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ALGORITHMIC INFORMATION THEORY AND UNDECIDABILITY

1. INTRODUCTION

Algorithmic information theory, or the theory of Kolmogorov complexity,
has become an extraordinarily popular theory, and this is no doubt due,
in some part, to the fame of Chaitin’s incompleteness results arising from
this field. Actually, there are two rather different results by Chaitin: the
earlier one concerns the finite limit of the provability of complexity (see
Chaitin, 1974a, 1974b, 1975a); and the later is related to random reals and
the halting probability� (see Chaitin, 1986, 1987a, 1987b, 1988, 1989,
1990, 1992, 1993).

These results have indeed received wide attention, and they have been a
source of lots of philosophical speculation. I have given a detailed critical
examination of the interpretations of the earlier result of Chaitin elsewhere
(Raatikainen, 1998); and it is my aim in this paper to discuss critically the
received interpretation of the later result (for earlier critical discussion of
both these results, see also the important paper by van Lambalgen (1989)).

My main target here is the purported strength of these results. The
interpretation that I shall question becomes clear from the following
representative quotations from Chaitin:

“This is a dramatic extension of Gödel’s theorem. Number theory,
the queen of mathematics, is infected with uncertainty and randomness”
(Chaitin, 1986).

“My work is a fundamental extension of the work of Gödel and Turing
on undecidability in pure mathematics. I show that not only does unde-
cidability occur, but in fact sometimes there is complete randomness, and
mathematical truth becomes a perfect coin toss” (Chaitin, 1989).

Chaitin says that he constructs “a much more uncomputable real than
Turing does” (viz.�); and he continues: “This is an impenetrable stone
wall, it’s a worst case. From Gödel we knew that we could not get a formal
axiomatic system to be complete. We knew we were in trouble, and Turing
showed us how basic it was, but� is an extreme case where reasoning fails
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completely. . . . I’m claiming I have a much stronger incompleteness result”
(Chaitin, 1993). Sometimes Chaitin even claims that he is presenting “the
strongest possible version of Gödel’s incompleteness theorem” (Chaitin,
1987b, ix).

And Chaitin is certainly not alone in giving such strong conclusions.
Stewart (1988), for example, writes that Chaitin “has proved the ultimate
in undecidability theorems. . . that the logical structure of arithmetic can
be random”; and the title of Gardner (1979) preaches that “the random
number omega bids fair to hold the mysteries of the universe” – not even to
mention the fantastic interpretations that one can find in numerous popular
science books.

Such strong claims, especially when they are published in respectable
scientific forums, are certainly worthy of careful examination. It is my aim
in this paper to question such claims and show that Chaitin’s results are in
fact rather non-dramatic and simple consequences of Turing’s classical res-
ult concerning the undecidability of the halting problem, and that they are
certainly not the most extreme possible undecidability or incompleteness
results.

2. TECHNICAL REQUISITES

Let us first review shortly the basic notions on which the discussion below
is based. (For all unexplained notation and terminology from recursive
function theory, the reader can consult e.g. Rogers (1967) or Odifreddi
(1989), and for futher details of algorithmic information theory, e.g.,
Chaitin (1987b) or Li & Vitanyi (1993).)

By aprefix-freecoding (of Turing machines, programs etc.) one means
any such coding that no code is an initial segment of another code. Let a
standard prefix-free coding of Turing machines be fixed. Let us denote a
Turing machine with the codee by Te, the corresponding partial recursive
function byϕe, and, the recursively enumerable (or, in short, r.e.) set that
is the domain ofϕe byWe. The standard halting set is denoted byK0, i.e.,
〈x, e〉 ∈ K0 ⇔ x ∈ We. By anacceptablecoding system one means any
coding system such that it is possible to go effectively from the standard
coding to the system, andvice versa.

LetU be a universal Turing machine which accepts only binary prefix-
free programs. The length of a binary programp is denoted by|p|. We are
now ready to define our key subject of study, viz. Chaitin’s famous random
real�. Formally,
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� =
∑

U(p) halts

2−|p| .

Intuitively, � may be considered as the halting probability of the univer-
sal Turing machineU , i.e. the probability thatU halts when its binary
prefix-free input is chosen randomly, e.g., by flipping a coin. It is worth
emphasizing that� is10

2 (see e.g., van Lambalgen (1989), or Li & Vitanyi
(1993), 185), for I shall use this fact repeatedly in what follows. Note also
that� is in fact relative to the chosen universal machineU , and thus to a
particular coding of Turing machines that is used.

The algorithmic complexity of a finite strings, K(s), is defined as
min{|p| : U(p) = s}. A finite strings is calledrandomif its complexity
is (roughly) equal to its length,|s| ≈ K(s), i.e., if it cannot be compressed
to a shorter program. An infinite sequences is defined to be random if the
algorithmic complexity of the initial segementsn of lengthn does not drop
arbitrarily far belown, i.e., (∃c)(∀n)[K(sn) ≥ n − c]. It turns out that�
is, in this defined sense, random.

Now the incompleteness theorem of Chaitin that concerns these notions
is the following:

THEOREM 2.1. (Chaitin, 1987a, 1987b, 1992).Any recursively axiomat-
izable formalized theory enables one to determine only finitely many digits
of�.

Further, Chaitin has constructed a gigantic exponential Diophantine equa-
tion (it has 17 000 variables) with a parametern such that the equation
has, for a givenn, infinitely (resp. finitely) many solutions if and only if
then-th digit of (the binary presentation of)� is 1 (resp. 0) (see Chaitin,
1987b).

3. ON THE UNCOMPUTABILITY OF�

It is often emphasized in the literature that if one could compute�, then
one could decide the halting problem. What is not always so clearly ex-
pressed is that a dependence also holds in the other direction. As this fact
plays a rather central role below, let us demonstrate it.
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THEOREM 3.1.� is recursive in the halting setK0.

Proof. It is a special case of Post’s Theorem (Post, 1948) that a set is
10

2 iff it is recursive in a60
1 or 50

1 relation. Recall then thatK0 is 60
1-

complete. Hence any60
1 or 50

1 relation is recursive inK0. Thus being
recursive in some60

1 or50
1 relation is equivalent to being recursive inK0,

and a set is10
2 if and only if it is recursive inK0. Thus� in particular is

recursive inK0. QED.

Intuitively, in terms of relative decidability, this means that� is decidable
relative to the halting problem; that is, if one could decide the halting
problem – say, one could consult an oracle that would give the correct
answer for any particular halting question – one could then decide� as
well. Thus, from the point of view of computability, or decidability, the dif-
ference between the much-advertised� and the standard halting problem
is less drastic than one might believe after reading the most enthusiastic
expositions of Chaitin’s work.

4. TRIAL AND ERROR COMPUTABILITY

As it happens,10
2 sets have also a very interesting and natural computa-

tional characterization, which is based on the idea of computability in the
limit; this is the notion of “trial and error predicate”, due to Putnam (1965).
As this interesting liberalized notion of computability is apparently not as
widely known as it deserves, I shall give a rather detailed exposition of it,
following quite closely Putnam’s orginal presentation.

The intuitive motivation of the concept of trial and error predicate is
the following (see Putnam, 1965): one modifies the notion of a decision
procedure by (i) allowing the procedure to “change its mind” any finite
number of times (in terms of Turing machines: one visualizes the machine
as being given an integer (or ann-tuple of integers) as input. The machine
then prints out a finite sequence of “yesses” and “nos”. Thelast “yes”
or “no” is always to be the correct answer.); and (ii) one gives up the
requirement that it be possible to tell (effectively) if the computation has
terminated. That is, if the machine has most recently printed “yes”, then
one knows that the integer put in as input must be in the setunless the
machine is going to change its mind; but one has no procedure for telling
whether the machine will change its mind or not.

The sets for which there exist decision method in this widened sense
are decidable by “empirical” means – for, if one always “posits” that the
most recently generated answer is correct, one will make a finite number
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of mistakes, but one will eventually get the correct answer. (Note, however,
that even if one has gotten to the correct answer, one is never sure that one
has the correct answer.) More formally:

DEFINITION 4.1. (Putnam, 1965).P is called atrial and error predicate
iff there is a general recursive functionf such that that (for everyx)

P(x) ⇐⇒ lim
y→∞f (x, y) = 1,

P̄ (x) ⇐⇒ lim
y→∞f (x, y) = 0,

where

lim
y→∞f (x, y) = k =df (∃y)(∀z)(z ≥ y → f (x, z) = k).

Now the fundamental characterization theorem that makes the relevance
of this notion for the present purpose transparent is the following:

THEOREM 4.2. (Putnam, 1965).P is a trial and error predicate if and
only if P is10

2.

It follows immediately that� can be represented by a trial and error pre-
dicate; or, in other words, that� can be generated by a trial and error
procedure.

Although apparently ignorant of the above notions, it is interesting to
note that Chaitin is aware of the fact that� is computable in the limit:
“However, with computations in the limit, which is equivalent to having an
oracle for the halting problem,� seems quite understandable: it becomes a
computable sequence” (Chaitin, 1987b, 161). Nevertheless, Chaitin draws
no critical conclusions from this fact.

The important aspect that matters here is that a trial and error procedure
is still completely deterministic; the machine described above proceeds in
a perfectly determinate manner. This means in particular that�, although
not recursively enumerable, can still be generated by a completely determ-
inistic procedure. And this, in turn, should raise some doubts about the
genuine randomness of�, and more generally, about the plausibility of a
definition of randomness that counts such sequences as random.

That is, this observation does not only put the wildest claims on the
extreme uncomputability of� in the right perspective. It also raises the
question of whether the algorithmic theory of randomness is, after all, the
most perfect possible theory of randomness. For it classifies as random
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sequences those which, although not recursively enumerable, can be gen-
erated by a completely deterministic process. This is, at least in my mind,
a rather serious weakness of this theory.

5. � AND OTHER UNDECIDABLE PROBLEMS

Let us next evaluate the strength of the undecidability of� and the related
incompleteness results. It is highly illuminating to compare them to certain
other well-known logical undecidability and incompleteness results.

Let us begin with an example from computability theory. Namely,
one should compare� to the infinity problem and the finity problem: the
set {x : Wx is infinite} is 50

2-complete, and the set{x : Wx is finite} is
60

2-complete (see e.g., Rogers, 1967, 326). Thus these strikingly simply
definable and natural sets are properly harder to compute than�; in
particular, neither of them can be generated by a trial and error procedure.

Next, turning our attention to incompleteness theorems, consider the
semi-formal theory PA+ obtained from Peano Arithmetic by adding to it all
the true50

1 sentences; PA+ can decide the halting problem, and it follows,
by Theorem 3.1., that PA+ can decide� completely. On the other hand, it
is known that even PA+ cannot prove the well-known undecidable propos-
ition of Paris and Harrington (1977). (As Kreisel (1980, 175) has pointed
out; cf. Kleene (1986)). This50

2 sentence is a natural finitary version of
Ramsey’s theorem, a simple sentence of combinatorics – in contradistinc-
tion to the huge and completely artificial arithmetical equation of Chaitin
(which has 17 000 varibles and fills some 200 pages!). Later Friedman has
provided other finitary combinatorial truths that are unprovable even in
much stronger theories (see Harrington et al., 1985). There are thus well-
known, natural and simple mathematical truths that are, in a definite sense,
more unprovable than the facts concerning the digits of�.

Further, it is straightworward to generalize Gödel’s original trick to
PA+, and to other non-effictively axiomatizable theories, to obtain true
unprovable sentences – this was noted by Rosser (1937) (cf. Mostowski
1952, Kreisel and Levy, 1968). In general, it is well known that, for anyn,
the set of true50

n sentences have a50
n truth definition (and similarly for

60
n); let us denote such a definition by Tr50

n
(x). Let Prov(x) be a standard

provability predicate. By applying Gödel’s diagonalization lemma – also
known as fixed-point lemma and self-referential lemma – (for somen) to
the formula(∀x)[Tr50

n
(x) → ¬Prov(x→̇y)] one obtains a true sentence

that says that it is not provable from the (non-effective) theory that contains
all the true50

n sentences (see Kreisel and Levy, 1968). Clearly one can thus
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obtain incompleteness results that go far beyond anything that Chaitin has
reached.

Finally, speaking about “extreme undecidability”, one can hardly find
a more basic and more extremely undecidable set than the set of sentences
that aretrue in the standard model of arithmetic; this set is not60

n or50
n for

anyn, but only11
1; this classical result was proved by Tarski (1933) (and

in fact also by Gödel in 1930, although he did not publish it but went on
to prove his incompleteness theorems). Thus even a complete knowledge
of Chaitin’s� would not at all enable one to decide this fundamental set –
the set of arithmetical truths.

One may thus conclude that the undecidablity and incompleteness res-
ults arising from Chaitin’s� are in no way “ultimate”, “extreme”, or the
“strongest”. There are plenty of more undedicable problems and more
unprovable truths, which are in addition much more simple and natural.

6. ON THE LIMITS OF FORMAL SYSTEMS

An integral part of the standard interpretation of Chaitin’s incompleteness
result on random reals (Theorem 2.1.) is the claim that, in addition to the
fact that one can decide in a given formalized theory only finitely many
digits of�, this finite limit is determined by the complexity of the formal-
ized theory itself (by the complexity of a formalized theoryF one means
here the size of the minimal program that enumerates all the theorems of
F ).

I shall show next (by an argument somewhat similar to the one that I
used in (Raatikainen, 1998) that this interpretation is simply false.

Let F be a formalized theory that contains elementary arithmetic, and
let TF be a Turing machine that (given a coding of the language ofF )
enumerates the theorems ofF . ObviouslyF can itself prove that it has
infinitely many theorems, and consequently thatTF does not halt.

Fix then anacceptable codingof Turing machines as follows: (i) letTF

have the minimal code 0; and (ii) up to some very largen (e.g.,n = 101010
),

choose the firstn programs such that they halt, andF can prove this fact.
(After n, one may code the programs in any suitable way.)

Now the complexity ofF (in the chosen coding) is the minimal pos-
sible. YetF can decide a very large number of digits of� (relative to this
coding). As one can choosen above to be however large one wishes, the
argument shows that there is no real connection between the complexity
of a formalized theory and the number of digits of� it can decide. In
fact, in the above coding, it is relatively easy to check (and prove in any
plausible arithmetical theory) that� = 0.4999. . . 999. . . (in the ordinary
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decimal notation); i.e. that for a very largem (although a little smaller than
n above) the firstm (after the initial 0.4) digits of� are nines.

The basic problem here is that the whole setting is relative to even
two different codings: the coding of Turing machines, and the Gödel
numbering of formalized theories. And obviously there is neither priv-
iledged coding of Turing machines (and universal Turing machine), nor
priviledged Gödel numbering of formalized theories, and consequently
certainly no absolute, non-relative complexity of a formalized theory.

7. CONCLUSIONS

It would be absurd to completely disparage the interest shown in the halting
probability�; it in admittedly an interesting sequence. But neither should
one overstate its relevance or its undecidability. It is just one among vari-
ous undecidable sets, neither the most natural and simple, nor the most
strongly undecidable. Especially, its rather ingenious definition and its
close dependence on the halting problem make it, at least from the point of
view of logic in general, certainly much less central than one might think
considering various ardent expositions.
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