Syntax, Semantics, and Computer Programs:
Comments on Turner’s Computational Artifacts

William J. Rapaport

Department of Computer Science and Engineering,
Department of Philosophy, Department of Linguistics,
and Center for Cognitive Science
University at Buffalo, The State University of New York,
Buffalo, NY 14260-2500

rapaport@buffalo.edu
http://www.cse.buffalo.edu/~rapaport/

March 29, 2019

Abstract

Turner argues that computer programs must have purposes, that implementa-
tion is not a kind of semantics, and that computers might need to understand
what they do. I respectfully disagree: Computer programs need not have
purposes, implementation is a kind of semantic interpretation, and neither
human computers nor computing machines need to understand what they do.

1 Introduction

In 2004, I created a university course on the philosophy of computer science. At
that time, there were very few resources to draw on.! In the intervening decade-
plus, much has changed. In addition to Matti Tedre’s textbook The Science of Com-
puting (2015) and Gualtiero Piccinini’s monograph Physical Computation (2015),
we now have Ray Turner’s very useful Computational Artifacts: Towards a Phi-
losophy of Computer Science (2018).

IFor more information on my course, see Rapaport 2005b and the course syllabi at https:/cse.
buffalo.edu/~rapaport/510.html. The current draft (comments appreciated!) of a textbook based on
my lectures is available as Rapaport 2019.

In this commentary on Turner’s book, I present my own variations on three of
his themes: the purposes of computer programs, the nature of implementation, and
whether programs need to be understood in order to be executed.

2 Must Computer Programs Have Purposes?

[C]an one provide an ontological analysis of programs without some mention
of their intended function? (Turner, 2018, p. 44)

Must a computer program include as a part of it (even if only as an unexecutable
comment) an expression of its intended function? Or can a program be considered
separately from any purpose that it might have? Certainly, some (and probably
almost all) programs have an intended function or goal. If we let G be an expression
of a goal, and A be an algorithm encoded in some computer programming language,
then we can ask whether the basic form of a program is:

In order to accomplish goal G, do A
or whether it is just:
Do A

with no mention of any G.?

Turner distinguishes between a program’s functional description (what I have
labeled ‘G’) and its structure (my ‘A’). The functional description tells us “what
the device is supposed to do” (p. 44, my italics). One would thus expect that the
structure tells us how it does that. Although Turner comes close to saying that
on p. 45, when he notes that a definition of sorting “tells us what sorting is, not
how to sort” (my italics), his official characterization of structure is “what it actu-
ally does” (p. 44, my italics). But, of course, what a program actually does might
not be how it is supposed to accomplish its function; after all, programs can have
bugs. Nevertheless, bugs notwithstanding, the standard way of understanding the
function-structure distinction is in terms of “what” versus “how”, with an assump-
tion that the “how” correctly implements the “what”.

There is no question that commercially produced computer programs are de-
signed for a purpose, expressed in the program’s specification. In its most ab-
stract form, a specification is a description of the program’s expected input-output

2There is a large literature on this, including Marr 1982; Suber 1988; Cleland 1993; Egan 1995,
2010, 2014; Peacocke 1995, 1999; Piccinini 2004, 2006, 2008; Rescorla 2007, 2012, 2014, 2015;
Sprevak 2010; Buechner 2011, 2018; Anderson 2015; Shagrir and Bechtel 2015; Hill 2016; Dewhurst
2018; Shagrir 2018. For an overview, see Rapaport 2017a, 2019.

behavior. (Thus, it is a “functional description” in both the teleological and the
set-theoretical senses of ‘function’!)

But this does not mean that programs cannot be studied independently of those
purposes. In fact, a program P that is intended to compute a function f (character-
ized as a certain set of input-output pairs) might actually (“incorrectly”) compute
some other function g; yet P is still a perfectly good expression of an algorithm.
And it may be difficult, perhaps even logically impossible, to determine which
function it is supposed to compute (Buechner, 2011, 2018).

Nor does it mean that programs cannot be created without an intended purpose:
A program that, with no rhyme or reason, performs arbitrary, unrelated arithmetic
operations on an input is nonetheless a program. As Daniel C. Dennett has ob-
served:

Algorithms, in the popular imagination, are algorithms for producing a
particular result. ... [E]volution can be an algorithm, and evolution can have
produced us by an algorithmic process, without its being true that evolution is
an algorithm for producing us. (Dennett, 1995, p. 308, my boldface, original
italics)

We see the same thing in the case of language. Sentences are “designed” by
speakers to express their thoughts. A thought is a specification of what a speaker
wants to say; a sentence is how the speaker expresses the thought (successfully
or not; for discussion on that point, see Rapaport 2003). But sentences can be
studied independently of those thoughts, and they can be created independently of
any thoughts to be expressed (consider Lewis Carroll’s Jabberwocky).

Thus, my answer to Turner’s question is: Yes, a purely syntactic ontological
analysis of programs can be provided; no (external) semantics is necessary. In the
next two sections, we will look more closely at the nature of both syntactic and
semantic understanding.

3 Is Implementation a Kind of Semantics?

Moreover, some philosophers appear to endorse the view that implementa-
tion provides the semantic definition of the language. For instance, Rap[a]port
argues that an implementation is always semantic interpretation [192, 193].
This would seem to imply that we can use an implementation as a semantic
definition. (Turner 2018, pp. 98-99, my italics; Turner’s “[192, 193] are
Rapaport 1999, 2005a, respectively.)

Were this something that I advocated, I would not be alone: Frederick B. Brooks
(1975, p. 64) observed that “Not only is a formal definition an implementation, an

implementation can serve as a formal definition” (before going on to list, on the
next page, the advantages and “formidable” disadvantages). But this is not quite
my view. Let me explain.

Although the term ‘semantics’ is typically used in connection with the mean-
ing or truth of linguistic expressions, in its most abstract and general form, it is
the study of the relations between any two domains, one of which is intended to
be understood in terms of the other. The one needing understanding is typically
considered to be a “syntactic” domain, and the one providing the understanding
(the interpretation) is typically considered to be a “semantic” domain.

Similarly, the term ‘syntax’ is typically used in connection with the grammar
of a language, but in its most abstract and general form, the “syntactic” domain is
simply any domain (not necessarily a language) understood solely in terms of its
components, their properties, and the relations among them, i.e., understood solely
in terms of what Charles Morris (1938, p. 6) described as “the formal relation of
signs to one another.”> When the domain is a language, this understanding is its
grammar; when the domain is a logic, this understanding is its proof theory.

A semantic interpretation of a syntactic domain requires a “semantic”’ domain:
a distinct domain that is also understood solely in terms of its components, their
properties, and the relations among them, i.e., understood solely in terms of its
syntax. (When this domain is the world, or a model of the syntactic domain, its
“syntax” is its ontology.)* A semantic interpretation of the syntactic domain in
terms of the semantic domain is a way to understand the former in terms of the
latter by laying out the relations between the two domains; those relations, it should
be noted, are not part of either domain (Rapaport, 1988, 1995, 2012, 2017b, 2018).

When I argued (in the two essays that Turner cites) that implementation is
semantic interpretation, all I meant was that implementation—typically, but not
necessarily, the physical implementation of an abstraction—is a kind of semantic
relation in this sense, and (more specifically) that it is not some other kind of
relation—that it is not individuation, instantiation, reduction, or supervenience. In
particular, I did not offer it as a (and certainly not as “the”) “semantic definition
of a language”, nor do I see how being a “definition” would be implied from its
being a way of understanding a syntactic domain. A physical implementation of
a computer program might be the static physical “switch settings” (or electronic
analogues thereof) that implement the text of a program in a physical computer, or

3This way of characterizing syntax suggests that it might be an abstract analogue of a “mecha-
nism”, e.g., “a structure performing a function in virtue of its component parts, component opera-
tions, and their organization” (Bechtel and Abrahamsen, 2005, p. 423).

4Characterizations of ontology that suggest this connection to syntax include Smith 2003 and
Hofweber 2018, §3.1: “the study of the most general features of what there is, and how the things
there are relate to each other.”

it might be the actual dynamic process that comes into being when the program is
executed. I do not see how either of these implementations would be a definition
of that program, though I do think that they would be ways of understanding that
program.

Turner suggests (p. 99) that there are “normative requirements on semantic the-
ories”, giving as an example “provid[ing] criteria of correctness for the user or the
implementer”, and he argues that a mere translation of a computer program into
a compiled implementation of it would “just pass the burden of meaning onto an-
other language.” But this “burden” is always and unavoidably the case: There are
two ways to understand a syntactic domain S. The first way is the one sketched out
above: One can understand S semantically, in terms of a semantic domain 7'. But
for T to provide an understanding of S, T itself must already be understood. How
do you understand 77 Again, in one of two ways, the first being to treat T as a syn-
tactic domain and to understand it in terms of yet another antecedently understood
semantic domain 7’. But for this recursion to stop, there must be a domain that
is not understood in terms of another domain, but one that is understood in terms
of itself. To understand a domain in terms of itself is to understand its syntax: its
component parts, their properties, and their relations to each other (including, if the
domain is a logic, its proof theory). Thus, the second way to understand any do-
main is to understand it syntactically. Because syntactic understanding is the base
case of this recursive characterization of understanding, it follows that, in the fi-
nal analysis, all understanding (of this kind)’ is syntactic understanding (Rapaport,
1986, 1995, 2017b).

As for the issue of “correctness”, Turner argues (pp. 102-103) that, on my
view of implementation as semantic interpretation, an implementation of finite sets
as finite lists does not “provide the semantic interpretation of finite sets” because,
in that case,

the axioms for lists [would] fix the correctness of the axioms for finite sets.
But this is the wrong way around. On the contrary, it is the axioms for the
abstract type that must be preserved by the implementation.

But why would the list axioms “fix the correctness” of the set axioms? All the list
axioms have to do, as Turner notes, is “preserve” the set axioms. If we “under-
stand” lists better than sets (because, say, our programming language only recog-

3The parenthetical hedge is simply to allow for the possibility of there being other kinds of un-
derstanding that might not involve either syntactic or semantic understanding, though I would be
hard-pressed to think of one. “Intuitive understanding”, perhaps? But I would consider an intuitive
understanding of some domain to be a kind of understanding that one has by having become familiar
with that domain, and that would just be what I am calling syntactic understanding. See Rapaport
1995 for further discussion.

nizes lists, not sets), then our programming language allows us to understand sets
in terms of lists.

The important point, however, and one that Turner and I seem to agree on, is
that each domain can be understood in terms of the other. Which one is counted
as the syntactic domain that begs to be understood and which one is counted as the
semantic domain that provides the understanding depends on which one is under-
stood “better” or “antecedently”. As Turner puts it,

If I take the semantics as having priority, then I must know that I am evalu-
ating the formal rules. On the other hand, if I take the proof theory to have
priority, then I must know that I am evaluating the semantic account. (p. 125)

That is, if I antecedently understand the semantic domain, then I can use it to
understand the syntactic domain; but if I antecedently understand the “syntactic”
domain, then I can use it to understand the “semantic” domain. He calls this a dif-
ference in “intentional stance” (though its relation to Dennett’s (1987) intentional
stance is not clear) and notes that “It determines what is function and what is struc-
ture” (p. 125), suggesting that one person’s function might be another’s structure.
Perhaps that means that the functional G and the structural A that were discussed
in §2 are not so different after all.

4 Do Computers Need to Understand What They Do?

An important psychological part of the appeal of Turing’s machines concerns
the nature of their basic instructions; these are said to be atomic in the sense
that they can be performed without thought. (Turner, 2018, p. 192)

After saying this, Turner goes on to quote Gregory Chaitin, who says that a com-
puter does not have to . ..

. comprehend the result of any part of the operations it performs. ... [A]
program ... can demand any finite number of mechanical manipulations of
numbers, but it cannot ask for judgments about their meaning. (Chaitin,
1975)

Although Turner mistakenly attributes this passage to Turing, surely Turing would
have agreed, as does Dennett:

Turing’s idea was a ... strange inversion of reasoning. The Pre-Turing world
was one in which computers were people, who had to understand mathe-
matics in order to do their jobs. Turing realised that this was just not nec-
essary: you could take the tasks they performed and squeeze out the last

tiny smidgens of understanding, leaving nothing but brute, mechanical ac-
tions. IN ORDER TO BE A PERFECT AND BEAUTIFUL COMPUTING
MACHINE IT IS NOT REQUISITE TO KNOW WHAT ARITHMETIC IS.
(Dennett, 2013, p. 570, capitalization in original)6

In the present section’s epigraph, above, Turner talks of “Turing’s machines”,
and Chaitin is talking about “digital computers”. Yet Turner then observes:

The instructions must be complete and explicit, and the human computer is
not required to comprehend any part of the basic operations; she cannot ask
for judgments about their meaning. (p. 193, my boldface, Turner’s italics)

Why does Turner introduce a human “computer”? Of course, Turing (1936) fa-
mously analyzed how a human computes, but—as Dennett notes—he then “squeeze[d]
out the last tiny smidgens of understanding”, so the human who might execute a
program (just as well as a machine that might execute it) need not “understand” it.
After all, the machine cannot understand it even if the human can.’

But Turner goes on to ask:

Is it that these atomic instructions have a meaning but may be performed
without understanding? For the sake of argument, assume that they are not
meaningless; they have semantic content. This does not mean that eventu-
ally the human computer will be able to perform atomic instructions without
thought. The human computer may be able to. But, to begin with at least,
the meaning must have been deployed. How else could one carry them
out? Turing cannot be arguing that the human computer can be trained to do
this without thought. This would make little sense, since the atomic opera-
tions are the most primitive. If the computer is to be trained to learn these,
then there must be more primitive ones that form the basis of the learning
process. And the atomic instructions are the most primitive ones. So it is
hard to make out how, if they have meaning, how [sic] the human computer
can initially proceed without thought. So, if the atomic instructions are taken
to have meaning, it is hard to see what can be meant by the claim that the hu-
man computer does not comprehend the result of any part of the operations
it performs.

Seemingly, we must assume that Turing’s atomic instructions are mean-

ingless. (p. 193, my boldface, Turner’s italics)

This passage appears to be a reductio argument for the conclusion “that Turing’s
atomic instructions are meaningless”. Turner follows it with another reductio ar-
gument, this time for the opposite conclusion, thus setting up an antinomy:

6See also the more easily accessible Dennett 2009, p. 10061.

7I have argued elsewhere that a suitably programmed AI computer could (syntactically) under-
stand what it is doing (see, e.g., Rapaport 1988, 2012). The fact remains that computers don’t have
to understand, and certainly current computers don’t understand.

On the assumption that all basic or atomic instructions are meaningless,
have no semantic content, it is hard to maintain any compositional theory of
meaning. Via compositionality, a Turing machine program is a collection of
conditional expressions that inherits its semantic content from its atomic in-
structions. And so, if all the atomic instructions are meaningless, the compo-
sitionality thesis would lead us to conclude that all programs in the language
of Turing machines are meaningless, i.e., the collection of instructions that
constitute any Turing machine, is meaningless. But this is absurd.

So it would seem that the operations are not meaningless, yet they can be
immediately grasped without thought. It is hard to see how both can be true.

(pp- 193-194)

I have quoted these two arguments at length, because I find them rather confusing:
Is he arguing about machines that compute, or about humans that compute?

First, why must a human computer be able to understand the atomic instruc-
tions simply because they have meaning? I once executed some instructions (ad-
mittedly, not atomic ones) that—unknown to me—had meaning, yet I executed
them without understanding what I was doing:

I vividly remember the first semester that I taught a “Great Ideas in Com-
puter Science” course aimed at computer-phobic students. We were going to
teach the students how to use a spreadsheet program, something that I had
never used! So, with respect to this, I was as naive as any of my students. My
TA, who had used spreadsheets before, gave me something like the following
instructions:

enter a number in cell_1;
enter a number in cell_2;
enter ‘=(click on cell_1){(click on cell_2) in cell _3

I had no idea what I was doing.® I was blindly following her instructions and
had no idea that I was adding two integers. Once she told me that that was
what I was doing, my initial reaction was “Why didn’t you tell me that before
we began?”. ...

Now, (I like to think that) I am a cognitive agent who can come to under-
stand that entering data into a spreadsheet can be a way of adding. A Turing
machine that adds or a Mac running Excel is not such a cognitive agent. It
does not understand what addition is or that that is what it is doing. And it
does not have to. (Rapaport, 2017a, pp. 34, 43—44)

Second, certainly a human can understand (atomic) instructions. And under-
standing them can make it easier for a human to execute them:

8Some current implementations of Excel require a plus-sign between the two clicks in the third
instruction. But the version I was using at the time (1992) did not, making the operation that much
more mysterious!

My wife recently opened a restaurant and asked me to handle the paperwork
and banking that needs to be done in the morning before opening (based on
the previous day’s activities). She wrote out a detailed set of instructions,
and one morning [went in with her to see if I could follow them, with her
looking over my shoulder. As might be expected, there were gaps in her in-
structions, so even though they were detailed, they needed even more detail.
Part of the reason for this was that she knew what had to be done, how to
do it, and why it had to be done, but I didn’t. This actually disturbed me,
because I tend to think that algorithms should really be just “Do A,” not ‘To
G, do A.” Yet I felt that I needed to understand G in order to figure out how
to do A. But I think the reason for that was simply that she hadn’t given me
an algorithm, but a sketch of one, and, in order for me to fill in the gaps,
knowing why I was doing A would help me fill in those gaps. But I firmly
believe that if it made practical sense to fill in all those gaps (as it would if
we were writing a computer program), then I wouldn’t have to ask why I was
doing it. No “intelligence” should be needed for this task if the instructions
were a full-fledged algorithm. If a procedure (a sequence of instructions, in-
cluding vague ones like recipes) is not an algorithm (a procedure that is fully
specified down to the last detail), then it can require “intelligence” to carry it
out (to be able to fill in the gaps, based, perhaps on knowing why things are
being done). If intelligence is not available (i.e., if the executor lacks relevant
knowledge about the goal of the procedure), then the procedure had better be
a full-fledged algorithm. There is a difference between a human trying to
follow instructions and a machine that is designed to execute an algorithm.
The machine cannot ask why, so its algorithm has to be completely detailed.
But a computer (or a robot, because one of the tasks is going to the bank
and talking to a teller!) that could really do the job would almost certainly be
considered to be “intelligent.” (Rapaport, quoted in Hill and Rapaport 2018,
p. 35)

But Turner says, in the first argument quoted above, that if a human computer
carries out an instruction, then “the meaning must have been deployed” and the
human must “comprehend the result of any part of the operation it performs” (my
italics—is “it” a human or a machine?).® Nevertheless, insofar as the human uses
that understanding, she is not merely executing the instructions by themselves—
she is not being (or behaving as) a (human) computer. Computers do not—indeed,
they should not—have to understand what they are doing.

What is meant by ‘meaning’? Consider my Excel experience: I carried out
the operations without “deploying” the “meaning” of addition. That is, 1 did

90n p. 193, Turner refers to the human computer as ‘she’, as will L.

not deploy the external meaning of addition—a semantic interpretation. 1 did
“deploy” an internal meaning involving clicking on certain cells, but that kind
of meaning—syntactic “meaning”—can be had by a computer; it only involves
the computer’s ability to execute the instructions, not its ability to understand—
semantically understand—what those instructions mean in an external sense. Fol-
lowing Piccinini (2004, pp. 401402, 404), let’s call this kind of meaning “in-
ternal”. (Michael Rescorla (2012, §3, pp. 707-708) calls it—or something very
similar—"“indigenous meaning”; and I have referred to it as “syntactic semantics”
(Rapaport, 1988, 2017a).)

Here, perhaps is where the distinction between a Auman computer and a com-
puting machine comes in. In order for a human to execute an algorithm by “fol-
lowing” its instructions, presumably she needs to understand them; hence, they
would seem to have to have a meaning for her to understand. Does this imply
that a computing machine would also have to “understand” them? No, because
neither a Turing machine nor a (finite) physical implementation of one follows in-
structions. (I am talking about a single-purpose Turing machine, not something
like a Mac or PC, which, when loaded with a program, arguably can be said to
“follow” that program; I discuss these below). A Turing-machine program (e.g., a
set of certain quintuples) is a description of it (if you like, it is a description of its
behavior). In the case of a physical Turing machine, its “program” is simply the
way it is “hardwired”, or the way that its “gears” work (to put it metaphorically);
no understanding of instructions is needed, because no instructions are “followed”.

The case of a human following instructions is different. But even here, the only
thing that the human has to understand are such things as the atomic operations of
‘print’, ‘erase’, and ‘move’, all of which seem quite devoid of “meaning” or “pur-
pose”. A better human analogy for the way that a Turing machine behaves is not
that of a human explicitly following a program, but the way our brains produce our
behavior: We don’t “follow’” what our brains “tell” us to do, nor do we understand
what our brains cause us to do; we just do things because our brains cause us to do
them—better: because of the way that our brains are “hardwired”.

What about Macs or PCs—(finite) implementations of a universal Turing ma-
chine? A universal Turing machine is, first and foremost, a single-purpose Turing
machine whose program gua single-purpose Turing machine is a fetch-execute cy-
cle. It does not “follow” this any more than any Turing machine “follows” its
program. It is merely “hardwired” to behave that way. But what about the program
that is inscribed on its tape and that—arguably—it does “follow”? Does it need to
“understand” the (coded) instructions on its tape in order to execute them? I would
argue that it does not. Suppose that one of those coded instructions is a sequence
of ‘0’s and ‘1’s that codes for “print ‘1’ ”. The universal Turing machine, after
scanning that coded instruction, is simply hardwired to print a ‘1’. (It doesn’t have

10

to think to itself “Ah! This means that I have to print a ‘1’. I’'ll do that now.”)

As for Turner’s second argument, why is it “absurd” that programs are mean-
ingless? Presumably for the reasons I discussed in §2: Turner believes that pro-
grams have purposes; they are of the form “To G, do A”. But, as I urged in that
section, although (external, semantic) meaning can be given to a program, a pro-
gram doesn’t need meaning, or purpose. Programs are of the form “Do A”.

Compositionality is a red herring: Any “meaning” that a program inherits from
the atomic instructions of its programming language is a matter, not of external
semantic interpretation, but of its “internal” (or “indigenous”, or “syntactic) se-
mantics. “Internal” semantics can be provided via procedural abstraction: named
subroutines composed by sequence, selection, and repetition of atomic operations,
packaged up into a “molecular” operation, and given a name so that it can be re-
peatedly used without having to explicitly repeat the atomic parts in a program. For
example, Karel the Robot (Pattis et al., 1995) has an atomic instruction “turnleft”
that causes it to rotate 90° counterclockwise. A sequence of three of these can be
given the name “turnright”:

DEFINE-NEW-INSTRUCTION turnright AS
BEGIN

turnleft;turnleft;turnleft

END

(Note that this does not enable Karel to rotate 90° clockwise, but it gets the same
effect by having Karel rotate 270° counterclockwise.)

We understand what the two-word, English expression ‘turn right’ means, but a
Karel program, of course, does not. As Drew McDermott (1980) famously pointed
out, merely naming a subroutine with an English expression does not give it the ex-
ternal meaning of that expression. But the program’s ability to associate the nine-
character string ‘turnright’ (not the two-word, English expression ‘turn right’) with
that new procedure gives ‘turnright’ an internal or syntactic meaning. That is how
you can get a compositional theory of (internal, syntactic) meaning from (exter-
nally, semantically) meaningless atomic operations. No (semantic) understanding
by a human or a computer is required.

5 Conclusion

Although I find much to agree with in Turner’s book, we differ on three points that
I have explored here: Turner holds that computer programs must have purposes; |
claim that they need not have any. Turner does not see implementation as a kind
of semantic relation, whereas I do. Finally, Turner seems to think that the atomic

11

operations of a computer program must have a meaning that can be semantically
understood. I have tried to show how the only kind of meaning that they need can
be understood syntactically.

References

Anderson, B. L. (2015). Can computational goals inform theories of vision? Topics in Cognitive
Science. DOI: 10.111/tops.12136.

Bechtel, W. and A. Abrahamsen (2005). Explanation: A mechanistic alternative. Studies in History
and Philosophy of the Biological and Biomedical Sciences 36, 421-441. http://mechanism.ucsd.
edu/research/explanation.mechanisticalternative.pdf.

Brooks, Frederick P., J. (1975). The Mythical Man-Month. Reading, MA: Addison-Wesley.

Buechner, J. (2011). Not even computing machines can follow rules: Kripke’s critique of function-
alism. In A. Berger (Ed.), Saul Kripke, pp. 343-367. New York: Cambridge University Press.

Buechner, J. (2018, Spring). Does Kripke’s argument against functionalism undermine the standard
view of what computers are? Minds and Machines 28(3), 491-513.

Chaitin, G. J. (1975, May). Randomness and mathematical proof. Scientific American 232(5), 47-52.
http://www.owlnet.rice.edu/~km9/Randomness %20and %20Mathematical.pdf.

Cleland, C. E. (1993, August). Is the Church-Turing thesis true? Minds and Machines 3(3), 283-312.
Dennett, D. C. (1987). The Intentional Stance. Cambridge, MA: MIT Press.
Dennett, D. C. (1995). Darwin’s Dangerous Idea. New York: Simon & Schuster.

Dennett, D. C. (2009, 16 June). Darwin’s ‘strange inversion of reasoning’. Proceedings of the
National Academy of Science 106, suppl. 1, 10061-10065. http://www.pnas.org/cgi/doi/10.1073/
pnas.0904433106. See also Dennett 2013.

Dennett, D. C. (2013). Turing’s ‘strange inversion of reasoning’. In S. B. Cooper and J. van Leeuwen
(Eds.), Alan Turing: His Work and Impact, pp. 569-573. Amsterdam: Elsevier. See also Dennett
2009.

Dewhurst, J. (2018). Individuation without representation. British Journal for the Philosophy of
Science 69, 103-116.

Egan, F. (1995, April). Computation and content. Philosophical Review 104(2), 181-203.

Egan, F. (2010, September). Computational models: A modest role for content. Studies in History
and Philosophy of Science 41(3), 253-259.

Egan, F. (2014, August). How to think about mental content. Philosophical Studies 170(1), 115—
135. Preprint at https://www.academia.edu/4160744/How_to_think_about_Mental_Content; video
at https://vimeo.com/60800468.

Hill, R. K. (2016). What an algorithm is. Philosophy and Technology 29, 35-59.

12

Hill, R. K. and W. J. Rapaport (2018, Fall). Exploring the territory: The logicist way and other paths
into the philosophy of computer science. American Philosophical Association Newsletter on
Philosophy and Computers 18(1), 34-37. https://cdn.ymaws.com/www.apaonline.org/resource/
collection/EADESD52-8D02-4136-9A2A-729368501E43/ComputersV18n1.pdf.

Hofweber, T. (2018). Logic and ontology. In E. N. Zalta (Ed.), The Stanford Encyclopedia of
Philosophy (Summer 2018 ed.). Metaphysics Research Lab, Stanford University. https://plato.
stanford.edu/archives/sum2018/entries/logic-ontology/.

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Pro-
cessing of Visual Information. New York: W.H. Freeman.

McDermott, D. (1980). Artificial intelligence meets natural stupidity. In J. Haugeland (Ed.), Mind
Design: Philosophy, Psychology, Artificial Intelligence, pp. 143—-160. Cambridge, MA: MIT
Press. http://www.inf.ed.ac.uk/teaching/courses/irm/mcdermott.pdf.

Morris, C. (1938). Foundations of the Theory of Signs. Chicago: University of Chicago Press.

Pattis, R. E., J. Roberts, and M. Stehlik (1995). Karel the Robot: A Gentle Introduction to the Art of
Programming, Second Edition. New York: John Wiley & Sons.

Peacocke, C. (1995). Content, computation and externalism. Philosophical Issues 6, 227-264.

Peacocke, C. (1999, June). Computation as involving content: A response to Egan. Mind & Lan-
guage 14(2), 195-202.

Piccinini, G. (2004, September). Functionalism, computationalism, and mental contents. Cana-
dian Journal of Philosophy 34(3), 375—410. http://www.umsl.edu/~piccininig/Functionalism_
Computationalism_and_Mental_Contents.pdf.

Piccinini, G. (2006). Computation without representation. Philosophical Studies 137(2), 204-241.
http://www.umsl.edu/~piccininig/Computation_without_Representation.pdf.

Piccinini, G. (2008). Computers. Pacific Philosophical Quarterly 89, 32-73. http://www.umsl.edu/
~piccininig/Computers.pdf.

Piccinini, G. (2015). Physical Computation: A Mechanistic Account. Oxford: Oxford University
Press.

Rapaport, W. J. (1986). Searle’s experiments with thought. Philosophy of Science 53, 271-279.
http://www.cse.buffalo.edu/~rapaport/Papers/philsci.pdf.

Rapaport, W. J. (1988). Syntactic semantics: Foundations of computational natural-language un-
derstanding. In J. H. Fetzer (Ed.), Aspects of Artificial Intelligence, pp. 81-131. Dordrecht,
The Netherlands: Kluwer Academic Publishers. http://www.cse.buffalo.edu/~rapaport/Papers/
synsem.pdf; reprinted with numerous errors in Eric Dietrich (ed.) (1994), Thinking Machines and
Virtual Persons: Essays on the Intentionality of Machines (San Diego: Academic Press): 225-
273.

13

Rapaport, W. J. (1995). Understanding understanding: Syntactic semantics and computational cog-
nition. In J. E. Tomberlin (Ed.), Al, Connectionism, and Philosophical Psychology (Philosoph-
ical Perspectives, Vol. 9), pp. 49-88. Atascadero, CA: Ridgeview. http://www.cse.buffalo.edu/
~rapaport/Papers/rapaport95-uu.pdf. Reprinted in Toribio, Josefa, & Clark, Andy (eds.) (1998),
Language and Meaning in Cognitive Science: Cognitive Issues and Semantic Theory (Artificial
Intelligence and Cognitive Science: Conceptual Issues, Vol. 4) (New York: Garland).

Rapaport, W. J. (1999). Implementation is semantic interpretation. The Monist 82, 109-130. http:
/Iwww.cse.buffalo.edu/~rapaport/Papers/monist.pdf.

Rapaport, W. J. (2003). What did you mean by that? Misunderstanding, negotiation, and syntactic
semantics. Minds and Machines 13(3), 397-427. http://www.cse.buffalo.edu/~rapaport/Papers/
negotiation-mandm.pdf.

Rapaport, W. J. (2005a, December). Implemention is semantic interpretation: Further thoughts.
Journal of Experimental and Theoretical Artificial Intelligence 17(4), 385-417. https://www.cse.
buffalo.edu//~rapaport/Papers/jetai05.pdf.

Rapaport, W. J. (2005b, December). Philosophy of computer science: An introductory course. Teach-
ing Philosophy 28(4), 319-341. http://www.cse.buffalo.edu/~rapaport/philcs.html.

Rapaport, W. J. (2012, January-June). Semiotic systems, computers, and the mind: How cog-
nition could be computing. International Journal of Signs and Semiotic Systems 2(1), 32—
71. http://www.cse.buffalo.edu/~rapaport/Papers/Semiotic_Systems, Computers,_and_the_Mind.
pdf. Revised version published as Rapaport 2018.

Rapaport, W. J. (2017a). On the relation of computing to the world. In T. M. Powers (Ed.), Philosophy
and Computing: Essays in Epistemology, Philosophy of Mind, Logic, and Ethics, pp. 29-64.
Cham, Switzerland: Springer. Paper based on 2015 IACAP Covey Award talk; preprint at http:
/Iwww.cse.buffalo.edu/~rapaport/Papers/rapaport4IACAP.pdf.

Rapaport, W. J. (2017b, Fall). Semantics as syntax. American Philosophical Association Newslet-
ter on Philosophy and Computers 17(1), 2—11. http://c.ymcdn.com/sites/www.apaonline.org/
resource/collection/EADE8SDS52-8D02-4136-9A2A-729368501E43/ComputersV17n1.pdf.

Rapaport, W. J. (2018). Syntactic semantics and the proper treatment of computationalism. In
M. Danesi (Ed.), Empirical Research on Semiotics and Visual Rhetoric, pp. 128-176. Her-
shey, PA: IGI Global. References on pp. 273-307; http://www.cse.buffalo.edu/~rapaport/Papers/
SynSemProperTrtmtCompnlism.pdf. Revised version of Rapaport 2012.

Rapaport, W. J. (2019). Philosophy of computer science. Current draft in progress at http://www.
cse.buffalo.edu/~rapaport/Papers/phics.pdf.

Rescorla, M. (2007). Church’s thesis and the conceptual analysis of computability. Notre Dame
Journal of Formal Logic 48(2), 253-280. http://www.philosophy.ucsb.edu/people/profiles/faculty/
cvs/papers/church2.pdf.

Rescorla, M. (2012, December). Are computational transitions sensitive to semantics? Aus-
tralian Journal of Philosophy 90(4), 703-721. http://www.philosophy.ucsb.edu/docs/faculty/
papers/formal.pdf.

14

Rescorla, M. (2014, January). The causal relevance of content to computation. Philosophy and
Phenomenological Research 88(1), 173-208. http://www.philosophy.ucsb.edu/people/profiles/
faculty/cvs/papers/causalfinal.pdf.

Rescorla, M. (2015). The representational foundations of computation. Philosophia
Mathematica 23(3), 338-366. http://www.philosophy.ucsb.edu/docs/faculty/michael-rescorla/
representational-foundations.pdf.

Shagrir, O. (2018). In defense of the semantic view of computation. Synthese. https://doi.org/10.
1007/s11229-018-01921-z.

Shagrir, O. and W. Bechtel (2015). Marr’s computational-level theories and delineating phenomena.
In D. Kaplan (Ed.), Integrating Psychology and Neuroscience: Prospects and Problems. Ox-
ford: Oxford University Press. http://philsci-archive.pitt.edu/11224/1/shagrir_and_bechtel.Marr’
s_Computational_Level_and_Delineating_Phenomena.pdf.

Smith, B. (2003). Ontology. In L. Floridi (Ed.), Blackwell Guide to the Philosophy of Computing
and Information, pp. 155-166. Oxford: Blackwell. https://philpapers.org/archive/SMIO-11.pdf.

Sprevak, M. (2010, September). Computation, individuation, and the received view on representa-
tion. Studies in History and Philosophy of Science 41(3), 260-270.

Suber, P. (1988). What is software? Journal of Speculative Philosophy 2(2), 89-119. Revised
version at http://www.earlham.edu/~peters/writing/software.htm.

Tedre, M. (2015). The Science of Computing: Shaping a Discipline. Boca Raton, FL: CRC
Press/Taylor & Francis.

Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsprob-
lem. Proceedings of the London Mathematical Society, Ser. 2, Vol. 42, 230-265. https:
/lwww.cs.virginia.edu/~robins/Turing_Paper_1936.pdf.

Turner, R. (2018). Computational Artifacts: Towards a Philosophy of Computer Science. Berlin:
Springer.

15

