
Commentary title: The hard problem of meta-learning is what-to-learn

1. Authors:
Yosef Prat
Ehud Lamm

2. Institution: The Cohn Institute for History and Philosophy of Science and Ideas, Tel Aviv Uni-
versity

3. Institutional address: The Cohn Institute for History and Philosophy of Science and Ideas, Tel 
Aviv University, Tel Aviv 6997801, Israel.
Yosef Prat: yosefprat@gmail.com
Ehud Lamm: ehudlamm@post.tau.ac.il

Abstract:

Binz et al. highlight the potential of meta-learning to greatly enhance the flexibility of AI  

algorithms, as well  as to approximate human behavior more accurately than traditional  

learning methods. We wish to emphasize a basic problem that lies underneath these two 

objectives, and in turn suggest another perspective of the required notion of ‘meta’ in meta-

learning: knowing what to learn.

We postulate that the hard problem in (natural or artificial) intelligence, is the question of “what to 

learn?”. At the fundamental level, this meta-question is resolved in nature by the evolutionary process. 

The question of “how to learn?”, which is the focus of the meta-learning framework that is presented in 

the target article, is not especially easy as well, but it can be captured by devising specific training  

structures and relevant optimization tasks. In general, it requires to specify the “search space” of 

possible learning strategies. The hard problem of learning, however, is the identification of the learning 

task itself (i.e., what, and if, to learn)  (Niv, 2019). For instance, a real-life learner observing several 

specimens of some unknown insect species (following the example in the target article) must first  

somehow realize that she is required to evaluate the average length of that species, before she begins 

to tune her evaluation strategies. This is indeed a different meta-task than presented by Binz et al., but 

its solution is mandatory for any artificial (somewhat-)general intelligence, and it is regularly handled 

by the brain (Roli, Jaeger, & Kauffman, 2022).
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In the quest to devise domain-general learning models, Binz et al. correctly identify the need for  

diverse (and maybe realistic) training sets. Training a model on many different tasks can achieve high  

performance in all of them, and maybe even in unrelated, but similar, tasks. Yet, the model will always 

be constrained by the task-space spanned by its training sets. The major challenge does not lie in 

amplifying the dimensionality, or variability, of the learned problem, but rather in determining the 

appropriate objective function. Here, we may be inspired by the observation that biological brains have 

in general not evolved for their ability to solve a specific task, but, rather, are shaped by the overall  

success of the organism. On the one hand, evolutionary success obscures the objective of each specific 

task, since it depends on long-term benefits, that are not always clearly related to short-term behavior. 

On the other hand, evolutionary success is a broader optimization challenge. A generic model that can 

both solve a maze and evaluate the average length of a newly identified insect, without being trained 

specifically on these tasks, must solve the hard problem of what-to-learn in a given context. To build a 

model that addresses this challenge we cannot handcraft the utility function (or error measurements) 

of each task separately. The meta-learning requirement thus becomes to learn how to identify the 

utility in learning, or in performing, each of the given tasks, and more broadly, to identify the task itself. 

Thus, it is constraining to use training sets and error functions that provide the learner with “correct” 

answers or feedback for each task separately, as is typically done in supervised, semi-supervised, and 

reinforcement machine learning. The biological brain is overall domain-general since it is not guided by 

a  task  specific  “utility  function”.  Domain-specific  processes,  such as,  maybe,  those  suggested to 

process language (Fedorenko & Blank, 2020), demonstrate cases in which natural selection narrowed 

or “optimized” the task of finding what-to-learn. Other indications may include modularity (Ellefsen, 

Mouret,  & Clune,  2015;  Sporns  & Betzel,  2016),  alongside sensory  adaptations  (Warrant,  2016), 

attention  biases  (Niv  et  al.,  2015),  and  data  acquisition  mechanisms  (Lotem  &  Halpern,  2012). 

Furthermore, in humans, cultural evolution may also adjust task specificity (Heyes, 2018).

The evolutionary process may also explain the limitations of treating cognition as rational, or optimal. 

Binz  et  al.  suggest  that  unrealistic  aspects  of  Bayesian  models  can  be  mitigated  using  resource 

constraints, for which the offered meta-learning framework is suitable. The problem, however, is that 

human (and other animal) behaviour is not straightforwardly rational,  and often appears to defy 

Bayesian  optimization  (Tversky  &  Kahneman,  1981).  Moreover,  this  may  not  be  due  to  limited 

resources but because the success of living creatures is determined evolutionarily, rather than by 

immediate  outcomes  (Houston,  McNamara,  &  Steer,  2007).  When  behavioural  objectives  are 

considered on an evolutionary scale, it may be revealed that they are (locally) optimal (Kacelnik, 2006)

, and this includes behaviours that depend upon learning, as is generally assumed in behavioural  



ecology. When tasks for which learning is evolutionarily beneficial end up being learned (i.e., when 

those individuals who learn have higher fitness), natural selection resolves the meta-learning hard 

problem of what-to-learn (Dunlap & Stephens, 2016). This may bias the things that animals are able to 

learn to learn, by shaping the parameter search-space (Prat, Bshary, & Lotem, 2022), maybe of the 

outer learning loop described by Binz et al. These biases are often addressed in the biological learning 

literature as sub-problems of the what-to-learn problem, and include when-to-learn or from whom-to-

learn (Laland, 2004).

We suggest that further advancements in meta-learning thinking require addressing the hard problem 

of learning as one of their aims. Inspired by (human and nonhuman) biological brains, this should be 

done by devising overarching objectives for learning algorithms that will enable them to learn what are 

the learning tasks. In nature, evolution provides some of the solution. Yet, it is not necessary to mimic 

the evolutionary process per se, but only to acknowledge the generality of evolutionary optimization in 

the natural world.  To this end, it may be better to aspire to simulate nonhuman-animal behavioral 

studies, rather than psychological assays, since nonhuman animals are trained with no description of 

the boundaries of their task – they need to realize it by themselves (e.g., when a sparrow learns to  

relate sand color to food (Ben-Oren, Truskanov, & Lotem, 2022)). Thus, these studies usually contain a 

direct meta-learning challenge that requires solving the problem of what-to-learn.
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