug, Uy, ...) % Aug, uq, ... ((t)(uo) A /\ u; = ui).
1<i<y

Suppose for reductio that (x # Ry) is identical with (x # Rg). Then p and 7 will denoteg,, the same
state, and so, with t = "p = p" and t' = "p = 77, we also have that t and t' denotey, the same
state. Yet f, even conjoined with one or more symmetry statements, does not analytically entail #'.
(To see this, consider a variable-assignment h that maps v to R,.) This completes the reductio, and we
can conclude that (x # Ry) is distinct from (x # Rg). As before, it follows that there are as many
zeroth-order facts as there are ordinals.
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6 Potential Concerns

6.1 Ontological Doubts

The first worry is epistemological in character, very general, and very simple: in the
absence of any pertinent empirical evidence, why should we accept the staggering
existence assumptions of Section 3.3? To see how this question might be answered,
it may help to start with an even simpler one: why believe in mathematical objects?
A popular way to answer this is to point out the indispensability of mathematics
for the natural sciences, but a quick thought experiment may be more immediately
compelling. Suppose you have four apples in front of you. How many ways are
there to group them into disjoint pairs?

I assume it has not taken you long to work out that there are exactly three. Let
us take this as a datum, and try to make sense of it. Nominalistic qualms aside,
it seems pointless to try to finesse away the ontological commitment to those ways
of grouping. Whatever they are, they exist in some sense, and we should be able
to quantify over them, since we can count them; that’s what quantification is for.
The interesting question is not whether those ways of grouping exist, but what they
are, or better: what sort of thing we should nominate for the relevant theoretical
role.®> When we convince ourselves that there are exactly three ways of grouping
tour apples into disjoint pairs, we typically abstract away from any physical details
of how such grouping can be effected (e.g., using bags or bowls). And that is clearly
the way to go if we are going to pursue questions of mathematical interest: the term
‘way of grouping’ has to be understood in as abstract a way as possible. By this
route we are led to think of a way of grouping four apples into disjoint pairs as just
a set of disjoint pairs of apples (each pair being in turn a set {a, b}, for distinct 2 and
b) whose union is the set of the original four. The sheer abstractness of the concept
of set does, however, tend to impart on this concept a certain air of mystery.* An
attractive way to dispel the mystery—at least if it is antecedently accepted that there
are such things as properties and relations, something that I have not tried to argue
in this paper—is to follow Carnap in thinking of sets as properties, as suggested in
Section 3.1.92

60Cf., e.g., Quine (1960: 257f.) on ‘ordered pair’ and Lewis (1986: 55f.) on “property’.

61Gee, e.g., Lesniewski (1992: 200ff.), Black (1971), Bealer (1982: ch. 5), Lewis (1991: §2.1). For
relevant historical discussion, see Kanamori (2003).

2]t might be suggested that the mystery could have been avoided by thinking of those “ways
of grouping” not as sets of sets but rather as pluralities of pluralities. However, it is somewhat
hard to see why pluralities should be any less mysterious than sets. The metaphor of the ‘invisible
plastic bag’, used by Bealer to lampoon the notion of set, is no less applicable here. (Cf. also Florio
& Linnebo [2021: ch. 8], where this becomes clearer.) Moreover, pluralities lead to trouble within an
ontology that also admits non-fundamental intensional entities, such as instantiations of fundamental
attributes. For example, if we think that there is a plurality of the flowers in the field as well as the
state of John’s loving Mary, then presumably we will also want there to be such a thing as the state
of John’s loving the flowers in the field. But as innocent as this kind of commitment may seem, it
tends to lead to a form of the Russell-Myhill paradox. (Cf. McGee & Rayo [2000], Pruss & Rasmussen
[2015].) We thus seem to be faced with a choice between renouncing pluralities on the one hand and
renouncing non-fundamental intensional entities on the other. Given the enormous theoretical utility
of the latter, it is arguably pluralities that have to go. (A third option, which is to make pluralities
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6 Potential Concerns

Once we have reached this point, the remaining components of the theory fall
into place almost by themselves. First-order ZFC provides the mathematical foun-
dation, as a well-understood and deductively powerful theory of cardinalities and
lengths of sequence, largely free of arbitrary restrictions (though some modifications
are needed to allow for urelements). Further, to make sense of sets in the manner
proposed in Section 3.1, we need an ontology of attributes that admits such proper-
tiesas Ax =3y (x = y) and Ax ((x =y) V (x = z)) (for any y and z). A natural way to
obtain such properties is through lambda-abstraction; and this requires a sufficiently
rich ontology of states that those properties can be abstracted from. We accordingly—
at least on one possible approach—need there to be an identity relation, we need it
to be ‘transcendental” (having an instantiation by any pair of entities whatsoever),
and we need negations of states, existential quantifications of attributes, and con-
junctions of states.®3 To avoid arbitrary restrictions, but also to enable our ontology
to embed the set-theoretic universe in the way described, we have to allow that,
for any set of states, there exists a conjunction (and hence also, given that we have
negation, a disjunction) of the set’s members. Along with complex properties, com-
plex relations are obtained by lambda-abstraction; and it would be arbitrary to limit
their adicities to any particular ordinal. From here it is only one more step to the
order-theoretic hierarchy, and that step has been motivated in Section 4.3.

6.2 Logically Non-Well-Founded Entities?

Our second worry has to do with OTT’s reliance on the concept of a fundamen-
tal intensional entity. More specifically, an objector might argue that, for all we
know, there may be ‘logically non-well-founded” entities whose existence would be
incompatible with the conjunction of (F3) and (F4). This calls for some preliminary
clarifications.

First, let us say that an entity x is logically analyzable in terms of an entity v iff, for
some term ¢ of £ and for some variable-assignment g: ¢ denotesg , x and contains a
free occurrence of an atomic term that denotesg , y. Next, let us say that an entity x
is fully logically analyzable in terms of a set S (notation: x < S) iff the following two
conditions are satisfied:%+

(i) For any y € S, x is logically analyzable in in terms of y.

(ii) There exist a variable-assignment ¢ and a term  of L such that: ¢ denotesg ¢ x,
and every atomic term that occurs free in t denotesg , some member of S.

behave more like sets, has recently been advanced by Florio & Linnebo op. cit.)

63This talk of what we “need” should be understood in the sense of what has to be put in place
(at least on one possible approach) in order to construct a philosophically satisfying theory that
accommodates sets, in particular in accordance with the proposed conception of sets as complex
properties.

64This definition is, like the previous one, essentially borrowed from Plate (2016: 30f.). I have added
the qualifier ‘logically” in order to leave terminological room for different notions of analyzability.
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6 Potential Concerns

These two concepts are quite liberal; for instance, every entity is logically analyzable
in terms of itself and fully logically analyzable in terms of its singleton. (For brevity’s
sake, the ‘logically” will usually be dropped in the following.) Further, as may be
recalled from Section 5.1, we call an entity ‘purely logical” iff it is denotedg » by
some term of L. Equivalently, we may say that an entity is purely logical—or just
‘logical” for short—iff it is fully logically analyzable in terms of either {I} (i.e., the
singleton of the identity relation) or the empty set.

On the basis of the concept of full analyzability, we can next define the concept
of a ‘logically abyssal” entity:

Definition 17. An entity x is logically abyssal iff every set X with x < X contains
an entity y that is analyzable in terms of some non-logical entity that fails to be
analyzable in terms of y.

Intuitively, an entity x is logically abyssal (or just ‘abyssal’) iff, no matter how far
one ‘drills down’ in one’s analysis of x, there is always at least one non-logical entity
that is ‘more basic’ than some entity mentioned in that analysis. The ‘non-logical’
is needed to avoid the unwelcome result that every non-logical intensional entity is
classified as abyssal. (For, given (56), any intensional entity v is analyzable in terms
of any logical entity, whereas, given (F3) and (F4), any logical entity will fail to be
analyzable in terms of y unless y is a logical entity, too.) I explain in a footnote how
the existence of abyssal entities would pose a problem for the present theory.%

On the subject of abyssal entities, three further points are worth noting. First, it is
easy to verify that any abyssal entity x is analyzable in terms of some entity distinct
from x. From this it follows that every abyssal entity is denotable by a complex term
(a formula or lambda-expression) and is hence either an attribute or a state. Second,
for any abyssal entity x, any set X with x < X contains at least one abyssal entity.®®
And third, a result of Plate (2016) has the corollary that any abyssal entity is logically
complex.7 Consequently, for any abyssal entity x, any set X with x < X contains at
least one logically complex entity. This will become relevant shortly.

%5Suppose there exists some abyssal entity x. By (F3) (and regardless of whether x is abyssal),
there exists a set X such that x < X and every member of X is either a particular or a fundamental
intensional entity. But since x is abyssal, X contains an entity y that is analyzable in terms of some
non-logical entity z that fails to be analyzable in terms of y. Again by (F3), there exists a set Z such
that z < Z and every member of Z is either a particular or a fundamental intensional entity. Since z
is non-logical, Z has to contain some entity w distinct from I. Further, since z fails to be analyzable
in terms of y, so must w. Consequently, w is distinct not only from I but also from vy, and is also not
a converse of y. Moreover, since y € X and w € Z, we have that each of y and w is either a particular
or a fundamental intensional entity. So, by (F4), v is independent of w. (Cf. Section 5.5.1.) But this
cannot be, since y is, via z, analyzable in terms of w.

%Let x be any abyssal entity, and let X be any set with x < X. Suppose for reductio that X contains
no abyssal entity. For each w € X, there then exists a set Sy, such that w < Sy and Sy does not
contain any intensional entity y that is analyzable in terms of some non-logical entity that fails to be
analyzable in terms of y. The union of the Sy, i.e., U,ex Sw, will then also not contain any such entity.
At the same time it can be seen that x < |J,cx Sw. So x fails to be abyssal, contrary to hypothesis.

67Plate provides an account of logical complexity in terms of ‘reductions’. The details of that
account need here not interest us, but it should be noted that, while Plate’s main account is concerned
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6 Potential Concerns

Abyssality constitutes only one form of logical non-well-foundedness that would
spell trouble for our theory. An objector might suggest that there may also be enti-
ties that are logically ouroboric, roughly in the sense of having themselves as ‘logical
constituents’. A formal definition can be given as follows:

Definition 18. An entity x is logically ouroboric iff every set X with x < X contains a
logically complex entity that is analyzable in terms of x.

If there were, for instance, a property Q such that Q = Ax (x = Q), then this would
be a natural candidate for being a logically ouroboric (or just ‘ouroboric’) property.
In addition, of course, one can imagine entities that are not ouroboric themselves
but that instead have ouroboric constituents.

David Armstrong took quite seriously the theoretical possibility that some log-
ically complex properties “dissolve ad infinitum into constituents which themselves
lacked simple constituents” (1978: 67). Whether or not this talk of infinite dissolu-
tion is to be understood in terms of abyssality, it is conceivable that Armstrong and
others would have taken equally seriously the possibility that some properties are
abyssal or ouroboric.®® Nonetheless, I think that the existence of abyssal or ouro-
boric entities is sufficiently implausible that we need not be overly worried by this
prospect. In particular, from what has been said above it can be seen that the ex-
istence of such entities would run counter to the natural and attractive view that
logically complex entities form no part of the world’s “ultimate furniture’. More
precisely, their existence would be incompatible with the following metaphysical
thesis:

(M) There exists a set A such that (i) every entity is fully analyzable in terms of
some subset of A and (ii) no logically complex entity is a member of A.

That this view is incompatible with the existence of abyssal intensional entities fol-
lows from the aforementioned fact that, for any abyssal entity x, any set X with

with the concept of logical simplicity as applied to attributes, an analogous concept applicable to states
is defined on pp. 34f. of the same paper. With minor changes, the result in question can be stated as
follows (cf. op. cit., p. 32):

(R) If an attribute A is analyzable in terms of some non-logical entity that is not fully analyzable
in terms of {A, I}, then A is logically complex (i.e., not logically simple).

This result is obtained on the basis of assumptions about the individuation of intensional entities that,
in all relevant respects, also hold in the present system. An analogous result could be obtained for
states. Meanwhile, from Definition 17 above it can—with the help of the transitivity of analyzability—
be inferred that any abyssal entity x is analyzable in terms of some non-logical entity that is not fully
analyzable in terms of {x,I}. By (R) and its analogue for states, it now quickly follows (given that
every abyssal entity is an attribute or state) that every abyssal entity is logically complex.

%8For example, Russell (1918/19: 180) seems to have taken seriously an analogous possibility in the
case of facts. Decades later, theories of non-well-founded sets have been studied by, e.g., Aczel (1988).
Around the same time, Barwise (1989: 192ff.) has defended the existence of ‘situations’ that have
themselves as constituents. His examples include announcements and mental acts that are in some
sense ‘about’ themselves. It seems tolerably clear, however, that such cases need not be interpreted
as evidence for the existence of logically non-well-founded entities.
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6 Potential Concerns

x < X contains at least one logically complex entity; and in the case of ouroboric
entities, the incompatibility follows straightforwardly from Definition 18. Yet (M)
appears to be intuitively plausible, at least insofar as logically complex entities are
naturally thought of as ‘merely derivative’.

There is, however, a residual worry that needs to be briefly addressed. A critic
might argue against (M) as follows: under classical mereological assumptions, there
exists, for every set x, a mereological fusion of x and, say, the Eiffel Tower.?9 Plau-
sibly, these various fusions, assuming they exist, are pairwise distinct; and it is also
plausible to think that they are particulars. So there will be as many particulars as
there are sets, which means that they cannot all be members of the same set. But then,
contrary to (M), there cannot be a set A such that every entity is fully analyzable in
terms of some subset of A. For, given that no particular is (logically) analyzable in
terms of anything other than itself, such a set would need to contain all of those
particulars.

To address this objection, we could add to £ a mereological fusion operator ‘%’
that functions in such a way that ‘X(a, b, c)’, for instance, denotes the fusion of the
entities respectively denoted by ‘a’, ‘b’, and ‘c’. A fusion of the Eiffel Tower and
a given set could then be denoted by "X(t,t)7, with terms t and t' respectively
denoting the Eiffel tower and the set in question. This would effectively defuse the
objection by rendering particulars analyzable, though at the cost of complicating L.
But there is also another way to respond to the objection, which is more ideologically
parsimonious. This is to reject the traditional ‘topic-neutral’ mereological notions on
which the objection relies.

Arguments in this general direction can be found in the work of ‘mereologi-
cal nihilists”. Thus Sider (2013: 239) writes that mereological nihilism—the view
that nothing has proper parts—*“allows us to eliminate the extra-logical (or perhaps
quasi-logical) notion of ‘part’ from our ideology”, adding that “this kind of ideolog-
ical simplification is an epistemic improvement”. It should be noted, however, that
the rejection of a topic-neutral notion of parthood does not obviously amount to the
rejection of the mereological notions that we employ in our everyday talk of parts
and wholes, for it is not obvious that the latter are topic-neutral. In particular it is
far from clear that the notions of parthood and composition that we employ in our
everyday talk about material objects (such as the Eiffel Tower) are also applicable
to properties. Indeed there may not even be a fact of the matter: our linguistic us-
age may have left the question undecided. If so, it arguably falls to metaphysics to
supply possible precisifications.

Though here is not the place to pursue the question in any detail, with regard
to composite material objects it may be argued that these will be best thought of
as events; and it may further be proposed that events are nothing but certain con-
junctions of obtaining states.”® Admittedly this view is somewhat revisionary. But
suppose it is correct: then composition, at least as applied to material objects, will

%9For discussion and references, see Cotnoir & Varzi (2021: §5.2.1).
79Cf. Plate (MS). Also see, e.g., Nolan (2012).
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7 Conclusion

be best thought of as the logical (or logico-metaphysical) operation of conjunction (as
applied to states). On the resulting interpretation of our talk of material objects and
their fusions, there will be no such thing as the fusion of the Eiffel Tower and a set,
given that no set is a state. (Cf. Corollary 1.) That there is no such thing as the fusion
of the Eiffel Tower and a set should seem common-sensical enough. More important
for present purposes, it also blocks the above objection against (M).

7 Conclusion

The theory proposed in this paper may be roughly characterized by the following
seven features:

1. Sets are identified with complex properties, following Carnap (1947: §23).

2. The theory’s assumptions regarding the existence of attributes (i.e., proper-
ties and relations) and the individuation of states rely on an infinitary formal
language L.

3. This language contains both typed and untyped variables. The type of a typed
variable is given by an ordinal, and the ranges of typed variables are cumulative:
any typed variable ranges over all and only those entities whose ‘order” is
exceeded by the variable’s type.

4. The order of an entity x is determined by what terms t of £ are such that, for
some interpretation I and variable-assignment g: t denotes; ¢ x, and any atomic
term that is either identical with t or has in t a free occurrence at predicate-
or sentence-position denotes, either a fundamental intensional entity (i.e., a
fundamental state or attribute) or a particular (i.e., something that is neither a
state nor an attribute).

5. States, and consequently also attributes, are individuated in a moderately
coarse-grained manner, relying on a concept of analytic entailment as well as
on the concept of a fundamental intensional entity.

6. Particulars, fundamental intensional entities, and sets (among other things) are
classified as zeroth-order.

7. The identity relation is stipulated to be fundamental.

The theory may be naturally extended by statements as to what large cardinals,
particulars, or fundamental intensional entities there are.

To be sure, for some tastes the proposed ontology may already be too rich as it
stands, especially in light of its infinite hierarchy of intensional entities. It is worth
keeping in mind, however, that the theory arises quite naturally from the idea that
there are sets—or at any rate entities capable of playing the theoretical role of sets—
and that those entities are complex properties (cf. Section 6.1 above). Moreover,
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there are many theoretical uses not only for complex properties and relations but
also, more specifically, for higher-order attributes (as well as states), both inside and
outside of philosophy. For instance, the relation of being similarly colored is most
naturally construed as higher-order, involving quantification over color properties.
Putnam (1969: §VI) influentially suggested that psychological properties are higher-
order in something like the present sense of the term. Later on, such variegated
properties as being fragile, being red, and being good have all been claimed to be higher-
order.”" And outside of philosophy, we encounter higher-order properties in, e.g.,
the field of artificial intelligence. For instance, many pattern recognition tasks call
for the representation of properties such as that of containing, for some property P
(of a certain sort), exactly two objects instantiating P.7>

While higher-order entities in something much like the present sense are also
admitted by STT, the difficulties discussed in Section 2 suggest that we would be
better off with a different approach. The theory proposed in this paper presents
an alternative—and indeed something more than that. For, unlike STT, it provides
identity conditions for intensional entities, and it also has something to say about
fundamentality. But as yet it is early days. Certainly more could be said about the
theory’s formal characteristics. It would also be of interest to ask whether the present
concept of fundamentality may be amenable to reductive analysis, or whether some
of the theoretical tasks to which this concept has here been put—namely, in anchor-
ing the order-theoretic hierarchy and constraining the individuation of intensional
entities—should be handled differently. Finally, as noted in the Introduction, there
may be something to be said for an account of instantiation that does not treat this
latter concept as primitive.”3
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