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On the Philosophical Relevance of Gödel’s Incompleteness Theorems

Panu Raatikainen

Gödel  began  his  1951  Gibbs  Lecture  by  stating:  “Research  in  the  foundations  of
mathematics during the past few decades has produced some results which seem to me of
interest,  not  only  in  themselves,  but  also  with  regard  to  their  implications  for  the
traditional philosophical problems about the nature of mathematics.” (Gödel 1951) Gödel
is referring here especially to his own incompleteness theorems (Gödel 1931). Gödel’s
first incompleteness theorem (as improved by Rosser (1936)) says that for any consistent
formalized system F, which contains elementary arithmetic, there exists a sentence GF of
the language of the system which is true but unprovable in that system. Gödel’s second
incompleteness  theorem  states  that  no  consistent  formal  system  can  prove  its  own
consistency.1

These  results  are  unquestionably  among  the  most  philosophically  important  logico-
mathematical discoveries ever made. However, there is also ample misunderstanding and
confusion surrounding them. The aim of this  paper is  to  review and evaluate various
philosophical interpretations of Gödel’s theorems and their consequences, as well as to
clarify some confusions.

The fate of Hilbert’s program

It  is  widely thought  that  Gödel’s  theorems  gave  a  death  blow to  Hilbert’s  program.
Whether Gödel’s theorems really demonstrated that it is impossible to carry out Hilbert’s
program is controversial. This is partly because there is not complete clarity as to what
exactly  constitutes  Hilbert’s  program,  and  what  views  are  truly  essential  for  it.
Furthermore, some of Hilbert’s key concepts are somewhat vague. Nevertheless, I think
that there are good reasons to think that Hilbert's mature program of the 1920s was, in its
original form and in its full generality, refuted by Gödel’s theorems.2

1  It should be noted that in their full generality, Gödel’s theorems presuppose a mathematical explication

of the intuitive notion of effective calculability or decidability, which was provided by Turing.
2

 I have argued for my own interpretation of Hilbert’s program in detail in Raatikainen (2003a).  
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Hilbert  made  two  fundamental  distinctions.  First,  he  distinguished  between
unproblematic  and  contentful  finitistic  mathematics  and  contentless  infinistic
mathematics. It is now usual to assume that finitistic mathematics is essentially captured
by Primitive Recursive Arithmetic PRA. Second, Hilbert made the distinction between
real sentences and ideal sentences. He thought that only real sentences are meaningful
and have real  content.  These are roughly quantifier-free formulas  preceded by one or
more  universal  quantifiers.  All  the  other  sentences  are  ideal  sentences,  meaningless
strings of symbols which complete and simplify formalism and which make the use of
classical logic possible.

Hilbert’s program was planned to proceed as follows: first, all of infinistic mathematics
was  to  be  formalized;  next,  one  should,  using  only  restricted  and  uncontroversial
finitistic  mathematics,  prove the consistency of this  comprehensive system; moreover,
one  should  show  that  infinistic  mathematics  would  never  prove  meaningful  real
sentences  that  were  unprovable  by  finitistic  mathematics.  This  would  guarantee  the
safety  and  reliability  of  using  infinitary  methods  in  mathematics  which,  after  set-
theoretical paradoxes, had been questioned by many.

Under  the natural  assumption  that  finitistic  mathematics  is  recursively axiomatizable,
Gödel’s results establish that it is impossible to carry out Hilbert’s program in its original
form — even if one does not need to formalize at once the whole mathematical truth
(which  is  trivially  impossible  by Gödel’s  theorems)  but  just  some  existing  piece  of
infinistic  mathematics  (say,  second-order  arithmetic).  By Gödel’s  theorems,  a  strong
infinistic  theory  always  proves  ‘real  sentences’  which  are  unprovable  by  finitistic
mathematics. Understood in this way, Hilbert’s program was truly refuted by Gödel’s
theorems (see Raatikainen 2003a). 

Conventionalism, syntax and consistency

Although Gödel was originally a member of the Vienna Circle,  and his views on the
philosophy of mathematics,  as they developed, were clearly at  odds with those of the
logical  positivists,  Gödel  did not  much comment  on this  conflict  in  his  publications.
Gödel  was,  nonetheless,  preparing  a  contribution  to  the  Carnap-volume  of  Schilpp’s
Library of Living Philosophers, but he was unsatisfied with his manuscript, and finally
decided not to publish it. In this manuscript (Gödel 1953/9), Gödel develops a conclusive
argument  against  conventionalism,  that  is,  he  attacks  the  view  “which  interprets
mathematical  propositions  as  expressing  solely  certain  aspects  of  syntactical  (or
linguistic)  conventions”.  He mentions  Carnap, Schlick and Hahn as advocates of this
position.

According to Gödel, a rule about the truth of sentences can be called syntactical only if it
is clear from its formulation, or if it somehow can be known beforehand, that it does not
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imply the  truth  or  falsehood  of  any ‘factual  sentence’  or  ‘proposition  expressing  an
empirical fact’. But, so the argument continued, this requirement would be met only if
the rule of syntax is consistent,  since otherwise the rule would imply all sentences,
including the factual  ones.  Therefore,  by Gödel’s second theorem, the mathematics
not captured by the rule in question must be invoked in order to legitimize the rule,
and  thereby  the  claim  that  mathematics  is  solely  a  result  of  syntactical  rules  is
contradicted.

Now although Gödel addressed this paper especially to Carnap, he did not pay close
attention  to  the  possible  differences  between  the  members  of  the  Vienna  Circle.
Consequently, it has been argued by Goldfarb and Ricketts that Carnap’s radical and
sophisticated  variant  of  conventionalism  is  in  fact  immune  to  this  sort  of  direct
refutation  (see  Goldfarb  and  Ricketts  1992,  Ricketts  1995,  Goldfarb  1995).  This
interpretation has been, in turn, questioned by Crocco (2003). However, be that as it
may,  Gödel’s  argument  is  in  any  case  fatal  to  the  more  standard  forms  of
conventionalism,  such as  those  of  Schlick  and Hahn.  And this  is  certainly already
very interesting in itself.

Self-evident and analytical truths

One can also provide more general epistemological interpretations of Gödel’s theorems.
Quine and Ullian (1978), for example, consider both traditional rationalist philosophers
who  believed  that  whatever  was  true  could  in  principle  be  proved from self-evident
beginnings by self-evident steps, and the “less sanguine” ones who argued that whatever
was true could be proved by self-evident steps from two-fold beginnings: self-evident
truths and observation. Contrary to both schools, Quine and Ullian point out that even the
truths  of  elementary number  theory are  presumably not  in  general  derivable  by self-
evident steps from self-evident truths: “We owe this insight to Gödel’s theorem, which
was not known to the old-time philosophers.” (Quine & Ullian 1978, p. 64–65.)

Hilary Putnam (1975) submits that the statements that can be proved from axioms which
are evident to us can only be recursively enumerable — unless an infinite number of
irreducibly different  principles  are  at  least  potentially  evident  to  the  human  mind,  a
supposition  he  finds  “quite  incredible”.  Hence,  by Gödel’s  theorems,  some  truths  of
elementary number theory are not provable from evident axioms. Putnam continues that
even if it were the case that all the axioms we use in mathematics are ‘analytic’, as some
philosophers have claimed (which, he adds, has never been shown), it would not follow
that  all  truths  of  mathematics  are  analytic.  Putnam  concludes  that  if  the  analytic
sentences are all  consequences of some finite  list  of Meaning Postulates,  then it  is  a
consequence  of  Gödel’s  theorem  that  there  must  be  synthetic  truths  in  mathematics
(Putnam 1975).
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In fact, Gödel himself made remarks in a very similar spirit. That is, Gödel first noted
that  ‘analyticity’  may be  understood  in  different  ways.  One  alternative  is  the  purely
formal sense that the terms occurring can be defined (either explicitly,  or by rules for
eliminating them from sentences containing them) in such a way that the axioms and
theorems  become  special  cases  of  the  law  of  identity  and  disprovable  propositions
become negations of this law. Gödel concluded that in this sense of ‘analyticity’, even
the theory of integers is  demonstrably non-analytic,  provided that  one requires of the
rules of elimination that they allow one to actually carry out the elimination in a finite
number of steps in each case. For this would imply the existence of a decision procedure
for all arithmetical propositions (Gödel 1944).

Intuitionism, truth and provability

The relation of Gödel’s theorems to intuitionism is less straightforward. On the one
hand, they seemed to confirm the intuitionists’ misgivings about formalism.  On the
other  hand,  they underline  the  rather  abstract  nature  of  the  intuitionistic  notion  of
provability,  with  which intuitionists  equate truth.  For  as  a  consequence of  Gödel’s
theorems, truth cannot be equated with provability in any effectively axiomatizable
theory.

In Gödel’s  own mind,  at  least,  this  is  quite  a  serious  drawback  (see  Gödel  1933,
1941); he complained that the intuitionistic notions of provability and constructivity
are  vague  and  indefinite  and  lack  complete  perspicuity  and  clarity.  It  cannot  be
understood  in  the  sense  of  ‘derivation  in  a  definite  formal  system’,  since  for  this
notion, the axioms of intuitionistic logic would not hold. So the notion of derivation
or  of  proof  must  be  therefore  taken in  its  intuitive  meaning  as  something  directly
given by intuition, without any further explanation. According to Gödel, this notion
of  an  intuitionistically  correct  proof  or  constructive  proof  lacks  the  desirable
precision.

It is indeed arguable that Gödel’s theorems pose, for many variants of intuitionism, a
much  more  serious  challenge  than  has  been  realized  or  admitted  by  intuitionist
philosophers  of  mathematics  (see  Raatikainen  2004).  That  is,  intuitionists  often
emphasize  that  one  should  recognize  a  proof  when  one  sees  one.  Put  differently,
proofs  are  understood  as  beginning  with  immediate  truths,  and  continuing  with
immediate  inference.  But  given  Gödel’s  theorems,  it  is  then  hard  to  hold  the
intuitionistic  equation  of  truth  with  probability.  The problem is  the same as  found
above with self-evident truths: is it really plausible to assume that there are infinitely
many3 irreducibly different principles which are self-evident to the human mind?

3 actually even much worse: Gödel’s technique entails that the set of self-evident truths would not be even

arithmetically definable, in other words, not only non-recursive but nowhere in the arithmetical hierarchy

(assuming it is legitimate to use these notions), but it would be at least as complex and abstract as the set of
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Let us also note in this  context an application of Gödel’s theorem by Putnam (1967).
Thus, consider the following two principles which, in Putnam’s words, “many people
seem to accept”:4

(i) Even if some arithmetical (or set-theoretical) statements have no truth value, still to
say that any arithmetical (or set-theoretical) statement that it has (or lacks) a truth value
is itself always either true or false (i.e. the statements either has a truth value or it does
not). 
(ii) All and only decidable statements have a truth value. 
Putnam shows that these two principles are together inconsistent, by applying Gödel’s
first theorem. 

Logicism and Gödel’s theorems

There  has  been  some  dispute  on  the  issue  as  to  whether  Gödel’s  theorems
conclusively refute  logicism,  that  is,  the claim that  mathematics  can be reduced to
logic, as endorsed, for instance, by Frege and Russell.  Obviously this issue depends
heavily on how one understands the essence of logicism.  Clearly Gödel’s theorems
show that all arithmetical truths are not reducible to the standard first-order logic, or
indeed, to any recursively axiomatizable system. On the other hand, one may restrict
the  logicist  thesis  to  some  class  of  mathematical  truths  (such  as  known truths,  or
humanly  knowable  ones),  and/or  extend  the  scope  of  logic.  There  is,  though,  the
threat that the issue becomes trivial or wholly verbal. 

Henkin  (1962)  and  Musgrave  (1977),  for  example,  state  that  Gödel’s  results
effectively destroy classical  logicism (see also the comments  by Quine,  Ullian  and
Putnam concerning self evidence of the mathematical truths found below). Sternfeld
(1976) and Rodríguez-Consuegra (1993), on the other hand, argue that it is possible
to defend logicism even after Gödel’s theorems. Sternfeld and Rodríguez-Consuegra
appeal  to  the  fact  that  Gödel’s  theorems do not  provide  an  absolutely undecidable
statement, but only a relative one. This is certainly true. Yet this defense apparently
collapses logicism into the view that every mathematical  truth is  derivable in some
formal  system.  This,  however,  makes  the  thesis  completely  trivial.  Furthermore,
would  this  not  imply  that  not  only  mathematics  but  also  all  empirical  facts  are
‘logically true’?

Geoffrey Hellman (Hellman 1981, see also Reinhard 1985) has analyzed the bearing
of Gödel’s theorems on logicism in more detail. Hellman focuses only on the thesis
that  knowable mathematical truth can be identified with derivability in some formal

classical truths (of arithmetic).    

4  though, it should be added, this is not the view of standard intuitionism.
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system. Logicism so understood cannot be directly refuted by Gödel’s first theorem.
Hellman subsequently gives a considerably more complicated argument which leans
on Gödel’s second theorem, and breaks the argument down into two cases. First, he
concludes that no finitely axiomatizable logicist system exists. Second, he considers
non-finitely  axiomatizable  systems,  and  here  the  claim  is  weaker:  such  logicist
systems may exist,  but Gödel’s second theorem prohibits our being able to know of
any particular system that it is one of them.5 Hellman’s argument has the advantage of
not depending on any particular restrictive way of drawing the controversial line between
logic and non-logic. 

Incompleteness and Algorithmic Complexity

In the past few of decades, certain variants of incompleteness results, together with their
ambitious  philosophical  interpretations,  by  the  American  computer  scientist  Gregory
Chaitin, have received considerable attention. It has often been suggested that Chaitin’s
results are fundamental and dramatic extension of Gödel’s results, or even the strongest
possible  version  of  an  incompleteness  theorem,  and  that  they shed  new  light  on  the
incompleteness phenomenon and explain why it really occurs.6 

Chaitin’s  results  emerge  from  the  theory  of  algorithmic  complexity  or  program-size
complexity (also known as “Kolmogorov complexity”). In fact, Chaitin himself was one of
the founders of that theory. The algorithmic complexity, or the program-size complexity,
of a number or a string, refers to the length of the shortest program which generates the
number or string and halts.  A finite  string is  referred to as random, or irregular,  if  its
complexity is  approximately equal  to its  length.  Further,  an infinite  sequence is  called
random if, roughly, all its finite initial segments are random (this requires qualifications). It
has  been also  proposed,  for  somewhat  unclear  and confused reasons,  that  algorithmic
complexity provides a good measure of the information content of a string of symbols.
Consequently, the whole field is often called Algorithmic Information Theory. 

It was known from the beginning that program-size complexity is undecidable. However,
in the early 1970s, Chaitin observed that it  has a peculiar property: Although there are
strings  with  arbitrarily large  program-size  complexity,  for  any consistent  mathematical
axiom system, there is a finite limit  c such that in that system, one cannot prove that any
particular string has a program-size complexity larger than c (Chaitin 1974, 1975). Later,
Chaitin  attempted  to  extend  the  complexity-theoretic  approach in  order  to  obtain  “the
strongest possible version of Gödel’s incompleteness theorem” (Chaitin 1987b, p. v). For

5  The latter,  weaker conclusion resembles the conclusions drawn by Benacerraf  as well as Gödel’s

related conclusions; see below.

 
6  For an in-depth criticism of these interpretations, see Raatikainen 1998, 2000; cf. also Raatikainen 2002. 
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this  purpose,  Chaitin  has  defined  a  specific  infinite  random sequence  Ω (”the  halting
probability”), and then showed that no formal system F can determine but finitely many
digits of Ω (Chaitin 1987a, 1987b).

Chaitin’s results are not without interest,  but one should not exaggerate their power or
relevance. Also, the popular explanations and philosophical interpretations arising from
these  results  are  largely  unsupported  by  facts.  Both  Chaitin’s  incompleteness  results
exhibit a finite limit of provability; Chaitin maintains that these limits, for a given axiom
system, are moreover determined by the algorithmic complexity of the axiom system. Yet
this is based on confusions and is just not true. In fact, there is no correspondence between
the two. One can have extremely complex but very weak systems with a small limit and
quite simple but very strong systems with a much larger limit. 

Chaitin  has  further  interpreted  his  results  as  showing  that  the  incompleteness
phenomenon occurs because undecidable sentences “contain too much information”, that
is, more than the axioms of the theory, and stated that this is the ultimate explanation of
incompleteness.  Yet,  this  is  not  true  in  general.  It  is  false  for  both  ‘algorithmic
information’ (i.e. program-size complexity) and for the intuitive common-sense notion of
informativeness. There is no correspondence between the complexity of axioms and the
complexity of  the  undecidable  sentences.  It  is  wholly possible  to  have  an  extremely
complex axiom system with a strikingly simple  sentence which is  undecidable in  the
system. And intuitively speaking, the Gödel sentences, which are just particular universal
statements, are usually much less informative (in the intuitive sense) than the formalized
theories from which they are independent. While it is true that they contain information
the system does not contain, it does not follow that they contain more information than
the system. 

Chaitin’s results are also not “the strongest possible” incompleteness and undecidability
results. In a sense, Gödel’s and Turing’s classical results are stronger than Chaitin’s earlier
(1974) incompleteness result, for the former provide a m-complete set, whereas Chaitin’s
result does not, and the undecidable set of the latter is m-reducible to the undecidable sets
of the former but not vice versa. Nor is Chaitin’s Ω the extreme of undecidability, as it has
been  sometimes  called.  In  fact,  there  are  certain  in  a  definite  sense  more  strongly
undecidable  arithmetical  problems  which  are  in  addition  much  more  natural  (see
Raatikainen 2000; a particularly nice example, in terms of ordinary number theory, can be
found in Raatikainen 2003b). 

Why is the Gödel sentence true?

Apparently people  have no difficulties  in  understanding  the  idea that  a  formal  system
leaves  some  sentences  undecided.  Nevertheless,  confusion  surrounds  the  reasons  for

7



holding,  in  Gödel’s  first  theorem,  the  undecided  Gödel  sentence  to  be  true.  Some
apparently think that humans can intuitively see that it is true, perhaps because “it says of
itself that it is unprovable”. Others assume that we somehow check that it  holds in the
standard model of arithmetic. Still others think that the question of its truth is meaningful
only when understood in terms of provability in some other, stronger system. All such
views are problematic and irrelevant. Let us attempt to understand more clearly what the
real state of affairs is. 

The structure of Gödel’s proof is, very roughly,  the following:  Assume that  the formal
system F is  consistent  (otherwise it  proves, by elementary logic,  every sentence and is
trivially complete). By Gödel’s self-reference lemma, one can then construct a sentence GF

that is independent of F (i.e. neither provable nor refutable in F). Thus F is incomplete. So
far so good. Yet how then can one conclude that GF is true? 

Assuming that the formalized provability predicate used is normal, one can prove, even
inside F, that 
 GF is true if and only if  F is consistent, 
although neither side of the equivalence can be proved in F. Therefore, the truth of the
sentence GF is already implicitly assumed in the beginning of the proof, in the form of the
assumption that F is consistent.

If it nevertheless turns out that F is inconsistent, one has to conclude that GF is, after all,
false — and provable in F, because every sentence is. The proof also goes through for a
theory that is in fact inconsistent.  An amusing real historical example is Quine’s original
version of his system ML (Quine 1940). At the end of the book, Quine presented a proof of
Gödel’s theorem for this system. But ML was later shown to be inconsistent by Rosser.
Hence the Gödel sentence GML was actually false, whatever one’s intuitions were.  

In general,  what  evidence  do  we have  for  the  belief  that  F  is  consistent?  This  varies
enormously depending on the particular theory F in question. In the case of elementary
arithmetic, the evidence for its consistency is overwhelming, and one can perhaps even say
that it is known with mathematical certainty. On the contrary, this is not so for some of the
strong new set theoretical systems such as ZFC + the existence of some huge cardinals. For
such a system, the only evidence we have for its consistency is that it seems to formalize a
consistent notion, and that one has not, so far, derived a contradiction from it. 

In other words, we can also apply Gödel’s theorem to a theory F about whose consistency
we are less confident and prove the conditional:  If F is consistent, then there is a true but
unprovable-in-F sentence  GF (in the language of F). So what can we then say about the
truth of GF? The right conclusion is that we have exactly as much (or as little) reason to
believe in the truth of  GF as we have reason to believe in the consistency of the formal
system F in question. And the justification may vary considerably from theory to theory. 

8



‘Gödelian’ arguments against mechanism

Gödel’s  theorems  have  also  stimulated  many  philosophical  speculations  outside  the
philosophy of mathematics. In particular, one has repeatedly attempted to apply Gödel’s
theorems and demonstrate that the powers of the human mind outrun any mechanism or
formal system. Such a Gödelian argument against mechanism was considered, if only in
order to refute it, already by Turing in the late 1940s (see Piccinini 2003). 

An unqualified anti-mechanist conclusion was drawn from the incompleteness theorems in
a much read popular exposition, Gödel’s Theorem, by Nagel and Newman (1958). Shortly
afterwards, J.R. Lucas (1961) famously proclaimed that Gödel’s incompleteness theorem
“proves that Mechanism is false, that is, that minds cannot be explained as machines”. He
stated that “given any machine which is consistent and capable of doing simple arithmetic,
there is a formula it is incapable of producing as being true ...but which we can see to be
true”. More recently, very similar claims have been put forward by Roger Penrose (1990,
1994).7 Crispin Wright  (1994, 1995) has endorsed related ideas from an intuitionistic
point of view.8 They all insist that Gödel’s theorems imply, without qualifications, that
the human mind infinitely surpasses the power of any finite machine.  These Gödelian
anti-mechanist arguments are, however, flawed.

The basic error of such an argument is actually rather simply pointed out. 9 The argument
assumes  that  for  any formalized  system,  or  a  finite  machine,  there  exists  the  Gödel
sentence  (saying  that  it  is  not  provable  in  that  system)  which  is  unprovable  in  that
system, but which the human mind can see to be true. Yet Gödel’s theorem has in reality
the conditional form, and the alleged truth of the Gödel sentence of a system depends on
the assumption of the consistency of the system. That is, all that Gödel’s theorem allows
us humans to prove with mathematical certainty, of an arbitrary given formalized theory
F, is:

F is consistent ⇒ GF.

The anti-mechanists  argument  thus also requires that the human mind can always see
whether or not the formalized theory in question is consistent. However, this is highly
implausible. After all, one should keep in mind that even such distinguished logicians as

7  For detailed criticism of Penrose by experts of the field, see Boolos 1990, Davis 1990, 1993, Feferman

1995, Lindström 2001, Pudlak 1999, Shapiro 2003.

  
8 For criticism, see Detlefsen 1995.

9  This objection goes back to Putnam 1960; see also Boolos 1967.
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Frege,  Curry,  Church,  Quine,  Rosser  and  Martin-Löf  have  seriously  proposed
mathematical theories that have later turned out to be inconsistent. As Martin Davis has
put  it:  “Insight  didn’t  help”  (Davis  1990).  Lucas,  Penrose  and  others  have  certainly
attempted to reply to such criticism (see e.g. Lucas 1996, Penrose 1995, 1997), and have
made some further moves, but the fact remains that they have never really managed to
get over the fundamental problem stated above. At best, they have changed the subject. 

John Searle  (1997) has joined the discussion and partly defended Penrose against  his
critics. It seems, though, that Searle has missed the point. He assumes that the standard
criticism  is  based  on  the  suggestion  that  the  relevant  knowledge  might  be
unconsciousness. Searle argues that such a critique fails. Yet the real issue has absolutely
nothing to do with awareness. Penrose’s key assumption, that the algorithm or formal
system  must  be  ”knowably sound”,  refers  to  the  idea  that  one  must,  in  addition  to
possessing certain axioms and rules, know that they are sound, that is, that they produce
no  false  theorems  (or  at  least  that  they  are  consistent).  Whether  this  knowledge  is
conscious or unconscious is totally irrelevant for the main question. If our understanding
would  really exceed that  of  any possible  computer,  we should be able  to  always see
whether a given formal system is sound or not. And to assume that is quite fantastic.
Searle seems to uncritically accept the belief held by Penrose and others that a human
being can always “see the truth” of a Gödel sentence. And, this, we have seen, is the
basic fallacy in these “Gödelian” arguments for anti-mechanism.

Quite  recently  Storrs  McCall  has  made  an  effort  to  provide  improved  Gödelian
arguments  against  mechanism (McCall  1999,  2001).  McCall  admits  that  the standard
anti-mechanist argument is problematic because the recognition of the truth of the Gödel
sentence  GF depends essentially on the unproved assumption  that  the system F under
consideration  is  consistent.  McCall’s  new  argument  aims  to  show  that  still  human
beings,  but  not  machines,  can  see  that  truth  and  provability  part  company.  McCall
suggests that we can argue by cases: Either F is consistent, in which case GF is true but
unprovable,  or  F  is  inconsistent,  and  GF is  provable  but  false.  Whichever  alternative
holds, truth and provability fail to coincide. McCall concludes that human beings can see
this, but a Turing machine cannot. This is, however, wrong. Any simple formal system
(generated  by a  Turing  machine)  which contains  elementary arithmetic  can  prove all
these facts, too (see Raatikainen 2002).  McCall (1999) has also attempted to give a more
technical anti-mechanist argument. That argument is also flawed. Basically, it is based on
an  illegitimate  conflation  of  Gödel  sentences  and  Rosser  sentences  (see  George  and
Velleman 2000, Tennant 2001). 

Gödel on mechanism and Platonism

Interestingly, Gödel himself also presented an anti-mechanist argument although a more
cautious one; it was published only in his Collected Works, Vol. III, in 1995. That is, in
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his  1951  Gibbs  lecture,  Gödel  drew  the  following  disjunctive  conclusion  from  the
incompleteness  theorems:  “either  ...  the  human  mind  (even within  the  realm of  pure
mathematics)  infinitely surpasses the power of any finite  machine,  or else there exist
absolutely unsolvable  diophantine  problems.”  Gödel  speaks  about  this  statement  as  a
“mathematically  established  fact”.  Furthermore,  Gödel  concludes  that  philosophical
implications  are,  under  either  alternative,  “very  decidedly  opposed  to  materialistic
philosophy”. (Gödel 1951)10 

According to  Gödel,  the  second alternative,  where there  exist  absolutely undecidable
mathematical problems, “seems to disprove the view that mathematics is only our own
creation;  for  the  creator  necessarily  knows  all  properties  of  his  creatures  ...  so  this
alternative seems to imply that mathematical objects and facts ... exist objectively and
independently of our mental acts and decisions”. Gödel was nonetheless inclined to deny
the  possibility  of  absolutely  unsolvable  problems,  and  although  he  did  believe  in
mathematical Platonism, his reasons for this conviction were elsewhere, and he did not
maintain  that  the  incompleteness  theorems  alone  establish  Platonism.  Thus  Gödel
believed in the first disjunct, that the human mind infinitely surpasses the power of any
finite machine. Still, this conclusion of Gödel follows, as Gödel clearly explains, only if
one denies, as does Gödel, the possibility of humanly unsolvable problems. It is not a
necessary consequence of incompleteness theorems:

However, as to subjective mathematics [PR: humanly knowable mathematics],  it  is not

precluded that there should exist a finite rule producing all its evident axioms. However,

if  such  a  rule  exists,  ....  we  could  never  know  with  mathematical  certainty that  all

propositions it produces are correct ... the assertion ... that they are all true could at most

be known with empirical certainty .... there would exist absolutely unsolvable diophantine

problems ..., where the epithet ‘absolutely’ means that they would be undecidable, not just

within some particular axiomatic system, but by any mathematical proof the human mind

can conceive. (Gödel 1951, my emphasis)

Now Gödel  was,  unlike  the  later  advocated  of  the  so-called  Gödelian  anti-mechanist
argument, sensitive enough to admit that both mechanism and the alternative that there
are  humanly  absolutely  unsolvable  problems  are  consistent  with  his  incompleteness
theorems.  His  fundamental  reasons for  disliking  the  latter  alternative  are  much more
philosophical. Gödel thought in a somewhat Kantian way that human reason would be
fatally irrational if it would ask questions it could not answer. If, on the other hand, we
are ready to accept a more modest view on our human capabilities, and admit that there
may exist mathematical problems that are absolutely undecidable for us, this alternative
causes no problems, and is indeed philosophically the easiest to accept. But does this
alternative  really imply,  as  Gödel  believed,  the truth  of  mathematical  Platonism.  Not
necessarily. There is an option, suggested e.g. by Kreisel (1967) while commenting on
Gödel’s disjunctive conclusion.  Kreisel writes:  “I do not make the assumption that,  if

10  For more discussion on Gödel’s disjunctive claim, see e.g. Shapiro 1998. 
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mathematical  objects  are  our  own constructions,  we must  be  expected  to  be  able  to
decide all their properties; for, except under some extravagant restrictions on what one
admits as the self I do not see why one should expect so much more control over one’s
mental  products  than  over  one’s  bodily  products  —  which  are  sometimes  quite
surprising” (Kreisel 1967). I am inclined to agree. 

Actually Gödel explicitly considered this alternative in the form of following objection:
“For example, we build machines and still cannot predict their behaviour in every detail”.
“But”, Gödel continued, “this objection is very poor. For we don’t create the machines
out of nothing but build them out of some material” (Gödel 1951). I do not think that
Gödel’s reply is really convincing. He ignores the possibility of designing, for example, a
computing  machine  in  the  functional  level,  e.g.  by  writing  a  flow  chart,  totally
independently of the different material  realizations  of it.  Still,  the question whether a
given program halts or not may be totally opaque for the programmer who has created
the program. And the question is completely independent of the materials  one uses to
realize the program; it is a software issue independent of the hardware. In sum, I think
that  the  alternative  that  there  are  humanly  absolutely  unsolvable  problems  does  not
necessarily imply Platonism.

Benacerraf, mechanism and self-knowledge

As a reaction to Lucas’ argument, but before the publication of Gödel’s Gibbs Lecture,
Paul Benacerraf (1967) put forward more qualified conclusions that interestingly resemble
some ideas of Gödel. That is, Benacerraf first argued that given any Turing machine T,
either I cannot prove that T is adequate for arithmetic,  or if I am a subset of T, then I
cannot prove that I can prove everything T can. He concluded that it is consistent with all
this that I am indeed a Turing machine, but one such that I cannot ascertain what it is.
Benacerraf  interprets  the  philosophical  import  of  this  colorfully:  “If  I  am  a  Turing
machine,  then  I  am  barred  by  my  very  nature  from  obeying  Socrates’  profound
philosophical injunction: Know thyself.”

Benacerraf has certainly provided a true logical fact: he shows that certain assumptions are
together  inconsistent.  Still,  it  is  not  entirely  clear  what  the  real  relevance  of  this  is
philosophically.  As  John  Burgess  has  pointed  out  (reported  in  Chihara  1972),  much
depends on what is meant by an ‘absolute proof’. If it is required that the premises of an
absolute proof must be self-evident, then it is possible that I am a formalized theory, that I
can discover empirically that I am the theory F, but that I cannot prove this absolutely.
Kripke in turn has suggested (also reported by Chihara 1972) that the fact that I cannot
discover the program does not seem to be so paradoxical when it is observed that such a
discovery involves distinguishing what I can really prove (absolutely) from what I merely
think I can prove. Hence it involves distinguishing such things as genuine absolute proofs
from apparent proofs and genuine knowledge from mere beliefs.

12



Indefinite extensibility and expansion procedures

Dummett (1963) examines the intuitionist thesis that mathematical proof or construction is
essentially a mental entity. He interprets this as a rejection of the idea that there can even
be an  isomorphism between the  totality of  possible  proofs  of  statements  within  some
mathematical theory and the proofs within any formal system. Although Dummett wants to
distance himself from the psychologistic language of traditional intuitionism, he thinks that
this fundamental point is entirely correct. According to Dummett (1963), Gödel’s theorems
shows that no formal system can ever succeed in embodying all the principles of proof of
the  arithmetical  statements  we  should  accept.  He  has  influentially  expressed  this
conclusion also by saying that the class of intuitively acceptable proofs is an indefinitely
extensible one. By this  he means,  in this  context,  that for any formal system, once the
system has been formulated, one can, by reference to it, define new properties which are
not expressible in the system. Moreover, by applying induction to such new properties, one
can arrive at conclusions that are not provable in the systems.  

Later, Dummett (1994) has been, for good reason, more cautious. He has admitted that it
does not directly follow from Gödel’s theorems that the set of arithmetical truths we are
capable of recognising as such cannot be recursively enumerable. According to Dummett,
incompleteness theorems only rule out the possibility that in that case we can, from the
specification  of  the  set,  recognise  that  it  contains  only true  theorems.  Dummett  now
submits that the standard objection to the Lucas-Penrose argument is sound and that the
only conclusion we can draw is a disjunctive one (such as Gödel’s above). Dummett states
that the sentences which result from the indefinite iteration of this procedure “cannot all be
derived within a single formal system that we can recognise as intuitively correct; ... if
there is any sound formal system of arithmetic in which they can be all derived, we cannot
recognise its soundness” (Dummett 1994).

Wright (1994) affirms that the sentences which result from indefinite iteration of extension
procedure  cannot  be  recursively  axiomatizable.  Yet,  as  Dummett  (1994)  correctly
comments, all that can be concluded is that if it is recursively axiomatizable, we cannot
recognise its soundness (we should add, following Gödel, recognize  with mathematical
certainty). Nevertheless, in the end, Dummett adds that “there are multifarious ways of
extending  an  intuitively  correct  formal  system of  arithmetic”.  Dummett  mentions,  for
instance,  Feferman’s  ‘autonomous  progression’,  transfinite  induction,  adding  truth
predicate and suitable axioms, etc. He concludes after all that Gödel’s theorem guarantees
that  we cannot encapsulate  all  extensions  of arithmetic  into a single intuitively correct
formal system (Dummett 1994). It is not clear that this is necessarily true. 

Feferman’s work is highly relevant here. Feferman has studied various different processes
of extension for formal systems. The first such approach was in terms of the autonomous
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transfinite progressions of theories (Feferman 1964).  Later, Feferman introduced a more
general a notion of reflective closure of a system S, which used Kripke-Feferman truth
theory. Feferman proposed that the reflective closure of a system S contains everything one
ought to accept if one has accepted the basic notion and principles of S.  Feferman also
showed that the reflective closure and the earlier autonomous progression, when using PA
as the initial  theory, entail  exactly the same arithmetical truths, i.e the theorems of the
system of ramified analysis up to but not including Γ0 (Feferman 1991).

More recently, Feferman has formulated (Feferman 1996, Feferman & Strahn 2000) a new
very general notion of the ‘unfolding’ closure of schematically axiomatized formal systems
S.  It  provides  a  uniform systematic  means  of  expanding in  an essential  way both  the
language and axioms of such systems S. He suggests that this is even more convincing as
an explication of everything that one ought to accept if one has accepted given concepts
and principles. Once again, the unfolding of  PA is proof-theoretically equivalent to the
system of  ramified  analysis  up  to  but  not  including  Γ0,  and  hence  equivalent  to  both
autonomous progression and reflective closure when applied to PA. There is thus striking
stability in the end result in these very different ways of extending standard arithmetic. I
think  that  especially  together  these  results  strongly  suggest  that  Feferman’s  notions
manage indeed to  capture  everything that  is  implicitly accepted  when one  accepts  the
original system.

One should note that the totality of arithmetical statements which are provable along such
extension processes can nevertheless be captured by a formalized system. Furthermore,
assuming that the system is consistent, one can again apply Gödel’s theorem and get an
arithmetical sentence which is unprovable in the system but true, although it is not —  if
Feferman is right —  acceptable on the basis of what was implicit in the acceptance of the
initial  theory.  But  this  seems  to  be  a  problem  for  Dummettians’  idea  of  indefinite
extensibility,  especially when combined  with  their  intuitionistic  equation  of  truth  with
provability. Truth, for them, apparently cannot go beyond what is acceptable on the basis
of the original concepts and principles. 

Mysticism and the existence of God ?

Sometimes quite fantastic conclusions are drawn from Gödel’s theorems. It has been even
suggested that Gödel’s theorems — if not exactly prove — at least give strong support for
mysticism or the existence of God. For example, the well known popularizer of science,
Paul  Davies,  reflecting  on  Gödel’s  results,  concludes:  “We  are  barred  from  ultimate
knowledge, from ultimate explanation, by the very rules of reasoning that prompt us to
seek such an explanation in the first place. If we wish to progress beyond, we have to
embrace a different concept of ‘understanding’ from that of rational explanation. Possibly
the mystical path is a way to such understanding. Maybe [mystical insights] provide the
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only route beyond the limits to which science and philosophy can take us, the only possible
path to the Ultimate.” (Davies 1992).

Michael Guillen interprets the moral of Gödel’s results as thus: “the only possible way of
avowing an unprovable truth, mathematical or otherwise, is to accept it as an article of
faith.” (Guillen 1983, pp. 117-18). Juleon Schins (1997) even declares that Gödel’s (and
Turing’s)  results  “firmly  establish  the  existence  of  something  that  is  unlimited  and
absolute,  fully  rational  and  independent  of  human  mind”.  “What  would  be  more
convincing pointer to God”, he asks. Antoine Suarez (1997) in turn states that, because of
Gödel’s theorems,  we are “scientifically” led to  the conclusion that  it  is  reasonable to
reckon with God.  

Perhaps a person who is inclined to see evidence for God’s existence everywhere can
also  see  it  in  Gödel’s  theorems,  but  in  themselves,  these  results  have  no  such
implications. Among other confusions, these interpretations seem to assume one or more
misunderstandings which have already been discussed above. It is either assumed that
Gödel  provided  an  absolutely  unprovable  sentence,  or  that  Gödel’s  theorems  imply
Platonism, or anti-mechanism, or both. But arguably all such conclusions are unjustified.

Bibliography

Benacerraf, Paul (1967) “God, the Devil, and Gödel”, The Monist 51, 9–32. 

Boolos, George (1968) “Review of ‘Minds, machines and Gödel’, by J.R. Lucas, and ‘God, the Devil, and

Gödel’, by P. Benacerraf”, Journal of Symbolic Logic 33, 613–15.

Boolos, George (1990) “On ‘seeing’ the truth of Gödel sentence”, Behavioral and Brain Sciences 13, 655–

656.

Chaitin,  Gregory  J. (1974)  “Information-theoretic  limitations  of  formal  systems”,  Journal  of  the

Association for Computing Machinery 21, 403–24. 

Chaitin, G.J. (1975) “Randomness and mathematical proof”, Scientific American 232, 47–52. 

Chaitin, Gregory J. (1987a) “Incompleteness theorem for random reals”, Advances in Applied Mathematics

8, 119–146.

Chaitin, G.J. (1987b), Algorithmic Information Theory, Cambridge University Press, Cambridge, 1987.

Chihara,  Charles (1972)  “On alleged  refutations  of  mechanism using Gödel’s  incompleteness  results”,

Journal of Philosophy 69, 507–26.

Crocco, Cabriella (2003) “Gödel, Carnap, and the Fregean heritage”, Synthese 137, 21–41.

Davies, Paul (1992), The Mind of God, Simon & Schuster, New York.

Davis, Martin (1990) “Is mathematical insight algorithmic?”, Behavioral and Brain Sciences 13, 659–660

Davis, Martin (1993) “How subtle is Gödel’s theorem? More on Roger Penrose”, Behavioral and Brain

Sciences 16, 611–612. 

Dummett,  Michael (1963)  “The  philosophical  significance  of  Gödel’s  theorem”,  Ratio 5,  140–155.

Reprinted in M. Dummett: Truth and Other Enigmas, Duckworth, London, 1978, 186–201.

Dummett,  Michael (1994)  “Reply to  Wright”, in  Brian  McGuinness  and  Gianluigi  Oliver  (eds.)  The

Philosophy of Michael Dummett, Kluwer, Dordrecht, 329–338.

Detlefsen,  Michael (1995)  “Wright  on  the  non-mechanizability  of  intuitionist  reasoning”, Philosophia

Mathematica  3, 103–118.

15



Feferman, Solomon (1964) “Systems of predicative analysis”, Journal of Symbolic Logic 29, 1–30. 

Feferman, Solomon (1991) “Reflecting incompleteness”, Journal of Symbolic Logic 56, 1–49.

Feferman,  Solomon (1995)  “Penrose’s  Gödelian  argument:  A  review of  Shadows  of  Mind,  by  Roger

Penrose”, Psyche 2 (7).  

Feferman, Solomon (1996) “Gödel’s program for new axioms: why, where, how and what?”, in Gödel '96,

Lecture Notes in Logic 6, 3–22.

Feferman, Solomon and Thomas Strahm (2000) “The unfolding of non-finitist arithmetic”, Annals of Pure

and Applied Logic 104, 75–96.

George, Alexander and Daniel Velleman (2000) “Leveling the playing field between mind and machine: a

reply to McCall”, Journal of Philosophy 97, 456–461.

Goldfarb, Warren (1995) “Introductory note to *1953/9”, in Gödel 1995, 324-334.

Warren Goldfarb and Thomas Ricketts  (1992),  “Carnap  and the philosophy of  mathematics”,  in

David Bell and Wilhelm Vossenkuhl (eds.),  Science and Subjectivity, Akademie Verlag, Berlin, 1992, pp.

61–78. 

Gödel,  Kurt (1931).  “Über  formal  unentscheidbare  Sätze  der  Principia  Mathematica und  verwandter

Systeme I”, Monatshefte für Mathematik und Physik 38, 173–98; translated in Gödel 1986, 144–195.

Gödel, Kurt (1933). “The present situation in the foundations of mathematics”, in Gödel 1995, pp. 45–53.

Gödel, Kurt (1941) “In what sense is intuitionistic logic constructive?”, in Gödel 1995, p. 189–200.

Gödel,  Kurt (1944)  “Russell’s mathematical  logic”,  in P.  A. Schilpp (ed.)  The Philosophy of  Bertrand

Russell, Northwestern University, Evanston, Il., 125–153. Reprinted in Gödel 1990, 119–141.

Gödel, Kurt (1951) “Some basic theorems on the foundations of mathematics and their implications” (Gibbs

Lecture). In Gödel 1995, pp. 304–323.

Gödel, Kurt (1986). Collected Works I. Publications 1929–1936. ed. S. Feferman et al., Oxford University

Press, Oxford.

Gödel, Kurt (1990). Collected Works II. Publications 1938–1974. ed. S. Feferman et al., Oxford University

Press, Oxford.

Gödel, Kurt (1995). Collected Works III. Unpublished Essays and Lectures, ed. S. Feferman et al., Oxford

University Press, Oxford.

Guillen, Michael (1983) Bridges to Infinity. Tarcher, Los Angeles.

Hellman, Geoffrey (1981) “How to Gödel a Frege-Russell: Gödel’s incompleteness theorems and logicism”,

Nous 15, 451–468

Henkin, Leo (1962) “Are mathematics and logic identical?”, Science 138, 788–794.

Kreisel, Georg (1967) “Mathematical  logic:  what has is done for the philosophy of mathematics?”,  in

Ralph Schoenman (ed.) Bertrand Russell. Philosopher of the Century. George Allen & Unwin, London, 201–

272.

Lindström, Per (2001) “Penrose’s new argument”, Journal of Philosophical Logic 30, 241–250.

Lucas, J. R. (1962) “Minds, machines, and Gödel”, Philosophy 36, 112-137.

Lucas, J. R.  (1996) “Minds, machines, and Gödel: A retrospect”, in P.J.R. Millican and A. Clark (eds.)

Machines and Thought. The Legacy of Alan Turing, Vol. 1, Oxford University Press, Oxford, 103–124.

McCall,  Storrs (1999)  “Can  a  Turing  machine  know  that  the  Gödel  sentence  is  true?”,  Journal  of

Philosophy 96, 525–532.

McCall, Storrs (2001) “On ‘seeing’ the truth of Gödel sentence”, Facta Philosophica 3, 25–29. 

Musgrave, Alan (1977) “Logicism revisited”,  British Journal for the Philosophy of Science  28, 99–

127. 

Nagel, Ernest and James R. Newman (1958). Gödel’s Proof, New York University Press, New York.

Penrose, Roger (1989) The Emperor”s New Mind: Concerning Computers, Minds, and the Laws of Physics,

Oxford University Press, New York. 

Penrose, Roger (1994) Shadows of the Mind: A Search for the Missing Science of Consciousness, Oxford

University Press, New York.

16



Penrose, Roger (1995) “Beyond the doubting of a shadow: A reply to commentaries of  Shadows of the

Mind”, Psyche Vol 2.

Penrose,  Roger (1997)  “On  understanding  understanding”,  Inernational  Studies  in  the  Philosophy  of

Science 11, 7-20. 

Piccinini, Gualtiero (2003) “Alan Turing and the mathematical objection”, Minds and Machines 13, 23–48.

Pudlak, Pavel (1999) “A note on applicability of the incompleteness theorem to human mind”, Annals of

Pure and Applied Logic 96, 335–342.

Putnam, Hilary (1960) “Minds and machines”, in S. Hook (ed.), Dimensions of Mind, New York University

Press, New York, 1960. Reprinted in H. Putnam: Mind, Language, and Reality. Philosophical Papers, Vol 2.

Cambridge University Press, Cambridge, 1975, 325–341.

Putnam, Hilary (1967) “Mathematics without foundations”,  Journal of Philosophy 44, 5–22. Reprinted in

H. Putnam:  Mathematics, Matter and Method.  Philosophical  Papers Vol 1. Cambridge University Press,

Cambridge, 1975, 43–59.

Putnam, Hilary (1975) “What is mathematical truth?”, Historia Mathematica 2, 529–545. Reprinted in H.

Putnam:  Mathematics,  Matter  and  Method.  Philosophical  Papers  Vol  1. Cambridge  University  Press,

Cambridge, 1975, 60–78.

Quine, W. V. (1940) Mathematical Logic, Harvard University Press, Cambridge, MA.

Quine, W. V. and J. S. Ullian (1978) The Web of Belief. 2nd ed, Random House, New York.

Raatikainen, Panu (1998) “On interpreting Chaitin’s incompleteness theorem”, Journal of Philosophical

Logic 27, 269–586.

Raatikainen, Panu (2000) “Algorithmic information theory and udecidability”, Synthese 123, 217–225.

Raatikainen,  Panu (2001)  “Review  of  The  Unknowble and  Exploring  Randomness”,  Notices  of  the

American Mathematical Society, Volume 48, Number 9, 992–996.

Raatikainen, Panu (2002) “McCall’s Gödelian argument is invalid”,  Facta Philosophica Vol.  4,  No 1,

167–169.

Raatikainen, Panu (2003a) “Hilbert’s program revisited”, Synthese 137, 157–177.

Raatikainen, Panu (2003b) “Some strongly undecidable natural arithmetical problems, with an application

to intuitionistic theories”, Journal of Symbolic Logic 68, 262–266.

Raatikainen,  Panu (2004)  “Conceptions  of  truth  in  intuitionism”,  History  and  Philosophy  of  Logic

(forthcoming)

Reinhardt, William (1985) “Absolute versions of incompleteness theorems”, Noûs 19, 317–46. 

Ricketts, Thomas (1995) “Carnap’s principle of tolerance, empiricism, and conventionalism”, in Peter Clark

& Bob Hale (eds.), Reading Putnam, Blackwell, Cambridge, 1995, 176-200.

Rodríguez-Consuegra, Francisco (1993) ”Russell, Gödel and logicism”, in J. Czermak (ed.), Philosophy of

mathematics.  Hölder-Pichler-Tempsky,  Vienna,  1993,  233–42.  Reprinted  in  A.  Irvine  (ed.),  Bertrand

Russell: Critical Assessments. Routledge, London and New York, 1998, vol. 2: Logic and mathematics, 320–

29.

Rosser, Barkley (1936) “Extensions of some theorems of Gödel and Church”, Journal of Symbolic Logic 1,

87–91.

John  Searle (1997) “Roger  Penrose,  Kurt  Gödel,  and  the  Cytoskeletons”,  in  J.  Searle:  Mystery  of

Consciousness, New York Review Books, New York, 55–93.

Shapiro, Stewart (1998) “Incompleteness, mechanism, and optimism”, Bulletin of Symbolic Logic 4, 273–

302.

Shapiro, Stewart (2003) “Mechanism, truth and Penrose’s new argument”, Journal of Philosophical Logic

32, 19–42.

Schins, Juleon M. (1997) ”Mathematics: a pointer to an independent reality”, in A. Driessen and A. Suarez

(eds.),  Mathematical  Undecidability,  Quantum  Nonlocality  and  the  Question  of  the  Existence  of  God,

Kluwer, Dordrecht, 49–56.

17



Sternfeld, Robert (1976) “The logistic thesis”, in Mathias Schirn (ed.) Studien zu Frege/Studies on Frege I,

Frommann-Holzboog, Stuttgart-Bad Cannstatt, 139–160.

Suarez, Antoine (1997) “The limits of mathematical reasoning: in arithmetic there will always be unsolved

solvable  problems”,  in  A.  Driessen  and  A.  Suarez  (eds.),  Mathematical  Undecidability,  Quantum

Nonlocality and the Question of the Existence of God, Kluwer, Dordrecht, 41–48.

Tennant, Neil (2001) “On Turing machines knowing their own Gödel-sentences”, Philosophia Mathematica

Vol. 9, 72–79

Wright, Crispin (1994) “About ‘The philosophical significance of Gödel’s theorem’: some issues”, in Brian

McGuinness and Gianluigi Oliver (eds.)  The Philosophy of Michael Dummett, Kulwer, Dordrecht, 167–

202.

Wright, Crispin (1995) ‘Intuitionists are not (Turing) machines’, Philosophia Mathematica  3, 86-102. 

18


