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Abstract
This articles explores the mereological foundation of truthmaker se-
mantics. Building upon Kit Fine’s abstract theory of part in [16], we
engage in an exploration of the mereological assumptions that deter-
mine the construction of truthmaker semantics. Our approach yields
semantics for a diverse range of logics, including substructural log-
ics such as the associative Lambek calculus, as well as the logics of
analytic containment. Furthermore, we elucidate the philosophical
implications that arise from this pioneering approach.
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Introduction
Truthmaker semantics (TS) has garnered significant attention from philosophers
and logicians, who are increasingly drawn to its potential for interpreting estab-
lished logics or forging novel ones. Fine traces the truthmaker approach back
to van Fraassen’s fact-based semantics in [36] that interprets the exact content
of classical logic formulas. But TS are also valuable for designing non-classical
logics, particularly for analytic containment, cf. [15].

Although there are many variants of TS, a number of common traits can be
highlighted (see [12, 17, 13, 14, 18, 22, 27]). TS are compositional semantics that
adopt a mereological structure, given by a state space pS,Ďq, where S represents a set
of ‘states’ and Ď is a parthood relation. Ultimately, the underlying philosophical
intuition behind TS is that propositions should be construed as sets of states,
imbued with a fundamental mereological essence (for philosophical discourse,
see [21]). However, the ontology of states and the characterisation of parthood
are somehow abstract to allow for various interpretations. Parthood is typically
a partial order, i.e., a reflexive, antisymmetric, and transitive relation, cf. [17]1,

1This assumptions correspond to the “ground mereology”, which is termed “standard”
in [38].
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while the state space is often assumed to be complete, ensuring the existence of
least upper bounds (l.u.b.s) for sets of states. Given this technical assumptions, the
clauses of TS associate sets of verifiers (falsifiers) to each formula of the language
at issue, producing a relation of truthmaking (falsemaking) between a formula and
a set of verifiers (falsifiers) which entertain mereological relations. In particular,
depending on the chosen relation of verification we want to model, TS may be
proposed in exact and inexact versions: the exact verification (falsification) of
a formula provides the sole states that verify (falsify) it, whereas the inexact
verification includes larger states, w.r.t. the parthood relation.2

This article embarks on an exploration of TS where the relation of parthood and
the composition operation between states are not the standard ones. Specifically,
we delve into semantics that are rooted in spaces featuring distinct properties
of state composition, deviating from the ones dictated by standard mereology.
Thus, by embracing this approach, we unlock the capacity to model a plethora
of non-classical logics, extending the boundaries of TS and accommodating a
broader range of logical systems. As we anticipated, the flexibility of TS for
capturing various logical systems has been demonstrated in numerous studies,
spanning from intuitionistic logic [17] and logics of containment [13] to, most
recently, substructural logics [22, 28]. However, we are interested in anchoring
this flexibility to mereology.

Hence, our aim, in particular, is to connect two very lively fields: TS and
non-standard mereologies. Today many philosophers are advancing alternative
mereological frameworks to address purportedly counterintuitive consequences
of the standard theory. Exploring the interplay between these debates and the
evolution of TS promises novel insights.

The article is organised as follows. Section 1 gives an overview of the principles
of TS, while Section 2 explains our application of non-standard mereologies to
generate new TS. Sections 3, 4, and 5, focus on an in-depth exploration of Fine’s
theory of part advanced in [16], which serves as the basis for studying TS based
on standard as well as non-standard mereologies. We adapt Fine’s approach
in the third section by introducing the concept of a pre-mereological space, i.e.,
a set of states equipped with an abstract composition operation, and defining
corresponding parthood relations. Then, we develop two ways of modeling non-
standard composition operations: (i) as “vertical operations” that, given a bunch
of objects, yields their summation as the output; and (ii) as “horizontal” binary
ones that, given two bunches of objects, generate their fusion.3 Next, in Section
6, we apply this abstract framework to construct TS. We take a pre-mereological
space with its composition operation and part-whole relation, and incorporate
them into a state space along with a valuation function. This allows us to generate
TS based on standard and non-standard mereologies for various logics, including

2In this article, we will limit our attention only to TS based on an exact form of
verification. But see [12] for a plea of inexact truthmaking.

3The vertical/horizontal jargon was introduced by Fine in [16].

2



substructural logics based on their monoidal frames. Examples of the logics
for analytic containment and associative Lambek calculus are presented in this
section. Finally, Section 7 summarises the philosophical outputs of our work. We
end the article by wrapping up the conclusions and indicating future work.

1 Truthmaker semantics
From a technical viewpoint, like any mathematical structure that serves as model
theory, TS can be viewed as a set of mathematical definitions that characterise
a certain class of structures. However, at least from our standpoint, the true
character of TS, which distinguishes them with respect to various other semantic
theories (like Frame Semantics [25], Routley-Meyer Semantics [2], or Phase Se-
mantics [20]), lies in the genuinely mereological understanding of the semantic
structures and the implications it carries. The state space, which is the structure
required for TS, is indeed intended as a mereological space, not just any rela-
tional or algebraic structure. The mereological character of the formal structure
is aligned with the philosophical understanding of the endeavor of providing
semantics to statements. The TS framework is an objectual approach to semantics:
it regards the statements’ truth-conditions as entities — not just as clauses, as in
[10] (cf. also [18], pp. 557-558). In particular, according to TS, truth-conditions
are states, i.e., fact-like entities, which compose the worlds we live, and stand in
the relation of truthmaking to the statements they make true.

These states are gathered within the state space, and, crucially, they engage in
mereological relations of parthood, composition, or fusion. Moreover, the space
must meet certain requirements (closure or convexity, cf.[13], pp. 628-631).

This theoretical shift in semantics has a fundamental consequence: mereology
and logic become closely tied together by setting a correspondence whose core is
TS:

mereology logic

That is, the properties of the mereological relations affect the definitions of the
logical constants and vice versa.

To see this more precisely, let’s focus for a moment on the standard (exact)
semantic clause for the verification of conjunctions given by Fine (see [17], p. 552):

(^) A state verifies ϕ^ψ if and only if it is the fusion of a state that verifies ϕ and
a state that verifies ψ.

Now suppose that we abstract from the definition of fusion (which is defined as
the least upper bounds with respect to parthood in [17]) and consider two distinct
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operations of composition: a commutative one ‹1 and a non-commutative one ‹2.
With these two operators at hand, the order of the conjuncts becomes important in
formulating the clause. Indeed, for the non-commutative operation ‹2, the clause
can be rewritten in two non-equivalent forms:

(^‹2
1 ) A state verifies ϕ^ψ if it is the ‹2-composition of a state that verifies ϕ and

a state that verifies ψ;

(^‹2
2 ) A state verifies ϕ^ψ if it is the ‹2-composition a state that verifies ψ and of

a state that verifies ϕ.

The two clauses are not equivalent since ‹2 is not commutative. Instead, they are
equivalent if we use the commutative operator ‹1. This illustrates how the choice
of a composition operator directly impacts the semantics and its logical features.

This perspective extends to the definition of other logical constants and affects
the understanding of the relation of logical consequence and of the concept of
validity.

These remarks underscore how the TS project entangles the two fields of logic
and mereology. For these reasons, applying non-standard mereologies to TS
appears natural and promises to make some advancements from both a logical
and philosophical point of view.

2 Non-standard mereologies
There are many formal theories of parthood in the literature (for a brief overview,
see [38]; for a long one, see [9]). The most famous one is the so-called classical
mereology (see [9], ch. 2 for some axiomatisations), but it is worthless to say that
it has several rivals (cf. [7] to consider some counterexamples to its principles).

Presently, there is considerable interest in exploring non-standard mereolo-
gies that abandon or revise some standard principles. These theories strive to
explain the part-whole relation, typically positing a primitive parthood relation
and specifying its assumed properties.

Recall that TS are usually exhibited by providing a state space, i.e., a mereolog-
ical frame constituted by a set of verifiers and falsifiers ordered by the standard
parthood relation (i.e. a partial order) and equipped with a composition opera-
tion. Because the standard mereological space is a semi-lattice,4 it is easy to define
the composition operator, called fusion, by taking the least upper bounds of any
(non-empty and finite) set of states (w.r.t parthood). Then, based on the different
logical needs, this structure is enriched with other relations (or operations) and
new conditions over the set of states to capture the syntax well and to prove the
usual meta-theorems.

4A semi-lattice is a reflexive, transitive, and anti-symmetric relation, with least upper
bound for each non-empty finite subset.
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As we shall see in detail in Section 6.2, for non-standard mereologies, parthood
does not always ensure a straightforward definition of composition as the least
upper bound. That is, in principle, parthood and composition can be taken as
two separate ingredients of a TS. Thus, to work well as a TS, a structure should
include at least the following features: it should include a parthood relation,
which enables the definition of a number of verification and entailment relations
(e.g. exact, inexact, or loose, [13]), and a binary composition operator, e.g. the
fusion of two states, which serves to provide a compositional semantics of the
connectives, as suggested by Fine’s mereological analysis of logical constants that
we encountered in the previous Section.

Now, take Cotnoir’ and Bacon’s non-wellfounded mereologies advanced in
[8]. How can we generate a TS from them? Immediately, we face a challenge due
to the nature of their parthood relation, which is a preorder.5 In [8], this preorder
is compatible with three alternative compositions (cf. pp. 9-11). In this case, we
cannot define the fusion operator by simply taking the least upper bound, as it is
done in the standard case (lacking antisymmetry, there is no unique least upper
bound). Instead, we are compelled to deciding the composition operator among
the available ones within the specific mereology, and construct the TS later (the
technical details of this construction are not pertinent to our present goals).

Note that this does not mean that Cotnoir’ and Bacon’s mereologies are not
well-suited to generate TS. They do meet the condition of enabling composition
operators and parthood, thus allowing for the construction of a new TS. However,
we do so by delving into the specificity of the mereological theory at issue. A
more general and uniform method that enable us to construct TS from standard
as well as non-standard mereologies would be welcome.

Luckily, such a general and alternative approach to overcome this challenge
exists: we can take a step back and look for a more general setting to define
mereologies. Kit Fine proposed to model an abstract mereology by considering
an abstract composition operation as primitive, rather than the parthood relation
itself (cf. [16], §3). Fine’s primary motivation for this approach was rooted in
mereological pluralism and its inherent generality makes it well-suited to address
our specific task.

In the subsequent sections, we will demonstrate how this operationalist frame-
work allows us to encompass a wide range of composition operations and part-
hood relations that deviate from the classical ones. Instead of focusing on a
particular non-standard mereology, we embrace Fine’s comprehensive account
and leverage it to generate TS based on standard and non-standard mereologies
in a uniform way. Thus, with the remarkable flexibility offered by this general
theory of part, we can explore TS more expansively and overcome our initial
hurdle.

To conclude, for our goals, to properly function as a TS a parthood relation
and a binary composition operator are required. We shall embrace Fine’s abstract

5A preorder is a reflexive and transitive binary relation, lacking antisymmetry.

5



mereological approach, which allows for defining both and to investigate their
interconnections.

3 Pre-mereological spaces
In the previous section, we suggested implementing Fine’s theory of part to study
TS. Now, it is time to present it in a more detailed way. To achieve this, it is
indispensable to introduce the notion of pre-mereological space. We will work on
this in the present section, mainly following Fine’s treatise.

Fine’s framework does not explicitly address the concept of pre-mereological
spaces (but see its germs in [16], Sections 3,5 especially). We introduce this termi-
nology to emphasise that not every structure of this nature necessarily represents
a legitimate parthood relation or a composition operator comparable to the stan-
dard mereological frameworks. These relations often exhibit weaker properties
than those studied in standard mereology. Consequently, the question of whether
these structures qualify as genuine mereological systems becomes a philosophical
matter concerning the metaphysics of parts. Delving into this complex debate is
beyond the scope of our current discussion (but see [7, 33, 34] for some contribu-
tions on the topic).

A pre-mereological space can be understood as a generalisation achieved
by considering objects along with an operation of composition among them.
To illustrate this concept, let’s examine the Latin alphabet and the words that
we can compose. Intuitively, we can perceive a sense in which the letters M
and O combine to form the word MOM. However, this composition differs
from standard mereological fusion, as the order and multiplicity of the letters
play crucial roles in determining the result. For instance, MOM is distinct from
MMO or MO. While one could argue that this intuitive understanding aligns
with a genuine mereological relationship (as discussed by [16]), it is important
to note that this assertion is not immediately evident. Consequently, for the
purposes of our discussion, it is more appropriate to designate these relationships
as pre-mereological rather than making an absolute claim about their mereological
nature.

Informally, a pre-mereological space is a set of objects equipped with a com-
position operation (i.e. a function) Σ that takes a “bunch” of objects as input
and gives an object, their composition, as an output. To make this idea tech-
nically approachable, our first challenge is to elucidate our informal discourse
about “bunches” of objects. While it would be philosophically desirable to treat
the concept of a “bunch” as primitive, such an approach is formally unsuitable
for our goals, as the formal properties of a bunch are significant to define the
composition operations as functions, with explicit domains and codomains, and
to characterise their properties.

For the purpose of this paper, we may think of a bunch as a list or a string of
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entities, i.e. the order and the repetitions of the entities within a bunch counts.
Therefore, a composition operator is a function that takes the list of entities and
yields their composition.

Before introducing our definition of pre-mereological space, let’s revisit the
definition of Kleene algebra, or the algebra of strings, over a set of elements.

Definition 1 (Kleene algebra). A Kleene algebra on the set of generators A is the set
of all finite strings of elements of A. Formally, A‹ (the Kleene star of A) is the defined by
A‹ “

Ť

iě0 Ai, where A0 “ txyu, i.e. the set containing the empty string xy, A1 “ A, and
Ai`1 “ ta | a “ aia1 s. t. ai P Ai and a1 P Au. That is, A‹ includes the empty string and
all finite strings of elements of A.6

For example, we can take the set of letters A “ tM,Ou. A‹ includes all the finite
string (words) composed with letters M and O (e.g. M, and M,M, and M,O,M,
and O,M,M). Throughout this article, we shall use letters a, b, etc. to denote
elements of A and we use letters s, s1, r, t, etc. to denote strings of A‹. Moreover,
we use “,” to separate the elements of a string, e.g. a, b, c, d denotes a string.

Hence, a definition of pre-mereological space is this:

Definition 2 (Pre-mereological space). Let A be a set of objects, termed the generators
of the pre-mereological space, X a subset of the Kleene algebra A‹, and Y a subset of A.
Let also Σ : X ÝÑ Y be a composition operator that takes a string a1, . . . , an in X and
generates an element y in Y. The pair pA,Σ : X ÝÑ Yq is the pre-mereological space
generated by Σ over A.

The role of the set A is to include all the entities, both composing and composed,
that we take into account.

Let’s instantiate the pre-mereological space with a number of examples.

Example 1 (Strings). Consider a set of letters L and the strings (aka words) over
L, i.e. L‹. We can take L‹ as our set of generators, so that the Kleene algebra
required by the pre-mereological space is L‹ itself (since L‹‹ “ L‹). We can
define a composition operator Σ1: it takes a string of letters and generates a
word, the string itself. For instance, suppose M,O P L. Then, M,O,M P L‹ and
Σ1pM,O,Mq “ M,O,M. The resulting structure pL,Σ1 : L‹ ÝÑ L‹q is a trivial
pre-mereological space.

Example 2 (Multisets). Consider a set A of ordinary objects and all the multisets
whose elements are those objects. E.g. A “ ta, b, ta, a, bu, . . . u. Let X be the subset
of A‹ whose elements are lists of ordinary objects but not multisets. Also, let Y
be the set of multisets in A. Now, define the composition operator Σ2 : X ÝÑ Y
to be the function that, given a list of ordinary objects, yields the multiset with
those objects as elements (keeping fixed the exact multiplicity for each object).

6An important property of the Kleene star ‹ is its idempotency, i.e., for any set S,
S‹ “ pS‹q‹.
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Roughly, this function ‘forgets’ the order of the letters in the string and produces
their multiset. E.g. Σ2pa, b, bq “ Σ2pb, b, aq “ ta, b, bu. The structure pA,Σ2q is a
pre-mereological space.

Example 3 (Sets). Consider a set A of ordinary objects and all the sets whose
elements are those objects. Take X to be the subset of A‹ whose elements are
lists of ordinary objects but not sets. The codomain Y will be the set of sets in A.
Again, let’s define the composition operator Σ3 : X ÝÑ Y as the function that,
given a list of ordinary objects, yields the set with those objects as members. This
function ‘forgets’ both the order of the letters in the string and their multiplicity
and produces their set. E.g. Σ3pa, a, bq “ Σ3pa, b, bq “ ta, bu. The structure pA,Σ3q

is a pre-mereological space.

Example 4 (Pre-mereological loops). Consider a set A with elements a and b. Now,
we can define the composition operator Σ4 : A ÝÑ A, since A Ď A‹, such that
Σ4paq “ b and Σ4pbq “ a. The resulting structure pA,Σ4q is a pre-mereological
space, where composing a via Σ4 yields b, and vice versa. This means that, in this
space, an interesting phenomenon arises: a “pre-mereological loop” is formed,
where b is composed of a and a is composed of b, yet a , b.

This series of examples shows the flexibility of Definition 2. By forcing some
conditions on Σs, as we shall see, we can easily model different ways things can
be composed.

Before discussing some of the most natural and useful properties that Σs can
instantiate, let’s list a few definitions indispensable for our work.

Definition 3. Let P be a pre-mereological space. We say that:

• A state y P Y is Σ-simple iff there is no element x P X such that Σpxq “ y.

• A state y P Y is Σ-composite iff it is not Σ-simple.

• A state y P Y is Σ-composable iff y P X.

• A state y P Y is Σ-incomposable iff y < X.

Roughly put: Σ-simple states are not composed by anything; Σ-composable states
are in X, hence they can in turn be composed by Σ; Σ-incomposable states are not
in the domain ofΣ. Incomposable elements may occur when X Ă Y. In particular,
to facilitate our subsequent discussion, let us state the following definition:

Definition 4 (Σ-composable states). Let P “ pA,Σ : X ÝÑ Yq be a pre-mereological
space. The set of Σ-composable states of P, denoted ComppPq, is the intersection of
the domain and the codomain of Σ, i.e., ComppPq “ X X Y.
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Since the domain X of the composition operation Σ is a subset of A‹, we are
not committing to including the empty list, denoted by xy, into it. If it is there,
since Σ is a function, Σpxyq is an element of Y, let’s denote it by e. Notice that e is
Σ-composite.7

Now, equipped with these definitions, we begin our examination of the prop-
erties of pre-mereological spaces and Σs. Three fundamental conditions not ex-
plicitly explored in [16] are the following ones:

Condition 1 (String-closure). A pre-mereological space P “ pA,Σ : X ÝÑ Yq is
string-closed if the domain of Σ is the Kleene algebra of itself, i.e., X “ X‹.8

In our setting, since we are working with strings, string-closure is a fundamental
condition on a pre-mereological space, as it is essential to prove the completeness
of standard state space (cf. Section 6.1).

Example 5. The pre-mereological spaces of Examples 1, 2, and 3 are all string-
complete. In contrast, the pre-mereological space of Example 4 is not.

Condition 2 (Injectivity). Σ is injective iff for all x, x1 P X, if Σpxq “ Σpx1q, then
x “ x1.

Injectivity entails that each element of Y that is composed by something, it is only
composed by that something.9

Condition 3 (Surjectivity). Σ is surjective iff for every y P Y, there exist a x P X such
that y “ Σpxq.

By imposing the surjectivity, we can swiftly establish that each element of Y is
composed of some string; that is, each y is Σ-composite.

Other properties of Σ that are instead introduced in [16] are the ones reported
below:

Condition4 (Permutation). Σ is permutative iff for all . . . , a, . . . , a1, . . . and . . . , a1, . . . ,
a, . . . P X,

Σp. . . , a, . . . , a1, . . . q “ Σp. . . , a1, . . . , a, . . . q (PER)

In simpler words, when Σ is permutative, it ensures that for any pair of strings of
X that differ only in the order of elements a and a1, Σwill yield the same result.

7Embracing Fine’s operationalist interpretation, Σpxyq “ e amounts to stating that e is
the object that we get out of the empty string, so that e is an object made out of “nothing”.
“Nothing” in mereology is, of course, a delicate concept, cf., for instance, [5] and [4].

8Alternatively, this condition can be expressed by stating that X is string-closed if there
exists a subset A1 of A such that X “ pA1q‹.

9In particular, this entails that the “special” object e P Y is composed only by xy.
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Condition5 (Absorption). Σ is absorbing iff for all . . . , a, a . . . , a1, a1 . . . and . . . , a, . . . ,
a1, . . . P X,

Σp. . . , a, a, . . . , a1, a1, . . . q “ Σp. . . , a, . . . , a1, . . . q (ABS)

This condition entails that Σ does not count repetitions of elements of A in the
composition. The set-builder satisfies absorption, aa and a shall compose the same
object.10

Condition 6 (Collapse). Σ satisfies collapse iff

For all a P AX X, Σpaq “ a (COL)

This condition is prima facie reasonable because the composition of an object, which
is essentially a generator of A, is identical to that object itself. However, some
composition operators, like the set-builder t. . . u, do not respect it. The set-builder
t. . . u applied to x returns the singleton txu, that is different from x (see also [16]).

Condition 7 (Leveling). Σ satisfies levelling iff the following condition holds:

For all a1
1, . . . , a

1
n P X, if y “ Σpa1

1, . . . , a
1
mq then,

if a1, . . . , y, . . . , an and a1, . . . , a1
1, . . . , a

1
m, . . . , an P X,

Σpa1, . . . , y, . . . , anq “ Σpa1, . . . , a1
1, . . . , a

1
m, . . . , anq (LEV)

A composition that satisfies levelling is not hierarchical. As Fine points out
in [16], the standard mereological fusion meets levelling. There are, however,
composition operators that do not satisfy this property. One of them, for instance,
is the set-builder mentioned earlier, e.g. ttxuu , txu.

Finally, Fine describes the next condition (anti-cyclicity) as “if x can be built up
from x itself, then any intermediate whole Σp..., x, ...q involved in the construction
must itself be x (here,Σp..., x, ...q can occur at any depth withinΣp...,Σp..., x, ...q, ...qq”
([16], p. 568, emphasis ours). Before stating anti-cyclicity, it is worthwhile to
provide a compact notation to write down precisely the compositions nested at a
certain depth.

Definition 5 (Nested compositions). Given the strings s, s1, s j, s1 j P A‹, y, y j P A for
j P t1, . . . ,nu, we define recursively the following set of expressions to denote composition
Σs.

(base) Σ1ps, y, s1q :“ Σps, y, s1q i.e., no Σ occurs in s, y, s1

(step) Σ jps j´1, y j´1, s1 j´1q :“
Σps j´1,Σ j´1ps j´2, y j´2, s1 j´2q, s1 j´1q if y j´1 “ Σ j´1ps j´2, y j´2, s1 j´2q

10One can consider a stronger condition of absorption, where many occurrences of
substrings reduce to a single occurrence, e.g. when ...s...s... reduces to ...s.... The strong
version is equivalent to ABS in presence of PER.
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Hence, by writing Σnpsn´1, yn´1, s1n´1q, we are supposing that Σ is defined on
all the required strings. To compute the denotation of the expressionΣn, we use the
two clauses of the inductive definition. For example,Σpa1, . . . ,Σpb1, . . . ,Σpc1, . . . , cnq,
. . . , bmq, . . . , akq is obtained fromΣ3pa1, . . . , y, . . . , akq, where y “ Σ2pb1, . . . , y1, . . . bmq

and y1 “ Σ1pc1, . . . , cnq. The notation also indicates the depth of the nesting, e.g. 3
in the previous example.

Condition 8 (Anti-cyclicity). Σ is anti-cyclic iff whenever there is a natural num-
ber m P N and strings s, s1, s j, s1 j P A‹, y j P A, for j P t1, . . . ,mu, such that
Σmpsm´1, ym´1, s1m´1q “ y and Σ1ps, y, s1q “ Σps, y, s1q, then the following condition
holds:

For all 2 ă j ă m, Σ jps j´1, y j´1, s1 j´1q “ y (ACY)

When the context is clear, to simplify the notation, we shall write Σps, . . . ,Σpr, . . . ,
Σp..., y, ...q, . . . , r1q, . . . , s1q to indicate a Σn term. This simplification also eases the
comparison with the notation in [16].

The notion of anti-cyclicity plays a significant role in preventing pre-
mereological loops within a composition. In essence, it states that if an object
y can be derived from itself through compositions nested at any level, then each
intermediate composition Σp. . . , y, . . . q within this nesting must ultimately result
in the same individual y (cf. [16], §3). In [16], anti-cyclicity is indeed closely
connected to the well-foundedness of the corresponding parthood relation. In
a well-founded theory, the antecedent of anti-cyclicity cannot be satisfied, ren-
dering the condition trivially true. Furthermore, assuming that the composition
operator is anti-cyclical has the added consequence of supporting the establish-
ment of anti-symmetry within the parthood relation, as we will explore further in
subsequent sections.

3.1 From pre-mereology to mereologies
It is time to elucidate how to define the parthood relations from a pre-mereological
space. A strategy proposed by Fine (cf. [16], pp. 567-568), provides a compelling
technique that always yields a preorder — a reflexive and transitive relation. In
fact, one could argue that it is almost too powerful, as there are cases where we
require weaker parthood relations that do not even satisfy the properties of a
preorder (as discussed in works such as [23], [31], [37]). To handle this case, Fine
revises his definition of parthood in [16], p. 580.

We restate Fine’s definition of component and parthood. Given any pre-
mereological space P “ pA,Σ : X ÝÑ Yq, we define component and parthood as
relations on Yˆ Y, as follows.

Definition 6 (Component). We say that y in Y is a component of y1 in Y iff
Σp. . . , y, . . . q “ y1, for at least one list . . . , y, . . . in X that includes y.
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Examples of components are the elements of a set w.r.t. the set-builder or the
parts of a whole w.r.t. mereological fusion. It is worth noting that the component
relation is not necessarily reflexive. For instance, consider the set builder Σ3 of
Example 3 as a composition operator. In that case, given a string s “ o1, . . . , on in
X, Σ3psq “ to1, . . . , onu. However, due to our definition of Σ3, there is no list in
X that contains to1, . . . , onu, as X contains only lists of ordinary objects, not sets.
Consequently, to1, . . . , onu is not a component of itself, as there is no list containing
to1, . . . , onu in X such that Σ3p. . . , to1, . . . , onu, . . . q “ to1, . . . , onu.

By means of components, parthood is defined.

Definition 7 (Part). We say that y in Y is a part of y1 in Y iff there exists a sequence
y1, y2, . . . , yn of elements of Y (with n ě 1) such that, y “ y1, y1 “ yn and for each yi
and yi`1, i ď n, yi is a component of yi`1. If y is part of y1, we write y Ď y1.

Definition 7 produces parthoods that are always preorders, i.e. (i) reflexive
and (ii) transitive. (i) They are reflexive because the parthood relation is trivially
reflexive: notice that y is a part of y because there exists a sequence of length 1
such that y “ y1, namely y “ y; in this case, there is no yi`1, so the condition about
components holds trivially (cf. [16], p. 569). (ii) Parthood relations are transitive,
simply because the composition of sequences of elements is transitive.

By means of Definition 7, other mereological concepts can be introduced.

Definition 8 (Proper part). We say that y in Y is a proper part of y1 in Y, y ⊏ y1, iff
y Ď y1 and y , y.11

Definition 9 (Atom). We say that y in Y is an atom iff there is no y1 in Y such that
y1 ⊏ y.

By introducing the definition of atoms, we can discuss the correspondence
between Σ-simple and atomic objects.

Proposition 1. Let P be a pre-mereological space and Ď a parthood relation on Y ˆ Y
defined by Definitions 6 and 7. If y P Y is Σ-simple, then y is atomic (w.r.t. Ď).12

Proof. If y P Y isΣ-simple, then there is no x P X such thatΣpxq “ y. Then, y has no
proper parts. Otherwise, there would exist a sequence y1, . . . , yn of elements of Y
such that y1 “ y and y2 , y and y1 is a component of y2, that is y “ Σp. . . , y2, . . . q,
against the simplicity of y “ y1. □

Notice that the reflexivity of parthood comes from the limit case of Definition
7. A condition that would force the component relation to be reflexive is Condition
COL. However, there is a weaker one.

11For a discussion of the choice of the definition of proper parts in case of preorders,
see [38].

12The other direction does not hold in general. It suffices to define an injective Σ such
that, for every a P A X X, Σpaq “ a (cf. COL). In this case, if a is atomic, it has no proper
parts (all of the parts of a are a), but a is not Σ-simple.
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Condition 9. For every y P Y, there exists a string . . . , y, . . . that includes y in X such
that Σp. . . , y, . . . q “ y.

This condition directly entails reflexivity of components. However, it has two
drawbacks. Firstly, it makes Σ surjective: every object is composed by something
that includes the object. Secondly, if we also assume that Σ is injective, the
condition prevents genuinely composed object, e.g. it prevents that y “ Σpa, bq,
for a , b , y.

We could easily abandon the reflexivity of parthood, by tinkering with Defini-
tion 7 and imposing that the sequence of compositions must have length greater
than 2 (cf. [16], p. 580).

Traditionally, “standard” parthood relations, cf. [38] are modeled via partial
orders: it is often acknowledged that these relations are reflexive, transitive, and
anti-symmetric. The importance of anti-symmetry for understanding parthood is
also discussed in [16], p. 580. In general, our framework does not always yield
anti-symmetric parthood relations, as shown by this example:

Example 6. Consider the pre-mereological space pA “ ta, bu,Σ4 : X ÝÑ Xq, where
a , b, from Example 4. In this example, we have the set X “ A “ ta, bu and the
composition operator Σ4 defined as Σ4paq “ b and Σ4pbq “ a.

Now, let’s define the parthood relation Ď as suggested by Definition 7. Ac-
cording to this definition, we can observe that a Ď b and b Ď a, as b is a component
of a, and vice versa. In other words, each element can be seen as part of the other
within the context of the composition Σ4. However, a and b are not identical,
resulting in a simple case of a pre-mereological loop.

Concerning anti-symmetry, Fine notices that, if Σ is anti-cyclical, the obtained
parthood relation is anti-symmetric (cf. [16], p. 568). Thus, the outcome can be
ensured by considering anti-cyclical Σ operators.

Proposition 2. Let P be a pre-mereological space, if Σ : X ÝÑ Y is anti-cyclical, then
Ď is antisymmetic.

Proof. Suppose, for y and y1 in Y, that y Ď y1 and y1 Ď y. Then, there exist two
series of components: (i) y1, . . . , yn such that y1 “ y, yn “ y1 and, for i P t1, . . . ,nu,
yi is a component of yi`1, and (ii) y1

1, . . . , y
1
m such that y1

1 “ y1, y1
m “ y and, for

i P t1, . . . ,mu, y1
i is a component of y1

i`1.
The assumptions y Ď y1 and y1 Ď y entail that y and y1 are of the following

forms:

y “ Σps1, . . . ,Σps2, . . . ,Σps, y1, s1q, . . . , s12q, . . . , s11q (1)

y1 “ Σpr1, . . . ,Σpr2, . . . ,Σpr, y, r1q, . . . , r12q, . . . , r11q (2)

By substituting y1 in (4) with Σpr1, . . . ,Σpr2, . . . ,Σpr, y, r1q, . . . , r12q, . . . , r11q, we
obtain that

13



y “ Σp. . . ,Σps,Σpr1, . . . ,Σpr2, . . . ,Σpr, y, r1q, . . . , r12q, . . . , r11q, s1q, . . . q (3)

Equation (5) meets the assumption of Condition ACY, thus, by anti-cyclicity,
any whole in (5) that includes y returns y. In particular, Σpr1, . . . ,Σpr2, . . . ,
Σpr, y, r1q, . . . , r12q, . . . , r11q “ y. However, by (5),Σpr1, . . . ,Σpr2, . . . ,Σpr, y, r1q, . . . , r12q,
. . . , r11q “ y1. Therefore, by functionality of Σ, y “ y1. □

Notice that the operator of Example 6 is not anti-cyclical, e.g. Σ4pΣ4paqq “ a,
as Σ4paq “ b.

We have only touched upon a few connections between pre-mereological
spaces and mereologies. The main takeaway from this approach is that it provides
the freedom to define mereologies using a range of different types of relations,
such as preorders, partial orders, and even weaker relations obtained by relaxing
reflexivity or transitivity.

In Section 6, we will apply pre-mereological spaces to obtain two distinct
mereological systems: a quite standard one, serving as the semantic foundation
for logics for analytic containment as discussed in [15], and a quite non-standard
one to provide semantics for Associative Lambek Calculus.

4 From vertical to horizontal compositions
In [16], the composition operators Σ discussed in the previous section are referred
to as “vertical” operators, since they combine a collection of objects to form a new
composite object. But we are also familiar with different composition operators
that, given two objects, blend them and generate a new one. The set-theoretic
union gives a simple example: ta, b, cu Y ta, d, eu “ ta, b, c, d, eu. Fine calls these
binary composition operators “flat” or “horizontal” and outlines a method to
define them from vertical ones (cf. [16], §7). Given our specific goals, we will dig
into this topic further in this section.

If the composition is injective, to define a horizontal operation, it is sufficient
to offer the following definition.

Definition 10 (Horizontalisation). Let P “ pA,Σ : X ÝÑ Yq be a pre-mereological
space with an injective Σ. The horizontal composition obtained from Σ, i.e., its
horizontalisation, is the partial function ‘ : ComppPq Y teu ˆComppPq Y teu ÝÑ Y :
py1, y2q ÞÑ y1 ‘ y2 where y1 ‘ y2 is defined as13

13It is worth noting that the presence of a neutral element e in the definition of hori-
zontal composition is not mandatory. In fact, many standard mereologies do not have
a neutral element for fusion. If you prefer to exclude it, you can define the function as
‘ : ComppPq ˆ ComppPq ÝÑ Y, ignoring the first two cases of the definition.
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y1 if y1 is Σ-simple and y2 “ e
y2 if y2 is Σ-simple and y1 “ e
Σpy1, y2q if y1, y2 are Σ-simple
Σpy1, a1, . . . , amq if y1 is Σ-simple and y2 “ Σpa1, . . . , amq

Σpa1, . . . , an, y2q if y1 “ Σpa1, . . . , anq and y2 is Σ-simple
Σpa1, . . . , an, a1

1, . . . , a
1
mq if y1 “ Σpa1, . . . , anq, y2 “ Σpa1

1, . . . , a
1
mq

It is important to highlight a few key points. Firstly, the definition is well-
posed because ‘ is defined over ComppPq, cf. Definition 4, ensuring that its
inputs are elements in both X and Y.

Second, the definition assumes the injectivity of Σ. In cases where Σ is not
injective, a more sophisticated procedure is required for horizontalisation, as
described in Fact 1. It is also worth observing that when the vertical composition is
surjective, since there are no Σ-simple states in ComppPq, the definition simplifies
to a single case:

y1 ‘ y2 :“ Σpa1, . . . , an, a1
1, . . . , a

1
mq

where y1 “ Σpa1, . . . , anq and y2 “ Σpa1
1, . . . , a

1
mq. Therefore, the number of cases

of our definition is motivated by the flexibility of our framework, which aims to
horizontalise general Σs.

In particular, the first four cases outlined in Definition 10 are driven by the
goal of horizontalising Σs that operate on both simple and composite elements.
However, one might find this definition somewhat unconventional, assuming
that horizontal compositions should only apply to composite elements, similar to
set union (standard set union does not apply to non-sets). An associated concern
is whether the specified conditions genuinely capture horizontal compositions of
simple elements or not, as alternative ways of defining horizontalisations on them
are possible.

For example, an alternative approach might be that ’simples cannot blend
together at all’. In that case, Σ is not defined on simples and Definition 10 reduces
to the final case. Anyway, for the purpose of generating TS from non-standard
mereologies, addressing this matter can be legitimately deferred, maintaining our
definition as a starting point in this inquiry.

Additionally, it is important to note that, due to the generality of our frame-
work, it is possible to have two strings s1 and s2 in X, while s1, s2 < X (i.e. X Ď A‹).
To allow for these cases, we have defined ‘ as a partial function. However, in
many contexts (e.g., in standard mereology when Σ is conceived as fusion),‘will
be a total function. More precisely, the following result holds.

Proposition 3. Let P “ pA,Σ : X ÝÑ Yq be a string-complete pre-mereological space.
The corresponding horizontal composition obtained from Σ via horizontalisation is a total
function.
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Proof. The totalness of the horizontal composition is ensured when, for every pair
of composable states y1 and y2, their binary composition y1 ‘ y2 is defined in Y.
Specifically, y1 ‘ y2 < Y only when Σpsq is not defined, i.e., s < X, where s is a
string of elements in AX X that is the result of applying Definition 10. However,
due to the string-completeness of the space, such a string shall belong to X by
hypothesis. Consequently, ‘ is total. □

Finally, it is worth noting that this definition forces that e serves as a neutral
element for ‘. In other words, e plays a role similar to that of xy for vertical
operators Σ.

Fact 1 (Horizontalising non-injective Σs). Consider a pre-mereological space pA,Σ :
X ÝÑ Yq, whereΣ is a non-injective function. GivenΣ, we define an equivalence relation
over X:

For all s, s1 P X, s „Σ s1 Øde f Σpsq “ Σps1q.

We use this equivalence relation to build a quotient set X{ „Σ whose elements are
equivalence classes of strings with identical images.To choose a representative from each
equivalence class, we invoke the Axiom of Choice, which guarantees the existence of a
choice function in the form:

rss„Σ ÞÑ s

This function selects exactly one string s from each equivalence class rss„Σ . Let us denote
the image of this function as X̃. It is important to note that X̃ is a subset of the Kleene
algebra A‹ of the pre-mereological space. Furthermore, it can be easily shown that the
restriction Σ̃ of Σ to X̃, defined as:

Σ̃ : X̃ ÝÑ Y : s ÞÑ Σpsq

is injective.
Now, let’s define the horizontal composition using Σ̃. Note that if x P X̃ X Y, then

x P ComppPq since X̃ Ď X. Therefore, we can proceed by applying Definition 10 and
define a new function ‘̃ : pX̃X Yq Y teu ˆ pX̃X Yq Y teu ÝÑ Y by replacing Σ with Σ̃:

y1‘̃y2 :“

$
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’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

y1 if y1 is Σ̃-simple and y2 “ e
y2 if y2 is Σ̃-simple and y1 “ e
Σ̃py1, y2q if y1, y2 are Σ̃-simple
Σ̃py1, a1, . . . , amq if y1 is Σ̃-simple and y2 “ Σ̃pa1, . . . , amq

Σ̃pa1, . . . , an, y2q if y1 “ Σ̃pa1, . . . , anq and y2 is Σ̃-simple
Σ̃pa1, . . . , an, a1

1, . . . , a
1
mq if y1 “ Σ̃pa1, . . . , anq, y2 “ Σ̃pa1

1, . . . , a
1
mq

Then, let’s extend ‘̃ to ‘ : ComppPq Y teu ˆ ComppPq Y teu ÝÑ Y : py1, y2q ÞÑ

y1 ‘ y2 as follows:
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y1‘̃y2 if y1, y2 P X̃ Y teu
y1‘̃z if y1 P X̃ Y teu, y < X̃ Y teu and z „Σ y2 with z P X̃
z‘̃y2 if y1 < X̃ Y teu, y2 P X̃ Y teu and z „Σ y1 with z P X̃
z‘̃z1 if y1, y2 < X̃ Y teu and z „Σ y1, z1 „Σ y2 with z, z1 P X̃

This new operation is a function because ‘̃ was a function and because we have extended
it simply using the representatives of the equivalence classes. By this, we have just defined
the horizontal counterpart of our non-injective Σ.

Before focusing on other topics, it is worth noting some results pertaining to
horizontalisations.

Proposition 4. For each vertical composition operator, there is a unique horizontal
operator defined from it by horizontalisation (cf. Definition 10), which is associative and
has a neutral element.

Proof. The existence and uniqueness of such binary compositions is assured by
Definition 10 and Fact 1. The neutral element is e because of Definition 10. To prove
that ‘ is associative, let’s consider the generic elements x, y, z P ComppPq Y teu.
We can distinguish two cases: (i) when x, y, z are all Σ-simple, and (ii) when they
are all Σ-composite. The other cases are trivial and can be omitted.

Let’s begin by assuming that x, y, z are all Σ-composite and that the horizontal
composition is well-defined over them. We posit the following:

x “ Σps1q, y “ Σps2q, z “ Σps3q

We have that the operation is associative:

x‘ py‘ zq “ Σps1q ‘ pΣps2q ‘ Σps3qq

“ Σps1q ‘ Σps2, s3q

“ Σps1, s2, s3q

“ Σps1, s2q ‘ Σps3qq

“ pΣps1q ‘ Σps2qq ‘ Σps3qq “ px‘ yq ‘ z

Similarly, if x, y, z are all Σ-simple, we obtain that the operation is associative
as well:

x‘ py‘ zq “ x‘ pΣpy, zqq
“ Σpx, y, zq
“ Σpx, yq ‘ zq “ px‘ yq ‘ zq

In conclusion, this proves that the horizontal operation is associative as wanted.
□
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Proposition 5. Let P be a pre-mereological space and ‘ the horizontalisation obtained
as in Definition 10. If Σ satisfies COL and is defined on xy, then Σpxyq is the neutral
element of ‘ (consequently, the first two cases of Definition 10 can be dropped).

Proof. Take y P ComppPq. Let’s suppose P satisfies COL. Then, we gain y “
Σpyq “ Σpy, xy, xyq “ y ‘ Σpxy, xyq “ y ‘ Σpxyq. Similarly, if we consider y “
Σpyq “ Σpxy, xy, yq, we obtain Σpxyq ‘ y “ y. Hence, Σpxyq is the neutral element
for ‘. □

Proposition 6. LetP be a pre-mereological space with a permutative PER and absorbing
ABS composition operator Σwell-defined on xy. In such cases, the horizontal composition
is both commutative and idempotent. This means that for any elements x and y in
ComppPq, we have x‘ y “ y‘ x and x‘ x “ x.

Proof. To simplify the proof, let’s consider the case where the elements x and y
in ComppPq are both simple. To prove the proposition for non-simple states, the
proof follows a similar approach.

• Commutativity: we want to show that x ‘ y “ y ‘ x. By Definition 10, we
have: x‘ y “ Σpx, yq and y‘ x “ Σpy, xq. Since Σ is permutative, it satisfies
Σpx, yq “ Σpy, xq. Therefore, we have x‘ y “ y‘ x.

• Idempotency: We want to show that x ‘ x “ x. By Definition 10, we have:
x‘x “ Σpx, xq. SinceΣ is an absorbing operator,Σpx, xq “ Σpxq “ Σpx, xy, xyq.
Therefore, we have x‘ x “ x‘ Σpxy, xyq “ x‘ Σpxyq “ x for a simple x.

□

Before moving on to the next section, it is important to emphasise that not
every horizontal composition operator defined in this manner has the features of
a standard mereological sum, as it is clear from the following example:

Example 7. Consider the pre-mereological space with the list-builder Σ1 of Exam-
ple 1. By horizontalising it, this list-builder is converted into the list concatenation
operator. This operator is non-idempotent, non-commutative, and associative,
with the empty string as the neutral element.

By Proposition 4, our horizontalisation always produces associative operators
‘. This is motivated in this paper as a simplification. Our intention is to construct
TS for the logics of Section 6, which have associative conjunctions and disjunctions.
Therefore, we have opted to refrain from delving into the technicalities of non-
associative logics.

A natural question is the following: Can we introduce an alternative technique
of horizontalisation that generates non-associative binary compositions? Explor-
ing this question is intriguing because it opens up possibilities for axiomatising
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new forms of mereological composition that are suitable for non-associative logics
(e.g. non-associative Lambek calculus).

For example, we can restate Definition 10 by putting x‘ y “ ΣpΣpy1q,Σpy2qq,
where x “ Σpy1q and y “ Σpy2q, for x and y non-simple. Associativity, in this case,
amounts to proving the following equality, which follows if Σ satisfies LEV:

ΣpΣpy1q,ΣpΣpy2q,Σpy3qqq “ ΣpΣpΣpy1q,Σpy2qq,Σpy3qq (4)

While this question holds significance in the study of non-standard mereologies
and non-associative logics, we defer this inquiry to a future dedicated research.

5 From horizontal to vertical compositions
In the previous section, we showed that, given a vertical composition, it is always
possible to define a corresponding associative horizontal operation with a neutral
element. In this section, we prove that we can also define a vertical operation given
any horizontal one. This result is significant in providing TS for substructural
logics with monoidal models, as we will see in Section 6.

To prove this result, consider any set M equipped with a binary associative
operation ‘. We also assume that ‘ has a neutral element e. Because of these
very minimal conditions, pMY teu,‘, eq is in fact a monoid. In every monoid, it is
possible to generalise ‘ to operate on finite strings of elements of M Y teu. This
new function is the verticalisation of the binary operation of the monoid.

Definition 11 (Verticalisation). Given a monoid pMYteu,‘, eq, we define the vertical
operation Σ‘ : pMY teuq‹ ÝÑ MY teu corresponding to ‘ as

Σ‘ : pMY teuq‹ ÝÑ MY teu : m1, . . . ,mn ÞÑ m1 ‘ . . .‘mn

This function takes a string s of length n of elements of M Y teu as input and
generates an element of M by applying, n´ 1 times, ‘ to the elements of s (notice
that this definition is well posed because ‘ is associative).

By this simple procedure, we have just defined a composition operator Σ for
MY teu that inherits all the algebraic properties of ‘.

Example 8. Consider the commutative monoid pM Y tHu,Y,Hq, where M “

tA,B,A Y Bu and A and B are sets. In this case, Y functions as the horizontal
composition. Now, let’s proceed to verticalise it. We define the following:

ΣY : pMY tHuq‹ ÝÑ MY tHu : s ÞÑ

$

’

&

’

%

H if s “ xy
m if s “ m, i.e. l “ 1
m1 Ym2 Y ¨ ¨ ¨ Ymn if s “ m1,m2, . . . ,mn
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While the second case always returns either A or B, the last case always results in
the union of the inputs. This clearly indicates that ΣY is a vertical composition,
and consequently, pMYH,ΣYq forms a pre-mereological space.

Observe that the vertical operations defined by Definition 11 always satisfy
COL and LEV. You gain COL by the second condition of the definition. In-
stead, LEV is yielded by the following reasoning. Wlog. consider a string
s “ m1,Σ‘pm2,m3, . . . q. We have that

Σ‘pm1,Σ‘pm2,m3, . . . qq “ m1 ‘ Σ‘pm2,m3, . . . q

“ m1 ‘ pm2 ‘ Σ‘pm3,m4, . . . qq

“ m1 ‘ pm2 ‘ pm3 ‘ Σ‘pm4, . . . qqq

. . .

“ m1 ‘ pm2 ‘ pm3 ¨ ¨ ¨ q ¨ ¨ ¨ q

: “ Σ‘pm1 ‘m2 ‘m3 ‘ ¨ ¨ ¨ q

Notice that LEV follows because ‘ is associative. If ‘ were not associative, then
step : is not legit. Other properties of Σ‘ can be inherited from ‘, e.g. if ‘ is
commutative, then Σ‘ is permutative.

An interesting question, that we leave for future work, is natural to investigate
whether the constructions presented in Section 4 and Section 5 are invertible.

In fact, the procedures of horizontalisation and verticalisation presented in
this article are not generally inverse operations. To illustrate this, let’s imagine
to horizontalise a vertical composition Σ that satisfies neither LEV nor COL. This
process yields the horizontal operator ‘. Subsequently, if we verticalise ‘, we
obtain a second vertical composition Σ‘. By definition, Σ‘ satisfies both LEV and
COL, showing that Σ , Σ‘. This implies that the two procedures are not inverses
of each other.14

We conclude this section by observing that the construction of Definition 11
suggests that any monoid has a (pre-)mereological interpretation: it can always
be associated to a pre-mereological space, by means of which we can define
a mereological structure, according to Section 3.1. Moreover, by means of ho-
risontalisation, cf. Definition 10, any pre-mereological space returns a monoidal
structure, when the horizontalisation of Σ is a total function.

6 Constructing Truthmakers Semantics
In this section, we apply pre-mereological spaces and the horizontalisation of
Σ to provide structures for TS. That is, we construct state spaces, cf. [13], from
pre-mereological spaces.

14They are each other’s inverses to the extent that the vertical compositions under
investigation satisfy COL and LEV.

20



To do that, we offer a definition of an abstract state space, that merely serves
as a bridge between pre-mereological spaces and actual state spaces to lists the
required ingredients for a TS. As we shall see, certain abstract state spaces, where
Σ meets certain conditions, can be instantiated to obtain the usual structure for
TS, as those in [15]. Other conditions on Σ are required to provide TS for other
logics, we shall see, as an example, the case of the associative Lambek calculus
[3].15.

Definition 12 (Abstract state space). Given a pre-mereological space P “ pA,Σ :
X ÝÑ Yq, an abstract state space is a triple S “ pS,Ď,‘q such that:

1. The set of states S of S is ComppPq.

2. The relation Ď of S is defined from Σ according to Definition 6 and 7 of Section
3.1.16

3. The binary composition operator‘ is defined by taking the horizontalisation of the
vertical composition Σ of P, according to Definition 10 of Section 4.

Notice that, by Definitions 6 and 7, the abstract state space S is always a
preorder.17 Moreover, if Σ satisfies ACY, then the state space is a partial order.

6.1 Standard state spaces
A standard state space, as defined in [15], exhibits two key properties: (i) Ď is a
partial order, and (ii) S is complete, meaning that for any non-empty finite subset
T Ď S, there exists a least upper bound (l.u.b.) denoted by

Ů

T. The least upper
bound of a set T is an element s P S that satisfies two conditions: (i) s is an upper
bound of T, meaning that for all t P T, t Ď s, and (ii) for every upper bound s1 of
T, we have s Ď s1.

In the case of a standard state space, the binary composition operator, denoted
by \ in e.g. [15], is defined as s \ t “

Ů

ts, tu. Consequently, the standard

15The following definition uses the horizontal binary operation to facilitate the com-
parison with the models of a number of logics, e.g. substrutural logics, whose structures
are indeed based on sets equipped with binary operations. However, it is intriguing to
suggest a definition of an abstract state space directly using the vertical operator Σ of
the pre-mereological space. Depending on the properties of Σ, our Definition 12 might
return horizontal operators that are substantially equivalent to their vertical counterpart.
In other cases, the equivalence fails. For instance, take the vertical set-builder, whose
horizontalisation returns the set-theoretic union, cf. [16], p. 578.

16In particular, it is the restriction of the parthood relation defined over Y ˆ Y to
ComppPq ˆComppPq. However, for the sake of readability, we will continue to denote it
by Ď instead of Ď |ComppPqˆComppPq. The context will make it clear whether we are referring
to the relation over Yˆ Y or the one defined over ComppPq ˆ ComppPq.

17To get even weaker relations, cf. the discussion of Section 3.1.
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horizontal composition\, also known as fusion, is commutative and idempotent,
as expected.

To construct a standard state space, we need to demonstrate that every non-
empty (finite) subset of ComppPq has a least upper bound. It is worth noting that
if T “ ty1, . . . , ymu Ď ComppPq and if Σpy1, . . . , ynq “ y is defined, then y serves
as an upper bound for T. This is because each yi is a component of y, thus yi Ď y.

Importantly, to ensure that the required strings are in the domain of Σ, we
shall impose that the pre-mereological space is string-closed, cf. Condition 1.18

Moreover, as we shall see, the existence of least upper bounds for subsets of
ComppPq is guaranteed if Σ is absorbing, permutative, and satisfies the leveling
property.

Firstly, we prove the two following useful lemmas.

Lemma 1. Let P “ pA,Σ : X ÝÑ Yq be a string-closed pre-mereological space (cf.
Condition 1). Suppose that Σ satisfies levelling LEV, absorption ABS, and permutation
PER. Hence, Σ satisfies cumulativity: for all s and s1 P X,

I f Σpsq “ y and Σps1q “ y, then Σps, s1q “ y. (CUMU)

Proof. Let y “ Σpsq “ Σps1q as in the hypotheses. The following reasoning assures
that CUMU holds as true. Starting from the properties of absorption (ABS) and
permutativity (PER), we have Σpsq “ Σps, sq. Because of LEV, we also have:
Σps, sq “ Σps,Σpsqq. Now, Σps,Σpsqq is equal to Σps,Σps1qq by hypothesis, and to
Σps, s1q as well, for LEV. As a consequence, this reasoning yields that y “ Σps, s1q

as wanted. □

Lemma 2. Let P “ pA,Σ : X ÝÑ Yq be a string-closed pre-mereological space (cf.
Condition 1). Suppose Σ satisfies levelling LEV. Hence, Σ satisfies monotonicity: for
all s, r, r1, y P X,

I f Σpsq “ y and Σpr, s, r1q “ y1, then Σpr, y, r1q “ y1 (MONO)

Proof. The following reasoning demonstrates that such a composition satisfies
MONO. Starting with the equation Σpr, y, r1q “ Σpr,Σpsq, r1q as given by the hy-
pothesis, we can proceed as follows:

1. Apply the leveling property (LEV) to obtain Σpr,Σpsq, r1q “ Σpr, s, r1q;

2. According to the hypothesis, we have Σpr, s, r1q “ y1.

Combining these steps, we can conclude thatΣpr, y, r1q “ y1, satisfying MONO. □

These two lemmas allow us to prove that the resulting state space is complete:

18The condition is required, since we defined X, the domain of Σ, as any subset of
A‹, which may lack certain strings. The motivation for this approach is to make all the
assumptions required to obtain a standard state space explicit.
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Theorem 1 (State space completeness). Let P “ pA,Σ : X ÝÑ Yq be a string-closed
pre-mereological space (cf. Condition 1). Suppose Σ satisfies acyclicity ACY, levelling
LEV, absorption ABS, and permutation PER. Hence, the state space pComppPq,Ďq is a
complete poset.

Proof. By Condition ACY, Ď is a partial order. We show that ComppPq is complete
w.r.t. Ď. Suppose T “ ty1, . . . , ymu Ď ComppPq. By Condition 1, Σpy1, . . . , ynq

is defined. Suppose Σpy1, . . . , ynq “ y. We show that y is the l.u.b. of T. Let
y1 be an upper bound of T, that is, for each yi P T, yi Ď y1. Thus, by definition
of parthood, for all yi, we have Σp. . . ,Σp. . . , yi, . . . q, . . . q “ y1 and by LEV, we
have Σp. . . , yi, . . . q “ y1. Then, by Condition CUMU, y1 “ Σp. . . , y1, . . . , ym, . . . q.
By Condition MONO, from y1 “ Σp. . . , y1, . . . , ym, . . . q and y “ Σpy1, . . . , ymq, we
have that y1 “ Σp. . . , y, . . . q, that is y Ď y1. □

Now recall that, from any vertical operator Σ in a pre-mereological space
P, we can always define a horizontal operator ‘ as described in Section 4. So,
suppose that Σ satisfies the conditions of Theorem 1 and returns a complete poset
pComppPq,Ďq. In this context, ‘ yields the least upper bounds of any set of
elements in ComppPq. Consequently, in this case, we meet the approach of [17],
where s\ t “

Ů

ts, tu.
To see that ‘ yields the l.u.b.s, we illustrate only two cases, as the others are

similar:

• If y1 and y2 are Σ-simple, then y1 ‘ y2 “ Σpy1, y2q, so ‘ is the l.u.b. of
ty1, y2u, cf. Theorem 1;

• If y1 and y2 are non-simple, then y1 “ Σpa1, . . . , anq, y2 “ Σpa1
1, . . . , a

1
mq,

and y1 ‘ y2 “ Σpa1, . . . , an, a1
1, . . . , a

1
mq. By leveling LEV, we have that ‘

is the l.u.b. of ty1, y2u. This can be demonstrated through the following
reasoning:

Σpa1, . . . , an, a1
1, . . . , a

1
mq “ ΣpΣpa1, . . . , anq,Σpa1

1, . . . , a
1
mq “ Σpy1, y2q

In particular, since ‘ is always associative (cf. Proposition 4), we can see that for
Σ-simple elements, according to LEV, y1 ‘ ¨ ¨ ¨ ‘ yn “ Σpy1, . . . , ynq, which is the
l.u.b. of y1, . . . , yn, by Theorem 1.

With the foundation we have established, we can now apply pre-mereological
spaces to develop TS for the logics of analytic containment, e.g. those in [15]. Let
A be a set of atomic letters, the language L of the logic of analytic containment is
inductively defined as follows.

ϕ :“ p P A | ␣ϕ | ϕ^ ϕ | ϕ_ ϕ

Consider any (string-complete)P that satisfies the assumptions of Theorem 1.
The abstract state space obtained from P by Definition 12, i.e. S “ pS,Ď,‘q, can
be used as semantics for L.
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A Truthmakers model forL is obtained by adding toS two evaluation functions
(in the bilateral approach) from the set of atomic lettersA ofL, v`

0 and v´

0 , both of
typeA ÝÑ PpComppPqq. The atomic valuations extend to the full L, as follows.

i`) y ⊩ p iff y P v`

0 ppq

i´) y - p iff y P v´

0 ppq

ii`) y ⊩ ␣ϕ iff y - ϕ

ii´) y - ␣ϕ iff y ⊩ ϕ

iii`) y ⊩ ϕ ^ ψ iff for some y1, y2 P Y such that y “ y1 ‘ y2, y1 ⊩ ϕ
and y2 ⊩ ψ.

iii´) y - ϕ_ ψ iff y - ϕ or y - ψ

iv`) y ⊩ ϕ_ ψ iff y ⊩ ϕ or y ⊩ ψ.

iv´) y - ϕ _ ψ iff for some y1, y2 P Y such that y “ y1 ‘ y2, y1 - ϕ
and y2 - ψ.

Notice that, we require that the composition of P satisfies PER and ABS (cf.
Theorem 1). Thus, by Proposition 6, ‘ is idempotent and commutative. For this
reason, the semantic conditions for ^ and _ are well-posed. E.g. there is a single
commutative conjunction and a single commutative disjunction in this logic.

An important property in TS is to establish that there exist truthmakers (or
falsemakers) of any formula of L. This fact, cf. [15], is readily generalisable to
abstract state space. In any truthmaker model based on abstract state spaces, if
v`

0 ppq (v´

0 ppq) is non-empty for any p P A, then the sets of verifiers (falsifiers) of
formulas ϕ, i.e. |ϕ|` “ ty | y ⊩ ϕu, are non-empty. It is interesting to notice that
this result requires that the pre-mereological is string-closed. To see this, consider
a truthmaker model where y ⊩ p, y1 ⊩ q and they are the sole states that verify
those proposition. If P is not string-closed, y‘ y1 may be undefined (see Section
4), resulting in |p^ q|` “ H.

Any structure pComppPq,Ď,‘q is then isomorphic to a standard state space.
If we define a relation of logical entailment by posing that ϕ entails ψ, ϕ ⊩ ψ, iff
for truthmaker every model, |ϕ|` Ď |ψ|`, then any abstract state space that meet
the conditions of Theorem 1 validates axioms E1-E15 in cf. [15], p. 201.19

Further conditions on state spaces are required to properly model various
notions of analytic containment (e.g. convexity, cf. [15]). Other important con-
structions of TS relate state spaces and valuations functions, e.g. possible states and

19For the sake of example, we are only defining the exact entailment ϕ ñ ψ, cf. [15], p.
202. So axioms E1-15, which are written in terms ofØ, are interpreted by ϕØ ψ iff pϕñ
ψq^ pψñ ϕq. Analytic entailment (i.e. Ñ) can simply be defined by considering complete
contents. For an exhaustive treatment of this logics in terms of sequents, that handle
consequences from sets of hypotheses, we refer to [21]. For our illustrative purpose, the
treatment of [15] suffices.
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world states (cf. [18]). While we cannot examine this topics here, we notice that
those aspects of TS are all build on top of a state space, so in principle they can be
restated in our setting.20

To conclude this section, we have established that standard truthmakers model
can be obtained from any pre-mereological space that meets the required condi-
tions.

6.2 State space for the associative Lambek calculus
A direct consequence of our discourse of Section 5 is this: Any substructural logic
whose semantics is faithfully represented by monoidal structures can be faithfully
represented by an abstract state space.

The current section makes this result apparent by writing down the general
recipe for cooking up TS and applying it to one specific quite representative case:
the associative Lambek calculus, L, see [26]. Our motivation for focussing on L is
that it is the weakest substructural logic: besides associativity21, it lacks Exchange,
Contraction, and Weakening (cf. [3]). Thus, L lays quite distantly from the logics
obtained from standard state spaces, which enable Exchange and Contraction
(and, sometimes, a mild form of Weakening22).

An important example of structures that provide models of L are the language
frames, cf. [30].23 They are based on non-commutative monoids, in our notation
pL‹,‘q, where L‹ is the string algebra constructed from L, ‘ is the concatenation
of strings, and xy is the null string in L‹.

The language of the Lambek calculus LL is defined as follows. LetA be a set
of atomic letters, we have:

ϕ :“ p P A | ϕ ‚ ϕ | ϕÑ ϕ | ϕÐ ϕ

That is, the language contains a non-commutative conjunction and two order-
sensitive implications.

A model of the formulas of LL is a language frame pL‹,‘q together with a
valuation v0 : A ÝÑ PpL‹q. v0 associates a propositions p to a set of strings,

20For instance, TS theorists often introduce a special subset of X called the possible states
(X˛), which satisfies specific conditions: i) closure under parts, ii) exhaustivity, X˛ contains
either a verifier or a falsifier of every proposition, and iii) exclusivity: X˛ does not contain
any state which is a verifier and a falsifier of the same proposition. This conditions are
readily available also for abstract state spaces.

21The only implicit structural rule that L permits is associativity. Lambek calculus has
a non-associative version, which is capable of accounting for the way in which linguistic
resources are combined, cf. [11]. We leave a treatment dedicated to non-associative
Lambek calculus for future work.

22See axiom A^ B Ñ B for the logic ACÑ in [15].
23For language frames, see [30]. The most general models of L are residuated semigroups,

cf. [3], Section 2. Language frames are suitable structure for L since a completeness
theorem of L can be established with respect to language frames.
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which can be interpreted as its “verifiers”. From this perspective, falsifiers are not
present in L.

The valuation v0 extends to the full language, by means of the following
semantic clauses:

i) y ⊩ p iff y P v0ppq

ii) y ⊩ ϕ ‚ ψ iff for some y1, y2 P Y such that y “ y1 ‘ y2, y1 ⊩ ϕ and
y2 ⊩ ψ.

iii) y ⊩ ϕÑ ψ iff for every y1 such that y1 ⊩ ϕ, y1 ‘ y ⊩ ψ.

iv) y ⊩ ϕÐ ψ iff for every y1 such that y1 ⊩ ψ, y‘ y1 ⊩ ψ.

Intuitively, a state y verifies ϕ ‚ ψ iff y is composed by two states y1 and y2,
where y1 “precedes” y2 and the first verifies ϕ while the second verifies ψ. In
particular, y1 ‘ y2 may verify ϕ ‚ ψ, while y2 ‘ y1 does not. Moreover, a state
y verifies the right implication ϕ Ñ ψ iff every state y that verifies ϕ can be
“followed” by a state y1 so that y ‘ y1 verifies ψ. By contrast, y verifies ψ Ð ϕ if
every state y that verifies ϕ can be “preceded” by a state y1 such that y1‘ y verifies
ψ.

We denote by |ϕ| “ ty P L‹ | y ⊩ ϕu. We say that ϕ logically entails ψ in L,
ϕ ⊩L ψ, iff in every model, |ϕ| Ď |ψ|.24

The resulting logic L is non-commutative, i.e. ϕ ‚ψ is not equivalent to ψ ‚ ϕ,
non-idempotent, ϕ ‚ ϕ is not equivalent to ϕ, while it is associative. For the
presentation of L in terms of sequents, we refer to [3].

To suggest an interpretation of the language frames of L as a truthmaker
semantics for the Lambek calculus, we propose to interpret them as abstract
state spaces obtained from a pre-mereological space (Definition 12). In particular,
we start to show that any language frame can be defined from a suitable pre-
mereological space.

Lemma 3. Any language frame pL‹,‘q can be defined from a suitable pre-mereological
space P “ pL,Σ : L ÝÑ Lq through horizontalisation.

Proof. Consider the pre-mereological space of strings as illustrated in Example
1. Choose the set of letters and strings, denoted as L, as the domain for the
composition operator, resulting in P “ pL,Σ : L ÝÑ Lq where Σ is the identity
function on strings. Notably, P is string-complete, evident from L‹ “ pL‹q‹ “ L.

By applying the horizontalisation procedure (cf. Definition 10), we derive a
binary, total, and associative composition operator ‘ : Lˆ L ÝÑ L with a neutral

24The general definition of truth in a model for substructural logics, appeals to the
neutral element of the structure: ϕ is true in pL‹,‘, xyq iff xy ⊩ ϕ, cf. [32] Section 3.2.2.
However, we present this definition to enhance the comparison with the logics of analytic
containment, which often lack a special point that evaluates logical truths. This definition
of true in a model for L is from [3].
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element e “ xy. This binary operation corresponds to the concatenation operator.
Therefore, the structure pL,‘q forms a monoid and, more precisely, a language
frame, as desired. □

In this particular case, it is remarkable that we also have that:

Proposition 7. Each language frame pL‹,‘q is associated by the procedure of ver-
ticalisation to a specific pre-mereological space pL,Σ‘ : L‹ ÝÑ L‹q. Moreover, the
horizontalisation of Σ‘ returns precisely ‘.

Proof. Given a language frame pL‹,‘q (i.e. a non-commutative monoid), through
the strategy given in Section 5, we define the vertical composition Σ‘ correspond-
ing to ‘.25 Specifically, given ‘, the verticalisation Σ‘ : pL‹q‹ ÝÑ L‹ is then
defined by

s ÞÑ Σ‘psq :“

$

’

&

’

%

xy if s “ xy
a1 if s “ a1

a1 ‘ pΣ‘pa2, . . . , anq if s “ a1, a2, . . . , an

Since pL‹q‹ “ L‹, the vertical composition is simply the identity of strings (because
‘ is string concatenation). Thus, every language frame pL‹,‘q can be associated
to a pre-mereological space pL,Σ‘ : L‹ ÝÑ L‹q. In particular, notice also that
the horizontalisation of Σ‘ returns, in this case, precisely ‘, as expected by
considering the proof of Lemma 3. □

The pre-mereological space obtained from a language frame in Proposition 7
is string-closed and it is easy to see thatΣ‘ satisfies levelling LEV, acyclicity ACY,
and collapse COL, while it fails permutativity PER and absorption ABS.

This shows that we can start from a suitable pre-mereological space and obtain
a monoidal structures which is a semantics for the Lambek calculus.

Now, deriving the abstract state space suitable for L from this pre-mereological
space is straightforward:

Lemma 4. Given the pre-mereological pL,Σ‘ : L‹ ÝÑ L‹q the abstract state space
pL‹,Ď,‘q obtained through horizontalisation is a suitable semantic structure for L.

Proof. As we discussed in Section 3.1, in any pre-mereological space, from Σ‘, we
can introduce a parthood relation Ď, defined on the set of composable objects, in
this case L‹ “ L‹ X L‹.

Thus, by Definition 12, from the pre-mereological space pL,Σ‘ : L‹ ÝÑ L‹q, we
obtain an abstract state space pL‹,Ď,‘qwhich is the same structure as the language
frame pL‹,‘q from which we have started, now equipped with a parthood relation.

□

25As we shall see, this construction returns a string builder, cf. Examples 7 e 1.
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This results make clear that language frames for L can be construed as mereological
structures, apt to produce TS, at least in the sense that they can be obtained from
pre-mereological spaces by means of the very same construction as the one that
we have used to obtain standard state spaces.

Let’s discuss the mereological features of the abstract state space for L that we
have obtained and how they affect the TS.

First, note that the parthood relation Ď obtained for language frames is a poset,
due to acyclicity ACY of Σ‘, but it is non-standard. In fact, it is the sub-string
relation. To see why, recall that s1 is a substring of s2 if and only if there exists two
strings s, t P L‹ such that s2 “ s, s1, t. Since the vertical composition Σ‘ satisfies
LEV and COL, we may simplify this definition by saying that s1 is a part of s2 if
and only if s1 is a component of s2. Since the vertical composition is the identity
function and by the definition of a component, s1 is part of s2 if and only if s1 is a
sub-string of s2.

Second, observe that the abstract state space corresponding to a language
frame is not always complete. Given a set of strings (e.g. of lenght 1) ta, bu Ď L‹,
both strings a, b and b, a are upper bounds of ta, bu wrt. Ď. a and b are parts of
a, b (because of Σ‘pa, bq “ a, b) and of b, a (because of Σ‘pb, aq “ a, b). However,
a, b @ b, a nor a, b @ b, a.

Therefore, we have an example of a TS where the ‘ operation is not defined
by means of the l.u.b (s‘ t ,

Ů

ts, tu).
Third, it is interesting to notice how the mereology affects key aspects of the

TS project, notably the definition of inexact (as well as loose) truthmaking ([18]).
A state s inexactly verifies ϕ iff there exists s1 such that s1 Ď s and s1 exactly verifies
ϕ (s1 ⊩ ϕ). When parthood is construed as substring, for instance, if a, b ⊩ ϕ, then
a, b, c and c, a, b are inexact verifiers of ϕ, whereas a, c, b is not. Namely, the internal
structure of the states is crucial for inexact (as well as loose) truthmaking.26

We conclude this section by noticing that this interpretation of the models of the
Lambek calculus can be easily adapted to other substructural logics, at least those
that have monoidal models or Urquart frames, cf. [35] (e.g. the multiplicative
fragment of intuitionistic linear logic and disjunction-free fragments of relevant
logic, [32]). That is, the claim with which we commenced this section can be
substantiated by the following theorem.

Theorem 2. The following facts hold:

1. Any monoidal structure returns a pre-mereological space (through verticalisation);

2. Any pre-mereological pA,Σ : X ÝÑ Yq space that satisfies string-closure (Condi-
tion 1) returns a monoidal structure (through horizontalisation).

Proof. Point 1) is simply an application of the verticalisation construction of Sec-
tion 5.

26The mereological structure of this abstract state space fails the principle of extension-
ality of composition ([6], p. 402)).
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Point 2) is established by the following reasoning. By Proposition 3, if P is string-
closed, then‘ is a total function. Moreover, by Proposition 4,‘ is associative and
has neutural-element. Thus the abstract state space is a monoid, therefore also a
language frame, cf. [30]. Moreover, by Proposition 6, if Σ satisfies PER, then the
monoid is commutative. □

6.3 The logic of pre-mereological spaces
Theorem 1 and Theorem 2 provide conditions on pre-mereological spaces that are
sufficient to obtain standard state spaces and monoidal state spaces (respectively).
Therefore, such conditions enable us to use pre-merelogical spaces to ground
truthmaker semantics for a number of logics.

An interesting question arises when we contemplate the logic corresponding
to general pre-mereological spaces.

By Definition 12, any pre-mereological space returns an abstract state space
pS,Ď,‘q. At this level of generality, ‘ needs not to be total (cf. Proposition 4).
Moreover, it is non-commutative. By contrast, following the horizontalisation
that we have defined in 4, ‘ is always associative. The general mathematical
structure corresponding to the abstract state space is thus a partial semi-group
([30], Section 1.2).27 Quite strikingly, Pentus [30] proved that partial-semigroups
are also models for the (associative) Lambek calculus. Therefore, it is reasonable
to conjecture that the general logic for pre-mereological spaces is the (associative)
Lambek calculus.

Notice that, at the end of Section 4, we discussed a strategy of horizontalisation
that might return non-associative ‘, cf. Equation 4. In this case, abstract state
spaces do not need to be partial semi-groups. To approach this case, we have to
delve into the models of the non-associative Lambek calculus. We leave this for a
future dedicated work.28

7 Philosophical outputs
We suggest an application of our technical contribution to the philosophical project
of TS. Indeed, our framework opens up new opportunities and dilemmas for
philosophers working in the field and in related areas.

27Partial semi-groups do not need the existence of a neutral element. Thus, pre-
merelogical spaces returns partial semi-group also if we omit the construction of the
neutral element in Definition 10.

28Truthmaker Semantics for the non-associative Lambek calculus, as well as for a num-
ber of substructural logics, have been recently introduced in [28]. Notably, their approach
differs from ours, as the authors retain standard mereology and subsequently develop the
new TS. In contrast, our approach would involve modifying the mereological assumptions
to generate the novel TS.
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Firstly, note that our perspective does not impose an interpretation of pre-
mereological spaces as inherently mereological. Philosophers who maintain a
substantive view of parthood can reject certain compositions as non-legitimate
by requiring conditions that are more demanding than those that we listed. In
this context, our discussion emphasises the value of pre-mereological spaces as
manners to obtain TS for weak logics, such as the Lambek Calculus.

Our framework holds philosophical interest for proponents of TS as it provides
support in advocating for a comprehensive account of logic and semantics based
on TS. Indeed, TS are widely recognised for their flexibility, accommodating
different logics and enabling the modelling of various semantic notions, including
analytic containment, subject matter, and counterfactuals (see [18]). This flexibility
is often leveraged to demonstrate the applicability of TS. Fine himself, in [13],
employed an implicit argument in favour of TS to defend the notion of truthmaker
content and propose a revision of more traditional approaches (p. 626).

The technical contribution of this article present TS supporters with new
grounds to argue for the superiority of TS over alternative approaches like possible
world semantics.29

For example, possible world semantics, based on relational frames, face chal-
lenges in accommodating substructural logics. On the other hand, by allowing for
non-standard compositions and parthood relations, TS demonstrate their aptitude
for providing semantics to these logics effectively.

Exploring TS for various logics suggests novel applications and interpretations
of TS. For instance, by introducing state spaces for fragments of relevant logic,
we are enabling an interpretation of the states in terms of information states, cf.
[29]. Moreover, states can be temporally ordered by using a non-commutative
composition to render the relation “before” of Allen’s logic, cf. [1]. Also, causal
dependencies between states can be introduced by selecting state spaces that are
adequate for contraction-less logic [19]. Finally, if states are to be intended as
spatially and temporally located entities, non-standard mereologies may come
into play, cf. [24].

The appeal of the generality of the TS project, of course, depends on the in-
dividual philosophical perspective. Some philosophers who reject non-standard
mereologies may find it uninteresting. Or they could use our constructions to
argue that substructural logics have no genuine mereological foundation. At end,
as we have made explicit, the state space for the Lambek calculus is mereologically
quite non-standard (cf. Section 6.2).

Additionally, skeptics of TS may see our approach as highlighting potential
theoretical flaws within the TS project. In particular, these philosophers may
question the philosophical significance of the notion of verifiers and falsifiers
within TS. The mereological nature of states suggests that their identity and com-
positional behaviour are determined by their mereological properties. However,

29Interestingly, a relational frame is in fact a partial semi-group, see e.g.[30], Example
1. So, in principle, relational frames can be construed as pre-mereological.
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the metaphysical nature of verifier states is not entirely clear and has been the
subject of debate (Jago discusses three alternative metaphysical accounts in [21]).
Consequently, the exploration of non-standard mereologies introduces further in-
determinacy regarding the philosophical foundations of states, on which TS are
built. To sum up, the TS project is facing a dilemma: the more hospitable it is to
various logics, the less determinate its mereological foundation can be.

Conclusions
This article applied Fine’s theory of composition and parthood in [16] to explore
the framework of TS and to expand it, by developing new TS whose underlying
mereology is non-standard. The application of this framework proves to be fruit-
ful, thanks to its generality. We showed how to create new TS from composition
operators and we designed some of them for substructural logics. Let us stress
that, in this regard, our exploration of associative Lambek Calculus is driven by
the observation that it could potentially be the logic emerging from our repre-
sentation of pre-mereological spaces — as highlighted in Section 6.3. However,
by modifying our framework to handle Σs that deal with less structured objects
than strings, we might expect that pre-mereological spaces could generate even
weaker logics, including non-associative ones. Anyway, this remains a subject for
future investigations.

Finally, in the previous section, we pointed out the novelties that the in-
vestigation of TS based on non-standard mereologies brings to the general TS
framework, we highlighted the benefits in terms of generality, and we outlined a
possible philosophical challenge to the TS project.

Future work is planned along two directions. Our pre-mereological inter-
pretation of substructural logics is confined to logics with monoidal semantics.
Future work shall face the case of logics such as (full) Linear Logic and Relevant
Logic, that require sophisticated semantic structures.

On the philosophical side, we have seen how the TS project tightens the con-
nection between logic and mereology. An interesting application of our frame-
work shall be dedicated to exploring the relationships between logical and mere-
ological pluralism.
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