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ABSTRACT. This work contributes to the theory of judgment aggregation by discussing
a number of significant non-classical logics. After adapting the standard framework of
judgment aggregation to cope with non-classical logics, we discuss in particular results for
the case of Intuitionistic Logic, the Lambek calculus, Linear Logic and Relevant Logics.
The motivation for studying judgment aggregation in non-classical logics is that they offer
a number of modelling choices to represent agents’ reasoning in aggregation problems. By
studying judgment aggregation in logics that are weaker than classical logic, we investigate
whether some well-known impossibility results, that were tailored for classical logic, still
apply to those weak systems.
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1. INTRODUCTION

Judgement aggregation (JA) has recently become a significant topic at the intersection
of themes in social choice theory, multiagent systems, and knowledge representation. The
reason is that JA provides a general theory for studying the procedures to aggregate agents’
possibly heterogeneous attitudes into a collective attitude that reflects, as close as possible,
the individual views. The original applications of judgment aggregation were related to
voting theory and to the modellisation of the decision-making processes of collegial courts,
cf. Kornhauser and Sager (1993); List and Pettit (2002). In AI and multiagent systems, JA
provides a sound methodology to define ascriptions of propositional contents to collective
entities; for that reason, JA has been related for instance to belief merging, cf Konieczny
and Pérez (2011); Pigozzi (2006), and to ontology merging, cf Porello and Endriss (2014).

As usual in formal modellings of agency, a modicum of rationality is presupposed in
the understanding of agents, List and Pettit (2011). Since JA is about the aggregation of
logically connected propositions, the notion of individual rationality of JA is essentially
related to the concept of logical consistency. The concept of collective rationality is there-
fore intended as the preservation of individual consistency, via the aggregation procedure,
at the collective level. As it is known from the beginning of the study of JA, the aggregation
of individual consistent judgments may lead to inconsistent outcomes, cf. List and Pettit
(2002). For that reason, a careful investigation of the properties of the aggregation pro-
cedures and of the extent to which they affect the preservation of consistency is required.
This line of study has been developed into a quite sophisticated theory of aggregation pro-
cedures. A number of introductory readings to judgment aggregation is now available, for
instance, Grossi and Pigozzi (2014), List and Polak (2010), List and Puppe (2009), and
Endriss (2016).

Important aggregation procedures, with the significant example of the majority rule, do
not preserve individual consistency once agents are allowed to express their judgments on
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any possible proposition, that is, once the agenda on which the agents express their views
is allowed to be any subset of the logical language. Hence, one can roughly divide the JA
approach to cope with collective inconsistency into two directions: the first is the investi-
gation of the procedures that are indeed capable of preserving consistency; the second is
the characterisations of the agendas that guarantee consistent collective outcomes.

In the standard view of JA, the logic that is used to model rationality is classical logic.
Thus, the failure of preserving consistency that the results in judgment aggregation show
concerns the notion of consistency defined by classical logic.

In this paper, I propose to extend the theory of judgment aggregation to a number of
significant of non-classical logics. By non-classical logic, we shall mean here logical sys-
tems that reject one or more principles of classical logic and provide an alternative view of
reasoning. A guiding example is intuitionistic logic, see Dummett (2000): by rejecting for
instance the principle of the excluded middle, intuitionism provides a constructive account
of reasoning. Many logics for JA have been investigated, designed, and discussed; how-
ever, they usually extend classical propositional logics, instead of investigating systems
that are alternative to or weaker than classical logic. A few significant exceptions shall be
discussed later on.

The motivation for studying judgment aggregation in non-classical logic are essentially
three. Firstly, there is a theoretical interest in extending the theory of judgment aggregation
to logics that, from a mathematical point of view, significantly differ from classical logic.
Secondly, by studying non-classical logics, we shall approach weak inference systems;
thus, it is worth investigating whether, by weakening the logic that models the concept of
rationality, standard impossibility results still hold for weaker system, or whether we can
actually circumvent collective inconsistencies by weakening classical logic. Finally, as
usual in justifying the investigation of non-classical logics, the adequacy of classical con-
nectives to model reasoning may be questioned. It is interesting to notice that arguments
against the material conditional of classical logic have also been suggested within the lit-
erature on JA. In particular, by Dietrich (2010), where classical implication is replaced by
subjunctive implications of Lewis conditional logic. By studying JA in non-classical logic,
we enable the choice among a number of definitions of logical connectives that may be ap-
propriate for certain aggregation problems. For this reason, we shall focus in this paper on
a number of well-established non-classical logics with significant impact in philosophical
logic or in computer science. For instance, intuitionistic logic provides a constructive view
of reasoning that may suit an evidence-based view of inferences, while relevant logic al-
lows for defining a conditional that better copes with the paradoxes of material implication,
cf. Anderson et al. (1992). We shall start discussing JA in non-classical logic by dealing
with intuitionistic logic. Then, we shall develop our analysis of non-classical logics by
means of substructural logics, cf. Paoli (2002); Restall (2002). Substructural logics are a
family of logics weaker than classical logic that reject one or more of the core principle of
classical reasoning; for instance, the monotonicity of the entailment or the commutativity
of logical connectives.

The conceptual motivations for studying substructural logics are usually related to the
idea of capturing a form of reasoning that better copes with the actual inferential practice
of human or artificial agents. For instance, the weakest substructural logic that we discuss
in this paper is the Lambek Calculus, developed by Lambek (1958), for which connectives
are non-commutative. This entails that the ordering of the formulas is crucial for reason-
ing. The order-dependency of inferences can be used to model aggregation problems with
temporal dependencies among the issues of the agenda. For instance, suppose A and B
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in this order have been accepted, then the constraint B ∧ A → C does not apply in this
situation to infer C.

Moreover, we approach linear logic, introduced by Girard (1987), that captures a form
of resource-bounded reasoning. For example, suppose the proper axiomE → C represents
the inference “if I have one euro (E), then I buy one coffee (C)”. In classical logic, one
can infer, by means of the contraction principle, that E → E ∧ C, namely, that I still
have one euro, besides having the coffee. By dropping contraction, linear logic captures
a the resource-sensitive aspect of causality: the antecedent has to be consumed during the
inferential process so that the consequent may hold, cf. Girard (1995).

In philosophical logic, an important debate on the nature of logical implication emerged
in the tradition of relevant logics: Anderson et al. (1992), Dunn and Restall (2002). The
family of relevant logics rejects, in particular, the monotonicity of the entailment and de-
sign therefore logics for which true implications exhibit the relevance of the antecedent
of the conditional to the consequent. In particular, relevant logics reject the axiom A →
(B → A) that means that whenever A holds, A can be implied by any B, regardless of
the relevance of B for assessing A. Relevant logics have also been motivated as logics for
modelling epistemic agents and as logics that model inferences that depend on the amount
of information available to cognitive agents, Allo and Mares (2012); Mares (2004); Masolo
and Porello (2015).

We will also briefly discuss fuzzy logics that are defined within the substructural realm.
We shall not discuss in details the case of paraconsistent logics because we are interested
here in studying the preservation of consistency via aggregation procedures. However,
paraconsistency is approached in this paper by presenting logics for which the principle of
ex falso quodlibet does not hold (e.g. in the case of linear and relevant logics).

The methodology of this paper is proof-theoretical. This is motivated by the fact that
we are going to introduce a number of logics with significantly different algebraic coun-
terparts: the proof-theoretical methodology permits a compact treatment. Moreover, as we
shall see, the proof-theoretical analysis allows for pinpointing the inferences principles that
are responsible of the failures of preserving consistency in judgment aggregation.

The main contribution of this paper consists in the extension of the theory of judgment
aggregation to the case of a number of non-classical logics. The choice of the logical sys-
tems in this paper is also motivated by the fact that, by dropping monotonicity and other
principles of classical logic, it is possible to circumvent the collective inconsistency that
threaten the judgment aggregation based on classical logics. Moreover, results for gen-
eral monotonic logics have already been presented for instance by Dietrich (2007) and for
nonmonotonic logics have been recently presented in Wen (2017). Another crucial aspect
for preserving consistency that motivates the focus on linear and relevant logics is the dis-
tinction that this systems provide between additive and multiplicative, or extensional and
intensional, logical connectives. As we shall see in Section 7 and in Section 8, the combi-
nation of the lack of monotonicity and the distinction between types of connectives allows
for establishing positive results for the majority rule, that is, performing collective reason-
ing in those weak systems guarantees consistency. By relying on that, in Section 9.1 a
strategy for circumventing judgment aggregation paradoxes is proposed. The idea is to as-
sess individual reasoning with respect to classical logic, as usual in judgment aggregation,
while assessing collective reasoning with respect to a weak logic for which consistency
is ensured. To enable the assessment of individual and collective reasoning with respect
to possibly distinct logics, we shall slightly rephrase the standard framework of judgment
aggregation.
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The remainder of this paper is organised as follows. Section 2 introduces the back-
ground on substructural logics. In particular, we recall the sequent calculi for classical and
intuitionistic logic, for the Lambek calculus, and for linear logic. For the case of relevant
logics, as we shall see, the sequent presentation is not satisfactory, thus we shall approach
relevant logics by means of Hilbert systems. Section 3 introduces a model of judgment ag-
gregation that is general enough to treat the case of the non-classical logics that we discuss
here. In particular, we stress the interesting differences that the lacking of monotonicity,
contraction, and commutativity entail on the model. Section 4 rephrases the standard re-
sults of JA in classical logic in the setting of this paper (i.e. in proof-theoretical terms) and
discusses the case of conservative extensions of classical logic. Section 5 approaches JA
for intuitionistic logic. Section 6 discusses JA for the Lambek calculus. Section 7 presents
the case of linear logic. In particular, as we shall see, by focusing on a fragment of linear
logic, general possibility results for judgment aggregation are achievable. Section 8 ex-
tends the previous analysis to the case of relevant logics. Section 9 discusses a number of
extensions of the previous treatment to other logics and discusses how to circumvent the
impossibility results based on agendas in classical logic by rephrasing classical collective
rationality with substructural reasoning. Section 10 surveys related work, by focussing in
particular on the use of non-classical logics in JA, on the use of proof-theoretical methods,
and on the relationship with the algebraic approach to the study of general logics of JA.
Section 11 concludes.

2. BACKGROUND ON SUBSTRUCTURAL LOGICS

Sequent calculi were introduced by Gerhard Gentzen to study proofs in classical and
intuitionistic logic. They provide an important theory in logic that allows for investigating
the operational meaning of logical connectives, cf. Gentzen (1935).1 Besides providing
a fine-grained tool to analyse inferences, sequent calculi can be used to model a number
of logics in a uniform and elegant way. A sequent is an expressions of the form Γ ` ∆,
where Γ, the premises of the sequent, and ∆, the conclusions of the sequent, are made out
of formulas in a given logic. The structure of Γ and ∆, as we shall see, depends on the
logic; for instance, in what follows, they may be sets, multisets, or lists of formulas.

The intuitive reading of a sequent expression is: “the conjunction of the formulas in
Γ entails the disjunction of the formulas in ∆”. A sequent calculus is specified by two
classes of rules. The structural rules determine the structure of the sequent and define how
to handle the hypotheses in a proof, the assumptions of reasoning; for instance, they entail
that in classical logic Γ and ∆ are sets of formulas. The logical rules define the operational
meaning of the logical connectives. A fundamental insight concerning the meaning of the
logical rules is due to the tradition of substructural logics and in particular to Jean Yves
Girard (cf. Girard (1987)): The structural rules determine the behaviour of the logical
connectives. The meaning of the structural rule for reasoning is the following: weakening
(W) corresponds to the monotonicity of the consequence relation, contraction (C) amounts
to assuming that multiple occurrences of the same formula can be identified, and exchange
(E) forces the commutativity of conjunction and disjunction. When rejecting one or more
structural rules, we simply cannot view the class of propositions about which reasoning is
performed as a set; therefore, in the subsequent presentation, we shall define the structure
of Γ and ∆ as either a multiset or a list.

We introduce the language of classical propositional logic CL as usual. Assume a set of
propositional variable P, the set of formulas of CL is defined as follows.

1For an introduction to sequent calculi, see Troelstra and Schwichtenberg (2000) and Negri et al. (2008).
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(1) LCL := p ∈ P | ¬A | A ∧A | A ∨A | A→ A

The sequent calculus for CL is presented in Table 1. The logical rules may be presented
either in multiplicative form or in additive form. In the former case, the premises of the
rule have possibly different contexts that are combined in the conclusion, in the latter, the
rules presuppose that the premises of the sequent share the same context.2 The dependency
of logical rules on structural rules is evident by noticing that classical logic is imposed as
soon as we assume (left and right versions of) weakening (W L, and W R), contraction (C
R and C L), and exchange (E L and ER). In that case, the additive and the multiplicative
versions of the rules of connectives are provably equivalent.

By disabling one or more structural rules, we enter the realm of substructural logics;
for introductory readings cf. Paoli (2002); Restall (2002); Troelstra (1992).

Intuitionistic logic (IL) can also be construed as a substructural logic. Gentzen surpris-
ingly showed that intuitionistic logic can be captured by simply imposing upon the sequent
calculus for CL that the right-hand side of the sequent contains at most one formula. This
restriction is sufficient to prevent non-constructive principles, such as the excluded middle,
to be provable. This restriction has been interpreted as a manner to disable structural rules
locally by Girard et al. (1989): in intuitionistic logic the structural rules are prevented on
the right-hand side of the sequent and fully permitted on the left-hand side. Define the
language of intuitionistic logic (LIL) as follows. Let p ∈ P and ⊥ the constant for false:

(2) LIL = p | ⊥ | A ∧A | A ∨A | A→ A

The sequent calculus of intuitionistic logic (IL) is given by restricting the classical cal-
culus to single-conclusion sequents. Negation is defined, as usual in intuitionistic logic, by
means of ⊥ and→: ¬A = A→ ⊥.

2.1. Sequent Calculi for Substructural Logics. The weakest substructural logic that we
discuss here is obtained by removing all structural rules. The resulting calculus is known as
the Lambek calculus L, developed by Lambek (1958) to capture syntactic parsing of natural
language sentences along the tradition of categorial grammars. By rejecting exchange,
the conjunction of L, denoted by �, is non-commutative. Moreover, there are two order-
sensitive implications \ and /. Note that L is an intuitionistic logic, in the sense that at most
one formula appears in the right-hand side of the sequent. We assume a minor extension of
the Lambek calculus with the constant for false⊥ in order to define a form of intuitionistic
negation in terms of the order sensitive implication A \ ⊥ (cf. Table 2) .3

(3) LL := p ∈ P | ⊥ | A�A | A \A | A/A
By adding exchange to the Lambek calculus, we obtain linear logic (LL). That is, linear

logic rejects the global validity of (W) and (C) both on the left and on the right hand side
of the sequent. In LL, sequents are multisets of formulas. In Table 1, we presented two
ways of defining logical rules: an additive version and a multiplicative version. The two

2The terms additive and multiplicative have been introduced by Girard (1987). The distinction corresponds
to the division between extensional and intensional connectives in relevant logics, cf. Paoli (2002).

3In fact, one can show that there are two negations definable in this way that depend on the order-sensitive
implications: A \⊥ and⊥/A. For our purposes, it is not worthy entering the details of the treatment of negation
in L. We refer to Wansing (2007), Restall (2006) for strong negations in L and to Abrusci (1990) for the definition
of the two negations for Lambek calculus.
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Identities

ax
A ` A

Γ, A ` ∆ Γ′ ` A,∆′
cut

Γ,Γ′ ` ∆,∆′

Structural Rules

Γ, A,B,Γ′ ` ∆
E L

Γ, B,A,Γ′ ` ∆

Γ ` ∆, A,B,∆′
E R

Γ ` ∆, B,A,∆′

Γ, A,A,` ∆
C L

Γ, A ` ∆

Γ ` ∆, A,A
C R

Γ ` ∆, A

Γ ` ∆ W L
Γ, A ` ∆

Γ ` ∆ W R
Γ ` ∆, A

Negation

Γ ` A,∆
¬ L

Γ,¬A ` ∆

Γ, A ` ∆
¬ R

Γ ` ¬A,∆

Multiplicative presentation of logical connectives

Γ ` A,∆ Γ′ ` B,∆′
∧R

Γ,Γ′ ` A ∧B,∆,∆′
Γ, A,B ` ∆

∧L
Γ, A ∧B ` ∆

Γ, A ` ∆ Γ′, B ` ∆′
∨L

Γ,Γ′, A ∨B ` ∆,∆′
Γ ` A,B,∆

∨ R
Γ ` A ∨B,∆

Γ, A ` ∆ Γ′, B ` ∆′
→L

Γ,Γ′A→ B ` ∆,∆′
Γ ` B,∆

→R
Γ ` A→ B,∆

Additive presentation of logical connectives

Γ ` A,∆ Γ ` B,∆
∧R

Γ ` A ∧B,∆
Γ, A ` ∆

&L
Γ, A ∧B ` ∆

Γ, B ` ∆
&L

Γ, A ∧B ` ∆

Γ, A ` ∆ Γ, B ` ∆
∨L

Γ, A ∨B ` ∆

Γ ` A,∆
∨R

Γ ` A ∨B,∆
Γ ` B,∆

∨R
Γ ` A ∨B,∆

Γ ` A,∆ Γ, B ` ∆
→L

Γ, A→ B ` ∆

Γ ` B,∆
→R

Γ ` A→ B,∆

Γ ` A,∆
→R

Γ ` A→ B,∆

TABLE 1. Sequent Calculus for Classical Logic (CL)

formulations are redundant in classical logic because of (W) and (C), that are sufficient to
prove that the additive formulation and the multiplicative formulation are equivalent. If we
drop weakening and contraction, additives and multiplicatives are no longer equivalent,
hence we have to account for two different types of conjunctions and disjunctions with
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Γ[A;B] ` C
�L

Γ[A�B] ` C
Γ ` A Γ′ ` B �R

Γ; Γ′ ` A�B

Γ ` A ∆[B] ` C
\ L

∆[Γ;A \B] ` C
A; Γ ` B \R
Γ ` A \B

Γ ` A ∆[B] ` C
/ L

∆[B/A; Γ] ` C
Γ;A ` B

/R
Γ ` A/B

TABLE 2. Sequent calculus for the Lambek Calculus

distinct operational meanings. This operators are not visible in classical logic, because of
the structural rules. Accordingly, in LL there are two different types of conjunction, a mul-
tiplicative conjunction ⊗ (tensor) and an additive conjunction & (with), and two types of
disjunctions, multiplicative ` (parallel) and additive ⊕ (plus). Implications can be defined
by means of disjunctions and negations as usual, in LL the multiplicative implication is
A ( B ≡ ¬A ` B and the additive implication A  B ≡ ¬A ⊕ B.4 Given a set of
propositional atoms P, the language of multiplicative additive linear logic MALL is defined
as follows.5

(4)
LMALL ::= p ∈ P | 1 | ⊥ | > | 0 | ¬L | L⊗L | L`L | L⊕L | L&L | A( A | A A

By dropping weakening and contraction, the units of the logic have to be distinguished
in multiplicatives 1 and ⊥ (which are units for ⊗ and ` respectivley) and additives (> and
0, which are units for & and⊕ respectively).6 The sequent calculus for MALL is presented
in Table 3.

We label by MLL the multiplicative fragment and by ALL the additive fragment of
MALL. The intuitionistic version of MALL, label it by IMALL, can again be defined by
forcing the sequents to contain at most one formula on the right. Moreover, MALL plus
weakening is also known as affine logic, see Kopylov (1995).

2.2. Distributive Substructural logics. Since we used the notations decided by Girard
(1987) to introduce linear logic, we keep this notation also for the other substructural log-
ics, although the scholars in that area usually deploys different notation. A comparison
with the notation used in substructural logics is presented in Table 4.

4For the additive implication, whose status as an implication is in fact questionable, we refer to Troelstra and
Schwichtenberg (2000). The reason why the additive implication is not satisfactory is that, in a categorical jargon,
the adjunction w.r.t. additive conjunctions does not hold, that isA&B  C is not equivalent toA (B  C),
cf Pym (2013).

5We focus on the multiplicative-additive fragment of LL. Another important part of LL is given by the
exponentials, that allow for retrieving the usual classical inferences in a controlled way. Therefore, instead of
being yet another non-classical logic, linear logic is motivated at least as an analysis of proofs in classical and
intuitionistic logic. We leave a discussion of the exponential for JA for future work.

6Without W and C, also negation behaves differently. For example, the ex falso quodlibet principle is no
longer globally valid in linear logic, for the multiplicative false constant ⊥. Thus, linear logic, beside being
non-monotonic, is also a paraconsistent logic, at least in the weak sense of invalidating ex falso quodlibet. For
the sake of simplicity of presentation, we shall use a single notation for negations in various logics.
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Identities

ax
A ` A

Γ, A ` ∆ Γ′ ` A,∆′
cut

Γ,Γ′ ` ∆,∆′

Negation

Γ ` A,∆
L¬

Γ,¬A ` ∆

Γ, A ` ∆
R¬

Γ ` ¬A,∆

Multiplicatives

Γ ` A,∆ Γ′ ` B,∆′
⊗R

Γ,Γ′ ` A⊗B,∆,∆′
Γ, A,B ` ∆

⊗L
Γ, A⊗B ` ∆

Γ, A ` ∆ Γ′, B ` ∆′`L
Γ,Γ′, A`B ` ∆,∆′

Γ ` A,B,∆ `R
Γ ` A`B,∆

Γ, A ` ∆ Γ′, B ` ∆′
(L

Γ,Γ′A( B ` ∆,∆′
Γ ` B,∆

(R
Γ ` A( B,∆

Multiplicative units

Γ ` ∆ 1L
Γ, 1 ` ∆

1 R` 1

⊥ L⊥ `
Γ ` ∆ ⊥ R

Γ ` ∆,⊥

Additives

Γ ` A,∆ Γ ` B,∆
&R

Γ ` A&B,∆

Γ, Ai ` ∆
&L

Γ, A0&A1 ` ∆

Γ, A ` ∆ Γ, B ` ∆
⊕L

Γ, A⊕B ` ∆

Γ ` Ai,∆ ⊕R
Γ ` A0 ⊕A1,∆

Γ ` A,∆ Γ, B ` ∆
 L

Γ, A B ` ∆

Γ ` B,∆
 R

Γ ` A B,∆

Additive units

no rule for (> L ) > R
Γ ` ∆,>

0 L
Γ, 0 ` ∆ no rule for (0 R )

TABLE 3. Sequent calculus for MALL

One of the peculiarity of linear logic with respect to other substructural logics is that
in linear logic additive connectives are not distributive, that is the formulas A & (B ⊕ C)
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Girard (1987) Restall (2002)
⊗ ◦
` +
& ∧
⊕ ∨
( →
1 1
⊥ 0
> >
0 ⊥

TABLE 4. Notations

and (A & B) ⊕ (A & C) are not equivalent in MALL. By contrast, relevant logics are in
general distributive. This makes a critical difference form the point of view of semantics,
cf. Troelstra (1992), and it has also serious consequences on the sequent calculus presenta-
tion. One may be tempted to define a rule of the sequent calculus that entails distributivity
of the additives. Unfortunately, this is in general not possible without also assuming weak-
ening and contraction. This is one of the important limitation of the sequent calculus, cf
Ciabattoni et al. (2012). There is a number of ways to extend sequent calculi to cope with
that. For instance, one may introduce hypersequents or display calculi Paoli (2002). For
the present purposes, a presentation of the extensions of MALL via Hilbert system suffices.

We start by presenting the Hilbert system for MALL, label it by HMALL (cf. Troelstra
(1992)). Then, we introduce its extensions. The concept of deduction of HMALL requires
a tree-structure in order to handle the hypothesis in the correct resource-sensitive way.

(1) ` A( A
(2) ` (A( B)( ((B( C)( (A( C))
(3) ` (A( (B( C))( (B( (A( C))
(4) ` ¬¬A( A
(5) ` (A( B)( (¬B( ¬A)
(6) ` A( (B( A⊗B)
(7) ` (A( (B( C))( (A⊗B( C)
(8) ` 1
(9) ` 1( (A( A)

(10) ` 0( ¬1
(11) ` ¬1( ¬0
(12) ` (A&B)( A
(13) ` (A&B)( B
(14) ` ((A( B) & (A( C))( (A( B & C)
(15) ` A( A⊕B
(16) ` B( A⊕B
(17) ` A ∧B( ¬(¬A⊕ ¬B), ¬(¬A⊕ ¬B)( A ∧B
(18) ` A`B( ¬(A( B), ¬(A( B)( A`B
(19) ` A⊗B( ¬(¬A` ¬B), ¬(¬A` ¬B)( A⊗B
(20) ` (A( C) & (B( C)( (A⊕B( C)

TABLE 5. Axioms of HMALL
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The notion of derivation in the Hilbert system for HMALL is the following.

Definition 1 (Deduction in HMALL). A deduction tree in HMALL D is inductively con-
structed as follows. (i) The leaves of the tree are assumptions A ` A, for A ∈ LMALL, or
` B where B is an axiom in Table 5 (base cases).

(ii) We denote by
D

Γ ` A a deduction tree with conclusion Γ ` A. IfD andD′ are deduction
trees, then the following are deduction trees (inductive steps).

D
Γ ` A

D′

Γ′ ` A( B
(-rule

Γ,Γ′ ` B

D
Γ ` A

D′

Γ ` B
&-rule

Γ ` A&B

Note that Hilbert system HMALL and the sequent calculus for MALL are equivalent as
expected: Γ ` ∆ is provable in the sequent calculus iff the (multiplicative) disjunction of
the formulas in ∆ is derivable from Γ in HMALL.

Moreover, for HMALL the deduction theorem holds, that is if Γ, A ` B, then Γ `
A ( B (cf. Troelstra (1992)). Note that we can also present MALL plus weakening or
contraction by adding to HMALL the suitable axioms. From linear logic, relevant logic
R is obtained by adding contraction (C) and distributivity of the additives (D1) and (D2).
Therefore, the Hilbert system for R is given by axioms 1- 20 plus the following (C), (D1)
and (D2), cf. Paoli (2002); Restall (2002). The definition of derivation in R simply extends
our previous Definition 1.

(W): ` A( (B( A)
(C): ` (A( (A( B))( (A( B)
(D1): ` A& (B ⊕ C)( (A&B)⊕ (A& C),
(D2): ` (A⊕B) & (A⊕ C)( A& (B ⊕ C)

We label the additive fragement of R by AR, which includes the additive connectives
of R. We summarise the relationships between the logics that we have discussed in Figure
1. The Lambek calculus is the weakest logic that we discuss in this paper. By adding E,
we obtain linear logic: by assuming exchange E, the conjunction becomes commutative
and the two order-sensitive implications become equivalent. By adding contraction C and
distributivity, we obtain relevant logic and by adding also weakening W, we obtain classical
logic. By W and C, additives and multiplicatives become equivalent.

3. A MODEL OF JUDGMENT AGGREGATION FOR GENERAL LOGICS

In this section, we adapt the model of Judgment Aggregation (see Endriss et al. (2012);
List and Puppe (2009)) to cope with the logics that we have introduced. We have seen that
reasoning about a number of propositions expressed in classical logics amounts to view
the them as collected into a set. When discussing logics that lack weakening, contraction,
or exchange, we have to replace the notion of a set of propositions (or judgments) of the
standard JA with the notions of multiset or list of judgments. Recall that a multiset is a pair
(M,f) where M is a set and f : M → N is a function that assigns to each element of M
its multiplicity (i.e. a natural number). A list is multiset endowed with a strict total order
≺: (M,f,≺). (M,f) is a submultiset of (M ′, f ′) iff M ⊆ M ′ and for every x ∈ M ,
f(x) ≤ f ′(x). (M,f,≺) is a sublist of (M ′, f ′,≺′) iff it is a submultiset of (M ′, f ′,≺′)
and ≺ is the restriction of ≺′ to M . Moreover, we denote by P(M) the powerset of a
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FIGURE 1. Classical and Substructural logics

multiset (list)M , that is, the set of all multisets (lists) that are included in the multiset (list)
M .7

LetN be a (finite) set of agents. We shall assume throughout this article that the number
of individuals is odd and is bigger than 3. For every formula φ, we define the complement
∼ φ of a formula φ as follows: ∼ φ = ¬φ, if φ is not negated, ∼ φ = ψ, if φ is negated
and φ = ¬ψ.8 An agenda ΦL is a (finite) set (multiset, list) of propositions in the language
LL of a given logic L (among those that we have previously introduced) that is closed
under complements. Moreover, we assume that the agenda does not contain tautologies
nor contradictions (in particular, it does not contain the units of the logic L), as usual in
the JA literature (cf. List and Puppe (2009)).

7Possible applications of viewing individual and collective judgments as multisets or lists are the following.
Lists may encode propositions in an agenda with temporal dependency or, more generally, with a priority. The
case of multisets is motivated as follows. As we discussed in Section 2, if we want to keep track of resource-
sensitivity by means of logical reasoning, we have to drop contraction (C). That amounts to assuming that judg-
ments form multisets. For instance, suppose that agents have to express their opinions on possible deals to trade
goods (cf. Porello and Endriss (2010a,b)). A deal that trades a single occurrence of a good a with a single occur-
rence b can be represented in linear logic by means of a formula a( b. The implication states that one token of
a can be traded for one token of b. In case we want to allow agents to express their opinions about “more” deals
between as and bs, we may add to the agenda a sufficient number of copies of goods a and b and of the “deal”
a( b.

8Note that, in intuitionistic logics, double negations do not cancel out. Even in case we were to assume that an
agenda in intuitionistic logic is closed under (intuitionistic) negation, the condition of closure under complements
does not rule out the presence of doubly negated formulas nor it makes ¬¬φ equivalent to φ.
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Definition 2. A judgement set (multiset, list) J is a (finite) set (multiset, list) of elements
of ΦL.

We slightly rephrase the usual rationality conditions on judgment sets in terms of deriv-
ability in a logic L. With respect to a logic L, we say that J is complement-free if J does
not contain both φ and the complement of ∼ φ; we say that J is consistent iff J 0L ∅9; J
is complete iff for all φ ∈ ΦL, φ ∈ J or ∼ φ ∈ J ; and J deductive closed iff whenever
J `L φ and φ ∈ ΦL, φ ∈ J .

In JA based on classical logic, the notion of complement-freeness captures a weak form
of consistency that is preserved by many aggregation procedures, viz. the majority rule.10

In classical logic, consistency entails complement-freeness. When dealing with JA in gen-
eral logics, a significant departure from the standard JA framework is that consistency does
not entail complement-freeness any longer. This is caused by the possible lack of weak-
ening. Let L be a logic where weakening holds, if a set (multiset) X is inconsistent, then
any (mutliset) X ′ such that X ⊆ X ′ is also inconsistent. This can be easily shown as
follows: if X ` and X ⊆ X ′, then by weakening we infer X ′ `. Thus, the lack of weak-
ening permits that a consistent set X may have inconsistent subsets, which may violate
complement-freeness, even in the case of consistency of X . As we shall see, this fact has
significant consequences on the study of the aggregation of judgments. For this reason, we
assume also the following condition.

Definition 3. We say that a set (multiset, list) J is robustly consistent if J is consistent and
every proper subset (submutliset, sublist) J ′ of J is.

Robust consistency always entails consistency and it entails complement-freeness also
for logics without weakening. In order to meet the standard treatment of JA, we will al-
ways assume that individual judgments sets are robustly consistent, while we shall state
explicitly in case we assume that the judgments are also complete. The reason for drop-
ping completeness is that in a number of non-classical logics, e.g. intuitionistic logic and
in logics with no classical negation, is not appropriate to express the duality between ac-
ceptance and rejection by means of negation. The reason is that positive information and
negative information have different statuses in constructive systems.11

Denote J(ΦL) the set of all robustly consistent judgement sets (multisets, lists) on ΦL.
In case we assume that individual judgment sets are also complete, we denote by J∗(ΦL)
the set of all robustly consistent and complete judgement sets (multisets, lists) on ΦL. A
profile of judgements sets J is a vector (J1, . . . , Jn), where n = |N |. In the remainder of
the paper, we will occasionally use the characteristic function of a judgment set (multiset
or list), with values in {0, 1} to visualise profiles by means of a table. By slightly abusing
the notation, we will do so also for multisets and lists.

3.1. Aggregation procedures. We intend to model aggregators that take profiles of judg-
ments that are rational according to a given logic L and return judgements which can be
evaluated with respect to a (possibly) different logic L′. In case L and L′ are the same,
we are in the standard situation in JA. When the languages of L and L′ are different, we
would need to define a translation function from the language of L into the language of L′.
We mainly discuss embeddings of the outcome of an aggregation procedure into weaker

9In case the logic has a formula for expressing absurd, ⊥, this condition is reformulated as J 0 ⊥
10Complement-freeness has been introduced in Endriss et al. (2012) and corresponds to the property of weak

consistency in Dietrich and List (2007).
11Similar motivations for relaxing completeness and closure under complements have been introduced for the

case of Description Logics in Porello and Endriss (2014).
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or stronger logics that share the same language, with the exception of the discussion in
Section 9.1.

Definition 4. An aggregator procedure is a function F : J(ΦL)n → P(ΦL′).

This definition is quite general and allows in principles for associating profiles of any
structure (sets, multisets, lists) to any type of structure (set, multiset, or list). In practice,
as we shall see in the next sections and as we discussed in Section 2, the type of structure
is determined by the logic that is used to assess individual and collective judgments. For
instance, the standard JA model associates profiles of sets to sets of judgments. The same
shall hold for the case of intuitionistic logic. When discussing JA for the Lambek calculus,
aggregation procedures shall associate profiles of lists to lists of judgments and, in the case
of linear and relevant logics, the aggregation procedures shall associate multisets to multi-
sets. In Section 9.1, we shall discuss the case of aggregators that connect distinct logics,
and in particular we focus on aggregators that associate sets of judgments to multisets of
judgments.

Note that our definition of aggregation procedure allows for aggregators that return sets
(mutlisets, lists) of judgments that are inconsistent w.r.t. L′. This is motivated by the fact
that we want to assess the outcome of an aggregation procedure w.r.t. possibly different
logics. That is why the codomain of F ′ is defined by the set of all sets (multisets, lists)
P(ΦL′).

In the standard JA framework, an aggregation function depends on the choice of an
agenda ΦL, that determines the class of judgment sets, besides on the number of indi-
viduals. Here, in the general case, an aggregation function depends on two agendas: the
agenda w.r.t. which individuals make their judgments ΦL and the agenda w.r.t. which
the rationality properties of the collective set are evaluated ΦL′ . We denote by [ΦL,ΦL′ ]
the class of aggregation functions from judgments defined on ΦL to judgments defined
in ΦL′ , i.e. [ΦL,Φ

′
L′ ] = {F | F : J(ΦL)n → P(ΦL′)}. Moreover, we use the

notation [Φ∗L,ΦL′ ] when we assume that individual judgments are also complete, i.e.
[Φ∗L,ΦL′ ] = {F | F : J∗(ΦL)n → P(ΦL′)}. Denote by Nφ the set {i | φ ∈ Ji},
the majority rule for [ΦL,ΦL′ ] is defined as follows.

Definition 5. The majority rule M : J(ΦL)n → P(ΦL’) is defined by φ ∈ M(J) iff
|Nφ| > n/2.

We also define the following class of aggregation functions that is a simple general-
ization of the majority rule, the class consists of the uniform quota rules, discussed by
Dietrich and List (2007).

Definition 6. Let m ∈ {0, . . . , |N | + 1}, the uniform quota rule defined with quota m is
the aggregation procedure Fm : J(ΦL)n → P(ΦL’) such that φ ∈ Fm(J) iff |Nφ| ≥ m.

The usual properties of aggregation functions can be rephrased as follows. We start by
listing those properties that are usually intended to model fairness desiderata of aggregation
procedures.

• Anonymity (A): For any profile J and permutation σ : N → N , F (J1, . . . , Jn) =
F (Jσ(1), . . . , Jσ(n)).
• Neutrality (N): For any φ and ψ in ΦL and profile J, if for all i φ ∈ Ji ⇔ ψ ∈ Ji,

then φ ∈ F (J)⇔ ψ ∈ F (J).
• Independence (I): For any φ ∈ ΦL and profiles J, J′ ∈ J(ΦL)n, if φ ∈ Ji ⇔ φ ∈
J ′i , then φ ∈ F (J)⇔ φ ∈ F (J′).
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• Monotonicity (M): For any φ ∈ ΦL and profiles J = (J1, . . . , Ji, . . . , Jn) and
J′ = (J1, . . . , J

′
i , . . . , Jn) if φ /∈ Ji and φ ∈ J ′i , then φ ∈ F (J)⇒ φ ∈ F (J’)

• Acceptance-rejection neutrality (arN): For any φ, ψ ∈ ΦL and any profile J ∈
J(ΦL)n, we have that if φ ∈ Ji ⇔ ψ /∈ Ji for all agents i ∈ N , then φ ∈ F (J)⇔
ψ /∈ F (J).

(A) states that the aggregator does not favour any particular agent, while (N) implies
that it does not favour any particular proposition. (I) means that the outcome of F w.r.t. a
proposition φ in two different profiles only depends on the patterns of acceptance in the two
profiles. (M) implies that, by increasing the support of a proposition, F does not change its
acceptance. Acceptance-rejection neutrality (arN) has been introduced in Dietrich and List
(2008, 2009) in order to characterise aggregators in case of weak assumptions concerining
individual rationality, namely in case individual judgements sets are just assumed to be
consistent. (arN) means that the aggregator is not biased either for or against the acceptance
of any proposition.12

The notion of collective rationality that is standard in JA (cf. Endriss et al. (2012); List
and Puppe (2009)) states that an aggregation procedure is collectively rational iff for every
profile, the output of the aggregation procedure is consistent, complete, and deductively
closed w.r.t. classical logic. Here, we make explicit the logic with respect to which the
aggregation is assessed, that is, we define the rationality conditions with respect to the
logic that is used to evaluate the output of the aggregation.

• F ∈ [ΦL,ΦL′ ] is complement-free iff for every J, F (J) is complement-free w.r.t.
L′.

• F ∈ [ΦL,ΦL′ ] is consistent w.r.t. iff for every J, F (J) is consistent w.r.t. L′.
• F ∈ [ΦL,ΦL′ ] is deductively closed iff for every J, F (J) is deductively closed

w.r.t. L′.
• F ∈ [ΦL,ΦL′ ] is complete iff for every J, F (J) is complete w.r.t. L′

• F ∈ [ΦL,ΦL′ ] is weakly rational (WR) iff for every J, F (J) is complete and
complement-free w.r.t. L′

• F ∈ [ΦL,ΦL′ ] is robustly consistent iff for every J, F (J) is robustly consistent
wr L′

In case we do not assume that individual judgments are complete, we confine ourselves
to the study of the preservation of (robust) consistency.

Let AX be a list of axioms among those above. We denote by [ΦL,ΦL′ ](AX) the set
of aggregation functions defined with domain J(ΦL)n and range J(ΦL′) that satisfy the
axioms in AX .

In Endriss et al. (2012), two classes of aggregation functions can be characterized in
terms of the axioms above. The first class just contains the majority rule, hence it is the
characterization of the majority rule, which adapts May’s theorem for the case of JA, cf.
May (1952). The second class is obtained by dropping weak rationality (WR) and corre-
sponds to the class of uniform quota rules. The following proof adapts the one in Endriss
et al. (2012) for the case of the logics that we have introduced. The significant difference
is that, in order to show that the majority rule satisfies (WR), we have to assume that the
individual judgment sets are robustly consistent.

Theorem 7. F is the majority rule iff F ∈ [Φ∗L,ΦL′ ](WR,A, I,N,M)

Proof. From left to right, the majority rule satisfies the axioms. We only show that the
majority rule is weakly rational. Assume that |N | = n. For complement-freeness, suppose,

12This version of acceptance-rejection neutrality is due to Endriss et al. (2012).
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by contradiction, that there exists a φ in ΦL such that both φ and ∼ φ are in M(J). Then
|Nφ| ≥ n+1

2 and |N∼φ| ≥ n+1
2 . This entails that there exists an individual i such that φ

and ∼ φ are in Ji, against the assumption that each Ji is robustly consistent.13

The majority rule is also complete. Suppose by contradiction that neither φ nor ∼ φ are
in M(J). Then |Nφ| < n+1

2 and |N∼φ| < n+1
2 , which entails that there exists an i such

that Ji violates completeness.
From right to left. Assume F satisfies the axioms above. Since F satisfies (A),(I),(N),

the outcome of F only depends on the cardinality of the set of individuals accepting φ (see
also List and Puppe (2009)). That is, F can be represented by a function h : {0, . . . , n =
|N |} → {0, 1} such that φ ∈ F (J) iff h(|Nφ|) = 1. Since F satisfies (M), if h(i) = 1
and j ≥ i, then also h(j) = 1. Suppose then that k is the minimum for which h(k) = 1.
Since F satisfies (WR), F must be complete, we get that k ≤ n+1

2 , otherwise there are
profiles that lead to incomplete judgment sets. Since F has to be complement-free, we get
k ≥ n+1

n , to avoid acceptance of a formula and its negation. Thus, k = n+1
2 , hence F is

the majority rule. �

Note that there is no mention of preserving (robust) consistency at this point, Theorem
7 only shows that the majority rule preserves complement-freeness and completeness. By
assuming mere consistency instead of robust consistency of the individual judgments, as
in the standard JA result, cf. List and Puppe (2009), the proof fails for the case of logics
without weakening. For instance, suppose J is composed of n copies of Ji = {A,¬A,B}:
each Ji is consistent but not complement-free, hence the majority M(J) would violate
complement-freeness as well.

The class of uniform quota rules is characterized as follows. Since the rationality con-
ditions do not enter the proof, we can simply adapt the proof in Endriss et al. (2012) to the
present framework.

Proposition 8. F is a uniform quota rule iff F ∈ [ΦL,ΦL′ ](A, I,N,M)

We adapt now the concept of safety of an agenda, that is due to Endriss et al. (2012).
Since we are assuming that the individual agenda and the collective agenda might differ,
the concept of safety applies to a pair of agendas.

Definition 9. For any set of axioms AX , a pair of agendas (ΦL,ΦL′) is safe for axioms
AX iff every F in [ΦL,ΦL′ ](AX) is robustly consistent.

The safety of an agenda amounts to assuming that every judgment aggregation problem
defined on that agenda ΦL that uses aggregators of the given class preserves (robustly)
consistent outcomes in L′. In case L = L′ = CL we obtain the standard definition of
safety Endriss et al. (2012).

Since we are assessing JA in a variety of logics, it is useful to present the following
definition of safety of logics for sets of axioms.

Definition 10. A pair of logics (L,L′) is safe for axioms AX iff every pair of agenda
(ΦL,ΦL′) is safe for axioms AX (i.e. for every pair of agendas (ΦL,ΦL′), every F in
[ΦL,ΦL′ ](AX) is robustly consistent.)

The concept of safety of logics amounts to assuming that for every possible agenda
defined by means of the language of the logic L and for every profile of judgments, the

13Assuming only consistency of the individual sets is not sufficient, for instance {A,¬A,C} is consistent in
MALL but not complement-free.
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aggregation function F preserves robustly consistent judgments defined w.r.t logic L when
evaluated w.r.t. the logic L′.

In case the aggregation procedure is defined w.r.t. a single agenda and w.r.t. a single
logic, we say that the (single) agenda ΦL is safe for the class of axioms AX and that the
(single) logic L is. Note that concept of safety still applies to classes of axioms that define
a single procedure, e.g. to the case of the majority rule that is defined by the axioms WR,
A, I, N, and M. In that case, a possibility result — that states the existence of a procedure
that satisfies a certain number of axioms and preserves consistency — and safety results —
that state that every function in a certain class preserve consistency — coincide. We label
the class of axioms that characterise the majority rule by MAJ.

The last concepts of the standard theory of judgment aggregation that we rephrase for
this setting is the following list of properties of agendas. Here we simply generalise it to
cope with a variety of logics.

Recall that a set (multiset, list) Y of formulas of L is inconsistent w.r.t. L iff Y ` ∅. Y
is minimally inconsistent iff Y is inconsistent and every subset (submultiset, sublist) of Y
is consistent.

Definition 11. The following properties define classes of agendas:

• An agenda ΦL has the median property (MP) iff every minimally inconsistent set
(multiset, list) of formulas Y of ΦL has cardinality at most 2.

• An agenda ΦL has the simplified median property (SMP) iff every (non-trivially)
inconsistent set (multiset, list) of formulas Y of ΦL has a subset (submultiset,
sublist) {φ, ψ} such that φ and ¬ψ are logically equivalent: φ `L ¬ψ and ¬ψ `L
φ.

• An agenda ΦL has the syntactic simplified median property (SSMP) iff every (non-
trivially) inconsistent set (multiset, list) of formulas Y of ΦL has a subset (submul-
tiset, sublist) {φ,¬φ}.

• An agenda ΦL has the k-median property (kMP) iff every minimally inconsistent
set (multiset, list) of formulas Y of ΦL has cardinality at most k.

The median property is the case with k = 2 of the k-median property. Moreover,
the SSMP entails SMP which in turn entails MP. The opposite directions do not hold. The
median property is due to Nehring and Puppe (2007). As we shall see, the median property
characterizes, in case of classical logic, the agendas that are safe for the majority rule. The
other properties are adequate to characterize agendas for larger classes of aggregators, cf.
Endriss et al. (2012); List and Puppe (2009).

3.2. Summary of results. We summarise in the following table the results that we are
going to establish in the subsequent sections concerning the safety of logics and agendas
for a set of axioms. The first line of Table 6 simply rephrases the results about classical
logic and classical agendas known from JA.

As we shall discuss, all the monotonic logics (i.e. the logics whose sequent calculus
admits weakening W) that are listed in the table exhibit, regarding the safety of the agenda,
a situation that is analogous to that of classical logic. This is expected, due to the results
in Dietrich (2007). However, dropping monotonicity is not sufficient to achieve safety or
possibility results, as the situation of a number of non-monotonic logic shows (cf. MALL,
MLL, R). The case of ALL and AR are significant here: since every agenda in ALL or AR is
safe for MAJ, we can claim that the logics ALL and AR are indeed safe for those axioms.
In particular, as we shall see, the majority rule is robustly consistent for any agenda in ALL
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MAJ (WR, A, I, N, M) Quota rules (A, I, N, M) (WR, A, N ,I) (WR, A , N) (WR, A, I)
ΦCL safe iff MP safe iff kMP safe iff SMP safe iff SMP safe iff SSMP
ΦIL safe iff MP safe iff kMP safe iff SMP safe iff SMP safe iff SSMP
ΦL safe iff MP safe iff kMP safe iff SMP safe iff SMP safe iff SSMP
ΦMALL safe iff MP safe iff kMP safe iff SMP safe iff SMP safe iff SSMP
ΦMLL safe iff MP safe iff kMP safe iff SMP safe iff SMP safe iff SSMP
ΦALL always safe safe with m ≥ n/2 safe iff SMP safe iff SMP safe iff SSMP
ΦALLW safe iff MP safe iff kMP safe iff SMP safe iff SMP safe iff SSMP
ΦALLC always safe safe with m ≥ n/2 safe iff SMP safe iff SMP safe iff SSMP
ΦR safe iff MP safe iff kMP safe iff SMP safe iff SMP safe iff SSMP
ΦAR always safe safe with m ≥ n/2 safe iff SMP safe iff SMP safe iff SSMP

TABLE 6. Summary of results concerning the safety of agendas and log-
ics for sets of axioms.

or AR. Those systems are indeed non-monotonic however, to achieve safety, as we shall
see, we have to restrict to the additive fragment of those logics.

Observe that when an agenda is not safe for a certain class of axioms AX, this means
that there exists an aggregation procedure in the class of functions defined by means of AX
that is not robustly consistent. Thus, if an agenda is not safe for axioms AX, this entails
that the agenda is not safe for any subset of AX. Moreover, if a logic is not safe for a
certain class of axioms AX, it means that there exists an agenda ΦL, such that it exists
an aggregation function F ∈ [ΦL,ΦL](AX) that is not robustly consistent. Namely, a
possible outcome Y of F is inconsistent in L. If Y is inconsistent in L (that is Y `L ∅),
then Y is inconsistent in any logic L′ that is stronger (i.e. that proves more sequents) than
L (i.e. Y `L′ ∅). Therefore, if a logic is not safe for AX, then any stronger logic is not
safe for AX.

4. JUDGMENT AGGREGATION IN EXTENSIONS OF CLASSICAL LOGIC

For classical logic CL, we assume that every judgment set is also complete. Moreover,
robust consistency and consistency in this case coincide. In our setting, List and Pettit’s
result can be rephrased as follows.

Theorem 12 (List and Pettit). There are agendas defined in CL that are not safe for MAJ
(i.e. for axioms (WR, A, I, N, M)).

For instance, the agenda {A,B,A ∧ B,¬A,¬B,¬(A ∧ B)} provides the famous dis-
cursive dilemma (cf. Kornhauser and Sager (1993); List and Pettit (2002)). That is, on that
agenda, there is in fact a profile J such that the majority rule returns an inconsistent set.

A A ∧B B ¬A ¬(A ∧B) ¬B
i1 1 1 1 0 0 0
i2 1 0 0 0 1 1
i3 0 0 1 1 1 0

maj. 1 0 1 0 1 0

The collective set F (J) = {A,B,¬(A ∧ B)} is not consistent in classical logic. In
proof-theoretic terms, it means that {A,B,¬(A∧B)} `, and that can be shown as follows.

A ` A B ` B ∧L
A,B ` A ∧B

¬L
A,B,¬(A ∧B) `
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Theorem 12 can be extended to various classes of functions, in particular all those
classes that include the majority rule (cf. Endriss et al. (2012); List and Puppe (2009)).

Thus, by playing with our definitions, we can infer that classical logic is not safe for the
majority rule and for any class of axioms that define procedures that include the majority
rule.

Because of Theorem 12, in JA it is important to characterize which type of agendas are
safe for a certain set of axioms. In particular, Theorem 12 can be refined by saying that the
agendas that are not safe are those that violates the median property.

Theorem 13 (Nehring and Puppe (2007)). An agenda ΦCL satisfies the median property
iff ΦCL is safe for MAJ.

For larger classes of functions, the median property is no longer sufficient. The fol-
lowing proposition summarizes the relationships between agenda properties and classes of
functions for classical logic.

Proposition 14. [Endriss et al. (2012)] The following facts hold:
• ΦCL satisfies the SMP iff it is safe for (WR,A,N, I)
• ΦCL satisfies the SMP iff it is safe for (WR,A,N)
• ΦCL satisfies the SSMP iff it is safe for (WR,A, I)
• ΦCL satisfies the kMP iff it is safe for (A, I,N,M), (for Fm, with m > n− n

k )

For the class of uniform quota rules, note that the choice of the threshold is crucial as
well to preserve consistency. The median property is the condition that guarantees that
an agenda in classical logic is safe for the majority rule. Since the median property is
defined in terms of minimally inconsistent sets of formulas, any logic that conservatively
extends classical propositional logic shall suffer the same problems of aggregation. If
X is minimally inconsistent in classical logic, then X is minimally inconsistent in any
conservative extension of classical logic. Therefore, there is no hope to mend propositional
inconsistency by enriching the language of the logic.

Corollary 15. Any extension of classical logic is not safe for MAJ.

For instance, any modal logic and any description logic, as soon as they extend propo-
sitional reasoning, are not safe (cf. for instance Porello and Endriss (2014) for description
logics, and Pauly (2007), Endriss and Grandi (2014) for general Kripke structures).

5. JUDGMENT AGGREGATION IN INTUITIONISTIC LOGIC

We start the study of judgment aggregation in non-classical logics by dealing with in-
tuitionistic logic. For IL, we do not assume that individual judgments sets are complete.
Recall that intuitionistic negation is defined by ¬A = A → ⊥.14 For intuitionistic logic,
weakening holds, hence consistency and robust consistency are equivalent. We can easily
see that with respect to judgment aggregation, intuitionistic logic does not significantly
differ from classical logic.

Theorem 16. Intuitionistic logic IL is not safe for MAJ.

Proof. It is sufficient to exhibit an agenda w.r.t. which an aggregation problem generates an
inconsistent set. For instance, we show that any agenda that includes {A,B,A ∧ B, (A ∧

14Assuming that the agenda may contain A → ⊥ does not entail that the agenda contains the formula for
false⊥. That is, in this case, the agenda is not closed under the atoms occurring in the formulas. Such an agenda
is called non truth-functional in Nehring and Puppe (2008).
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B) → ⊥} is not safe for the majority rule in intuitionistic logic. There exists indeed
a profile of judgments J (adapt the one we encountered in Section 4) such that F (J) =
{A,B, (A ∧ B) → ⊥}. This set is inconsistent in intuitionistic logic, as the following
proof shows.

A ` A B ` B ∧R
A,B ` A ∧B ⊥ ` ⊥

→L
A,B, (A ∧B)→ ⊥ ` ⊥

�

Also in the case of intuitionistic logic, the median property is the appropriate condition
that characterizes safe agendas for the majority rule. The following proof largely adapts the
known result for the case of non-complete judgments sets (cf. Porello and Endriss (2014)).

Theorem 17. An agenda ΦIL is safe for MAJ iff it satisfies the median property.

Proof. In one direction, we show that if ΦIL satisfies the median property, then the majority
rule is consistent. Suppose by contradiction that there is an agenda ΦIL that satisfies the
median property and that there is a profile J such that F (J) is inconsistent. Since the
median property holds, if F (J) is inconsistent, then there is a minimally inconsistent set
Y ⊆ F (J) with cardinality at most 2. Firstly, Y cannot have cardinality 1, otherwise there
must be a contradictory formula in the agenda.15 Suppose then that Y = {φ1, φ2}. Since
Y is accepted by majority, we have that |{i ∈ N | φ1 ∈ Ji}| ≥ n+1

2 and |{i ∈ N | φ2 ∈
Ji}| ≥ n+1

2 . This entails that there is an individual j, such that both φ1 and φ2 are in Jj ,
against assumption that every individual judgment set is consistent.

In the other direction, we prove the contrapositive statement: if ΦIL violates the median
property, then F (J) is inconsistent. Suppose that ΦIL violates the median property, then
there exists a subset Y that is minimally inconsistent of size strictly bigger than 3. We
construct a profile that violates the consistency of the majority rule. Suppose |Y | ≥ 3 and
that φ and ψ are distinct formulas in Y . The first n−12 individuals accept all formulas of
Y but φ, the last n+1

2 individuals accept all formulas of Y but ψ, and the individual n+1
2

accepts just φ and ψ. Each individual set is consistent, however, by majority, Y is accepted.
That is, Y it is contained in M(J). Since IL satisfies W , if Y is inconsistent, then M(J) is
inconsistent. �

Note that we can use the sole consistency assumption to conclude the argument that
shows that the median property is necessary because IL satisfies weakening.

By enlarging the class of aggregation procedures beyond the majority rule, that is by
focusing on uniform quota rules, we can show that the situation is similar w.r.t. the classical
case.

Proposition 18. ΦIL satisfies the kMP iff it is safe for (A, I, N,M), for Fm with m > n− n
k .

The proof largely adapt the case for classical logic (cf Dietrich and List (2007), Corol-
lary 2), so we omit it.

15In case we do assume contradictions in the agenda, we can reason as follows: if |Y | = 1 there should be a
majority of agents for which Y is in Ji, violating the assumption of consistency of the individual sets Ji
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6. JUDGMENT AGGREGATION IN THE LAMBEK CALCULUS

We start discussing substructural logics by studying the Lambek calculus L. In this
case, we do not assume that individual judgments are complete.16 Individual and collective
judgments are (finite) lists of formulas J = [φ1, . . . , φm] that are sublists of ΦL. Since the
aggregation procedures for L return lists of judgments, we have to be explicit in defining
how the aggregation computes the outcome. We present the case of the majority rule, other
aggregation procedures can be handled in a similar way. We have to keep track of the
positions of the formulas in the Jis with respect to the order of formulas in ΦL. Denote by
πj(X) the j-th element of the listX . We write a judgment set J by means of J ′ = J∪{?},
where ? is a designated symbol. J ′ is defined by πj(J ′) = φ if φ ∈ J and j is the position
of φ in ΦL, otherwise πj(J) = ?. For example, the sublist [B,D] of [A,B,C,D] can be
written by [?,B, ?,D].

Given a profile J, let N j
φ = {i | φ = πj(Ji)}, that is, N j

φ denotes the set of individuals
that place φ at the j-th position of their list of judgements.

Define the list [x1, . . . , xl], where l is the length of the list ΦL and each xj is either a
formula of the agenda of the designated symbol ?: xj = φj if |N j

φj
| ≥ n+1

2 and xj = ?, if

|N j
φj
| < n+1

2 . M(J) is then the sublist of [x1, . . . , xl] that is obtained by removing all the
? symbols.

It is easy to see that collective inconsistencies may emerge also for L.

Theorem 19. The Lambek calculus L is not safe for MAJ.

Proof. Take any agenda that includes [A,B,A�B, (A�B)\⊥] and a profile of judgments
J as follows.

A B A�B A�B \ ⊥
i1 1 1 1 0
i2 1 0 0 1
i3 0 1 0 1

maj. 1 1 0 1

The outcome of the majority rule on J is the list [A,B,A�B\⊥], which is not consistent
in L, as the following proof shows.

A ` A B ` B �L
A,B ` A�B ⊥ ` ⊥ \ L

A,B,A�B \ ⊥ ` ⊥

�

In L consistency and robust consistency are not equivalent. For instance, [A,A \ ⊥, C]
is consistent, since it does not entail ⊥, whereas [A,A \ ⊥] is inconsistent. The follow-
ing example shows that the majority rule for L may return an inconsistent list even in an
extremely simple agenda.

Example. Take the agenda {A,A \⊥, C, C \⊥} and the following profile of (incomplete)
lists of judgments.

16In fact, the Lambek calculus is an intuitionistic logic, Abrusci (1990).
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A C A \ ⊥
i1 1 1 1
i2 1 0 0
i3 0 0 1

maj. 1 0 1
Each individual judgment list is consistent, however the majority returns the inconsis-

tent list [A,A \ ⊥].

Therefore, in case we assume just the consistency of the individual judgments, the me-
dian property is not sufficient to guarantee the consistency of every collective outcomes.
The condition of robust consistency is required, as the following proof shows.

Theorem 20. An agenda ΦL satisfies the median property iff ΦL is safe for MAJ.

Proof. From left to right, suppose by contradiction that ΦL satisfies the median property
and M(J) is inconsistent. Then, M(J) contains a minimally inconsistent list Y of size
smaller or equal than 2. |Y | cannot be 1, since we excluded contradictions in the agenda.
Thus Y = [φ1, φ2], and suppose that φ1 and φ2 take the j-th and j + 1-th positions
(respectively) in the list M(J). Therefore, there exist h and k, with h < k, such that
|Nh

φ1
| ≥ n+1

2 and |Nk
φ1
| ≥ n+1

2 , which entails that there is an individual i such that
[φ1, φ2] is a sublist of Ji. Note that φ1 and φ2 may be contiguous in Ji or not, however, in
both cases, this contradicts the assumption of robust consistency.

From right to left, we show that if ΦL violates the median property, then the majority
rule is inconsistent. Assume that ΦL contains a list Y that is minimally inconsistent of size
bigger than 3. Define a profile J that coincides with the one in the proof of Theorem 17
for the formulas in Y and, for the other formulas of the agenda, the individuals reject all
of them. Note the judgment sets are now incomplete. By construction, we get M(J) = Y ,
which is inconsistent in L. �

For the larger class of uniform quota rules, we can adapt the known results, by noticing
that in this case, again, the safety result applies to the condition of robust consistency.

Proposition 21. ΦL satisfies the kMP iff it is safe for (A, I,N,M), forFm withm > n−nk .

7. JUDGMENT AGGREGATION IN LINEAR LOGIC

We show that for linear logic analogous impossibility results can be stated. We assume
that the judgments form multisets of formulas and that they are complete. In MALL, due
to the lack of weakening, consistency and robust consistency are not equivalent.

Theorem 22. (Multiplicative additive) linear logic MALL is not safe for MAJ.

Proof. Take the agenda ΦMALL = {A,¬A,B,¬B,A ⊗ B,¬(A ⊗ B)} and the following
profile:

A A⊗B B ¬A ¬(A⊗B) ¬B
i1 1 1 1 0 0 0
i2 1 0 0 0 1 1
i3 0 0 1 1 1 0

maj. 1 0 1 0 1 0

The outcome of the majority rule on J is the multiset {A,B,¬(A ⊗ B)} which is
inconsistent w.r.t. MALL:
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A ` A B ` B ⊗ R
A,B ` A⊗B

¬ L
A,B,¬(A⊗B) `

�

Again, the median property is not sufficient to preserve consistency, in case we assume
that individual judgments are just consistent.

Example. Take the agenda closed under complements {A,¬A,C,¬C,C ( 1,¬(C (
1)}. The agenda satisfies the median property, since there is no inconsistent multiset of
size strictly bigger than 2. Take the following profile.

A ¬A C C ( 1 ¬(C ( 1) ¬C
i1 1 1 1 0 0 0
i2 1 0 1 1 0 0
i3 0 1 1 1 0 0

maj. 1 1 1 1 0 0
Each individual multiset is consistent, although the first one is not robustly consistent,

as it contains {A,¬A}. By majority, we obtain the multiset {A,¬A,C,C ( 1}, which is
inconsistent in MALL, as the following proof shows.

A ` A ¬ L
A,¬A `

1 L
A,¬A, 1 `

C ` C 1 ` 1 ( L
C,C ( 1 ` 1

cut
A,¬A,C,C ( 1 `

Therefore, the median property is not sufficient to guarantee the consistency of the ma-
jority rule in case of MALL.

The condition of robust consistency is required also for MALL.

Proposition 23. ΦMALL satisfies the median property iff it is safe for MAJ.

Proof. From left to right, suppose ΦMALL satisfies the median property andM(J) is incon-
sistent. The argument is then similar to the proof of Theorem 20.

From right to left, assume that ΦMALL violates the median property, we show that M(J)
is not robustly consistent. If ΦMALL violates the median property, then there exists an
inconsistent set Y included in ΦMALL with cardinality bigger than 3. Define a profile as
in the proof of Theorem 17. We can conclude that Y is included in M(J), which violates
robust consistency. �

In case we assume the mere consistency of individual judgments, the median property is
also not necessary for the consistency of the majority rule. That is, the direction “if ΦMALL

violates the median property, then the majority rule is inconsistent” does not hold. For
instance, take the agenda {A,¬A,B,¬B,A⊗B,¬(A⊗B), C,¬C}. It violates the median
property, since it contains a multiset {A,B,¬(A ⊗ B)} which is minimally inconsistent
of size 3. However, assuming that each judgment is complete, the majority rule cannot
provide an inconsistent outcome on that agenda. We show this fact as follows.

Since each Ji is complete, either C or ¬C is in Ji, therefore either C or ¬C is in F (J).
We have then two cases: either F (J) = {A,B,¬(A⊗B), C} or {A,B,¬(A⊗B),¬C}.
In either case, F (J) is not inconsistent in MALL.

Analogous treatment can be adapted to obtain results for the case of uniform quota rules.
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Proposition 24. ΦMALL satisfies the kMP iff it is safe for (A, I, N,M), for Fm with m >
n− n

k .

Since we are assuming that judgments are complete and complement-free, it is mean-
ingful to extend the class of the majority rule, by keeping the axiom of WR and removing
one of the other. In this case, we can adapt the known results of Proposition 14 to the
case of MALL under the hypothesis of robust consistency. The proof largely adapts the
arguments in (Endriss et al. (2010), Theorem 7, 8 and 9) so we present only a few cases.

Proposition 25. The following facts hold:

• i) ΦMALL satisfies the SMP iff it is safe for (WR,A,N, I).
• ii) ΦMALL satisfies the SMP iff it is safe for (WR,A,N).
• iii) ΦMALL satisfies the SSMP iff it is safe for (WR,A, I).

Proof. i) From left to right, suppose by contradiction that ΦMALL satisfies the SMP and F
in [ΦMALL,ΦMALL](WR,A,N) is inconsistent. Therefore there exist two formulas φ and
¬ψ in F (J) such that φ is equivalent to ψ. As we have seen in the proof of Theorem 7,
since F satisfies (A),(I),(N), the outcome of F only depends on the cardinality of the set
of individuals accepting φ (see also List and Puppe (2009)) and F can be represented by
a function h : {0, . . . , n = |N |} → {0, 1} such that φ ∈ F (J) iff h(|Nφ|) = 1. Since
every Ji is robustly consistent, for every i, φ ∈ Ji iff ¬ψ /∈ Ji and since Ji are complete,
φ ∈ Ji iff ψ ∈ Ji. Thus, by A,I, and N, we can infer that φ ∈ F (J) iff ψ ∈ F (J). Since
by assumption we have φ in F (J), we conclude ψ ∈ F (J), but since ¬ψ ∈ F (J). This
violates complement-freeness of F .

From right to left, assume that ΦMALL violates the SMP, we show that there exists a
function F in [ΦMALL,ΦMALL](WR,A,N, I) that is not robustly consistent. If ΦMALL

violates the SMP, then there are two formulas φ and ψ such that φ ` ¬ψ and ¬ψ 0 φ.
Define the aggregation procedure F as follows. Take a profile with 3 agents such that
agent J1 = {¬A,¬(A & B)}, J2 = {A,A & B} and J3 = {A,¬(A & B)}. Take the
aggregator F such that φ ∈ F (J) if 0 or 1 agents has φ ∈ Ji and φ /∈ F (J) if more than one
agent has φ ∈ Ji. F is clearly satisfies (WR), (A), and (N). Thus, F (J) is {¬A,A & B},
which is inconsistent in MALL.
ii) The argument above holds also when dropping independence (I). The only difference is
that the function h that characterizes the formulas in F (J) may vary for each profile J.
iii) From left to right, assume that ΦMALL satisfies the SSMP and that F (J) is inconsistent.
Then F (J) contains φ and ¬φ against complement-freenes of F . �

Again, due to the lack of weakening, if we only assume consistency, the conditions of
SMP and SSMP are not necessary for preserving consistency. For instance, the agenda
{A & B,¬(A & B),¬A ⊕ ¬B,¬(¬A ⊕ ¬B), C,¬C} does not satisfy the SMP, since
A & B is equivalent to ¬(¬A ⊕ ¬B), however we can show that F is consistent on that
agenda.

We conclude this section by noticing that the previous results still applies even if we
restrict to the multiplicative fragment of MALL, i.e. they hold for MLL.

Proposition 26. MLL is not safe for MAJ.

This fact can be shown by noticing that the example in the proof of Theorem 22 is in
fact in MLL.

Again, the median property is adequate to ensure consistency. For example, we have
the following result.
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Proposition 27. ΦMLL satisfies the median property iff it is safe for MAJ.

Moreover, analogous results can be provided for the intuitionistic version of MALL and
MLL.

7.1. The case of additive linear logic. We can now state an interesting possibility result
for ALL. We assume that each judgment set is also complete. We can show that the
majority rule is always robustly consistent on agendas in ALL. The key property for stating
this result is the following.

Property 28. In additive linear logic (ALL) every provable sequent contains exactly two
formulas (e.g. A ` B).

This property has been noticed in Hughes and van Glabbeek (2003).17 If we inspect the
additive rules, we see that they cannot add any new proposition. Thus, since every proof
starts with axioms A ` A, every provable sequent contains two formulas of ALL. This
easily entails that there are no minimal inconsistent multisets of size bigger than 2 in ALL:
if J is inconsistent in ALL, then J ` is provable in ALL. Thus, every agenda in ALL is safe
for MAJ.

Theorem 29. ALL is safe for MAJ.

Proof. Let ΦALL any agenda in ALL. Since in ALL every provable sequent contains exactly
two formulas, if ΦALL contains an inconsistent set Y , then Y must contain exactly two
propositions, otherwise Y ` would contradict Property 28. Therefore, any agenda in ΦALL

satisfies the median property, thus the majority rule is always robustly consistent. �

Example. For instance, the agenda {A,B,A& B,¬A,¬B,¬(A& B)} does not violate
the median property in ALL. This is due to the fact that A,B,¬(A&B) is not inconsistent
in ALL, since A,B ` A&B is not derivable, hence A,B,¬(A&B) ` is not provable.

It is worth stressing that Theorem 29 is a possibility results for a logic, i.e. ALL – that is
a set of inference rules – and not just for a restriction of the language of the agenda, as
usual in JA literature (cf. List and Puppe (2009)). This is evident by noticing that ALL is
no longer safe for MAJ, in case we add weakening (W) to the reasoning power of ALL. In
presence of weakening, the multiplicative conjunction entails the additive one (cf. Girard
(1995)): A ⊗ B ` A & B; that is the reason why ALL plus W is no longer safe, as the
following proof shows.

Proposition 30. The logic ALL W is not safe for MAJ.

Proof. Take the agenda in ALL that includes {A,B,¬(A & B)}. In ALL W, we have the
following proof.

A ` A B ` B ⊗R
A,B ` A⊗B

A ` A
W L

A,B ` A
B ` B

W L
A,B ` B

&R
A,B ` A&B

⊗L
A⊗B ` A&B

cut
A,B ` A&B

¬ L
A,B,¬(A&B) `

17This property holds, provided we do not include the logical constants for true and false in the language of
ALL.
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The right branch of the tree is in fact the proof that shows that A ⊗ B in entails A & B
in the presence of weakening. Therefore, there is an agenda in ALL that is not safe for the
MAJ rule evaluated on ALL W. Thus, ALL W is not safe for MAJ. �

Proposition 30 does not depend on the language of the agenda, the language is still defined
as a subset of ALL. Thus, language restrictions may not be sufficient to guarantee con-
sistency and to analyze the rationality of the outcome of an aggregation procedure. The
proof-theoretical analysis is more fine grained and allows for assessing which inference
rules are responsible for failures in preserving consistency. In particular, Propositions 30
shows that there are minimally inconsistent multisets of cardinality 3 when reasoning in
ALL plus W, whereas there are none when reasoning in ALL.

The situation of weakening W contrasts with the following case. By adding contraction
to ALL, agendas in ALL C are still safe. The reason is that contraction can only shrink the
number of formulas in a provable sequent: If there is no provable sequent with more that
two formulas in ALL, the same holds for ALL C.

Proposition 31. The pair ALL C is safe for MAJ.

In fact, contraction entails thatA&B ` A⊗B, which does not cause any problem with
the consistency of the majority rule.

Since ALL provides a possibility result for the majority rule, it is worthy to discuss
whether this fact extends to larger classes of functions. We show that this is not the case.
The following proofs adapt the constructions presented in Endriss et al. (2012).

Proposition 32. The following facts hold.
(1) ALL is not safe for (WR,A,N)
(2) ALL is not safe for (WR,A, I).
(3) ALL is not safe for (A,N, I,M) (quota rules).

Proof. 1. We show that there is an agenda in ALL and an aggregator that satisfies the
axioms above that return an inconsistent outcome. Take the agenda in ALL that consists
of {A,¬A,A & B,¬(A & B)}. Consider a profile with 3 agents such that agent J1 =
{¬A,¬(A & B)}, J2 = {A,A & B} and J3 = {A,¬(A & B)}. Take the aggregator F
such that φ ∈ F (J) if 0 or 1 agents has φ ∈ Ji and φ /∈ F (J) if more than one agent
has φ ∈ Ji. F is clearly satisfies (WR), (A), and (N). Thus, F (J) is {¬A,A & B} , and
¬A,A&B `.
2. Suppose the agenda contains two just two propositionsA andB such thatA ` B in ALL
and A 6= ¬B. Take the constant function F that for every profile accepts A while it rejects
B. This function is anonymous, independent and weakly rational, however the outcomes
violates consistency.
3. It is enough to set the threshold for acceptance to q ≥ 1 (i.e. take the union of all
formulas that are accepted by at least one agent) to make the collective set inconsistent on
any agenda in ALL. �

However, by restricting the possible threshold of quota rules to the super-majoritarian
quota, a possibility result can be achieved.

Proposition 33. ALLC is safe for (A,N, I,M), for Fm with m > n
2

Proof. Since any agenda in ALL satisfies the median property, inconsistent sets have car-
dinality 2. A quota rule Fm preserves consistency whenever m > n − n

k , where k is the
size of the largest inconsistent set in ALL. Thus, Fm is consistent for agendas in ALL if
m > n

2 . �
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Therefore, reasoning in ALL does not provide new possibility results for classes of ag-
gregators that significantly depart from the majority or the super-majority rule. The reason
is that consistency in ALL tightly corresponds to the median property, which is the condi-
tion that preserves the majority rule from inconsistency.

Once we extend the class of aggregation procedure, the median property is no longer
sufficient to guarantee consistency. In order to guarantee consistency, we need then to
apply further restrictions on the agenda in ALL that strengthen the median property, i.e. the
SMP and the SSMP, cf. Endriss et al. (2012).

Proposition 34. The following facts hold:
• i) ΦALL satisfies the SMP iff it is safe for (WR,A,N, I).
• i) ΦALL satisfies the SMP iff it is safe for (WR,A,N).
• ii) ΦALL satisfies the SSMP iff it is safe for (WR,A, I).

We conclude this section with a positive result concerning acceptance-rejection neu-
trality. We focus on the case in which individual judgements sets are just assumed to be
robustly consistent (i.e. they do not need to be complete). Dietrich and List (2009) have
shown that every aggregator that is acceptance-rejection neutral and consistent is a dicta-
torship of some individual (namely, the aggregator always copies the judgements of some
individual). The theorem does not hold for the majority rule, provided we evaluate it w.r.t.
to ALL. Therefore, the majority rule is an acceptance-rejection neutral aggregator that
preserves robust consistency.

Proposition 35. ALL is safe for (arN).

8. JUDGMENT AGGREGATION IN RELEVANT LOGICS

We discuss now the extension of linear logic to relevant logic. In this case, judgments
form multiset again. We assume that the individual judgments are complete. For R, weak-
ening does not hold, therefore the condition of robust consistency is required. The full
language of R, that includes multiplicative and additive connectives (i.e. intensional and
extensional), behaves as linear logic, thus, we have again the following results.

Theorem 36. R is not safe for MAJ.

Proof. It is sufficient to use the argument in the proof of Theorem 22. �

Moreover, the median property provides again a suitable condition for the consistency
of the majority rule.

Proposition 37. ΦR satisfies the median property iff it is safe for MAJ.

General possibility results can be obtained by restricting to AR, the additive fragment
of relevant logic. We extend the possibility result for ALL to the additive fragment of R by
proving it by means of the Hilbert system.

Lemma 38. In HMALL, the axiom for contraction (C): ` (φ( (φ( ψ))( (φ( ψ)
is derivable iff the following rule of contraction (HC) is:

{Γ, φ, φ} ` ψ
HC{Γ, φ} ` ψ

Proof. Assume the axiom C holds. We derive the rule HC. Assume {φ, φ} ` ψ. By the
deduction theorem, we have that ` φ( (φ( ψ) is derivable. By the axiom (C) and the
(-rule, we can derive:
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• ` φ( (φ( ψ) (hypothesis)
• ` φ( (φ( ψ)( (φ( ψ) (axiom (C))
• ` φ( ψ ((-rule)

Thus, by the deduction theorem, we have that {φ} ` ψ.
In the other direction, HMALL plus the rule (HC) derives (C). We show that the axiom (C)
can be derived as follows. In HMALL, it is derivable that: {φ, φ, φ( (φ( ψ)} ` ψ. By
applying (HC), we obtain that {φ, φ( (φ( ψ)} ` ψ, which by the deduction theorem
entails ` (φ( (φ( ψ))( (φ( ψ). �

Moreover, if we assume axioms (D1) and (D2), then by the deduction theorem, we have
that:

• (HD1): {A& (B ⊕ C)} ` (A&B)⊕ (A& C)
• (HD2){(A&B)⊕ (A& C)} ` A& (B ⊕ C)

We can now extend Property 28 to AR as follows.

Property 39. In AR every inconsistent set has cardinality 2.

Proof. We know that in ALL, every provable sequent has cardinality two. Since the sequent
calculus MALL and its Hilbert systems are equivalent, that entails that if Γ ` ⊥ in HMALL,
then Γ contains exactly at most two formulas. The Hilbert system for R is obtained by
adding to HMALL the rule (HC), (HD1) and (HD2). It is easy to see that none of this can
increase the number of formulas in a derivation. �

We can now show that the additive fragment of R is safe for MAJ.

Theorem 40. AR is safe for MAJ.

Proof. By Lemma 38 and Property 39, every minimally inconsistent set in AR has cardi-
nality 2. Thus, every agenda in AR is safe for MAJ. �

The other safety results and the characterisation of safe agendas can be easily restated
for the case of R. Many systems of relevant logics have been discussed in the literature, cf.
Anderson et al. (1992); Restall (2002). A dedicated treatment of judgment aggregation in
relevant logics is left for future work.

9. EXTENSIONS TO OTHER LOGICS

We have approached JA in substructural logics as they allows for covering a significant
number of non-classical logics. As we discussed, any extension that allows for weakening
is going to suffer of the analogous problems of aggregation of classical logic. It is however
possible to look for extensions of the reasoning power of ALL and AR—for which safety is
ensured— to other logics that lack weakening. An interesting minimal class of fuzzy logics
can be defined as an extensions of MALL. The class of uninorm fuzzy logics is obtained
from HMALL by adding, besides distributivity, the linearity axiom, which can be written
in our notation, by means of the axiom (L): (A ( B) ⊕ (B ( A) (cf. Metcalfe et al.
(2008), p. 54). As the axiom does not increase the number of formula in a derivation, it is
in principle possible to extend our treatment and the safety results of the additive fragment
to uninorm fuzzy logics.

Another reasonable extension is to discuss the case of the logic of bunched implication
BI Pym (2013) which have significant applications in computer science. From an axiomatic
perspective, this logic is close to the relevant logic R—since its additive conjunction and
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disjunction are distributive— (cf Paoli (2002), p. 130). Moreover BI blocks weakening at
the general level and it separates additive and multiplicative connectives. Thus, it appears
a good candidate for extending the safety results of ALL. However, BI combines an intu-
itionistic implication and a substructural implication. That is, the additive implication of BI
is more poweful than the additive implication of LL. In particular, the additive implication
of BI is in fact an intuitionistic implication that is related, by the adjunction A ∧ B  C
iff A  (B  C), to the additive conjunction. This causes Property 28 to fail for the
additive fragment of BI, since A,A B,¬B is inconsistent in BI. Therefore, BI is not in
general safe for the axioms that characterise the majority rule. Adding a strong negation to
the intuitionistic fragments that we have explored is also a viable extension to justify the
completeness assumption concerning the individual judgments. The axioms that capture
a strong constructive negation — see Wansing (2007)— preserve Proposition 28, thus in
principle adding a strong negation provides a viable extension to intuitionistic ALL and
AR.

9.1. Two-logics judgment aggregation. The modelling that we have introduced enables
the definition of aggregators that link profiles of judgment expressed in a certain logic
to collective outcomes expressed in a possibly different logic. In particular, our previous
results can be extended to aggregation procedures that takes profiles of judgments that are
defined on agendas in classical logic and return judgments in ALL or AR. Firstly, note that
classical logic is obtained, for instance from ALL, by adding weakening and contraction.
Thus, any agenda in ΦALL can faithfully represent the deductive structure of a classical
agenda once we reason on its formulas of by means of ALL plus contraction and weakening
(ALL C W) . By adding weakening and contraction, the multiset of formulas of the agenda
in ALL is deductively equivalent to a set, since multiple occurrences of a formula can be
identified by means of contraction (C).

By inspecting the proofs of Theorem 29 and 40, one can see that the proof still holds
in case individual reasoning in ALL or AR is extended to individual reasoning in CL. The
reason is that, by reasoning in CL more theorems (more sequents) can be derived, thus,
in principle, there are more provably inconsistent sets. However, individual judgements
are assumed to be robustly consistent —that in this case coincides with standard con-
sistency because of weakening and contraction— therefore, although more (individually)
inconsistent sets may be derived in classical logic, they are all prevented by the (robust)
consistency assumption. For those reasons, we obtain safety results for MAJ and pairs of
agendas (ΦCL,ΦALL) and (ΦCL,ΦAR), which entails the following result.18

Corollary 41. (of Theorem 29 and 40). The pairs of logics (CL,ALL) and (CL,AR) are
safe for MAJ.

Recall that a pair of logics is safe for a certain class of axioms if for every agenda
defined on the fist logic, every aggregation functions that satisfies those axioms returns
sets of judgments that are robustly consistent when assessed with respect to the second
logic (cf. Definition 10).

By assuming that individuals reason by means of classical logic, we are meeting the
assumptions of the standard model of JA and of the impossibility result in List and Pettit
(2002). Therefore, by assessing collective rationality in a logic that is significantly weaker
that classical logic, i.e. ALL or AR, we can actually circumvent the classical impossibility
result of List and Pettit (2002). By assessing collective rationality in ALL or AR, we can

18In this case, the aggregation procedures basically associate profiles of sets to mutlisets, this is done by
viewing the set that would be the output of the aggregation procedure as multiset with multiplicity one
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guarantee the preservation of a consistency property from the individual judgments to the
collective judgments: if the individual judgments are consistent w.r.t. classical logic, then
the majority rule provides judgments that are consistent w.r.t. additive linear or relevant
logic.

This strategy for circumventing impossibility results maintains all the normative axioms
of the majority rule, it only weaken the notion of rationality that is suitable for collective
entities.

One may wander what happens if we weaken the logic that models individual reasoning
while keeping a strong logic that assesses the collective outcome, for instance if individuals
reason by means of ALL and the outcome of the majoritarian aggregation is assessed by
means of CL. In this case, the preservation of (robust) consistency is lost. In particular,
suppose that {A,B,¬(A & B)} is the outcome of the majority rule: it is not inconsistent
in ALL, but it is in CL, once we enable also weakening (W).

10. RELATED WORK

A number of articles that investigate logics for judgment aggregation are related to this
paper. Proof-theoretical methods in social choice theory and judgment aggregation have
been previously used to provide formal proofs of important theorems such as Arrow’s
theorem. Hilbert system presentations have been used in Ågotnes et al. (2011) and Ciná
and Endriss (2015), and natural deduction for modal logics of JA has been introduced
in Perkov (2016). The use of proof-theory —and in particular of sequent calculi— for
modeling collectively accepted beliefs has been developed by Hakli and Negri (2011),
although the logic that has been introduced there admits weakening. The use of sequent
calculi for modelling inferences in judgment aggregation has been introduced in Porello
(2012, 2013).

Logics for judgment aggregation have been mainly developed as modal logics that ex-
tend classical propositional reasoning, e.g. Pauly (2007) uses non-normal modal logics
to axiomatize the majority rule and Ågotnes et al. (2011) and Ciná and Endriss (2015)
use (normal) modal logics to prove theorems in judgment aggregation. However, a small
number of articles discussed non-classical logics related to judgment aggregation. Gödel-
Dummett Logic has been used to compare judgment and preference aggregation by Grossi
(2009). Gödel-Dummett logic is an extension of intuitionistic logic, therefore weaken-
ing holds; from the perspective of the safety of a logic for a set of axioms, this case is
comparable to the case of intuitionistic logic. Moreover, recent work discusses judgment
aggregation within the framework of argumentation theory, that is based on default logics,
see for instance Caminada and Pigozzi (2011).

Finally, a recent work that extends the general model of judgment aggregation of Diet-
rich (2007) to the case of nonmonotonic logics is Wen (2017). The impossibility results
of Dietrich (2007) are there extended to the case of nonmonotonic logic. Here, we have
approached non-monotonicity from the perspective of substructural logics, that is, we have
discussed logics that lack weakening. Notice that, as we have argued, the lack of weak-
ening is not sufficient for the possibility results of Theorem 29 and 40. The distinction
between multiplicatives and additives (or intensionals and extensionals) and the restric-
tion to the additives is required. Multiplicative linear logic lacks weakening, however it
does not guarantee the consistency of the majority rule. A comparison between the treat-
ment of non-monotonicity in substructural logics (i.e. the lack of weakening) and the non-
monotonicity of default logics and of nonmonotonic logics requires a dedicated treatment
and it is left for future work.
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Another example of non-classical logic —or more precisely of non-classical definition
of the conditional— in judgment aggregation is the approach based on subjunctive im-
plications of Lewis’s conditional logic by Dietrich (2010). The motivation for studying
subjunctive conditional is close to the motivations of this paper — and of a number of
non-classical logics— that is, that of exploring meanings of conditionals that are close to
the meaning of implications used by human agents and that do not suffer of the paradoxes
of classical material implication. For subjunctive implications, Dietrich shows possibility
results for quota rules. Moreover, the notion of relevant premises in a judgment aggrega-
tion problem has been discussed in Dietrich (2015) by tuning the axioms of aggregation
procedures. Here, we have approached the problem of relevance by studying judgement
aggregation within relevant and linear logics, that is, by introducing suitable logical oper-
ators.

An important group of articles that is related to the analysis of this paper is the semantic
approach to logics for judgment aggregation due to Dietrich (2007). In particular, Diet-
rich (2007), Dietrich and Mongin (2010) and Mongin (2012) discuss JA with respect to a
“general logic”, that includes a number of significant logics, providing an important step
towards generalizing the model of judgment aggregation. The methodology they use is
algebraic: a logic is defined by means of a (semantic) consequence relation that satisfies
a number of desiderata that are met by a variety of logics (e.g. by classical logic and by
many modal logics). In particular, the consequence relation is there assumed to be mono-
tonic, which is equivalent to assuming weakening from a proof-theoretical perspective.
The results of Dietrich (2007) provide a general impossibility for judgment aggregation
for logics that are monotonic (besides the other conditions). Moreover, a similar algebraic
approach for nonmonotonic logic has been developed in Wen (2017). The case of linear
and relevant logics still escape a straightforward reformulation of the approach by Dietrich
(2007) due to the distinction between multiplicatives and additives. A close comparison
with the semantic approach proposed by Dietrich and in Wen (2017) requires a dedicated
future work.

Another interesting algebraic approach to discussing JA in a variety of logics is given
by Herzberg (2013) and Esteban et al. (2015). In that case, the treatment applies to a wide
class of distributive logics, thus our sections on linear logic may provide an extension of
their analysis, once rephrased in their algebraic counterparts.

11. CONCLUSIONS AND FUTURE WORK

We have seen an overview of results for judgment aggregation in a number of important
non-classical logics. For monotonic logics —that are here understood as logics that satisfy
weakening, e.g. for intuitionistic logic and for extensions of classical logic— we have
seen that a simple rephrasing of the usual modelling of JA is sufficient to establish the
expected results. For the case of non-monotonic logics —e.g. Lambek calculus, linear
logic, and relevant logics— the modelling requires a careful examination of the consistent
sets of formulas and of the operational meaning of logical connectives, in order to adapt
the standard characterisations of safe agendas (e.g. the median property).

By studying JA in weak logics, and by means of a proof-theoretical approach, a fine-
grained analysis of the inferences that are responsible of collective inconsistency can be
provided. We have seen that by defining agendas in the additive fragment of linear or
relevant logic, general safety results are viable. However, adding weakening is sufficient
for collective inconsistency to stike back. By contrast, contraction does not affect safety
results.
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We have also seen that even if individuals reason by means of the full power of classical
logic —as in the standard JA setting— it is nonetheless possible to asses collective ratio-
nality with respect to the additive fragment of linear or relevant logic, in order to preserve
consistency. Understanding collective rationality with respect to a weak logic provides
then a way to circumvent the impossibility theorem provided by List and Pettit (2002), at
least in the sense that discursive dilemmas are no longer construed as a problem of logical
consistency. Substructural reasoning provides a rationalization of classical collective in-
consistencies, thus the problem of ascribing irrational attitudes to collective entities —that
threaten an aggregative view of collective agents, see for instance List and Pettit (2011)—
is prevented by the use of substructural reasoning. A detailed analysis of discursive dilem-
mas from the perspective of substructural logics in left for future work.

We did not discuss here the computational complexity of the decision problems involved
in our setting. For the systems that we have introduced, the computational complexity of
theorem proving is known, therefore, it is possible in principle to adapt the treatment of
Endriss et al. (2012) to the non-classical logics. For instance, multiplicative additive linear
logic is known to be PSPACE-complete. From that, one can approach the computational
complexity of checking whether an agenda of propositions in MALL has the median prop-
erty by adapting the arguments in Endriss et al. (2012) (e.g. Lemma 20).

We have covered a representative number of significant non-classical logics and of non-
classical connectives that can be in principle applied to model specific aggregation prob-
lems. For instance, we have introduced an order-sensitive implication that may capture
dependencies between propositions in the agenda, a resource-sensitive implication that
captures a number of aspects of causality and resource sensitivity, and we presented rele-
vant implication that captures the connection between the antecedent and the consequent
of true implications. We have only marginally discussed a number of logical systems that
can be obtained as extensions of linear or relevant logic. The case of many-valued and
fuzzy logics and the case of paraconsistent logics have been discussed here only within the
substructural perspective. An extension of the present treatment to further logical calculi
is the matter of future work.
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