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In the early twentieth century two extremely in-
fluential research programs aimed to establish
solid foundations for mathematics with the help
of new formal logic. The logicism of Gottlob Frege
and Bertrand Russell claimed that all mathemat-
ics can be shown to be reducible to logic. David
Hilbert and his school in turn intended to demon-
strate, using logical formalization, that the use of
infinistic, set-theoretical methods in mathemat-
ics—viewed with suspicion by many—can never
lead to finitistically meaningful but false state-
ments and is thus safe. This came to be known as
Hilbert’s program.

These grand aims were shown to be impossible
by applying the exact methods of logic to itself: 
the limitative results of Kurt Gödel, Alonzo 
Church, and Alan Turing in the 1930s revolution-
ized the whole understanding of logic and 
mathematics (the key papers are reprinted in [5]).

What Gödel proved in 1931 is that in any finitely
presented system of mathematical axioms there are
sentences that are true but that cannot be proved
to be true in the system. Church showed in 1936
that there is no general mechanical method for
deciding whether a given sentence is logically valid
or not and, similarly, that there is no method for
deciding whether a given sentence is a theorem of
a given axiomatized mathematical theory. Such an
impossibility proof required an exact mathemati-
cal substitute for the informal, intuitive notion of
a mechanical procedure; Church used his own λ-
definable functions. Turing arrived independently
at the same results at the same time. Moreover, he
gave a superior philosophical explication of the con-
cept of mechanical procedure in terms of abstract
imaginary machines, known today as Turing ma-
chines; this advance made it possible to prove ab-
solute unsolvability results and to develop Gödel’s
incompleteness theorem in its full generality. This
identification of the intuitive notion of mechanical
method and an exact mathematical notion is usu-
ally called Church’s thesis or, more properly, the
Church-Turing thesis. It is the fundamental basis
of all proofs of absolute unsolvability.

One of the greatest achievements of modern
mathematical logic was certainly the proof by Yuri
Matiyasevich in 1970, based on earlier work by
Julia Robinson, Martin Davis, and Hilary Putnam,
that the tenth problem of Hilbert’s famous list of
open mathematical problems from 1900 is in fact
unsolvable; i.e., there is no general method for de-
ciding whether a given Diophantine equation has
a solution or not [11]. This result implies that in
any axiomatized theory there exist Diophantine
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equations that have no solution but cannot be
proved in the theory to have no solution.

However, it is now a widespread view, espe-
cially in computer science circles, that certain 
variants of incompleteness and unsolvability 
results by the American computer scientist Gregory
Chaitin are the last word in this field. These vari-
ants are claimed to both explain the true reason
for Gödel’s incompleteness theorem and to be the
ultimate, or the strongest possible, incomplete-
ness results. Chaitin’s results emerge from the
theory of algorithmic complexity or program-size
complexity (also known as “Kolmogorov com-
plexity”); Chaitin himself was, in fact, one of the
founders of the theory.

The classical work on unsolvability dealt solely
with solvability in principle: one abstracted from
the practical limits of space and time and required
only finiteness. From the late 1950s onward, how-
ever, more and more attention has been paid to dif-
ferent kinds of complexity questions—at least in
part because of the emergence of computing ma-
chines and the practical resource problems that ac-
companied them. In logic and computer science
various different notions of complexity have been
studied intensively. First, computational complex-
ity measures the complexity of a problem in terms
of resources, such as space and time, required to
solve the problem relative to a given machine
model of computation. Second, descriptive com-
plexity analyzes the complexity of a problem in
terms of logical resources, such as the number of
variables, the kinds of quantifiers, or the length of
a formula required to define the problem. And fi-
nally, by the algorithmic complexity, or the pro-
gram-size complexity (or Kolmogorov complexity),
of a number or a string, one means the size of the
shortest program that computes as output that
number or string.

Theory of Algorithmic Complexity
The basic idea of the theory of algorithmic com-
plexity was suggested in the 1960s independently
by Ray J. Solomonoff, Andrei N. Kolmogorov, and
Gregory Chaitin. Solomonoff used it in his com-
putational approach to scientific inference, 
Kolmogorov aimed initially to give a satisfactory
definition for the problematic notion of a random
sequence in probability theory, and Chaitin 
first studied the program-size complexity of 
Turing machines for its own sake. Kolmogorov
went on to suggest that this notion also provides
a good explication of the concept of the informa-
tion content of a string of symbols. Later Chaitin
followed him in this interpretation. Consequently,
the name “algorithmic information content” has
frequently been used for program-size complex-
ity, and the whole field of study is very often 
called “algorithmic information theory” ([10] is 

a comprehensive survey of the theory and its 
applications).

Chaitin was active in developing this approach
into a systematic theory (although one should 
not ignore the important contributions by many
others). From the 1970s onwards Chaitin’s inter-
est has focused more and more on incompleteness
and unsolvability phenomena related to the notion
of program-size complexity. Indeed, he now 
says that “the most fundamental application” of
the theory is in “the new light that it sheds on 
the incompleteness phenomenon” (The Unknow-
able, pp. 86–7).

It was known from the beginning that program-
size complexity is unsolvable. Chaitin, however,
made in the early 1970s an interesting observation:
Although there are strings with arbitrarily large 
program-size complexity, for any mathematical
axiom system there is a finite limit c such that in
that system one cannot prove that any particular
string has a program-size complexity larger than
c [1]. Later Chaitin attempted to extend his “in-
formation-theoretic” approach to incompleteness
theorems in order to obtain “the strongest possi-
ble version of Gödel’s incompleteness theorem” ([3],
p. v). For this purpose he has defined a specific 
infinite “random” sequence Ω.

As was noted, one of the major sources that 
originally motivated the development of the 
theory of program-size complexity, especially in
Kolmogorov’s case, was a problem in the theory 
of probability, viz. that of giving a precise and
plausible definition for the notion of a random
string. The problem is related to the paradox of 
randomness, which may be explained as follows:
Assume we are given two binary strings of 20 
digits each, and we are informed that they were
both obtained by flipping a coin. Let these two
strings be:

x = 00000000000000000000

and

y = 01001110100111101000.

Now according to the standard theory of 
probability, these strings are equally probable.
And yet intuitively one tends to think that x
cannot possibly be a randomly generated string—
there is too much regularity in it—whereas y
appears to be genuinely irregular and random 
and may well be the result of a toss of a coin. The
algorithmic theory of randomness explicates this
idea of regularity with the help of Turing machine
programs. One considers a finite string as regular,
or nonrandom, if it can be generated by a simple
program, i.e., if its program-size complexity is 
considerably smaller than its length. Accordingly,
a finite string is defined to be random if its 
program-size complexity is roughly equal to its
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length, i.e., if it cannot be compressed to a shorter
program. (Note that this notion is relative to a 
chosen programming language or coding system;
a finite string may be random in one but nonran-
dom in another.)

Extending this approach to infinite strings
turned out to be, however, more difficult than was

thought. Kolmogorov’s first
idea was that an infinite string
be considered random if all of
its finite initial segments are
random. But Per Martin-Löf
showed that this definition does
not work and then gave a more
satisfactory definition in mea-
sure-theoretic terms. In 1975
Chaitin presented a definition
(which is equivalent to Martin-
Löf’s definition) in terms of
program-size complexity: An
infinite string is defined to be
random if the program-size
complexity of an initial segment
of length n does not drop arbi-
trarily far below n [2]. One
should add that it is not indis-
putable that this really provides
in all respects an unproblematic

explication of the notion of randomness.
Also in 1975 Chaitin presented for the first

time his (since then much-advertised) number Ω:
it is the halting probability of the universal 
Turing machine U, i.e., the probability that U halts
when its binary input is chosen randomly bit by
bit, such as by flipping a coin. The infinite string
Ω is, according to the above definition, random [2].
Somewhat analogously to his earlier incomplete-
ness result, Chaitin has demonstrated that no 
axiomatic mathematical theory enables one to 
determine infinitely many digits of Ω ([3], [4]; 
cf. [6], [8]).

Chaitin’s New Approach via LISP Programs
This is the general theoretical background of the
books under review. How do these two new books
by Chaitin relate to these older works? In terms of
results there is hardly anything new compared to
the older work by Chaitin and others reviewed
above. Rather, these books aim to popularize that
work. In The Unknowable the emphasis is on the
incompleteness phenomena related to program-
size complexity. Exploring Randomness aims to
explain the program-size complexity approach 
to randomness.

What is new is Chaitin’s approach via LISP-
programming; he has “translated” his own 
earlier work, which was in terms of abstract, 
idealized Turing machines, into actual programs
in the LISP computer language. Well, not exactly:
according to Chaitin, no existing programming

language provides exactly what is needed, so he 
invented a new version of LISP. Chaitin begins The
Unknowable by saying that what is new in the book
is the following: “I compare and contrast Gödel’s,
Turing’s and my work in a very simple and straight-
forward manner using LISP” (p. v). According to
Chaitin this book is a “prequel” to his previous
book, The Limits of Mathematics (Springer-Verlag,
1998), and is an easier introduction to his work 
on incompleteness. In Exploring Randomness
Chaitin in turn writes that “[t]he purpose of this
book is to show how to program the proofs of the
main theorems about program-size complexity,
so that we can see the algorithms in these proofs
running on the computer” (p. 29).

Such an approach may be attractive for pro-
gramming enthusiasts and engineers, but for the
rest of us its value is less clear. It is quite doubt-
ful whether it manages to increase the under-
standing of the basic notions and results and
whether it really makes the fundamental issues,
which are rather theoretical and conceptual, more
accessible. All these can be, and have been, ex-
plained quite easily and elegantly in terms of sim-
ply describable Turing machines, and it is ques-
tionable that it is really easier to understand them
by first learning Chaitin’s specially modified LISP
and then programming them. And after all, the key
point here is that there is no program for decid-
ing the basic properties—that they are not pro-
grammable. In The Unknowable (p. 27) Chaitin
says that “[r]eaders who hate computer program-
ming should skip directly to Chapter VI”—that is,
should skip half of the book (and similarly with Ex-
ploring Randomness). What is left is two popular
surveys of the field.

What is totally missing from Chaitin’s accounts
is the link between his particular programming
language and the intuitive notion of mechanical
procedure, that is, an analogue of the Church-
Turing thesis. Turing’s conceptual analysis of what
a mechanical procedure is and the resulting
Church-Turing thesis are indispensable for the
proper understanding of the fundamental 
unsolvability results: only the thesis gives them
their absolute character (in contradistinction to 
unsolvability by some fixed, restricted methods).
Consequently, without some extra knowledge, 
the theoretical relevance of the limitations of the
LISP programs that Chaitin demonstrates may 
remain unclear to the reader: one may wonder
whether perhaps some other programming 
language would do better. This is a serious
weakness of these presentations as first intro-
ductions to the unsolvability phenomena.

Problematic Philosophical Conclusions
The most controversial parts of Chaitin’s work 
are certainly the highly ambitious philosophical 
conclusions he has drawn from his mathematical
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work. Recall that according to Chaitin the most 
fundamental application of the theory is in the 
new light that it sheds on the incompleteness 
phenomenon. He writes: “Gödel and Turing were
only the tip of the iceberg. AIT [algorithmic infor-
mation theory] provides a much deeper analysis
of the limits of the formal axiomatic method. It 
provides a deeper source of incompleteness, a
more natural explanation for the reason that no 
finite set of axioms is complete” (Exploring 
Randomness, p. 163).

But why does Chaitin think so? It is because 
he interprets his own variants of incompleteness
theorems as follows: “The general flavor of my
work is like this. You compare the complexity of
the axioms with the complexity of the result you’re
trying to derive, and if the result is more complex
than the axioms, then you can’t get it from those
axioms” (The Unknowable, p. 24). Or, in other
words: “my approach makes incompleteness more
natural, because you see how what you can do 
depends on the axioms. The more complex the
axioms, the better you can do” (The Unknowable,
p. 26).

But appearances notwithstanding, this is sim-
ply wrong. In fact, there is no direct dependence
between the complexity of an axiom system and
its power to prove theorems. On the one hand,
there are extremely complex systems of axioms
that are very weak and enable one to prove only
trivial theorems. Consider, for example, an enor-
mously complex finite collection of axioms with the
form n < n + 1; even the simple theory consisting
of the single generalization “for all x, x < x + 1” can
prove more. On the other hand, there exist very sim-
ple and compact axiom systems that are 
sufficient for the development of all known 
mathematics (e.g., the axioms of set theory) and
that can in particular decide many more cases of
program-size complexity than some extremely
complex but weak axiom systems (such as the one
above). Moreover, it is possible for two theories to
differ considerably in strength or complexity but
nevertheless be able to decide exactly the same
facts about program-size complexity and have the
same Chaitinian finite limit c [12]. Analogously,
Chaitin’s claim with respect to Ω that “an N-bit 
formal axiomatic system can determine at most 
N bits of Ω” (The Unknowable, p. 90) is again not
true for related reasons [13].

It has been shown conclusively (see [9], [12], [13])
that Chaitin’s philosophical interpretations of his
work are unfounded and false; they are based on
various fatal confusions. And thus we have all the
more reason for doubting the claim that his 
approach can explain the true source of the 
incompleteness and unsolvability theorems. As
his philosophical interpretations fall, so does this
claim. Chaitin’s findings are not without interest,

but their relevance for the foundations of mathe-
matics has been greatly exaggerated.

Further, Chaitin has often stated that he has
shown that mathematical truth is random: “But the
bits of this number Ω, whether they’re 0 or 1, are
mathematical truths that are true by accident!
…they’re true by no reason…there is no reason that
individual bits are 0 or 1!” (Ex-
ploring Randomness, pp. 23–4)
This is false too. The individual
bits of Ω are 0 or 1 depending
on whether certain Turing ma-
chines halt or not—that is the
reason. It is an objective matter
of fact; the truth here is com-
pletely determined, and
Chaitin’s interpretation of the
situation is quite misleading.

Chaitin also claims that Ω is
“maximally unknowable” and
that in his setting one gets in-
completeness and unsolvability
“in the worst possible way” (Ex-
ploring Randomness, p. 19). But
contrary to what Chaitin’s own
interpretations suggest, his re-
sults can in fact be derived as
quite easy corollaries of Tur-
ing’s classical unsolvability result and are not es-
sentially stronger than it. Moreover, there are many
incompleteness and unsolvability results in the
literature of mathematical logic that are in various
ways stronger than Chaitin’s results; many of them
also have a much more natural mathematical
content [13].

Chaitin, however, seems to be quite indifferent
to all such criticism. Instead of trying to seriously
answer it in any way, he sweeps all such problems
under the carpet with rather cheap rhetoric: “AIT
is tremendously revolutionary; it is a major para-
digm shift, which is why so many people find the
philosophical conclusions that I draw from my
theory to be either incomprehensible or unpalat-
able” (Exploring Randomness, p. 161). Or: “AIT is
a drastic paradigm shift, and as such, obeys Max
Planck’s dictum that major new scientific ideas
never convince their opponents, but instead are
adopted naturally by a new generation that grows
up with them and takes them for granted and that
have no personal stake nor have built careers on
older, obsolete viewpoints” (Exploring Random-
ness, p. 163).

But wouldn’t it be conceivable that the true rea-
son for some resistance is not dogmatic prejudice
but that his conclusions are untenable because
they are very weakly justified and even contradict
various logico-mathematical facts? Creative and
original as Chaitin has been, it is sometimes quite
disturbing that he seems totally ignorant of large
parts of mathematical logic relevant to the issues
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he is dealing with. It is regrettable that Chaitin does
not respond to criticism of his work but simply
evades difficult questions and keeps on writing as
if they did not exist. Chaitin’s own attitude begins
to resemble the dogmatism he accuses his oppo-
nents of.

At worst, Chaitin’s claims are nearly megalo-
maniacal. What else can one think of statements
such as the following?: “AIT will lead to the major
breakthrough of 21st century mathematics, which
will be information-theoretic and complexity based
characterizations and analyses of what is life, what
is mind, what is intelligence, what is consciousness,
of why life has to appear spontaneously and then
to evolve” (Exploring Randomness, p. 163).

Problems of Popularization
The historical surveys of the theory of program-
size complexity that Chaitin gives are sometimes
rather distorted. Some have even complained that
Chaitin is “rewriting the history of the field” and
“presenting himself as the sole inventor of its main
concepts and results” [7]. This complaint also fits
to a considerable degree the present books. They
are quite idiosyncratic.

The style of these books is very loose and pop-
ular. Large parts of the text are directly transcribed
from oral lectures and include asides like “Thanks
very much, Manuel! It’s a great pleasure to be
here!” It is perhaps a matter of taste whether one
finds this entertaining or annoying. Personally, I
don’t think that this is a proper style for books in
a scientific series. It certainly does not decrease the
sloppiness of the text.

The books bring together popular and intro-
ductory talks given on different occasions, and
some of this material has already appeared else-
where. There is also a lot of redundancy and over-
lap between the books. Both books (as well as the
earlier The Limits of Mathematics) start with a
loose and not very reliable historical survey—
Chaitin himself calls it “a cartoon summary”—
beginning with Cantor’s set theory, going through
Gödel’s and Turing’s path-breaking results, and 
culminating, unsurprisingly, in Chaitin’s own work.
All three books then present an introduction to 
LISP and Chaitin’s modification of it. Both The Un-
knowable and Exploring Randomness contain a
more theoretical section on algorithmic informa-
tion theory and randomness. And finally, both
books end with rather speculative remarks on the
future of mathematics. Would it have been better
to do some editing and publish just one book 
instead of three?

To a considerable degree, Exploring Randomness
and The Unknowable just recycle the same old
ideas. Consequently, for those with some knowl-
edge of this field, these books do not offer anything
really new. For those with no previous knowledge

of these matters, it is questionable whether these
books are really a good place to start.

(There is an errata for Exploring Randomness
on Chaitin’s home page: http://www.cs.
auckland.ac.nz/CDMTCS/chaitin/).
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