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for “hard” words (common and proper nouns, verbs, ad-
ABSTRACT jectives, and adverbs), (b) unify a disparate literature on
We discuss a research project that develops and applia#\ from psychology, first- and second-language acqui-
algorithms for computational contextual vocabulary asition, and reading science, in order to help develop these
quisition (CVA): learning the meaning of unknown wordalgorithms, and (c) use the knowledge gained from the
from context. We try to unify a disparate literature onomputational CVA system to build and evaluate an ed-
the topic of CVA from psychology, first- and secondudcational curriculum for enhancing students’ abilities to
language acquisition, and reading science, in orderuse deliberate (i.e., non-incidental) CVA strategies in their
help develop these algorithms: We use the knowledgeading of STEM texts at the middle-school and college
gained from the computational CVA system to build amndergraduate levels. The knowledge gained from case
educational curriculum for enhancing students’ abilitiegudies of students using our CVA techniques will feed
to use CVA strategies in their reading of science textstack into further development of our computational the-
the middle-school and college undergraduate levels. Tdry.
knowledge gained from case studies of students using it s generally agreed among CVA researchers that “in-
our CVA techniques feeds back into further developmegjjental” vocabulary acquisition does occur [18]: People
of our computational theory.Keywords: artificial in- ynow more words than they are explicitly taught, so they
telligence, knowledge representation, reading, reasonipg;st have learned most of them as a by-product of reading
science education, vocabulary acquisition. or listening. Furthermore, at least some of this incidental
acquisition was the result of conscious processes of guess-
ing, inferring, etc., the meaning of unknown words from
No doubt you have on occasion read some text carontext.
taining an unfamiliar word, but you were unable or un- ; is a1s0 generally agreed that we don’t kndwow

WiIIing to find out from a dictionary or another PersoReaders do much of this. The psychology and first-
what it meant. Nevertheless, you might, consciously 9n4 second-language-learning literature suggests various

not, have figured outamegningforit.. Suppose you did”étt’rategies [2,3,13,31,32,34]. But most are quite vague:
or suppose your hypothesized meaning was wrong. Ifygy, 'step 1: “look at the word itself and its surroundings

never see the word again, it may not matter. But, if the t%f yacide on the part of speech”; step 2: “look at the im-

were from science, technology, engineering, or mathemafa jiate grammar context of the word, usually within a

ics (“STEM”, as NSF likes to call these), not understangd;, ;e or sentence”; step 3: “look at the wider context of

ing the unfamiliar term might seriously hinder your subpe \yord usually beyond the level of the clause and often
sequent understanding of the text. If you do see the WQjghy several sentences” (looking for causal, temporal, cat-
again, you will have an opportunity to revise your hypothsy orical information, etc.); step 4: “guess. .. the word and
esis about its meaning. The more times you see it, {fck . that the guess is correct” [3,19]. This is hardly a
better your definition will become. And if your hypotheyeailed algorithm that could easily be followed by a stu-
sis development were deliberate, rather than “incidentgljap11 (Step 4 is reminiscent of the famous Sydney Harris
your command of the new word would be stronger. 411500 showing a complicated mathematical formula, in
We are conducting a research project to (a) extend ahd middle of which occurs the phrase, “here, a miracle
develop algorithms for computational contextual vocabaecurs”.) One reason for this vagueness in the educational
lary acquisition (CVA): learning, from context, meaningbterature is that it is not clear exactly how context oper-
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ates, in large part because of the lack of research on thisaccess to a dictionary or other external source of in-
topic. In turn, this means there is no generally acceptigimation (including a human)), (2) can lbevisedupon
curriculum or set of strategies for teaching CVA. We neddrther encounters, (3)converge$to a dictionary-like

to know more about how context operates and how wlefinition if enough context has been provided and there
can teach it strategically. With this knowledge, we coulthve been enough encounters, but (4) is always subject
more effectively help students be more aware of contagt further revision. Each encounter yields a definition
and know better how to use it. (a hypothesis about meaning) and provides an opportu-

There are also computational theories that impleméhty to revise it in light of new evidence. The revision
various CVA methods, which do go into much more dés unsupervised There is no (human) “trainer” and no
tail on how to use context to infer meaning [1,7—10,35error-correction” techniques. Finally, reubject-matter-
But most of these assume the prior existence of a knol@i “domain”)-specific antecedent background informa-
concept that the unknown word is to be mapped to; tHign is required for the development and revision of the
is especially the case for the large body of research P@,ypothesized definition (Wlth the exception of the word’s
word-sense disambiguation [11]. As linguist Ellen Prindart of speech). The domain-independence of our system
has suggested (in conversation), that makes the task nfa#g make it more difficult to develop a good definition

like a multiple-choice quiz, whereas CVA as our systefitlickly, but is intended to model the typical reader of an
does it is more like an essay test. arbitrary text. Clearly, the more background knowledge,

What is needed (and what we have been working cJ'Hfluding specialized knqwledge, that the reader brings
is ageneralmethod that (a) shows how C\éanbe done to'the text, the more efficiently the unknown term can be
and (b) is explicit enough to be taught to human readelresz.imed'

Such a theory is best expressed algorithmically, for then The technology we employ is the SNePS-2.5 KRR
the methods are made fully explicit and can be tested cosgstem [26,27,29,30]. Each node in a SNePS network
putationally. Admittedly, this does not solve the problemepresents a concept or mental object (possibly built of
of how humansactuallydo CVA, though it does provide other concepts), linked by labeled arcs. All informa-
testable ideas of how thayightdo it. And it certainly tion, including propositions, is represented by nodes, and
provides ideas for how theyoulddo it and, hence, how it propositions about propositions can be represented with-
might be taught. out limit. Arcs merely form the underlying syntactic

The Computationa| aspects of our project build up(ﬁ'ﬁructure of SNePS. Paths of arcs can be deﬁned, alIOWing
our previous work on the development of a computer path-based inference, including property inheritance
tional CVA theory and software agent called ‘Cassidvithin generalization hierarchies. There is a 1-1 corre-
[5,6,21]. Cassie consists of the SNePS semantic-netwspendence between nodes and represented concepts. This
knowledge-representation and reasoning (KRR) systéffiqueness principle guarantees that nodes will be shared
and a knowledge base (KB) of background informatiomhenever possible and that nodes represent “intensional”
representing the knowledge that a reader (e.g., CasSi@jgcts, i.e., concepts, propositions, properties, and such
brings to the text containing the unknown term. Cassié@®§Jjects of thought as fictional entities non-existents, and
input consists, in part, of information from the text beintnPossible objects [27,28]. This wide representational
read, which is parsed and incorporated directly into t@&ility is especially appropriate for CVA from arbitrary
knowledge-representation (KR) formalism. Cassie’s otH&xts, whose subject matter could range from factual sci-
input is questions asked about the material being re&fce to science fiction. After all, objects about which we
The question “What does [word] mean?” triggers a deduean think, speak, or write need not exist; this includes not
tive search of the KB, now consisting of background inly unicorns, but possibly black holes, bosons, or other
formation plus information from the text, all marked wittheoretical entities of contemporary STEM.

its “degree” of immunity from revision (roughly, a mea-  SNePS's inference package allows rules for both de-
sure of the trustworthiness of the source of informatiorauctive and default reasoning_ In the presence of a con-
Output consists of a report of Cassie’s current definitiggdiction, the SNeBR belief-revision package allows for
of the word in its context, or answers to other queries. the removal of one or more of the propositions from
“Hard” words might be novel (‘brachet’), familiar butwhich the contradiction was derived, as well as the con-
misunderstood (does ‘smite’ mean to Kill by hitting hara:lusions that depended on it [15]. This mechanism is
or merely to hit hard?), or familiar but used in a new sengged to revise definitions that are inconsistent with a
(might “dressing” a sword mean to clothe it?). Our theomyord’s current use. We have developed algorithms for
is that the meaning of such a word @@nbe determined partially automating the identification and removal or
from context (including the surrounding text, grammaticatodification of the offending premise, based on SNeP-
information, and the reader’s background knowledge, #MvD, a default belief-revision system that enables auto-



matic revision [4,16]. SNePS also has an English lexthey sat, there came a white hart running into the hall with
con, morphological analyzer/synthesizer, and a genemahite brachet next to him, and thirty couples of black
ized augmented-transition-network parser-generator thaiunds came running after them with a great cry.”), the
rather than building an intermediate parse tree, translat@tal hypothesis was merely that a brachet was a physi-
the input English directly into the propositional semantical object that may be white.

network KR system [23,24,30]. Each time the term appeared, Cassie was asked to
“Cassie”, our computational CVA agent, consistdefine it. To do so, she deductively searched her back-
of SNePS-2.5 (including SNeBR and the parser-genegaound KB, together with the information she had read
tor), SNePSwD, and a KB of background informatiornin the narrative to that point, for information concerning
Currently, the KB is hand-coded, because it represe(it3 direct class inclusions (especially in a basic-level cat-
Cassie’s antecedent knowledgeow she acquired this egory), (2) general functions of brachets (in preference
knowledge is irrelevant. We begin with what some migho those of individuals), (3) the general structure of bra-
call a “toy” KB, but each of our tests so far has includechets (if appropriate, and in preference to those of indi-
all previous information, so the KB grows as we test moxéduals), (4) acts that brachets perform (partially ordered
words. Cassie’s input consists, in part, of information terms of universality: probable actions in preference
from the text being read. Currently, this, too, is coddd possible actions, actions attributed to brachets in gen-
directly in the SNePS. eral in preference to actions of individuals, etc.), (5) pos-
We take the meaning of a word (as understood bysiple ownership of brachets, (6) part/whole relationships
cognitive agent) to be the position of that word in a highfi@ other objects, (7) other properties of brachets (when
interconnected network of words, propositionS, and oﬂ'@fuctural and functional deSCfiption is pOSSibIe, the less
concepts. In this (idiolectic) sense, the meaning of a wotdlient “other properties” of particular brachets are not re-
for a cognitive agent is determined by idiosyncratic eRorted, although we do report any properties that apply to
perience with it. But a word’s dictionary definition usubrachets in general), and (8) possible synonyms for ‘bra-
ally contains less information than that. Contextual meag¢et’ (based on similarity of the above attributes). Some
ing as thus described includes a word's relation to eve®y these are based on psycholinguistic studies of CVA
Concept in the agent’s mind, which is too unwie|dy to H§1,32] In the absence of some or all of this information,
of much use. To limit the connections used to provid¥ in the presence of potentially inconsistent information
the definition, we select for particul&inds of informa- (€.9., if the text says that one brachet hunts and another
tion. Not all Concepts within a gi\/en subnetwork need b‘@es not), Cassie either leaves certain “slots” in her defi-
equally salient to a dictionary-style definition of a wordlitional framework empty, or includes information about
In the attempt to understand and be understood, pedpiéticular brachets. Such information is filled in or re-
abstract certain conventional information about words aRticed upon further encounters with the term.
accept this information as a definition. To define a verb\{), we currently report its predi-

When a new word is encountered, people begin to Hate structure, a categorization of its arguments, and any
pothesize a definition. Applying the fundamental princfausal or enablement information we can find. Clearly,
ple that the meaning of a term is its location in the netwof&r verb-definition algorithm is not as elaborate as our
of background information and story information, our aPoun-defining algorithm. We are endeavoring to remedy
gorithms for hypothesizing a definition operate by dedutis.
tively searching the network for information appropriate In another test, Cassie was told that ‘to smite’ meant
to a dictionary-like definition (see [21] for the algorithméto kill by hitting hard” (a mistaken belief actually held by
themselves). We assume that our grammar has been able of us before reading [14]). Passages in which various
to identify the unknown word as a noun or a verb. Weharacters were smitten but then continued to act triggered
have developed algorithms for hypothesizing and reviSNeBR, which identified several possible “culprit” propo-
ing meanings for nouns and verbs that are unknown, mégtions in the KB to remove in order to block inconsisten-
taken, or being used in a new way. cies. The reader then decides which belief to revise. Al-

Cassie was provided with background information féfough the decision about which proposition (representing
understanding the King Arthur stories [14]. In one tegth incorrect definition) to withdraw and whiclewpropo-
when presented with passages involving the unknowition (representing a revised definition) to add has been
noun ‘brachet’, Cassie was able to develop a theory tt@tially automated (using SNePSwD), this remains the
a brachet was a dog whose function is to hunt and tiffte area still occasionally requiring human intervention.
can bay and bite.Webster's Seconf83] defines it as “a Automating this is a major focus of our research.
hound that hunts by the scent”.) However, based on the A third case is exemplified by ‘to dress’, which Cassie
first context in which the term appeared (viz., “Right so antecedently understood to mean “to put clothes on some-



thing”. This is a well-entrenched meaning, which shouleghknown words from context. The “vague” strategy men-
not be rejected. However, upon reading that King Arthtioned above isiota caricature; it is the actual recommen-
“dressed” his sword, SNeBR detects an inconsistendgation of one writer in the field of vocabulary acquisition!
Rather tharrejecting the prior definition, weadd to it. But neither is it an algorithm—i.e., an explicit, step-by-
In this case, Cassie decides that to dressitiserto put step procedure for solving a problem correctly.

clothes oror to prepare for battle. Our goal is to “teach” (i.e., program) a computer to
It might be objected that it would be easier for thdo the “educated” guessing—or inferencing—that is left
reader simply to go to a dictionary to look up the meanirwgue in the strategy above. To do that, we must de-
of the unknown word. But not all words are in dictiotermine what information is needed and what inference
naries, nor are dictionaries always readily available. methods must be supplied, and we must spell this all outin
addition, many researchers have pointed out that dict@gnough detail so that “even” a computer could do it [22].
nary definitions are neither always correctly understo®dit that is not all: For once we have such a method, we
by readers nor are they always useful [12,17]. Furthegn then actually teach it to people, rather than leave them
upwards of 90% of all the words we know are learnedondering what to do with all the contextual information
from context while reading or listening [18]. There is nthat they might have found in steps 1-3 of the above vague
intention here of demeaning the value of the dictionaistrategy—we can teach them what information to look for
but it is simply not the case that all or most new words aged what to do with it. This is our final goal.
learned by consulting one. This view is not compatible Our overall goals are to (1) make our existing com-
with the research on vocabulary acquisition between agggational CVA system [5] more robust: to improve or
0 and 18; the dictionary simply is not the major source gfeate algorithms for inferring the meanings of unknown
learning word meanings in elementary, middle, and higiduns, verbs, adjectives, and adverbs, utilizing grammati-
schools. Our intent, speaking broadly, is to find ways t@l, morphological, and etymological information; (2) de-
facilitate students’ natural CVA by developing a more rigrelop and test educational curricula at the secondary and
orous theory of how context operates and creating a m@isst-secondary levels for teaching CVA methods, and (3)
systematic and viable curriculum for teaching studentsjt@egrate these two tasks by using the computational the-
use CVA strategies. ory and the educational curriculum to help develop each
Another objection might be that teaching humans howher. The focus of our current research is to concentrate
to learn is not the same thing as teaching computers heW/(3) in order to facilitate the eventual transfer between,
to learn. To respond to this, we begin with some corand mutual interaction of, (1) and (2).
ments on the nature of Artificial Intelligence (Al). Alcan The computational stream of our research has as its
be viewed in at least three ways [25]: (1) as a branch mfin goal the development and implementation obm-
engineering whose goal is to advance the field of coputational theoryof CVA [21]; the educational stream has
puter science; this, however, is neither our immediate gaeal its main goal the development and implementation of
nor our methodology; (2) as “computational psychologyan educational curriculunin CVA. Although these two
where the goal is to study human cognition using corstreams still have independent goals and, to some extent,
putational techniques; a good computational-psychologylependent methodologies, their full development must
computer program will simulate some human cognitivge intimately and synergistically integrated. Thus, the de-
task in a way that is faithful to human performance, witkelopment of the bridge between the two research streams
the same failures as well as successes—Al as cogniiyéts focus. Accordingly, in the computational stream,
psychology can tell us something about the human mindss time is being spent on developing new algorithms,
or (3) as “computational philosophy”, where the goal i&nd more on developing and revising the current ones for
to learn which aspects of cognition in general are comse by the educational stream. Similarly, the educational
putable; a good computational-philosophy computer prstream is not spending much time tastingnew curric-
gram will simulate some cognitive task but not necessaita, but onusing the computational systetm begin the
ily in the way that humans would do it—Al as compueevelopmenbf new curricula, as well aproviding feed-
tational philosophy can tell us something about the linbackto the computational stream based on students’ ac-
its and scope of cognition in general, but not necessarilyal CVA techniques, in order to improve and further de-
about human cognition in particular. velop the algorithms. Thus, we are both using Cassie to

The present project falls under the category of corifach humanandhumans to teach Cassie.
putational psychology (and to a lesser extent under the This bridge-building is being accomplished as fol-
category of computational philosophy). Our goal is ntaws: (1) We are identifying common texts (not neces-
to teach people to “think like computers”. Rather, owarily texbookg that we will both work on. This is the
goal is to explicate methods for inferring the meanings fifcus of the “synergy” between the two streams. We are



starting with the texts that the computational stream has Further, newly revised educational standards for lan-
already developed algorithms for [5], and we are lookirguage arts, science, social studies, and mathematics all
for real texts that the students in our study might be reazhll for students to have a greater command of concepts
ing. In addition to STEMextbookswe are also looking and the words that signify those concepts. Since these
at popular science writing such as is foundSnientific concepts and their words and terms cannot all be taught
Americanor daily newspapers. The ability to read and umlirectly in the classroom, it is important that not only do
derstand such texts is an important aspect of STEM liteve devote more instructional time in school to teaching
acy, and such writing is more likely to require CVA skill€CVA, but also gain more knowledge about what context is
than STEM texbooks(which are often quite detailed andand how it operates.

specific in giving definitions of terms). _ .

(2) The computational research stream is (a) develop- L€arning when and how to use CVA strategies has
ing computational grammars for those texts, (b) develd?ﬁoa‘_jer implications than just the classroom learning and
ing knowledge representations of both the texts and #§&Ming standards, however. Students learn a great deal
background knowledge necessary for understanding & TEM from reading trade books (i.e., books that are
reasoning about them, (c) testing the current system rw]ttextbooks), artlcles |n.generalj|nterest children’s mag-
the unknown words in them, and (d) developing new &1#ines (e.g.Highlights Cricket Spider Weekly Readgr
gorithms, as necessary, for CVA on them, as well as o children’s magazines devoted especially to science
based on student protocols: In the educational stredfid- SPinner TimeKids Science ScholastiQuantun).
we are eliciting student protocols (or “thinking-out—loud*f students are better ablg to use surrounding context to
records) of students’ attempts to figure out the meaniﬁ%@p determine the meaning of unknown words or terms,
of unknown words; the researchers in the computatioBen more STEM will be learned when students are inde-
stream will then try to formalize and implement any (su®endently engaged in reading these materials. Itis usu-

cessfull) methods that students actually use but that @ in reading magazines, trade books, and websites such
have not (yet) implemented. as these that students first encounter articles on STEM.

Another task we might tackle is to develop expla- If schools are more effective in teaching CVA, and if the

nation facilityfor Cassie that can be used by the studerWéiters and editors of these articles structure their texts to

when they are stuck. That is, if students have trouble fi gcommodat'e CVA, then students will gain more knowl-
uring out the meaning of an unknown word (or mere dge and heighten their interest and motivation in STEM.

want to check to see if their answer is acceptable), they 10 ore aiso considerations from a broader science-

.COUld ask Cassie for an (_explanation of how “she” ﬁgure‘éjducation perspective: One of the goals of education
it out (or, perhaps, for guidance on how ttadentcould should be to instill in students the knowledge—and the

figure it out). ] ) ) o confidence and life-long desire to use that knowledge—
(3) The educational stream is (a) identifying studengs ho to learn on one’s own. Most often, there are no

who will participate in the experiments, (b) having themytimate authorities or experts to consult when one has a
read the chosen texts, (c) having them figure out the megpsplem to solve or a question to answer [20]. This is just
ing of the unknown words in those texts, (d) eliciting pross trye in the world of, say, particle physics (where there
tocols of their thought processes while doing this (WhiG{le no “answers in the back of the book”) as it is when one
will be used to modify Cassie), and (e) beginning to d@pmes across an unknown word while reading (and there
velop educational curricula to teach them Cassie’s (Sygno dictionary or glossary at hand, or no other person

cessful) techniques. who knows the word).
Why is our research important? As noted, it is a fact

that most meaning vocabulary is learned from context; The skills required for CVA are not only useful for
teachers have too little time for directly teaching an extehelping one read (and hence learn) on one’s own, but are
sive list of meaning vocabulary. Also as noted, althougliso among those most useful in science and mathemat-
the use of the dictionary is extremely important in leariies: finding clues or evidence (among the context sur-
ing words, it is the case that dictionaries are not alwaysunding the unknown word), integrating them with one’s
available, that dictionary definitions are not always dediackground knowledge, and using both to infer (whether
pherable, and that sometimes, humans just do not bothgdeduction, induction, or abduction) the meaning of the
to go “look it up.” Learning words from context is sim-unknown word. CVA is a wonderful model “in the small”
ply required if a student is to try to learn the many newf the scientific method of hypothesis formation, testing,
terms and words that must be known to learn STEM tognd revision, as well as a useful tool for learning on one’s
ics [18,31]. own3
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