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Abstract. The paper proposes a new technique for deal-

ing with multi-attribute decision making problems 

through an extended TOPSIS method under neutrosophic 

cubic environment. Neutrosophic cubic set is the general-

ized form of cubic set and is the hybridization of a neu-

trosophic set with an interval neutrosophic set. In this 

study, we have defined some operation rules for neutro-

sophic cubic sets and proposed the Euclidean distance 

between neutrosophic cubic sets. In the decision making 

situation, the rating of alternatives with respect to some 

predefined attributes are presented in terms of neutro-

sophic cubic information where weights of the attributes 

are completely unknown. In the selection process, neu-

trosophic cubic positive and negative ideal solutions have 

been defined. An extended TOPSIS method is then pro-

posed for ranking the alternatives and finally choosing 

the best one. Lastly, an illustrative example is solved to 

demonstrate the decision making procedure and effec-

tiveness of the developed approach. 

Keywords: TOPSIS; neutrosophic sets; interval neutrosophic set; neutrosophic cubic sets; multi-attribute decision making.

1 Introduction 

Smarandache [1] proposed neutrosophic set (NS) that 

assumes values from real standard or non-standard subsets 

of] 
-
0, 1

+
[. Wang et al. [2] defined single valued 

neutrosophic set (SVNS) that assumes values from the unit 

interval [0, 1]. Wang et al. [3] also extended the concept of 

NS to interval neutrosophic set (INS) and presented the 

set-theoretic operators and different properties of INSs. 

Multi-attribute decision making (MADM) problems with 

neutrosophic information caught much attention in recent 

years due to the fact that the incomplete, indeterminate and 

inconsistent information about alternatives with regard to 

predefined attributes are easily described under 

neutrosophic setting. In interval neutrosophic environment, 

Chi and Liu [4] at first established an extended technique 

for order preference by similarity to ideal solution 

(TOPSIS) method [5] for solving MADM problems with 

interval neutrosophic information to get the most 

preferable alternative. Şahin, and Yiğider [6] discussed 

TOPSIS method for multi-criteria decision making 

(MCDM) problems with single neutrosophic values for 

supplier selection problem. Zhang and Wu [7] developed 

an extended TOPSIS for single valued neutrosophic 

MCDM problems where the incomplete weights are 

obtained by maximizing deviation method. Ye [8] 

proposed an extended TOPSIS method for solving MADM 

problems under interval neutrosophic uncertain linguistic 

variables. Biswas et al. [9] studied TOPSIS method for 

solving multi-attribute group decision making problems 

with single-valued neutrosophic information where 

weighted averaging operator is employed to aggregate the 

individual decision maker’s opinion into group opinion.  

In 2016, Ali et al. [10] proposed the notion of neutrosophic 

cubic set (NCS) by extending the concept of cubic set to 

neutrosophic cubic set. Ali et al. [10] also defined internal 

neutrosophic cubic set (INCS) and external neutrosophic 

cubic set (ENCS), 3
1 -INCS ( 3

2 -ENCS), 3
2 -INCS 

( 3
1 -ENCS) and also proposed some relevant properties. 

In the same study, Ali et al. [10] proposed Hamming 

distance between two NCSs and developed a decision 

making technique via similarity measures of two NCSs in 

pattern recognition problems. Jun et al. [11] studied the 

notions of truth-internal (indeterminacy-internal, falsity-

internal) neutrosophic cubic sets and truth-external 

(indeterminacy-external, falsity-external) neutrosophic 

cubic and investigated related properties. Pramanik et al. 

[12] defined similarity measure for neutrosophic cubic sets 
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and proved its basic properties. In the same study, 

Pramanik et al. [12]   developed multi criteria group deci-

sion making method with linguistic variables in neutrosophic 

cubic set environment.

In this paper, we develop a new approach for MADM 
problems with neutrosophic cubic assessments by using 

TOPSIS method where weights of the attributes are un-
known to the decision maker (DM). We define a few oper-

ations on NCSs and propose the Euclidean distance be-
tween two NCSs. We define accumulated arithmetic opera-

tor (AAO) to convert neutrosophic cubic values (NCVs) to 

single neutrosophic values (SNVs).
 
We also define neutro-

sophic cubic positive ideal solution (NCPIS) and neutro-

sophic cubic negative ideal solution (NCNIS) in this study. 
The rest of the paper is organized in the following way. 

Section 2 recalls some basic definitions which are useful 

for the construction of the paper. Subsection 2.1 provides 
several operational rules of NCSs. Section 3 is devoted to 

present an extended TOPSIS method for MADM problems 
in neutrosophic cubic set environment. In Section 4, we 

solve an illustrative example to demonstrate the applicabil-
ity and effectiveness of the proposed approach. Finally, the 

last Section presents concluding remarks and future scope 

research. 

2 The basic definitions 

Definition: 1 

Fuzzy sets [13]: Consider U be a universe. A fuzzy set 
Φ over U is defined as follows: 

Φ  = { )(  , xμx Φ   x U} 

where )(xμΦ : U  [0, 1] is termed as the membership 

function of Φ  and )(xμΦ  represents the degree of mem-

bership to which xΦ . 

Definition: 2 

Interval valued fuzzy sets [14]: An interval-valued fuzzy 

set (IVFS)Θ over U is represented as follows: 

Θ  = { )(),(  , xΘxΘx - 
  x U} 

where )(),( xΘxΘ -   denote the lower and upper degrees 

of membership of the element x U to the set Θ with 

0 )(xΘ - + xΘ ( ) 1. 

Definition: 3 

Cubic sets [15]: A cubic set Ψ in a non-empty set U is a 

structure defined as follows: 

Ψ = { )(),( , xΦxΘx   x U} 

where Θ and Φ respectively represent an interval valued 

fuzzy set and a fuzzy set. A cubic set Ψ is denoted by Ψ = 

<Θ ,Φ >. 

Definition: 4 

Internal cubic sets [15]: A cubic set Ψ = <Θ ,Φ > in U is 

said to be internal cubic set (ICS) if 

)(xΘ -  )(xμ  )(xΘ  for all x U. 

Definition: 5 

External cubic sets [15]: A cubic set Ψ = <Θ ,Φ > in U is 

called external cubic set (ECS) if )(xμ    ( )(xΘ - , )(xΘ ) 

for all x U. 

Definition: 6 

Consider 1Ψ = < 1Θ , 1Φ > and 2Ψ = < 2Θ , 2Φ > be two cubic 

sets in U, then we have the following relations [15]. 

1. (Equality) 1Ψ = 2Ψ if and only if 1Θ = 2Θ

and
1μ = .2μ  

2. (P-order) PΨ 1 2Ψ  if and only 

if 1Θ 
2Θ and 1μ  .2μ  

3. (R-order) RΨ 1 2Ψ  if and only 

if 1Θ 
2Θ and 1μ  .2μ  

Definition: 7 

Neutrosophic set [1]: Consider U be a space of objects, 

then a neutrosophic set (NS) χ on U is defined as follows: 

χ = {x, )(),(),( xγxβxα   xU} 

where )(),(),( xγxβxα :U ]
-
0, 1

+
[ define respectively the 

degrees of truth-membership, indeterminacy-membership, 

and falsity-membership of an element xU to the 

set χ with  
-
0   sup )(xα + sup )(xβ + sup )(xγ  3

+
.

Definition: 8 

Interval neutrosophic sets [9]: An INS Γ  in the 

universal space U is defined as follows: 

Γ = {x, )](),([)],(),([,)](),([ xΓxΓxΓxΓxΓxΓ γ

-

γβ

-

βα

-

α


  

x U} 

where, )(xΓ α , )(xΓ β , )(xΓ γ are the truth-membership 

function, indeterminacy-membership function, and falsity-

membership function, respectively with )(xΓα , )(xΓ β , 

)(xΓ γ  [0, 1] for each point x U and 0  sup )(xΓα + 

sup )(xΓ β + sup )(xΓ γ  3. 
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Definition: 9 

Neutrosophic cubic sets [15] 

A neutrosophic cubic set (NCS) Ξ in a universe U is 

presented in the following form: 

Ξ = { )(),(  , xχxΓx   x U} 

where Γ and χ are respectively an interval neutrosophic set 

and a neutrosophic set in U. 

However, NSs take the values from] 
-
0, 1

+
[ and single-

valued neutrosophic set defined by Wang et al. [2] is 

appropriate for dealing with real world problems. 

Therefore, the definition of NCS should be modified in 

order to solve practical decision making purposes. Hence, 

a neutrosophic cubic set (NCS) Ξ in U is defined as 

follows: 

Ξ = { )(),(  , xχxΓx   x U} 

Here, Γ and χ are respectively an INS and a SVNS in U 

where 0  )(xα + )(xβ + )(xγ  3 for each point x U. 

Generally, a NCS is denoted by Ξ = < Γ , χ > and sets of 

all NCS over U will be represented by NCS
U
.  

Example 1. Assume that U = {u1, u2, u3, u4} be a universal 

set. An INS A in U is defined as 
 = {< [0.15, 0.3], [0.25, 0.4], [0.6, 0.75] >/ u1 + < [0.25, 

0.35], [0.35, 0.45], [0.4, 0.65] >/ u2 + < [0.35, 0.5], [0.25, 

0.35], [0.55, 0.85] >/ u3 + < [0.7, 0.8], [0.15, 0.45], [0.2, 

0.3] >/ u4} 

and a SVNS χ in U defined by  

χ = {< 0.35, 0.3, 0.15 >/ u1, < 0.5, 0.1, 0.4 >/ u2, < 0.25, 

0.03, 0.35 >/ u3, < 0.85, 0.1, 0.15 >/ u4} 

Then  = < A, χ > is represented as a NCS in U. 

Definition: 10 

Internal neutrosophic cubic set [10]: Consider Ξ = < Γ , 

χ >  NCS
U
, if )(xΓ -

α
 )(xα  )(xΓα

 ; 

)(xΓ -

β  )(xβ  )(xΓ β


; and )(xΓ -

γ  )(xγ  )(xΓ γ


for 

all x U, then Ξ is said to be an internal neutrosophic 

cubic set (INCS). 

Example 2. Consider Ξ = < Γ , χ >  NCS
U
, if )( xΓ = <

[0.65, 0.8], [0.1, 0.25], [0.2, 0.4] > and )(xχ = < 0.7, 0.2, 

0.3 > for all x U, then Ξ = < Γ , χ > is an INCS. 

Definition: 11 

External neutrosophic cubic set [10]: Consider Ξ = < Γ , 

χ >  NCS
U
, if )(xα  ( )(xΓ -

α , )(xΓα

 ); 

)(xβ  ( )(xΓ -

β , )(xΓ β


); and )(xγ  ( )(xΓ -

γ , )(xΓ γ


) for 

all x U, then Ξ = < Γ , χ > is said to be an external 

neutrosophic cubic set (ENCS). 

Example 3. Consider Ξ = < Γ , χ >  NCS
U
, if )( xΓ = <

[0.65, 0.8], [0.1, 0.25], [0.2, 0.4] > and )(xχ = < 0.85, 0.3, 

0.1 > for all x U, then Ξ = < Γ , χ > is an ENCS. 

Theorem 1. [10] 

Consider Ξ = < Γ , χ >  NCS
U
, which is not an ENCS,

then there exists xU such that 

)(xΓ -

α
 )(xα  )(xΓα

 ; )(xΓ -

β  )(xβ  )(xΓ β


; or 

)(xΓ -

γ  )(xγ  )(xΓ γ


. 

Definition: 12 

3

2 -INCS(
3

1 -ENCS) [10]: Consider Ξ = < Γ , χ >  NCS
U
,

if )(xΓ -

α
 )(xα  )(xΓ α


; )(xΓ -

β  )(xβ  )(xΓ β


; 

and )(xγ  ( )(xΓ -

γ , )(xΓ γ


) or )(xΓ -

α
 )(xα  )(xΓα

 ; 

)(xΓ -

γ  )(xγ  )(xΓ γ


 and )(xβ  ( )(xΓ -

β , )(xΓ β


) or 

)(xΓ -

β  )(xβ  )(xΓ β


; and )(xΓ -

γ  )(xγ  )(xΓ γ


 

and )(xα  ( )(xΓ -

α , )(xΓα

 ) for all x U, then Ξ = < Γ , 

χ > is said to be an 
3

2 -INCS or
3

1 -ENCS. 

Example 4. Consider Ξ = < Γ , χ >  NCS
U
, if )( xΓ = <

[0. 5, 0.7], [0.1, 0.2], [0.2, 0.45] > and )(xχ = < 0.65, 0.3, 

0.4 > for all x U, then Ξ = < Γ , χ > is an 
3

2 -INCS or
3

1 -

ENCS. 

Definition: 13 

3

1 -INCS (
3

2 -ENCS) [10]: Consider Ξ = < Γ , χ > 

NCS
U
, if )(xΓ -

α
 )(xα  )(xΓα

 ; )(xβ  ( )(xΓ -

β , )(xΓ β


); 

and )(xγ  ( )(xΓ -

γ , )(xΓ γ


) or )(xΓ -

γ  )(xγ  )(xΓ γ


; 

)(xα  ( )(xΓ -

α , )(xΓα

 ) and )(xβ  ( )(xΓ -

β , )(xΓ β


) or 

)(xΓ -

β  )(xβ  )(xΓ β


; )(xα  ( )(xΓ -

α , )(xΓα

 ) and 

)(xγ  ( )(xΓ -

γ , )(xΓ γ


) for all x U, then Ξ = < Γ , χ > is 

said to be an 
3

1 -INCS or
3

2 -ENCS.

Example 5. Consider Ξ = < Γ , χ >  NCS
U
, if )(xΓ  = <

[0. 5, 0.8], [0.15, 0.25], [0.2, 0.35 ] > and )(xχ = < 0.55, 

0.4, 0.5 > for all x U, then Ξ = < Γ , χ > is an 
3

1 -INCS 

or
3

2 -ENCS.

Definition: 14 [10] 

Consider 1Ξ = < 1Γ , 1χ > and 2Ξ = < 2Γ , 2χ > be two 

NCSs in U, then 
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1. (Equality) 1Ξ = 2Ξ if and only if 1Γ = 2Γ

and 1χ = 2χ . 

2. (P-order) P1 Ξ 2Ξ  if and only if 1Γ ~ 2Γ

and 1χ 


2χ . 

3. (R-order) R1 Ξ 2Ξ  if and only 

if 1Γ ~ 2Γ and 1χ 


2χ . 

For convenience, p = < ([ -

αΓ , 

1α
Γ ], [ 

1β
Γ , 

1β
Γ ], [

-

γΓ ,


γΓ ]), 

( α , β , γ ) > is said to represent neutrosophic cubic value 

(NCV) 

Definition: 15 

Complement [10]: Consider Ξ = < Γ , χ > be an NCS, 

then the complement of Ξ = < Γ , χ > is given by 

CΞ = { )(),(  ,
~

xχxΓx CC


  x U}. 

2.1 Several operational rules of NCVs 

Consider p1 =  < ([
-

αΓ 1
,



1α
Γ ], [



1β
Γ ,



1β
Γ ], [

-

γΓ 1
,



1γ
Γ ]), 

( 1α , 1β , 1γ ) > and p2 = < ([
-

αΓ 2
,



2α
Γ ], [



2β
Γ ,



2β
Γ ], 

[
-

γΓ 2
,



2γ
Γ ]), ( 2α , 2β , 2γ ) > be two NCVs in U, then the 

operational rules are presented as follows: 

1. The complement [10] of p1 is
Cp1 = < ([ -

γΓ 1
, 

1γ
Γ ], [1-



1β
Γ ,1- 

1β
Γ ], [ -

αΓ 1
, 

1α
Γ ]), ( 1γ , 1- 1β , 1α ) >. 

2. The summation between p1 and p2 is defined as

follows:

p1   p2 = < ([
-

αΓ 1
+

-

αΓ 2
-

-

αΓ 1

-

αΓ 2
,



1α
Γ  + 



2α
Γ -



1α
Γ 

2α
Γ ], [ 

1β
Γ 

2β
Γ , 

1β
Γ 

2β
Γ ], 

[ -

γΓ 1

-

γΓ 2
, 

1γ
Γ 

2γ
Γ ]), ( 1α + 2α - 1α 2α , 1β 2β , 1γ 2γ ) 

>. 

3. The multiplication between p1 and p2 is defined as

follows:

p1   p2= < ([
-

αΓ 1

-

αΓ 2
,



1α
Γ 

2α
Γ ], [



1β
Γ +



2β
Γ -



1β
Γ 

2β
Γ ,



1β
Γ +



2β
Γ -



1β
Γ 

2β
Γ ], [

-

γΓ 1
+

-

γΓ 2
-

-

γΓ 1

-

γΓ 2
,



1γ
Γ +



2γ
Γ -



1γ
Γ 

2γ
Γ ]), ( 1α 2α , 1β + 2β -

1β 2β , 1γ + 2γ - 1γ 2γ ) >. 

4. Consider p1 =  < ([ -

αΓ 1
, 

1α
Γ ], [ 

1β
Γ , 

1β
Γ ], [ -

γΓ 1
, 

1γ
Γ ]), 

( 1α , 1β , 1γ ) > be a NCV and κ be an arbitrary positive 

real number, then κ p1and κp1 are defined as follows: 

(i) κ p1= < ([1- (1- κ-

αΓ )
1

,1- (1- κ

αΓ )
1

 ], 

[(
κ

βΓ )
1


,

κ

βΓ )(
1


],[( κ)

1



γΓ , κ)(
1



γΓ ]), (1- (1-

κα )1 , ( κβ )1
, ( κγ )1 ) >; 

(ii) κp1 = < ([( κ-

αΓ )
1

, ( κ

αΓ )
1

 ], [1- (1-
κ

βΓ )
1


,1- (1-

κ

βΓ )
1


], [1- (1-

κ

γΓ )
1


,1- (1-

κ

γΓ )
1


]), 

(( κα )1 ,1-(1- κβ )1 ,1- (1- κγ )1 ) >. 

Definition: 16 [10] 

Consider 1Ξ = < 1Γ , 1χ > and 2Ξ = < 2Γ , 2χ > be two 

NCSs in U, then the Hamming distance between 1Ξ  and 

2Ξ is defined as follows: 

DH ( 1Ξ , 2Ξ ) = 


n

n 1i9

1
(| )( i1 xΓ -

α - )( i2 xΓ -

α | + | )( i1 xΓ -

β -

)( i2 xΓ -

β | + | )( i1 xΓ -

γ - )( i2 xΓ -

γ | + | )( i1 xΓ α

 - )( i2 xΓ α

 | + 

| )( i1 xΓ β

 - )( i2 xΓ β

 | + | )( i1 xΓ γ


- )( i2 xΓ γ

 | + | )( i1 xα - )( i2 xα | 

+ | )( i1 xβ - )( i2 xβ | + | )( i1 xγ - )( i2 xγ |). 

Example 7: Suppose that 1
Ξ = < 1Γ , 1χ >  = < ([0.6, 0.75], 

[0.15, 0.25], [0.25, 0.45]), (0.8, 0.35, 0.15) > and 2Ξ = 

< 2Γ , 2χ > = < ([0.45, 0.7], [0.1, 0.2], [0.05, 0.2]), (0.3, 

0.15, 0.45) > be two NCSs in U, then DH ( 1Ξ , 2Ξ ) = 

0.1944. 

Definition: 17  

Consider 1Ξ = < 1Γ , 1χ > and 2Ξ = < 2Γ , 2χ > be two 

NCSs in U, then the Euclidean distance between 1Ξ  and 

2Ξ is defined as given below. 

DE ( 1Ξ , 2Ξ ) = 
































n

1i

2

i2i1

2

i2i1

2

i2i1

2

i2i1

2

i2i1

2

i2i1

2

i2i1

2

i2i1

2

i2i1

))(-)(())(-)(())(-)((

))(-)(())(-)(())(-)((

))(-)(())(-)(())(-)((

9

1

xγxγxβxβxαxα

xΓxΓxΓxΓxΓxΓ

xΓxΓxΓxΓxΓxΓ

n
γγ

-

γ

-

γββ

-

β

-

βαα

-

α

-

α

with the condition 0   DE ( 1Ξ , 2Ξ )  1. 

Example 8: Suppose that 1Ξ = < 1Γ , 1χ > = < ([0.4, 0.5], 

[0.1, 0.2], [0.25, 0.5]), (0.4, 0.3, 0.25) > and 2Ξ = < 2Γ , 

2χ > = < ([0.5, 0.9], [0.15, 0.3], [0.05, 0.1]), (0.7, 0.1, 
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0.15) > be two NCSs in U, then DE ( 1Ξ , 2Ξ ) = 0.2409. 

3 An extended TOPSIS method for MADM prob-
lems under neutrosophic cubic set environment 

In this Section, we introduce a new extended TOPSIS 

method to handle MADM problems involving 

neutrosophic cubic information. Consider B = {B1, B2, …, 

Bm}, (m  2) be a discrete set of m feasible alternatives and 

C = {C1, C2, …, Cn}, (n  2) be a set of attributes. Also, let 

w = (w1, w2, …, wn)
T
 be the unknown weight vector of the

attributes with 0wj 1 such that 


n
w

1j
j = 1. Suppose that 

the rating of alternative Bi (i = 1, 2, …, m) with respect to 

the attribute Cj (j = 1, 2, …, n) is described by aij where  aij 

= < ([ -

αij
Γ , 

ijα
Γ ], [ 

ijβ
Γ , 

ijβ
Γ ], [

-

γij
Γ ,



ijγ
Γ ]), ( ijα , ijβ , ijγ ) >. 

The proposed approach for ranking the alternatives under 

neutrosophic cubic environment is shown using the 

following steps: 

Step 1. Construction and standardization of decision 

matrix with neutrosophic cubic information 

Consider the rating of alternative Bi (i = 1, 2, …, m) with 

respect to the predefined attribute Cj, (j = 1, 2, …, n) be 

presented by the decision maker in the neutrosophic cubic 

decision matrix ( See eqn. 1). 

nm
ij


a =  























mnmm

n

n

a...aa

......

......

a...aa

a...aa

21

22221

11211

  (1)

In general, there are two types of attributes appear in the 

decision making circumstances namely (i) benefit type 

attributes J1, where the more attribute value denotes 

better alternative (ii) cost type attributes J2, where the 

less attribute value denotes better alternative. We 

standardize the above decision matrix 
nm

ij


a in order to 

remove the influence of diverse physical dimensions to 

decision results.  

Consider 
nm

ij


s  be the standardize decision matrix, 

where 

ijs  = < ([ -

αij
Γ , 

ijα
Γ ], [ 

ijβ
Γ , 

ijβ
Γ ], [

-

γij
Γ ,



ijγ
Γ ]),

( ijα , ijβ
 , ijγ )>, 

where 

ijs = aij, if the attribute j is benefit type;

ijs =
c

ija , if the attribute j is cost type. 

Here c

ija  denotes the complement of  aij. 

Step 2. Identify the weights of the attributes 

To determine the unknown weight of attribute in the 

decision making situation is a difficult task for DM. 

Generally, weights of the attributes are dissimilar and they 

play a decisive role in finding the ranking order of the 

alternatives. Pramanik and Mondal [16] defined arithmetic 

averaging operator (AAO) in order to transform interval 

neutrosophic numbers to SVNNs. Based on the concept of 

Pramanik and Mondal [16], we define AAO to transform 

NCVs to SNVs as follows: 

NCij <
ijα

Γ ,
ijβ

Γ ,
ijγ

Γ > = 

NCij
3

,
3

,
3

ijγ

-

γijβ

-

βijα

-

α γΓΓβΓΓαΓΓ
ijijijijijij

  

In this paper, we utilize information entropy method to 

find the weights of the attributes wj where weihgts of the 

attributes are unequal and fully unknown to the DM. 

Majumdar and Samanta [17] investigated some similarity 

measures and entropy measures for SVNSs where entropy 

is used to measure uncertain information. Here, we take the 

following notations: 

PΩ
T (xi) =













  

3

ijα

-

α αΓΓ
i ji j


, 

PΩI (xi) =












  

3

ijβ

-

β βΓΓ
i ji j


, 

P
F (xi) = 













  

3

ijγ

-

γ γΓΓ
ijij



Then we can write PΩ = )(),(),( iii xFxIxT
PPP ΩΩΩ . 

The entropy value is given as follows: 

Ei ( PΩ ) = 1 - )()())()((
1

iii
1i

i xIxIxFxT
n

c

ΩΩΩ

m

Ω PPPP




which has the following properties: 

(i). Ei ( PΩ ) = 0 if PΩ is a crisp set and )( ixI
PΩ

= 0, 

)( ixF
PΩ

= 0 xE. 

(ii). Ei ( P ) = 0 if )(,)(,)( iii xFxIxT
PPP ΩΩΩ  = < )( ixT

PΩ
, 

0.5, )( ixF
PΩ

 >,  x  E. 

(iii). Ei ( PΩ )  Ei ( QΩ ) if PΩ is more uncertain 

than QΩ i.e. 

)( ixT
PΩ

+ )( ixF
PΩ

 )( ixT
QΩ

+ )( ixF
QΩ

and )()( ii xIxI c

ΩΩ PP
  )()( ii xIxI c

ΩΩ QQ
 . 

(iv). Ei ( PΩ ) = Ei (
c

PΩ ), x  E. 

Consequently, the entropy value Evj of the j-th attribute 

can be calculated as as follows:. 
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Evj = 1 - )()())()((
1

iii
1i

i xIxIxFxT
n

C

ijijij

m

ij 


, i = 1, 2, …, 

m; j = 1, 2,…, n. 

We observe that 0  Evj  1. Based on Hwang and Yoon 

[18] and Wang and Zhang [19] the entropy weight of the 

j-th attribute is defined as follows: 

wj = 

 





n

1j
j

j

)Ev(1

Ev1
 with 0  wj  1 and 



n
w

1j
j = 1. 

Step 3. Formulation of weighted decision matrix     

The weighted decision matrix is obtained by multiplying 

weights of the attributes (wj) and the standardized decision 

matrix
nm

ij


s . Therefore, the weighted neutrosophic cubic 

decision matrix
nm

ij


z  is obtained as: 

nm
ij


z = jw 

nm
ij


a =





















mnnmm

nn

nn

sw...swsw

......

sw...swsw

sw...swsw

2211

2222211

1122111

 

 = 























mnmm

n

n

z...zz

......

......

z...zz

z...zz

21

22221

11211

where 

zij = < ([ -

αij
Γ , 

ijα
Γ ], [ 

ijβ
Γ , 

ijβ
Γ ], [

-

γij
Γ ,



ijγ
Γ ]), ( ijα , ijβ

 , ijγ ) > 

= < ([1- (1- j

ij
)

w-

αΓ
 ,1- (1- j)

w

αij
Γ  ], 

[( j)
w

βij
Γ  , j

ij
)(

w

βΓ
 ],[( j

i j

)
w

γΓ
 , j)(

w

γij
Γ  ]), (1- (1- j)ij

w
α , 

( j)ij

w
β , ( j)ij

w
γ ) > 

Step 4. Selection of neutrosophic cubic positive ideal 

solution (NCPIS) and neutrosophic cubic negative ideal 

solution (NCNIS) 

Consider z
U
 = ( Uz1 , Uz2 , …, U

nz ) and z
L
 = ( Lz1 , Lz2 , …, L

nz ) 

be the NCPIS and NCNIS respectively, then 
U

jz  is defined 

as follows: 
U

jz = < ([(
-

α j
Γ )

U
, (



jα
Γ )

U
], [( 

jβ
Γ )

U
, ( 

jβ
Γ )

U
], [(

-

γ j
Γ )

U
,

(


jγ
Γ )

U
]), (( jα )

U
, ( jβ

 )
U
, ( jγ )

U
) > 

where 

(
-

α j
Γ )

U
 = {(

i
max { -

αij
Γ }| jJ1), (

i
min { -

αij
Γ }| jJ2)},

(


jα
Γ )

U
 = {(

i
max { 

ijα
Γ }| jJ1), (

i
min { 

ijα
Γ }| jJ2)},

( 

jβ
Γ )

U 
= {(

i
min { 

ijβ
Γ }| jJ1), (

i
max { 

ijβ
Γ }| jJ2)},

( 

jβ
Γ )

U
 ={(

i
min { 

ijβ
Γ }| jJ1), (

i
max { 

ijβ
Γ }| jJ2)},

(
-

γ j
Γ )

U
= {(

i
min {

-

γij
Γ }| jJ1), (

i
max {

-

γij
Γ }| jJ2)},

(


jγ
Γ )

U
 ={(

i
min {



ijγ
Γ }| jJ1), (

i
max {



ijγ
Γ }| jJ2)},

( jα )
U
 = {(

i
max { ijα }| jJ1), (

i
min { ijα }| jJ2)},

( jβ
 )

U
 = {(

i
min { ijβ

 }| jJ1), (
i

max { ijβ
 }| jJ2)},

 ( jγ )
U
 = {(

i
min { ijγ }| jJ1), (

i
max { ijγ }| jJ2)};

and
L

jz  is defined as given below 

L

jz = < [( -

αij
Γ )

L
, ( 

ijα
Γ )

L
], [( 

ijβ
Γ )

L
, ( 

ijβ
Γ )

L
], [(

-

γij
Γ )

L
,

(


ijγ
Γ )

L
], (( ijα )

L
, ( ijβ

 )
L
, ( ijγ )

L
)> 

where (
-

α j
Γ )

L
 = {(

i
min { -

αij
Γ }| jJ1), (

i
max { -

αij
Γ }|

jJ2)}, (


jα
Γ )

L
 = {(

i
min { 

ijα
Γ }| jJ1), (

i
max { 

ijα
Γ }|

jJ2)}, ( 

jβ
Γ )

L 
= {(

i
max {



ijβ
Γ }| jJ1), (

i
min { 

ijβ
Γ }|

jJ2)}, ( 

jβ
Γ )

L
 ={(

i
max { 

ijβ
Γ }| jJ1), (

i
min { 

ijβ
Γ }|

jJ2)}, (
-

γ j
Γ )

L
= {(

i
max {

-

γij
Γ }| jJ1), (

i
min {

-

γij
Γ }|

jJ2)}, (


jγ
Γ )

L
 ={(

i
max {



ijγ
Γ }| jJ1), (

i
min {



ijγ
Γ }|

jJ2)}, ( jα )
L
 = {(

i
min { ijα }| jJ1), (

i
max { ijα }| jJ2)},

( jβ
 )

L
 = {(

i
max { ijβ

 }| jJ1), (
i

min { ijβ
 }| jJ2)}, ( jγ )

L
 = 

{(
i

max { ijγ }| jJ1), (
i

min { ijγ }| jJ2)}.

Step 5. Calculate the distance measure of alternatives 

from NCPIS and NCNIS 

The Euclidean distance measure of each alternative Bi, i = 

1, 2, …, m from NCPIS can be defined as follows: 


iED = 
































n

1j

222

222

222

))(())(()((

))(()(())((

()(

9

1

U

jij

U

jij

U

jij

U

γγ

U-

γ

-

γ

U

ββ

U

ββ

U

αα

U-

α

-

α

γ-γβ-β)α-α

Γ-Γ)Γ-ΓΓ-Γ

))Γ-(Γ())Γ-(Γ)Γ-(Γ

n jijjijjij

jijjijjij






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Similarly, the Euclidean distance measure of each 

alternative Bi, i = 1, 2, …, m from NCNIS can be written as 

follows: 


iED  = 
































n

j

L

jij

L

jij

L

jij

L

γγ

L-

γ

-

γ

L

ββ

L

ββ

L

αα

L-

α

-

α

γ-γβ-βα-α

Γ-ΓΓ-ΓΓ-Γ

Γ-ΓΓ-ΓΓ-Γ

n jijjijjij

jijjijjij

1

222

222

222

))(())(())((

))(())(())((

))(())(())((

9

1







. 

Step 6. Evaluate the relative closeness co-efficient to the 

neutrosophic cubic ideal solution 

The relative closeness co-efficient *

iRCC  of each Bi, i = 1, 

2, …, m with respect to NCPIS 
U

jz , j = 1, 2, …, n is 

defined as follows: 

*

iRCC =





ii

i

EE

E

DD

D
, i = 1, 2, …, m. 

Step 7. Rank the alternatives 

We obtain the ranking order of the alternatives based on 
the *

iRCC . The bigger value of *

iRCC reflects the better 

alternative. 

4. Numerical example

In this section, we consider an example of neutrosophic 

cubic MADM, adapted from Mondal and Pramanik [20] to 

demonstrate the applicability and the effectiveness of the 

proposed extended TOPSIS method.  

Consider a legal guardian desires to select an appropriate 

school for his/ her child for basic education [20]. Suppose 

there are three possible alternatives for his/ her child:  

(1) B1, a Christian missionary school  

(2) B2, a Basic English medium school  

(3) B3, a Bengali medium kindergarten.  

He/ She must take a decision based on the following four 

attributes:  

(1) C1 is the distance and transport,  

(2) C2 is the cost,  

(3) C3 is the staff and curriculum, and  

(4) C4 is the administrative and other facilities  

Here C1 and C2 are cost type attributes; while C3 and C4 are 

benefit type attributes. Suppose the weights of the four 

attributes are unknown. Using the the following steps, we 

solve the problem. 

Step 1. The rating of the alternative Bi, i = 1, 2, 3 with 

respect to the alternative Cj, j = 1, 2, 3, 4 is represented by 

neutrosophic cubic assessments. The decision matrix 

43
ij


a is shown in Table 1. 

Table 1. Neutrosophic cubic decision matrix 

C1 C2

B1 ]),35.0,2.0[],2.0,1.0[],4.0,3.0([

)25.0,4.0,3.0(

]),3.0,2.0[],1.0,05.0[],7.0,6.0([

)25.0,1.0,5.0(

B2 ]),3.0,15.0[],2.0,1.0[],9.0,8.0([

)3.0,15.0,7.0(

]),5.0,3.0[],4.0,1.0[],5.0,3.0([  

)2.0,3.0,4.0(  

B3 ]),4.0,25.0[],4.0,2.0[],7.0,6.0([

)3.0,3.0,5.0(  

]),3.0,2.0[],25.0,1.0[],35.0,2.0([

)4.0,3.0,3.0(

C3 C4

B1 ]),3.0,1.0[],4.0,2.0[],6.0,5.0([

)4.0,3.0,5.0(

]),3.0,1.0[],25.0,1.0[],6.0,4.0([

)4.0,2.0,5.0(

B2 ]),2.0,05.0[],35.0,2.0[],5.0,4.0([

)1.0,1.0,35.0(

]),25.0,1.0[],35.0,2.0[],3.0,2.0([

)1.0,1.0,4.0(  

B3 ]),25.0,15.0[],3.0,1.0[],7.0,4.0([

)2.0,2.0,5.0(  

]),25.0,2.0[],2.0,1.0[],7.0,5.0([

)2.0,1.0,3.0(  

Step 2. Standardize the decision matrix. 

 The standardized decision matrix 
43

ij


s  is constructed as 

follows (see Table 2): 

Table 2. The standardized neutrosophic cubic decision 

matrix 

C1 C2

B1 ]),4.0,3.0[,9.0,8.0[],35.0,2.0([

)3.0,6.0,25.0(  

]),7.0,6.0[],95.0,9.0[],3.0,2.0([

)5.0,9.0,25.0(  

B2 ]),9.0,8.0[],9.0,8.0[],3.0,15.0([

)7.0,85.0,3.0(  

]),5.0,3.0[],9.0,6.0[],5.0,3.0([

)4.0,7.0,2.0(  

B3 ]),7.0,6.0[],8.0,6.0[],4.0,25.0([

)5.0,7.0,3.0(  

]),35.0,2.0[],9.0,75.0[],3.0,2.0([

)3.0,7.0,4.0(  

C3 C4

B1 ]),3.0,1.0[],4.0,2.0[],6.0,5.0([

)4.0,3.0,5.0(  
]),3.0,1.0[],25.0,1.0[],6.0,4.0([

)4.0,2.0,5.0(

B2 ]),2.0,05.0[],35.0,2.0[],5.0,4.0([

)1.0,1.0,35.0(  

]),25.0,1.0[],35.0,2.0[],3.0,2.0([

)1.0,1.0,4.0(  

B3 ]),25.0,15.0[],3.0,1.0[],7.0,4.0([

)2.0,2.0,5.0(  

]),25.0,2.0[],2.0,1.0[],7.0,5.0([

)2.0,1.0,3.0(  

Step 3. Using AAO, we transform NCVs into SNVs. We 

calculate entropy value Ej of the j-th attribute as follows: 

Ev1 = 0.644, Ev2 = 0.655, Ev3 = 0.734, Ev4 = 0.663. 

The weight vector of the four attributes are obtained as: 

w1 = 0.2730, w2 = 0.2646, w3 = 0.2040, w4 = 0.2584. 

Step 4. After identifying the weight of the attribute (wj), 

we multiply the standardized decision matrix with wj, j = 1, 

2, …, n to obtain the weighted decision matrix 
43

ij


z (see 

Table 3). 
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Table 3. The weighted neutrosophic cubic decision matrix 

C1 C2

B1 ]),779.0,720.0[,972.0,941.0[],110.0,059.0([

)72.0,87.0,075.0(  
]),91.0,874.0[],986.0,972.0[,090.0,057.0([

)832.0,972.0,073.0(  

B2 ]),972.0,941.0[],972.0,941.0[],093.0,043.0([

)907.0,957.0,093.0(  
]),832.0,727.0[],972.0,874.0[],168.0,09.0([

)785.0,910.0,057.0(  

B3 ]),907.0,87.0[],941.0,87.0[],13.0,076.0([

( )828.0,907.0,093.0  

]),757.0,653.0[],972.0,928.0[],090.0,057.0([

)727.0,910.0,126.0(  

C3 C4

B1 ]),782.0,625.0[],830.0,720.0[],17.0,132.0([

)625.0,625.0,084.0(  
]),733.0,552.0[],699.0,552.0[],211.0,124.0([

)789.0,660.0,164.0(  

B2 ]),720.0,543.0[],807.0,720.0[],132.0,100.0([

)625.0,625.0,084.0(  
]),699.0,552.0[],762.0,66.0[],088.0,056.0([

)552.0,552.0,124.0(  

B3 ]),754.0,679.0[],782.0,625.0[],218.0,100.0([

)720.0,720.0,132.0(  
]),699.0,660.0[],660.0,552.0[],267.0,164.0([

)660.0,522.0,088.0(  

Step 5. From Table 3, the NCPIS U

jz , j = 1, 2, 3, 4 is 

obtained as follows: 
U

1z = < ([0.043, 0.093], [0.941, 0.972], [0.941, 0.972]), 

(0.075, 0.957, 0.907) >, 
U

2z = < ([0.057, 0.09], [0.972, 0.986], [0.874, 0.91]), (0.057, 

0.972, 0.832) >, 
U

3z = < ([0.132, 0.218], [0.625, 0.782], [0.543, 0.72], 

(0.132, 0.625, 0.625)>, 
U

4z = < [0.164, 0.267], [0.552, 0.66], [0.552, 0.699], (0.66, 

0.552, 0.552)>; 

The NCNIS
L

jz , j = 1, 2, 3, 4 is determined from the 

weighted decision matrix (see Table 3) as follows: 
L

1z = < [0.076, 0.13], [0.87, 0.941], [0.72, 0.779], (0.093, 

0.87, 0.72)>, 
L

2z = < [0.09, 0.168], [0.874, 0.972], [0.653, 0.757], (0.126, 

0.91, 0.727)>, 
L

3z = < [0.1, 0.132], [0.72, 0.83], [0.679, 0.782], (0.084, 

0.782, 0.83)>, 
L

4z = < [0.056, 0.088], [0.66, 0.762], [0.66, 0.733], (0.088, 

0.66, 0.789)>. 

Step 6. The Euclidean distance measure of each alternative 

from NCPIS is obtained as follows: 


1ED = 0.1232, 


2ED = 0.1110, 

3ED = 0.1200. 

Similarly, the Euclidean distance measure of each 

alternative from NCNIS is computed as follows: 


1ED = 0.0705, 


2ED = 0.0954, 

3ED = 0.0736. 

Step 7. The relative closeness co-efficient *

iRCC , i = 1, 2, 

3 is obtained as follows: 
*RCC1 = 0.3640, *RCC2  = 0.4622, *RCC3 = 0.3802. 

Step 8. The ranking order of the feasible alternative 

according to the relative closeness co-efficient of the 

neutrosophic cubic ideal solution is presented as follows: 

B2 > B3 > B1 

Therefore, B2 i.e. a Basic English medium school is the 

best option for the legal guardian. 

5 Conclusions 

In the paper, we have presented a new extended TOPSIS 

method for solving MADM problems with neutrosophic 
cubic information. We have proposed several operational 

rules on neutrosophic cubic sets. We have defined 
Euclidean distance between two neutrosophic cubic sets. 

We have defined arithmetic average operator for 
neutrosophic cubic numbers. We have employed 

information entropy scheme to calculate unknown weights 

of the attributes. We have  also defined neutrosophic cubic 
positive ideal solution and neutrosophic cubic negative 

ideal solution in the decision making process. Then, the 
most desirable alternative is selected based on the 

proposed extended TOPSIS method under neutrosophic 

cubic environment. Finally, we have solved a numerical 
example of MADM problem regarding school selection for 

a legal guardian to illustarte the proposed TOPSIS method. 
We hope that the proposed TOPSIS method will be 

effective in dealing with different MADM problems such 
as medical diagnosis, pattern recognition, weaver selection, 

supplier selection, etc in neutrosophic cubic set 

environment. 
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