For the sake of the mind, cancel Kahneman!

<table>
<thead>
<tr>
<th>Journal:</th>
<th>MIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>MIND-2022-139</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Subject Area:</td>
<td>Philosophy of Mind</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Psychology, Representation, Definition, Good for, Functorial semantics, Category theory</td>
</tr>
</tbody>
</table>
For the sake of the mind, cancel Kahneman!
Abstract

Kahneman’s ‘Asian disease’ has nothing to do with Asians or their diseases; it is disrespectful of the basic principles of psychology. The attendant research--fooling people--is not science. Here I show how to build a science of the mind.
1. Asian disease


Kahneman, in rationalizing the racist(?) association--Asian disease--of a race with an undesirable condition of the human body, says: ‘the example was written in the 1970s’ (Kahneman 2011, p. 477), while continuing to repeat it (e.g. Kahneman 2003, p. 697). But, that racism is wrong is no secret in the 70s. All the more distressing, as is invariably the case with racism, it is uncalled for: there is nothing in the scientific content of Tversky and Kahneman (1981) that warrants ‘Asian disease’. Nor is there any data that I know of (beginning with mythical and all the way to the contemporary medical understanding of the concept of disease, along with its prevalence amongst various races) that would, statistically speaking, associate disease with Asians, and thereby make it ‘concrete’ as claimed by Kahneman (2011, p. 477). All of this takes on the immediacy of Headline News, given our race against artificial intelligence to contain its racist behaviour (Kapur 2021). To get a feel for the damage already done, google asian disease, and none of the search results (page 1) have anything to do with Asians or their diseases.

We all know about the ‘basket of deplorables’ made out of ‘the crooked timber of humanity’ (cf. Berlin 2013). I cannot help but think that Kahneman, being a psychologist, would not have concocted ‘Asian disease’ had he read the Principles of Psychology: ‘I called the appearance of snow “micaceous”; and the moment I did so, the other connotations of the word “micaceous” dragged the snow farther away from ordinary snow and seemed even to aggravate the peculiar look’ (James 1890, p. 512).
Is it right (or wrong) to cancel Kahneman? What about his contributions to thinking, which morphed into a textbook on the workings of the mind (cf. Kahneman 2011)? Do we have to cancel his ‘profound’ contribution to the science of mind: it is easy to fool people (e.g. Tversky and Kahneman 1983)? Yes, we do! In doing so, we broad-mindedly interpret the same findings as: human beings are--by default--trusting! In our everyday lives we do not go around fooling our fellow human beings, nor are we constantly on the lookout. Trust--mutual trust--transforms individual human beings into cohesive societies. Canceling Kahneman and his cancerous research program--work hard to find easy ways to fool people--is indispensable in resurrecting the failed enterprise that is cognitive science (cf. Núñez et al. 2019).

Given the dangers inherent in investigating ways and means that can potentially harm humanity (cf. the COVID pandemic that we--devoid of our individual and collective agency--are living in a spectator-mode), we need to scientifically--sensibly and reasonably--address: do we want to invest--intellectually and financially--in Kahneman et al. questionnaires deliberately designed to elicit wrong answers? Nobody would disagree with, say: the number of black cats cannot be greater than the number of cats. But, with their crooked Linda problem, Kahneman got many to say: there are more black cats than cats, so to speak (Tversky and Kahneman 1983, p. 293).

There is not much that one can learn about walking by watching (during morning rush hour) people step on banana peels (surreptitiously dropped on the walkway), slip, and fall. Even if ‘falling people’ is the only way to scientifically understand how people walk, human societies
need more than ‘the only way’ (that we know of, with its implicit ignorance) to fund planned-fall of innocent people going about their lives.

To see the ridiculousness of Kahneman et al. approach to mind, take a look at your resume. A neuroscientist does not speak of all that the neuroscientist is not good at (e.g. Avadhanam, Kuchipudi, and Naarikeelapaakam); so is the case with astronomers, librarians, and pretty much everybody. In everyday life, I do not introduce myself as: Hi, I am not a skyscraper eating clouds for breakfast (notwithstanding the fact that it is true). We identify and describe ourselves in terms of what we are; more specifically, in terms of what we are good at.

Of course, knowing how and when a system fails is an integral part of many disciplines (e.g. stress testing in engineering). In fact, visual illusions have been put to good use to tell apart the neural correlates of conscious perception from neural coding of physical stimuli (e.g. Stoner and Albright 1992). [Having credited where credit is due] Failures, however telling they might be, do not define anything.

2. On defining the mind

The scientific method for defining an object is in terms of: what it is good for (Lawvere and Rosebrugh 2003, pp. 26-31; Lawvere and Schanuel 2009, p. 334). Note that the method of defining an object in terms of ‘what it is good for’ is refined compared to the method of defining...
objects in terms of their functions. You can use a pen to scratch your itchy back, but what figures in the definition of PEN is WRITING (and not scratching).

Now the question ‘what is mind?’ can be answered in terms of ‘what is mind good for?’ Phrased differently, what is it that would not be but for the human mind? But for the human mind, there would not be mathematics in particular and science in general. Mathematics, by virtue of being a product of the human mind, retains traces of the process—workings of the mind—that gave birth to the product: mathematics (inventions and discoveries). This immediately suggests a productive research program: study mathematics to gain insights into the workings of the human mind (e.g. Ehresmann and Vanbremeersch 2007; Posina, Ghista, and Roy 2017).

If a mountain of a theory can be made out of a simple mathematical mistake (cf. bat and ball problem; Kahneman and Frederick 2002), imagine all the progress we could have made by studying the evermore refined mathematical understanding of reality mediated by the human mind. Mathematical concepts, as Schapira (2016) notes, do not differ fundamentally from the commonplace ideas of everyday life. Of course, there are psychologists—obsessed with errors and unable to look beyond limitations—that cannot see the parallels between individual cognition and collective science (e.g. Pinker; see Fodor 2006, p. 93). Thankfully, we have Einstein: ‘science is nothing more than a refinement of everyday thinking’ (Einstein 2003, p. 23). Simply put, cognition is science writ small.
One argument against studying mathematics with the objective of knowing ‘how we know’ is that mathematical knowing is too special to inform knowing in general, but that is exactly how we [scientifically] know: it is the too special motion of a dropped object that led to the development of the science of motion in general (Lawvere and Schanuel 2009, p. 4; see also Posina 2020a). In closing, cataloging mistakes of the mind can never amount to a science of the mind. The science of the mind needs to be built on the solid foundation of the scientifically most refined mathematical understanding of the relationship between particulars, their properties, theories, and models (Lawvere 1994, 2004; see also http://www.math.union.edu/~niefiels/13conference/Web/), which parallels the relationship between physical stimuli, their neural coding, mental concepts, and conscious perception constituting cognition (Posina, Ghista, and Roy 2017). In addition to the familiar categories of Being (characterized by their modes of cohesion; the way parts of a whole stick together) and Becoming (with its types of variation that are respectful of the respective modes of cohesion; Johansson’s point light walker <https://youtu.be/r0kLC-pridI> is a good illustration of becoming consistent with being; see also Lawvere and Schanuel 2009, p. 152), we need a category of Reflecting in order to synthesize ontology and epistemology into which reality is analyzed (ibid. pp. 84-85). The significance of synthesis after analysis in the course of scientific development has been emphasized by none other than Newton (1934; see also Posina 2020b). The needed category of Reflecting can be based on the adjointness between the geometry of figures and its subjective reflections in algebra (Lawvere 2016; Lawvere and Schanuel 2009, pp. 370-371; Posina 2020a). Having said what needs to be stated clearly, I leave it to psychologists to choose science--defined as: ever more refined alignment of reason with experience--or selfies (Geman and Geman 2016).
References


Lawvere, F. W. (1994) Tools for the advancement of objective logic: Closed categories and
University Press, pp. 43-56.

in the context of functorial semantics of algebraic theories. Reprints in Theory and Applications

Categories and General Algebraic Structures with Applications 4: 1-7
<https://cgasa.sbu.ac.ir/article_12425_b4ce2ab0ae3a843f00ff011b054f918b.pdf>.


Categories, Cambridge University Press.

Newton, I. (1934) Principia, F. Cajori (Ed.)
<https://sites.google.com/site/encyclopediaofideas/science-and-nature/newton-and-the-method-
of-analysis>.


Tattva Journal of Philosophy 12: 75-92


