IMPLEMENTATION IS SEMANTIC INTERPRETATION

William J. Rapaport

Department of Computer Science, Department of Philosophy,
and Center for Cognitive Science
State University of New York at Buffalo, Buffalo, NY 14260

rapaport@cs.buffalo.edu
http://www.cs.buffalo.edu/pub/WWW/faculty/rapaport/

Abstract

What is the computational notion of “implementation”? It is not individuation, instantiation,
reduction, or supervenience. It is, I suggest, semantic interpretation.

This document is Technical Report 97-15 (Buffalo: SUNY Buffalo Department of Computer
Science) and Technical Report 97-5 (Buffalo: SUNY Buffalo Center for Cognitive Science).

1 INTRODUCTION

Consider the relationships among algorithms, computer programs, and the computers that execute
them. An algorithm is (roughly) a procedure for computing a function (for more details, see Soare
1996; Rapaport, forthcoming). A program is a more specific and detailed teztual expression of an
algorithm, expressed in a programming language. Often, it is said that the program “implements”
the algorithm. A computer process is an algorithm being executed (see Rapaport 1988, 1995; Smith
1997). It is a physical device (a computer) behaving in a certain way; the way is described (or
specified) by the program, and the physical device running the process implements the program.
But what is “implementation”? In this paper, I present evidence that implementation is semantic
interpretation.

Semantic interpretation requires two domains and one relation: a syntactic domain,
characterized by rules of “symbol manipulation” (perhaps suitably generalized to be able to
deal with domains that are not strictly speaking “symbolic”); a semantic domain, similarly
characterized; and a relation of semantic interpretation that maps the former to the latter (cf.
Rapaport 1988, 1995). Put this way, there is no intrinsic difference between the domanins; what
makes one syntactic and the other semantic is the asymmetry of the interpretation mapping. Thus,
a given domain can be either syntactic or semantic, depending on the other domain. E.g., a
computer process that implements a program plays the role of semantic domain to the program’s
role as syntactic domain. The same program, implementing an algorithm, plays the role of semantic
domain to the algorithm’s role as the syntactic domain. The thesis to be explicated and justified
is (roughly) that a semantic domain implements a syntactic domain. For reasons that will become
clear below, I shall use the term ‘Abstraction’ for the syntactic domain; thus, an implementation
is a semantic interpretation of an Abstraction.

semantic domain syntactic domain

1. a computer program is an implementation of an algorithm

2. a computational process is an implementation of a computer program

3. a data structure is an implementation of an abstract data type

4. a performance is an implementation of a musical score or play-script
5. a house is an implementation of a blueprint

6. a set-theoretic model is an implementation of a formal theory

Table 1: Semantic domains that are implementations of syntactic domains.

Table 1 shows pairs of syntactic and semantic domains that are clear examples of
implementations (cf. Rapaport 1995 for a more elaborate survey). The first three are paradigmatic
cases: We implement an algorithm when we express it in a computer programming language; we
implement a program when we compile and execute it; and we implement an abstract data type
such as a stack when we write code (in some programming language) that specifies how the various
stack operations (such as push and pop) will work. Cases 4 and 5 are clearly of the same type
as these paradigms, even though we don’t, normally, use the term ‘implementation’ in discussing
them. Case 6, another example that arguably can be thought of in the same way, suggests, in
addition, that all semantic interpretations can be seen as implementations.

2 IMPLEMENTATION IN COMPUTER SCIENCE.

Although the term ‘implementation’ antedates computer science and is used elsewhere, it is
ubiquitous in computer science, so let’s begin our investigation there.

Given the ubiquity, it is rather surprising how few texts even try to define the notion. For
instance, all that a standard text on programming languages says is that “the realization of a
programming language in a computer system is called the implementation (Marcotty & Ledgard
1986: 8; my boldface). ‘Realization’ is left undefined. Taken literally, it means “to make real”,
where ‘real’ is opposed to ‘imaginary’ or perhaps ‘abstract’. This makes it seem that the physical
medium is important and that to “realize” X could be to establish a real-world, physical correlate
of X.!1

“Realization” itself is an interesting notion. According to the new Ozford FEnglish
Dictionary, ‘real’ comes from the Latin for “pertaining to things”, and its philosophical meaning, in
part, is “having an existence in fact and not merely in appearance, thought, or language” (Simpson
& Weiner 1989, 13: 272). What is made real when it is “realized”? Presumably, something that
exists “merely in appearance, thought, or language” —something that is syntactically characterized
or “Abstract”. To realize is, in part, “To make real, to give reality to (something merely imagined,
planned, etc.) ... In common use from ¢ 1750 with a variety of objects, as ideas or ideals, schemes,
theories, hopes, fears, etc. ...” (Simpson & Weiner 1989, 13: 277). Note how psychological or
intentional these realizable things are.

2.1 TImplementation and the Semantic “Gap”.

Another computer-science text says a bit more about implementation (Hayes 1988: 47; my boldface):

With the advent of the [IBM] System/360, the distinction between a computer’s
architecture and its implementation became apparent. As defined by the System/360
designers ..., the architecture of a computer is its structure and behavior as seen
by an assembly-language programmer The implementation ... refers to
the logical and physical design techniques used to realize the architecture in
any specific instance. Thus all the members of the S/360-370 series share a common
architecture, but they have many different implementations. For example, some S/360—
370 CPUs employ fast hardwired control units, whereas others use a slower but more
flexible microprogrammed approach to implementing the common instruction set.

Architecture is concerned with structure and behavior; these are functional, “Abstract”
aspects. This is not to say that it is not detailed, however, since the architecture is “seen by an
assembly-language programmer,” who must know all about the details of registers, control, etc.,
although without having to worry about what a register looks like or how the control is actually
carried out. Implementation is concerned with “logical and physical design techniques”. ‘Logical’
here probably refers to “logic” gates, which are themselves physical. Thus, implementations are
the physical realizations of “Abstractions”.

I would call a physical realization a special case, however. The full explication of
‘implementation’ requires a third term besides the implementation and the Abstraction; the relation
is ternary:

I is an implementation of A in medium M

where A is the Abstraction and M could be physical or set-theoretical, etc. For instance, in
the study of data structures, one talks about implementing a stack by means of a linked list,
implementing the list in a programming language (say, Pascal), “implementing”—i.e., compiling—
the Pascal program in some machine language (ML),2 and then implementing the ML program in
a real computer. As we progress along this sequence (this “correspondence continuum”; cf. Smith
1987, Rapaport 1995), the implementing media begin as Abstractions themselves and gradually
take on a more “physical” nature. Perhaps you will object that program compilation should not
be treated as an implementation. Hayes, however, would not object: “a sequence of ... [machine]
instructions is needed to implement a statement in a high-level programming language such as
FORTRAN or Pascal” (Hayes 1988: 209, my italics). So, to implement is to “realize” in some
medium, which might be a physical medium or could be some domain or language.

To implement is to construct something, out of the materials at hand, that has the properties
of the Abstraction; it could also be to find a counterpart that has those properties. Both tasks are
semantic. Hayes, indeed, speaks of semantics in this context (Hayes 1988: 209; my boldface):

Because of the complexity of the operations, data types, and syntax of high-level
languages, few successful attempts have been made to construct computers whose
machine language directly corresponds to a high-level language There is thus a
semantic gap between the high-level problem specification and the machine instruction
set that implements it, a gap that a compiler must bridge.

What is this gap? Presumably, that (say) the specific operations, data types, etc., of the high-
level language don’t correspond directly to anything in the machine language: Pascal, e.g., has the
“record” data type, but my Sun’s machine language probably doesn’t. So, a compiler is needed to
show how to construct or implement records in the machine language.

Why does Hayes call this a semantic gap? It’s a bit like the fact that one natural language
might not have a single word corresponding to some single word in another natural language.
Consider Russian, which has a term, ‘ruka’, referring to what in English has to be referred to as
the hand+forearm.? Of course, one can translate between the languages by defining the word in
terms of others (perhaps with a cultural gloss; cf. Jennings 1985, Rapaport 1988: 102). But why is
this semantic rather than syntactic?

A possible interpretation® of the “semantic gap” specifies four relations:

A. A program in a high-level programming language is semantically interpreted by real-world
objects. Presumably, the semantic interpretation of the program is the relation between, on
the one hand, data structures (say) in a Pascal program (e.g., a record representing a student
viewed as consisting of a name, a class, a major, a student-number, and a grade-point average)
and, on the other hand, an actual student in the real world.

B. The program is also compiled into an ML implementation. The compilation relation is, or
includes, the relation between that student-record data structure and a construct of data
types in the machine language. Both A and B are semantic relations.

C. The ML implementation, in turn, is semantically interpreted by bits in a computer. It may
seem odd to semantically interpret the ML program by bits, rather than by the real-world
objects. However, as I argue elsewhere (Rapaport 1995), all semantic relations are merely
correspondences (and vice versa). Thus, this relation between the ML program and bits is
just another correspondence. After all, we could also have mapped the Pascal program into
computer bits—in fact, via B and C, we have! So, an ML program can be interpreted in
terms of bits in the computer. Arguably, in fact, having these two distinct interpretations
of two distinct (albeit input-output-equivalent) programs is appropriate. Where the ML
program talks of registers, the Pascal program talks of “students” (or student-records). So
it is appropriate to understand the Pascal program as a “mathematical model” of such real-
world objects as students, and to understand the ML program as a “mathematical model” of
such (also real-world) objects as bits in a computer.

D. The semantic gap concerns the relation between A’s real-world objects (such as students) and
C’s computer bits, since both are semantic interpretations of the Pascal program.

What, then, is this relation D? It could be simulation: The computer bits simulate the student. But
simulation is, after all, a kind of smplementation. The computer bits are a computer implementation
(an implementation in the medium of the computer) of the student.

2.2 Abstract Data Types.

The notion of an abstract data type (ADT) and its “implementation” is one of the most common
uses of ‘implementation’. There is a relatively informal use of the notion, as it appears in

programming languages such as Pascal and as it is taught in introductory computer-science courses,
and there is a more formal, mathematically precise use.

2.2.1 The informal notion of ADT implementation.

A stack is a particular kind of data structure, often thought of as consisting of a set of items
structured like a stack of cafeteria trays: New items are added to the stack by “pushing” them
on “top”, and items can be removed from the stack only by “popping” them from the top. Thus,
to define a stack, one needs (i) a way of referring to its top and (ii) operations for pushing new
items onto the top and for popping items off the top. That, more or less (mostly less, since this is
informal), is a stack defined as an ADT.

Now, Pascal does not have the stack as one of its built-in data types (as it does arrays,
records, or sets). So, if you want to write a Pascal program that manipulates data structured as a
stack, you need to “implement” a stack in Pascal. There are several ways to implement the ADT
“Stack” in Pascal. Here’s one way:

1. A Stack, s, is implemented as a 1-dimensional array, A[0],..., A[n], say, for some n;

2. top(s) is defined to be a l-argument function that takes as input the stack s and returns as
output A[0] (i.e., A[0] is the implementation of the “top”);

3. push(s,i) is defined to be a 2-parameter procedure that takes as input the stack s and an
item 7 (of the type allowed to be in the array), and yields as output the stack modified so
that A[0] := 4, and A[j] := A[j — 1] (i-e., each item on the stack is “pushed down”);

4. and, almost finally, pop(s) is defined to be a 1-argument function that takes as input a stack
s and returns as output the item on the top of s (i.e., top(s)) while moving all the rest of the
items “up” (i.e., A[j] := A[j +1]).

I said “almost finally” because—as should be obvious—some bookkeeping must be taken care of:

5. We have to specify what happens if the stack “overflows” (as when we try to push an (n+2)nd
item onto a stack implemented as an (n + 1)-element array).

6. We have to specify what happens to the “last” item when the top is popped (does the array
cell that contained that item still contain it, or does it become empty?), etc.

These (as well as the limitations due to the type allowed to be in the array) are what are called
“implementation details”, since the ADT Stack “doesn’t care” about them (i.e., doesn’t—or doesn’t
have to—specify what to do in these cases).

Here’s another way to implement a stack in Pascal. Do everything as before, but let
top(s) := A[n]. This implementation of the Stack ADT is “inverted” with respect to the first
one. The inversion, however, is (a) a (“mere”) implementation detail and (b) undetectable in the
program’s input-output behavior. (This might remind you of inverted spectra.)

Here’s a third way: Use Pascal’s pointer data type to implement a stack as a “linked list”.
Here are a few of the details: First, a linked list (‘list’, for short) is itself an ADT. It is a sequence

of items whose three basic operations are (1) first(l), which returns the first element on the list [,
(2) rest(l), which returns a list consisting of all the original items except the first, and (3) make-
list(i,1) (or cons(i,l)), which recursively constructs a list by putting item i at the beginning of list
[. Lists can be implemented in Pascal by, e.g., 2-dimensional arrays (here, the first item in each
two-cell unit of the array is the list item itself, and the second item in the two-cell unit is an index
to the location of the next item) or by means of “pointers” (each item on the list is implemented
as a two-element “record”, the first element of which is the list-item itself and the second element
of which is a pointer to the next item). Finally, a stack s can be implemented as a list [, where
top(s) = first(l), push(s,i) := make-list(l,i), and pop(s) returns top(s) and redefines the list to
be rest(l).

So: stacks can be implemented as arrays or as lists, and lists can be implemented as arrays or
as records with pointers. ADTs can implement other ADTs, or they can be implemented “directly”
in the given data structures of a programming language. What’s going on here?

2.2.2 The formal notion of ADT implementation.

To see what’s going on, we need to look at some of the more formal approaches to the definition
and implementation of ADTs (a good survey is Morgado 1986).

Guttag et al. (1978: 61) assert that “the process of design (of data types) consists of
specifying ... operations to increasingly greater levels of detail until an executable implementation
is achieved.” The implementation appears to be merely a more detailed version of the original
“specification”. The implementation details are essential for ezecutability but not, presumably, for
specifiability. So the implementation details serve a purpose, but one distinct from the original
specification (or Abstraction).

What is the Abstraction? “A data type specification (or ADT) is a representation-
independent formal definition of each operation of a data type. Thus, the complete design of a single
data type would proceed by first giving its specification, followed by an (efficient) implementation
that agrees with the specification” (Guttag et al. 1978: 61). So, implementations—the detailed
specification of the operations—must “agree with” the undetailed—or Abstract—specification;
the implementation must satisfy the definitions. That, of course, needs to be made precise,
but it is more than suggestive of semantic interpretation. If the Abstraction is supposed to be
“representation-independent”, then perhaps an implementation is a representation. (There can be
more than one implementation, e.g., “efficient” and inefficient ones.)

Guttag et al. (1978: 74) give an “example of the implementation of one data type, Queue
.., in terms of another, CircularLists.” So, as noted before, ADTs can implement each other.
This is done as follows: “We first give, in a notation very similar to that for the specification,
an implementation of the Queue type consisting of a representation declaration and a program
for each of the Queue operations in terms of the representation” (p. 74). In the example,
the representation “medium” is CircularList, and the “programming language” consists of the
operations of CircularLists. So, an implementation of an ADT consists of a representation and
programs, where the programs implement the ADT’s operations, as follows: Each operation of the
ADT is ... defined? explicated? implemented? ... in terms of an operation of the implementing
medium (the implementing ADT), after first representing each abstract-data-type entity (term) by
a term of the implementing ADT. So, terms get interpreted by, or mapped into, elements of the

interpreting domain, and predicates (operations) are mapped into predicates of the interpreting
domain. On this view, implementation is semantic interpretation.

A more detailed and philosophically sophisticated approach is to be found in Goguen et al.
1978. The mathematical details are irrelevant to the present inquiry, but the overall picture they
offer is useful, so let me attempt to summarize it here.

They begin by observing that “the term abstraction in computer science ... has been
used in at least three ways which are distinct but related” (p. 82): An abstraction is either (1)
“a mathematical model or description of something” (p. 82), or (2) “the process (or result) of
generalizing” (p. 83), or (3) “a concept” considered “independent|ly] of its representation” (p. 83).
Examples of (1) are “‘abstract machines’ as opposed to real hardware” (p. 82) and “abstract
implementations”, as “when one uses sets, sequences, or other mathematical entities to model
some computational process or structure” (p. 83). So, a mathematical model is an abstraction of
some real-world entity; as such, the abstraction seems to play the syntactic role. On the other
hand, the implementation of a queue by a circular list (or a stack by a linked list) is an “abstract
implementation”, yet here it clearly plays the semantic role. (Cf. the “muddle of the model in the
middle”: Wartofsky 1979: xiii-xxvi, Rapaport 1995.)

In sense (2), abstractions ignore details. This contrasts nicely with the notion of an
implementation as providing details. Presumably, an abstraction in sense (1) might ignore details,
and hence be an abstraction in sense (2), but not necessarily. For instance, although the (admittedly
informal) abstract notion of stack in §2.2 ignored the details imposed by the finiteness of the stack,
we could have had an equally abstract presentation that payed attention to those details (yet
could be implemented as a (finite) array, an “inverted” array, or a (finite) list). However, merely
ignoring details does not by itself yield an abstract model in sense (1), because it might not be a
mathematical model.

Goguen et al. take the third sense of ‘abstraction’ to be the relevant one for ADTs (cf.
p. 81). The “representation” that such an abstraction is independent of has to do with notation,
or the manner in which it is expressed:

For example, “abstract syntax” considers syntactic structure independently of
whether it is represented by derivation trees, parenthesized expressions, ... or whatever.
This notion of abstract syntax is useful ... in specifying the semantics of a programming
language in a manner independent of how it is implemented

More to the point, an abstract data type is supposed to be independent of its
representation, in the sense that details of how it is implemented are to be actually
hidden or “shielded” from the user: He [sic] is provided with certain operations, and he
only needs to know what they are supposed to do, not how they do it. (Goguen et al.
1978: 83; cf. Parnas 1972.)

That is, the programmer can deal directly with the ADT and ignore its implementation; one
deals with it at a “high level”. Consistent with our view that an implementation is a semantic
interpretation, Goguen et al. observe “that what is usually called an ‘abstract implementation,’

that is, an implementation described by sets, sequences, etc., is not an ‘abstraction’ in the above
sense; rather, it is a particular, but rather undetailed, implementation” (p. 83). So, an abstraction
in sense (1) is not necessarily an abstraction in sense (3). It is undetailed, presumably because
the implementing medium (the implementing ADT) is itself abstract (in sense (2)). Still, the
mathematical model is a semantic model.

Now, what is this abstraction of the third kind? Goguen et al. note that it has to do
with equivalence classes (“isomorphism classes”, p. 83). They define an ADT as “the isomorphism
class of an initial algebra in a category” of many-sorted algebras (pp. 88, 90). And they note
that “An implementation is necessarily made within a specific framework, such as a particular
programming language or machine” (p. 135); i.e., an implementation requires an implementing
medium, or “framework”.

Their mathematical “approach is to model an implementation framework as an algebra,
with the elements of the carrier(s) being concrete data representations (machine states, primitive
data types) and its operations the given basic operations (machine operations, basic instructions,
programs) in these data representations” (p. 135). Note that they are modeling the implementing
medium and that they do so by the same kind of entity as for an ADT, namely, an algebra! The
implementation tself , of course, is something “physical”; it is merely being described algebraically.

The heart of the matter is expressed by them in their mathematical set-up as follows:

Let B denote the implementation algebra [Let Ty, be] the specification
algebra. The question now is, What relationship between 1% . and B constitutes an
implementation? (p. 136.)

This is precisely the question: What is the relationship between an Abstraction (a “specification
algebra”) and an Implementation (an “implementation algebra”)? (Note that B itself is (merely)
a representation or model of the actual, physical implementations.) Goguen et al.’s answer is
that the relationship is a structure consisting of B, a mapping from (roughly) Tx . to B, and
a “congruence” (a family of equivalence relations on (roughly) 7’s image in B; p. 138). The
core of this is, first, the mapping from the Abstraction to the Implementation, which is, on my
theory and consistent with the view of Guttag et al., a semantic interpretation, and, second, the
“congruence”. The latter is a very special, intricate kind of isomorphism, one that “divides out”
(they use quotient spaces) the “implementation details”. So, B (or that which B is a mathematical
model of) implements an Abstraction T if and only if B is a domain of semantic interpretation of
T, ignoring the implementation details. Consider, e.g., the ADT Stack, and consider two specific
implementations of it in Pascal, using an array A[0],..., A[n] with top implemented in one as A[0]
and in the other as A[n]. In both implementations, top is implemented as a specific element of the
array. That it is A[0] in one and A[n] in the other is an implementation detail.

2.3 Implementation OQutside of Computer Science.
2.3.1 Music.

Some of the clearest examples outside of computer science of what could be called ‘implementation’
come from music. This ought not to be surprising: After all, a music score is very much like a

computer program or algorithm, and the musician-plus-instrument (or conductor-plus-orchestra)
plays a role very much like that of the computer. A musical score is not, of course, mathematically
an algorithm, since much is left open to “interpretation” by the musician (e.g, tempo, dynamics,
optional repeats, phrasing, etc.). Nonetheless, it is a set of “instructions” that, when followed or
executed, produce a certain output. The “process” consisting of the musician playing that music on
an instrument can plausibly be said to implement the score. The score can be thought of (indeed,
it is) a piece of syntax; the playing of the score provides a “semantic interpretation” of it.

An implementation requires an implementing medium. And, as should be evident, there
can be many different media, hence many different implementations (the common core of which
can be captured by the mathematical techniques of Goguen et al.). We find the same thing in
music: A given score can normally be played on a variety of instruments, modulo a few changes
necessitated by the nature of the instrument. Such changes, as well as the particular features
of the instrument, constitute “implementation details”. Often, these change the nature of the
work, for good or bad: “a [piano] transcription [of a symphony] can hold a prism up to a familiar
work, showing it in a new light” (Pincus 1990). That is, a piano transcription of a symphony
is an interpretation of it—or, rather, another interpretation of “the work”, i.e., of an ADT (the
score) of which both the symphony and the piano transcription are (semantic) interpretations or
implementations. The implementation is also, of course, an “interpretation” in the ordinary sense:
Rosen (1991) speaks of “the essential gap between the composer’s conception of a work of music
and the multiple possibilities of realizing it in sound” (p. 50, my italics). The “conception” is the
ADT; the “multiple possibilities” are different implementations.

Much the same can be said, mutatis mutandis for scripts and productions of plays (or scripts
and movies). Where English talks of a director, French talks of a réalisateur (a realizer): At least
for francophones, plays and movies are implementations (of scripts).

2.3.2 Language.

Language provides a variety of non-computer-science examples of implementation. For one thing,
words can be considered as representations—hence, implementations—of ideas (cf. Harris 1987: xi,
Ch. 6). For another, if language can be thought of as an Abstraction (as, perhaps, Chomsky’s
theory of universal grammar would have it), then it can be implemented in a variety of ways:
first, by spoken languages (implemented in the medium of speech) as well as by signed languages
(implemented in the medium of space; cf. Coughlin 1991), and, second, in many ways in both
spoken and signed languages (e.g., French, English, etc., and American Sign Language, British
Sign Language, etc.).

Sellars (1955 [1963] discussed another non—computer-science example of implementation:

[In the context of chess,] ... attention must be called to the differences between ‘bishop’
and ‘piece of wood of such and such shape’. ... [the former] belongs to the rule language
of chess. And clearly the ability to respond to an object of a certain size and shape as
a bishop presupposes the ability to respond to it as an object of that size and shape.
But it should not be inferred that ‘bishop’ is ‘shorthand’ for ‘wood of such and such
size and shape’ ... ‘Bishop’ is a counter in the rule language game and participates in
linguistic moves in which ... the ... longer expression does not (Sellars 1955, §56
[1963: 343].)

10

“Being a bishop” is a nice example of what I am calling an Abstraction. Here, a bishop is
implemented as a certain piece of wood. It could also, as Sellars observes, be implemented by
a Pontiac if the chess game is played in Texas, where everything is supposed to be bigger:

... the term ‘bishop’ as it occurs in the language of both Texas [where it is “syntactically
related ... to expressions mentioning different kinds of cars” (§59, p. 344)] and ordinary
chess can be correctly said to have a common meaning—indeed to mean the bishop
role, embodied in the one case by pieces of wood, and in the other by, say, Pontiacs
(Sellars 1955, §62 [1963: 348].)

Here, we have an Abstraction (Chess) and two implementations (the ordinary Staunton pieces and
the Texas pieces). We assume that the pieces that play the role of the bishop are both called
‘bishops’; ‘bishop’ means the same thing in both implementations, namely, the Bishop Abstraction.
That role is “embodied as”—i.e., is implemented by—a Pontiac in Texas and a certain £-shaped
piece of wood in the Staunton set. The words ‘bishop’ as they occur in the two different languages
refer to different entities (the language-entry and -departure rules in Sellars’s language games differ).

3 POSSIBLE INTERPRETATIONS OF “IMPLEMENTATION”.

Let’s take another look at the Oxzford English Dictionary. The noun ‘implement’ comes from the
Latin for “a filling up”, as in “that which serves to fill up or stock (a house, etc.)”, and from the
Old French for “to fill, fill up” in the sense of “completing” (Simpson & Weiner 1989, 7: 721).
This suggests “filling in the details”, which an implementation in the sense we are concerned with
certainly does.

The wverb is of more recent origin, having three senses, all with citations beginning in the
19th century (p. 722):

(a) “To complete, perform, carry into effect (a contract, agreement, etc.); to fulfil (an engagement
or promise).” This is the earliest sense to be cited (1806)—implementing an obligation.

(b) “To carry out, execute (a piece of work).” Here, the citation is from 1837: implementing an
invention.

(c) “To fulfil, satisfy (a condition).” This was used as early as 1857: implementing the
“mechanical requisites of the barometer ... in ... an instrument”.

Senses (b) and (c) seem closest to our concerns: Sense (b) relates to an Abstraction, and (c) relates
to the implementation of an Abstraction—to satisfying the conditions of the Abstraction, or having
the properties of the Abstraction. (More recent senses, with citations from 1926 and 1944, don’t
clarify much; curiously, none of the citations come from computer science.)

Recall that “implementation” is a relational notion, whose full context is always: [is
an “implementation” of an “abstraction” A in some “medium” M. I have suggested that the
notion of Abstraction be a generalization of the notion of an ADT. Must Abstractions be abstract,
that is, non-spatiotemporal? If so, then they would contrast nicely with a physical or concrete
interpretation of an “implementation”—i.e., with the “medium” always being spatiotemporal.

11

But we have seen that one Abstraction can implement another. So this characterization won’t
do. Instead, I suggest that we leave the notion unrefined for now except as that which can be
implemented in some medium.

What about the medium? It could be abstract or concrete, giving rise to two varieties
of implementation. An “abstract implementation” would be a specification, a filling-in of details,
of an Abstraction. For instance, in top-down design, each level (except possibly for the last) is
an “abstract implementation” of the previous one: I begin preparing my courses with a bare-
bones course outline and successively refine it by adding details; or: I start solving a problem
algorithmically by writing an algorithm in “pseudocode” and, by “stepwise refinement”, fill in the
details (e.g., pseudocode the procedures), until I finally encode it in, say, Lisp.

A “concrete implementation” would exist in a physical (or spatiotemporal) medium. It
would necessarily have more details filled in, namely, those due to, i.e., contributed by, the medium.
For example, my actually standing in front of the class, lecturing, is a concrete implementation of
my final course outline. The actual words I say, the actual piece of chalk I use, etc., are all
implementation details, filled in to “the last detail” by the very nature of the real, spatiotemporal
events. Similarly, the actual execution of my Lisp program (perhaps after having been compiled
into—i.e., further implemented in—ML)—the process—is its concrete implementation. Both
abstract and concrete implementations are semantic interpretations.

Is “implementation” a concept sui generis? Or should it be assimilated to some other,
perhaps more familiar, notion, such as “instance”, “exemplification”, “reduction”, “supervenience”,
etc.? There is very little agreement over the proper characterization of those other, candidate
notions, or even over terminology. For instance, it seems clear that an implementation of an
Abstraction is not an “instance” or “instantiation” of the Abstraction, because two Abstractions
(e.g., two ADTs) can implement each other. As we saw, the ADT Record can be used to implement
the ADT List. Moreover, the ADT List can be used to implement the ADT Record. And, though
there is probably no good reason to do so, one could, perversely, implement lists by records that
are themselves implemented by lists. And so on. Yet “instantiation” is normally thought of as an
asymmetric relation. In spite of this, we find recognized authorities on implementations, Guttag
et al., saying that an implementation s an “instance” (Guttag et al. 1978: 62). Let’s explore these
issues.

3.1 Implementation as Individuation.

Let’s begin by distinguishing between “individuation” and “differentiation” (cf. Castaneda 1975).
In Porphyry’s Tree, that early ancestor of semantic networks, a universal, such as a genus, is
analyzed into sub-genera or species by means of a “specific difference” or differentia. Thus, for
example, the differentia Rational applied to the genus Animal yields the species Human (= Rational
Animal); all other, non-human, animals are not Rational. Thus, Humans are differentiated from
non-Humans. As a category, Human is “lower” than Animal; it is more “specific”’—it has an extra
defining property, namely, being rational. Human is itself a universal—as it happens, an infimum
species, i.e., a category that is not analyzed into subcategories but into concrete individuals, e.g.,
Plato, Sappho, you, me.

What is the analogue of a differentia that, when applied to an infimum species yields
an individual? Duns Scotus called it ‘haecceity’, or “thisness”. “Instantiation” is the relation

12

between any level of Porphyry’s Tree and the level below it; “differentiation” is a relation between
subcategories (or members) of a single category. Thus, just as Human is differentiated from non-
Rational Animal, so Plato is differentiated from Sappho, and you from me. And just as Human
is instantiated from (or, is an instance of) Animal, so Plato, Sappho, you, and I are instantiated
from (or, are instances of) Human. And Plato et al., unlike Human et al., are “individuals”:
“Individuation” is the relation between an infimum species and its individuals.

Thus, perhaps, implementations are individuals, and Abstractions are universals. That does
seem to hold for concrete implementations. But it fails to hold for abstract implementations, and it
only works when there is a hierarchy or linear ordering of successively more detailed Abstractions.
It fails to account for the relation that obtains when a list implements a stack.

On the other hand, since individuals and lower-level instantiables can be viewed as
implementations of higher-level instantiables or universals, I suggest that instances and individuals
are implementations, but not conversely.

3.2 Implementation as Instantiation.

Anthony 1991 explicitly argues that computer “implementations” are not “instantiations”. The
background of Anthony’s argument is whether “a Connectionist architecture instantiates the
Classical framework” or whether “a Connectionist architecture mplements a Classical architecture”
(p- 325, my italics), or whether there is some other (or no) relation between them.

As Anthony uses the term,

‘Instantiation’ expresses a simple relation between individuals and properties: an

individual ¢ instantiates a property P if and only if Pi. ... In the case of instantiation
. a single model or architecture is involved, and what is in question are its properties.
(p- 325.)

In §3.1, instantiation was a relation between an individual or a category and its immediate
superordinate category. Here, it is a relation between an individual and a property. Others have
called the latter relation ‘exemplification’, though, of course, the relation between an individual
and its properties can be (and has historically been) explicated in terms of category membership,
and “exemplification” is the term often used for the relation between a real object and the Platonic
Form that it “participates” in. Rather than trying to resolve several thousand years of metaphysics,
let’s stick with Anthony’s definition for now.

So, for a connectionist architecture to instantiate a classical framework would be for it to
have classical properties. Let P, be the set of properties that “define the Classical ... framework”
(p- 325). Let Cp be “a particular Connectionist architecture”. Suppose that C, has all of P,.
Couldn’t we then identify the Abstraction ClassicalSystem as the set of properties P, and treat Cj
as an implementation of it? Anthony observes in a footnote (p. 339n7) that “individuals” could be
“abstract objects like functional architectures” (my italics); thus, Cy is also an Abstraction (thus,
clearly, Anthony is not speaking the language of §3.1).

In contrast,

Where implementation is at issue ..., two functional architectures must be considered.

13

A functional architecture FA1 is implemented, if at all, by the execution of a program
in a distinct functional architecture FA2. (p. 325.)

So, FA2 might itself not have FA1’s properties (so FA2 need not be an instance of FA1), but the
process—the program in execution—rmight have FA1’s properties (and so be an instance of FA1).
In general, this seems OK. For instance, an ML program might have FA1’s properties, but the
ML itself might not. As a trivial example, an ML program can have records, while the ML itself
doesn’t have them.

“Intuitively,” Anthony tells us, “the primitive operations, representational structures, etc.
of FA1 get ‘made up’ or ‘constructed’ out of the resources of FA2. ... This is the relation that
typically exists, for example, between assembly language functional architectures ... and higher-
level architectures like LISP or Pascal ... when the latter are up and running on a computer”
(p- 325). So the idea is this: If FA2 (e.g., the machine language) has records as a primitive data
type, then it’s easy to implement FA1 (e.g, Pascal) in it, because they both already share the same
properties—they both instantiate “having the record data type”. If FA2 lacks records, they can
nonetheless be implemented in it. But wouldn’t FA2 then have records? Anthony seems to be
trying to distinguish between essential properties and accidental ones: Records are an “essential”
feature of a programming language that has them among its primitive (or built-in) data types,
an “accidental” feature of a programming language that can only define them in terms of (or
construct—or implement!—them out of) its primitive ones.

Consider, by way of analogy, the rationals and the integers. As is well known, the rationals
can be ... implemented in? constructed out of? (cf. §3.3) ... (equivalence classes of ordered pairs
of) integers (and vice versa, don’t forget!—since ZZ C @). Suppose we have a language for talking
about the rationals (and sets). It will have, as one of its terms, a representation for % (i.e., the
rationals have, as one of its data objects, %) Suppose that the language also has as a primitive
predicate some expression for a property P that applies only to rationals (i.e., the rationals have,
as one of their properties, P)—e.g., (some) rationals have the property of being less than 1, and
the set of rationals itself has the property of being dense. Now, suppose we have a language for
talking about the integers (and sets). Can we talk about the rationals in the language of integers?
Yes—by finding or constructing (analyzing?) the rationals’ data objects (like 1) in the integers and
by finding or constructing (or analyzing) the rationals’ properties among (or from) the integers’
properties. By defining new terms in the language of integers, that language would now have terms
for % and P. That is, we could now say more in the language of integers than we thought we could;
it wasn’t, after all, limited to talking about integers. What, then, would be the difference between
the language of rationals and the (extended) language of integers? The former would have certain
terms and predicates (NPs and VPs) that the latter would lack; but they could be defined in the
language of integers.

That this really is close to what Anthony has in mind can be seen from the following passage:

...in cases of wmplementation, lower-level architectures typically do not instantiate
the characteristic properties of higher-level ones. An assembly-level architecture
implementing LISP, for instance, does not also instantiate LISP: it lacks the necessary
primitive properties (e.g., CAR, CDR), and has primitive operations LISP lacks (e.g.,
various operations on the contents of the accumulator). (p. 326, my italics.)

Here, ‘characteristic’ and ‘necessary’ can be taken to mean “essential”. But doesn’t an ML

14

implementation of Lisp have the Lisp function car?® Maybe not: It can “simulate” car—or
implement it?7—Dbut it doesn’t have it; it can do what car does without having car. If you’ll excuse
the pun, I can do what can be done with a car without having one—by walking, taking the bus,
etc.

We can draw a distinction between “weak” and “strong” implementations. For instance,
a strong implementation of Lisp in ML would be such that the ML actually had identifiable data
structures and procedures corresponding to lists, car, etc. A weak implementation of Lisp in ML
would be such that it would do the same things (e.g., be able to return the first element of a list)
without having lists or car (just as I can get from my home to a store by car or by walking).

Conversely, “it is also true that an instantiation of LISP need not implement any distinct,
higher-level LISP architecture” (p. 326). For example, I suppose, Allegro Common Lisp (ACL)
(understood as an instantiation (rather than an implementation?) of Lisp) need not implement
SNePS (a semantic-network knowledge-representation and reasoning system written in ACL; cf.
Shapiro 1979; Shapiro & Rapaport 1987, 1992). So, instances and implementations (as Anthony
defines them) “are mutually independent” (p. 326).

Let’s return to the rationals and the integers. Consider the integers first (and, for
convenience, consider only the non-negative integers). What are they? One way to answer this
is to cite Peano’s axioms. That would be to present the Abstraction Integers—in fact, it is an
ADT. Another way to answer the question is to say that integers are any things that satisfy
Peano’s axioms. So, e.g., the sequence consisting of 0, {0}, {{0}}, etc., are integers. So is
the sequence 0, {0}, {0,{0}}, etc. So is the sequence 0,{z | = is a set & Cardinality(xz) = 1},

{z | = is a set & Cardinality(z) = 2}, etc. So is the sequence of symbol types 0, 1, 2, ..., 10, 11,
12, ..., 99, 100, etc. So is the sequence of symbol types 0, 1, 10, 11, 100, etc. (And if you ignore 0,
sois I I, ITI, ..., X, etc.). And so on. The differences between each of these are “implementation
details”.

The vague feeling of discontent that this leaves us with is that there are “too many” integers;
But model-theoretic semantics teaches us that there isn’t any “intended interpretation”. For any
set of axioms, there are infinitely many models, including non-isomorphic ones. So, the only way
to talk about “the” integers is to restrict ourselves to talk about Peano’s axioms. The alternative
is to choose, arbitrarily, some model of them and talk about 4t.

Now, since such axioms are ADTs, such models are implementations in various media. For
our first three examples above, the implementing media are sets “put together” in different ways;
for the others, the implementing media are certain symbol types. If we restricted ourselves to some
finite initial sub-sequence of the non-negative integers, we could take arbitrary physical objects as
our implementing medium.

Are any of these implementations “instances” of ... integers? Of Peano’s axioms? ‘Instance’
in the Porphyrian-tree sense? In Anthony’s sense? I'm inclined to say ‘No’, but that’s primarily
because I find the interpretation of ‘implementation’ in terms of semantic models to be more
illuminating. Moreover, I suspect that if one wanted to force the concept of an implementation into
the mold of “instantiations”, one could do so only by seeing “instantiations” as a kind of semantic
modeling.

15

3.3 Implementation as Reduction.

Now consider the (non-negative) rationals. Consider a set of axioms for the rationals; i.e.,
consider the ADT (NonNegative)Rationals. What are some of its implementations? Well,
there are the fractions, i.e., the symbol types %,%,%,%, etc. There are the repeating
decimals, i.e., the symbol types 0.0, 0.50, 0.6, 0.142857, etc. @ There are also certain
constructions from the integers, e.g., certain ordered pairs of integers: (0, 4), (1, 2),
(2, 3) (1,7), etc. Each of these can be considered to be an implementation of the rationals.
Rational numbers are anything that satisfy the axioms.

Here, the notion of implementation details plays a larger role, since we seem to have “too
many” rationals. In a Morning Star/Evening Star sense, % and % are the “same” rational number,
as are the ordered pairs (2, 3) and (4, 6). We could say that that’s an implementation detail,
and provide rules (further axioms?) to indicate when two “intensionally distinct” rationals are
“extensionally equivalent”. We have such rules for, say, addition of integers: Does ‘2 + 2 = 4’ state
a fact about addition, or does it assert an extensional equivalence between intensionally distinct
integers? Or else we could—as in fact we normally do—implement the rationals as equivalence
classes of ordered pairs of integers.

Now, often this “implementation” of rationals by integers (plus set theory), is called a
“reduction” of the rationals to the integers. “All we really need,” so the reductionist says, “are
the integers (and set theory); we can define the rationals in terms of them (or, we can reduce the
rationals to them).” So: Is implementation just reduction? Are all reductions implementations?

Again, we have related, but distinct, concepts. Smith notes that “Reducibility ... is
a relation between theories; one theory is reducible to another if, very roughly, its predicates
and claims can be translated into those of another” (Smith 1991: 280n39). Now, in the case
of the rationals and the integers, I would really hesitate to say that the former have been
“reduced” to the latter. I would be willing to say that the theory of rationals can be reduced
to the theory of integers-plus-sets. But even here, when we prove some theorem about rationals,
we haven’t proved a theorem about integers but, at best, about certain sets whose “ground
elements” are integers. For example, to prove a theorem about the rational number % would
be to prove a theorem about the following arcane set of sets of integers and sets of integers:
{{a,{a,b}} | a,b € Z * & 2a = b}.5 Suppose integers are implemented as sets, and multiplication is
implemented as a set of ordered pairs of factors. Then we might have the following situation: If {{}}
and {{},{{}}} implement 1 and 2, respectively, then 3 could be implemented as the monstrosity
Ha,{a,b}} | a,b € Z * & {{{}, {{}}}, {{{},{{}}},a}} = b}. The mind boggles. Is this supposed

to be easier to understand than ‘%’ or ‘0.50°7

And the only reason we’re interested in those rather arcane sets “of” integers is because
they implement—are models of—the ADT Rationals. We might feel more “comfortable” with these
arcane sets insofar as we are more comfortable with good old-fashioned sets and integers rather
than with rationals per se. But that is an epistemological consideration that is rather suspect in
the long run.

Once we have implemented the rationals using integers and sets, we also have another
implementation of the integers, of course (since the integers are a proper subset of the rationals—
or perhaps it would be better to say that a certain proper subet of the rationals is an implementation

of the Integer ADT). I have in mind here the sequence %, %, %, %, etc. As a matter of fact, there are

16

several implementations of the integers to be found among the rationals; here are a few:

)
—
[\V]
w

'—\:lOQiID N |
—| =W = N
l\?_l'—‘C»-’iIl\D N |
oiu—noiloo N |

These (especially the last one) may seem a bit odd, but recall that Peano’s axioms only require
that there be a successor relation, not that that relation be (implemented as) +1 (or even as
+Successor(0)); the choice of a 0-element is arbitrary, too. Other arbitrarily strange ones are
possible, e.g.,

0123

172737477
And, of course, using an order imposed by a diagonalization, the (non-negative) rationals themselves
can be taken as an implementation of the integers; e.g., if we arrange them (ignoring equivalences)
two-dimensionally as follows:

NINDN =N O

WIN W= WO
BN = O

RN == RRO

then the sequence %, g, %, %, %, %, %, %, %, ... implements the integers, too.

Finally, we could, if we wanted to, re-implement the rationals in one of these
implementations of the integers, by the usual ordered-pair construction.

Why bother? Well, besides whatever insights such playful model-making gives us into the
logical structure of the integers, it also shows that reduction (or construction) for the purposes of
providing stronger epistemological foundations is not what implementation is. All of the above are
implementations; none serves any interesting or useful reductive purposes.

The upshot is that although some, or even all, reductions or constructions might be
implementations, certainly not all implementations are reductions.

3.4 Implementation as Supervenience.

Recall that an implementation of an Abstraction in some medium is a semantic model of the
Abstraction in the “medium” of some semantic domain. And a semantic model is any structure—
including the Abstraction itself!—that can be correlated (or put into correspondence) with the
Abstraction. The closer the correlation, the better the semantic interpretation, even if, in the
base case of a self-interpretation, we must resort to syntactic understanding (i.e., understanding
via familiarity with the syntactically legal symbol manipulations; cf. Rapaport 1986, 1988, 1995).
One major correlation relation that is a plausible candidate for interpreting implementation is
supervenience. As Smith notes, “the term supervenience is used to relate phenomena themselves;
thus the strength of a beam would be said to supervene on the chemical bonds in the constitutive
wood. ... [S]upervenience doesn’t necessarily imply reducibility” (Smith 1991: 280n39); neither

17

does implementation (§3.3). When one domain “supervenes” on another, is it implemented by that
other domain? And when one domain is implemented by another, does it supervene on that other
domain? What, then, is supervenience?

3.4.1 Supervenience: An introduction.

Kim 1978 gives a precise formulation of the informal notion that “one family of properties is
‘supervenient’ upon another family of properties in the sense that two things alike with respect
to the second must be alike with respect to the first” (p. 149, my italics), even though “there is
no relationship of definability or entailment between the two families” of properties (pp. 149-150).
Now, implementation is neither definability nor entailment, so it could indeed be supervenience.
According to Kim, “the main point of the talk of supervenience is to have a relationship of
dependence or determination between two families of properties without property-to-property
connections [or “correlations”] between the families” (p. 150). But in the case of implementation
there are such property-to-property correlations. So maybe implementation isn’t supervenience?
As we will see, however, Kim’s explication of supervenience allows for such correlations.

Kim first defines two set-operations, # and * (Kim 1978: 152, col. 1): Where M is a
set of properties, M# is its “closure ...under the usual Boolean operations”, and M* (C M#)
is the set of “M-maximal properties”; i.e., “if M is finite, each member of M* is a maximal
consistent conjunction of the properties, and the complements of the properties, in M; if M is
not finite, the members of M* are maximal consistent sets of the properties in M and their
complements”. Consider an example. Let P, @ be properties, and let M = {P, Q}. Then
M#¥={P, Q, PANQ PV Q P — Q,-P,-Q, ~(PAQ),-(PVQ), ...} adM*=
{PANQANPVQ AN ..., PAN-Q NPV Q) A ..., ..}, where each element of
M* is an M-maximal property (and—in our example—the first-listed element of M* contains no
occurrences of =P or =@, and the second-listed contains no occurrences of —P).

Next, let D be a domain of objects, and let M, N be sets of properties that elements
of D can have. Then M is supervenient on N with respect to D =g O(objects in D that share
all properties in N# also share all properties in M#) (Kim 1978: 152, col. 1). That is, suppose
M supervenes on N with respect to D, and let d,d’ € D. Then O(d,d share all properties in
N# — d,d' share all properties in M#).” What’s meant is not that d,d’ have all properties in
N#_ but that if they have all and only the same properties in N#, then they also have the same
properties in M#. So, where D, d,d', N, M are as before, M supervenes on N with respect to D =
O((Y Py € N#)[Py(d) ©Px(d)] = (¥ Par € M#)[Pas(d) ©Pa(d))).

Kim presents an argument that reducibility and definability entail supervenience (Kim
1978: 152, col. 1). Can we run a similar argument to show that if M is implemented by N, then
M supervenes on N7 The argument requires biconditionals between N and M. Surely, if N
implements M, such biconditionals would be provided for by the semantic interpretation function
between N and M. Suppose that two things diverge on some M-property. Then they’ll diverge in
N#. So, if there are such biconditionals, then implementation does entail supervenience. Are there
really such biconditionals? Since N implements M, there could be implementation side-effects (the
domain of semantic interpretation might be “bigger” than the image of M in it). Still, if things
diverge on M, they’ll diverge in N# (though perhaps not conversely).

Kim argues that supervenience on a finite N entails that “each property in M which is

18

instantiated is biconditional-correlated with some property in N#” and that such generalizations
are lawlike (p. 152, col. 2). This is surely true for implementation in the N-to-M direction (p. 152,
col. 1). Is it true in the M-to-N direction (p. 152, col. 2)? Suppose that @1, ..., Q, are the physical
properties of the implementation, that P is an M-property, and that Q1 V...V Q, — P. Suppose,
by way of contradiction, that z (e.g., a computer process) has P (e.g., a certain input-output
behavior) but that x lacks each @; (i.e., is implemented differently). However, z is implemented
somehow; let K be a property that z has in virtue of its implementation. Suppose y (some other
process) also has K. Now, since M supervenes on N (N implements M), y has P (i.e., y has z’s
input-output behavior). So, K must be one of the @;s. Thus, Kim’s argument seems to carry over
(although details of the relationships between M, N and P, @ are not clear).

Moreover, supervenience s a semantic relation:

To summarize: (1) if M supervenes on N, there are property-to-property correlations
between M and N; (2) every property in M has either a necessary or sufficient condition
in N ...; (3) if N is finite, every property in M is biconditional-connected with some
property in N. ... [F]inite-based supervenience ... guarantees for each property in the
supervenient family a co-extension in the supervenience base; and depending on the
modality that attaches to the correlations between the two sets of properties, this may
yield reducibility and definability. (Kim 1978: 153-154.)

Kim introduced supervenience to explain the relationship of mind to body. Viewing the
supervenient set as the mental realm and the supervenience base as the physical realm, each mental
property has a co-extensive physical property and might be reducible to it, or definable in terms
of it. The co-extensiveness almost works for implementation, but, strictly speaking, it doesn’t.
For the implementing device is not a set of properties; hence, it has no extension. Rather, it s
the extension of the mental (or Abstract) properties. It is an open question what the appropriate
“modality” is for sets of mental properties and sets of physical properties.

But there is a problem in assimilating implementation to supervenience: Implementation
isn’t a relation between sets of properties. It’s a relation between “physical” things and
Abstractions—a relation between two different kinds of things—whereas supervenience is a relation
between sets of properties. Let A be an Abstraction and I be its implementation in some medium
S. Then it is S that has both A-properties and I-properties. So A-properties could supervene
on I-properties. So, possibly, A is implemented by I if and only if A-properties supervene on
I-properties. Indeed, Kim (1979: 43-44) sees supervenience as a very general version of the family
of concepts that includes reducibility, etc. So perhaps it is the base relation in terms of which
the others can be defined? I am uncomfortable with this, primarily because I see the generalized
semantic relation as the fundamental one, and I take implementation to be a specific case of a
semantic relation. So, too, for supervenience, which is, as we saw, a correlation relation.

A problem with supervenience as defined above is that there can be two “physically
indistinguishable worlds” that are not also “psychologically indistinguishable” (Kim 1979: 40).
Kim offers ‘strong supervenience’ as a remedy:

A strongly supervenes on B just in case necessarily for each x and each property F' in
A, if z has F', then there exists a property G in B such that x has G, and necessarily
if any y has G it has F. (Kim 1983: 49.)

19

and he points out that “Both relations are transitive, reflexive, but neither symmetric nor
asymmetric” (p. 49). Transitivity is good; it’s needed to account for levels of virtual machines, each
of which can be said to supervene on, or be implemented by, a lower-level machine. Reflexivity,
though, does not seem to be a property that we would want implementation to have. This
means that every implementation must have implementation-dependent side-effects, since every
implementation of an Abstraction will contribute something over and above what the Abstraction
specifies.

If supervenience is non-symmetric, then it’s possible for two properties to supervene on each
other. Could each be an implementation of the other? That seems counterintuitive. Surely, two
things can implement each other—or be semantic interpretations of each other—but not at the same
time. There is a directionality, a point of view of the third party that uses one domain as a semantic
interpretation or implementation of the other—recall the discussions of the asymmetry of antecedent
understanding (cf. Rapaport 1995). So it looks as if supervenience is not implementation.

3.5 Summary.

The implementation relation is a widespread phenomenon, taking many guises. It is a relation that
obtains between two things—I have called them the Abstraction and the Implementation—when
the Implementation is a “concrete” or “real” or “physical” thing that has all the properties of the
Abstraction. But we have also seen that Implementations can be equally “abstract”. So there are
two sorts of implementations: abstract and concrete ones, the latter being “realizations” in some
physical medium. We have seen that they typically have more properties than their Abstraction.
So perhaps the implementation relation is best construed (even etymologically) as a general term
for any filling in of details; concrete implementations are fillings-in in concrete media. Thus, the
notion of implementation comes along with a notion of “level”: the more detailed level being
“below” the “higher” (or more abstract)level, and the “concrete” or “physical” level being at the
“bottom”—Dbeing the “foundation” as it were.

We have also seen that individuation, instantiation, reduction, and supervenience are
all related to implementation, though “weaker” than it. The single best “interpretation” of
implementation seems to be that of semantic interpretation: I is an implementation of A in medium
M if and only if I is a semantic interpretation or model of A, where A is some syntactic domain
and M is the semantic domain.®

NOTES

1This can be generalized to different possible worlds. Thus, intelligence, say, could be realized
in several different (physical) media: This is the notion of “multiple realizability”.

2T am using ‘ML’ to abbreviate ‘machine language’, not to refer to the programming language
named “ML”.

3John Sowa, personal communication, 29 November 1993.
“Due to my colleague Bharadwaj Jayaraman (personal communication).

5The Lisp function car (or first) takes a list as input and returns its first member; the Lisp

20

function cdr (or rest) takes a list as input and returns the “rest of” that list, i.e., the list consisting
of all but that first member.

6The ordered pair (1, 2) “is” (or can be implemented as!) {1,{1,2}}. The equivalence class
containing (1, 2) “is” {(a,b) | a,b € Z * & 2a = b}. So, the rational 3 “is” {{a,{a,b}} | a,b €
Z " & 2a = b}.

"That, at least, is what Kim says; but doesn’t he mean M* and N*? Perhaps not; cf. Kim
1978: 153, col. 1.

8In a sequel to this essay, I examine some of the implications of this point of view: the role of the
“implementation details”, the question of whether an implementation is “the real thing”, and the
problem of whether anything can be an implementation of anything else (Rapaport, in preparation,
Ch. 7). T am grateful to my colleague Stuart C. Shapiro for comments on an earlier version of this
essay.

References

1. Anthony, Michael V. (1991), “Fodor and Pylyshyn on Connectionism,” Minds and Machines
1: 321-341.

2. Castaneda, Hector-Neri (1975), “Individuals and Non-Identity: A New Look,” American
Philosophical Quarterly 12: 131-140.

3. Coughlin, Ellen K. (1991), “A Professor Champions Distinct Culture of Deaf People,”
Chronicle of Higher Education (2 October 1991): A5.

4. Goguen, J. A.; Thatcher, J. W.; & Wagner, E. G. (1978), “An Initial Algebra Approach to the
Specification, Correctness, and Implementation of Abstract Data Types,” in Raymond T. Yeh

(ed.), Current Trends in Programming Methodology, Vol. IV: Data Structuring (Englewood
Cliffs, NJ: Prentice-Hall): 80-149.

5. Guttag, John V.; Horowitz, Ellis; & Musser, David R. (1978), “The Design of Data Type
Specifications,” in Raymond T. Yeh (ed.), Current Trends in Programming Methodology,
Vol. IV: Data Structuring (Englewood Cliffs, NJ: Prentice-Hall): 60-79.

6. Harris, Roy (1987), Reading Saussure: A Critical Commentary on the Cours de Linguistique
Générale (La Salle, IL: Open Court).

7. Hayes, John P. (1988), Computer Architecture and Organization, 2nd edition (New York:
McGraw-Hill).

8. Jennings, Richard C. (1985), “Translation, Interpretation and Understanding,” paper read
at the American Philosophical Association Eastern Division (Washington, DC); abstract,
Proceedings and Addresses of the American Philosophical Association 59 (1985) 345-346.

b

9. Kim, Jaegwon (1978), “Supervienience and Nomological Incommensurables,” American

Philosophical Quarterly 15: 149-156.

10. Kim, Jaegwon (1979), “Causality, Identity, and Supervenience in the Mind-Body Problem,”
in Peter A. French, Theodore E. Uehling, Jr., & Howard K. Wettstein (eds.), Studies in

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

21

Metaphysics, Midwest Studies in Philosophy, Vol. 4 (Minneapolis: University of Minnesota
Press): 31-49.

Kim, Jaegwon (1983), “Supervenience and Supervenient Causation,” Southern Journal of
Philosophy 22, Supplement, pp. 45-56.

Marcotty, Michael, & Ledgard, Henry (1986), Programming Landscape: Syntaz, Semantics,
and Implementation, 2nd edition (Chicago: Science Research Associates).

Morgado, Ernesto J. M. (1986), “Semantic Networks as Abstract Data Types”, Technical
Report 86-19 (Buffalo: SUNY Buffalo Department of Computer Science).

Parnas, David (1972), “A Technique for Software Module Specification with Examples,”
Communications of the Association for Computing Machinery 15: 330-336.

Pincus, Andrew L. (1990), “The Art of Transcription Sheds New Light on Old Work,” The
New York Times, Arts and Leisure (Sect. 2) (23 September 1990).

Rapaport, William J. (1986), “Searle’s Experiments with Thought,” Philosophy of Science
53: 271-279.

Rapaport, William J. (1988), “Syntactic Semantics: Foundations of Computational Natural-
Language Understanding,” in James H. Fetzer (ed.), Aspects of Artificial Intelligence
(Dordrecht, Holland: Kluwer Academic Publishers): 81-131; reprinted in Eric Dietrich (ed.),
Thinking Computers and Virtual Persons: FEssays on the Intentionality of Machines (San
Diego: Academic Press, 1994): 225-273.

Rapaport, William J. (1995), “Understanding Understanding: Syntactic Semantics
and Computational Cognition”, in James E. Tomberlin (ed.), AI, Connectionism,
and Philosophical Psychology, Philosophical Perspectives, Vol. 9 (Atascadero, CA:
Ridgeview): 49-88; to be reprinted in Andy Clark & Josefa Toribio (1998), Language and
Meaning in Cognitive Science: Cognitive Issues and Semantic Theory, Artificial Intelligence
and Cognitive Science: Conceptual Issues, Vol. 4 (Hamden, CT: Garland).

Rapaport, William J. (forthcoming), “How Minds Can Be Computational Systems”, Journal
of Experimental and Theoretical Artificial Intelligence.

Rapaport, William J. (in preparation), Understanding Understanding: Semantics,
Computation, and Cognition; unpublished ms. available from the author.

Rosen, Charles (1991), Reply to letter, New York Review of Books (14 February 1991): 50.

Sellars, Wilfrid (1955), “Some Reflections on Language Games,” in Science, Perception and
Reality (London: Routledge & Kegan Paul, 1963): 321-358.

Shapiro, Stuart C. (1979), “The SNePS Semantic Network Processing System,” in Nicholas
Findler (ed.), Associative Networks: Representation and Use of Knowledge by Computers
(New York: Academic Press): 179-203.

Shapiro, Stuart C., & Rapaport, William J. (1987), “SNePS Considered as a Fully Intensional
Propositional Semantic Network,” in Nick Cercone & Gordon McCalla (eds.), The Knowledge

25.

26.

27.

28.

29.

30.

31.

22

Frontier: Essays in the Representation of Knowledge (New York: Springer-Verlag): 262
315; shorter version appeared in Proceedings of the 5th National Conference on Artificial
Intelligence (AAAI-86, Philadelphia) (Los Altos, CA: Morgan Kaufmann): 278-283; revised
version of the shorter version appears as “A Fully Intensional Propositional Semantic
Network,” in Leslie Burkholder (ed.), Philosophy and the Computer (Boulder, CO: Westview
Press, 1992): 75-91.

Shapiro, Stuart C., & Rapaport, William J. (1992), “The SNePS Family,” Computers and
Mathematics with Applications 23: 243-275; reprinted in Fritz Lehmann (ed.), Semantic
Networks in Artificial Intelligence (Oxford: Pergamon Press, 1992): 243-275.

Simpson, J. A., & Weiner, E. S. C. (preparers) (1989), The Ozford English Dictionary, 2nd
edition (Oxford: Clarendon Press).

Smith, Brian Cantwell (1987), “The Correspondence Continuum,” Report CSLI-87-71
(Stanford, CA: Center for the Study of Language and Information).

Smith, Brian Cantwell (1991), “The Owl and the Electric Encyclopedia,” Artificial
Intelligence 47: 251-288.

Smith, Brian Cantwell (1997), “One Hundred Billion Lines of C++7”, CogSci News
(Bethlehem, PA: Lehigh University Cognitive Science Program), Vol. 10, No. 1 (Spring): 2-6.

Soare, Robert 1. (1996), “Computability and Recursion,” Bulletin of Symbolic Logic 2: 284—
321.

Wartofsky, Marx W. (1979), Models: Representation and the Scientific Understanding
(Dordrecht, Holland: D. Reidel, 1979).

