A LIMITATION ON NEUTRO(NEUTROSOPHIC) SOFT SUBRINGS AND SOFT SUBIDEALS

MOHAMMAD HAMIDI AND RASUL RASULI

Abstract

In this study, we introduce a type of neutrosophic subset concepts such as soft subrings, soft subideals, the residual quotient of soft subideals, quotient rings of a ring by soft subideals, soft subideals of soft subrings and investigate some of their properties and structured characteristics. Also, we investigate them under homomorphisms and obtain some new results. Indeed, the relation between uncertainty and semi-algebraic is presented and is analyzed to the important results in neutrosophic subset theory.

1. Introduction

Dealing with uncertainties is a major problem in many areas such as economics, engineering, environmental science, medical science, and social sciences. These kinds of problems can not be dealt with by classical methods, because classical methods have inherent difficulties. Molodtsov's soft set theory [9] is a kind of new mathematical model for coping with uncertainty from a parametrization point of view. In soft set theory, the problem of setting the membership function does not arise, which makes the theory easily be applied to many different fields. Neutrosophy, as a newly-born science, is a branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. It can be defined as the incidence of the application of a law, an operation, an axiom, an idea, or a conceptual accredited construction on an unclear, indeterminate phenomenon, contradictory to the purpose of making it intelligible. Recently, Florentin Smarandache generalized the classical algebraic structures to neutro algebraic structures neutro algebras) and anti algebraic structures (anti algebras) and he proved that the neutro algebra is a generalization of partial algebra. Indeed the neutro algebras are an extension of classical algebra or we can say that classical algebras are a limitation of algebras. In this regard, some researchers have published the papaers on neutro algebras such as neutro Bck algebra [5], valued-inverse dombi neutrosophic graph and application [6], extended BCK-ideal based on single-valued neutrosophic hyper BCK-ideals [7], single-valued neutro hyper BCK-subalgebras [8], new types of soft sets: hypersoft set, indetermsoft set, indetermhyper soft set, and tree soft set [14], ccsev: modelling qos metrics in tree soft toward cloud services evaluator based on uncertainty environment [15], extension of soft set to hypersoft set, and then to plithogenic hypersoft set [16], applications of extended plithogenic sets in plithogenic sociogram [17] and introduction to neutrosophic genetics [18]. At present, works on the soft set theory as a limitation of neutrosophic subsets, with algebraic applications are progressing rapidly $[1,2,3,4]$. The author introduced and investigated some properties of soft algebraic structures of $[10,11,12,13]$. In this paper, we attempt to study the soft subrings and soft subideals and their properties. The paper is organized as follows: Section 2 is devoted to introducing basic definitions of soft subrings and soft subideals. In this section we investigate some conditions
such that $f_{R}^{\alpha}, f_{R}^{\star}$ and f_{R}^{*} will be ideals of R. In Section 3, we define the soft subideals of R which generated by f_{R} and we proof that if $f_{R} \in S_{I}(U)$ and $g_{R} \in S_{R}(U)$, then $f_{R} g_{R}=<f_{R} \circ g_{R}>$. Section 4 contains the notions of the residual quotient of soft subideals and we discuss structural properties of them. In this section, we define the coset of f_{R} and investigate the quotient ring of R by f_{R}. Finally, in Section 5 we define soft subideals of soft subrings and characterize them. At the end of this section, we investigate the soft subrings, soft subideals, and soft subideals of soft subrings under the homomorphism of rings and prove some important results.

2. Soft Subrings and Soft Subideals

Throughout this work, U refers to an initial universe set, E is a set of parameters, $\mathrm{P}(\mathrm{U})$ is the power set of U and R is commutative ring.
Definition 2.1. [9] For any subset A of E, a soft set f_{A} over U is a set, defined by a function f_{A}, representing a mapping $f_{A}: E \rightarrow P(U)$, such that $f_{A}(x)=\emptyset$ if $x \notin A$. A soft set over U can also be represented by the set of ordered pairs $f_{A}=\left\{\left(x, f_{A}(x)\right) \mid x \in E, f_{A}(x) \in P(U)\right\}$. Note that the set of all soft sets over U will be denoted by $S(U)$. From here on, soft set will be used without over U.

Definition 2.2. [4] Let $f_{A}, f_{B} \in S(U)$. Then,
(1) f_{A} is called an empty soft set if $f_{A}(x)=\emptyset$ for all $x \in E$,
(2) f_{A} is a soft subset of f_{B}, denoted by $f_{A} \subseteq f_{B}$, if $f_{A}(x) \subseteq f_{B}(x)$ for all $x \in E$,
(3) f_{A} and f_{B} are soft equal, denoted by $f_{A}=f_{B}$, if and only if $f_{A}(x)=f_{B}(x)$ for all $x \in E$,
(4) the set $\left(f_{A} \cup f_{B}\right)(x)=f_{A}(x) \cup f_{B}(x)$ for all $x \in E$ is called union of f_{A} and f_{B},
(5) the set $\left(f_{A} \tilde{\cap} f_{B}\right)(x)=f_{A}(x) \cap f_{B}(x)$ for all $x \in E$ is called intersection of f_{A} and f_{B}.

We consider the following example as an illustration.
Example 2.3. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ be an initial universe set and $E=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ be a set of parameters. Let $A=\left\{x_{1}, x_{2}, x_{3}\right\}, B=\left\{x_{3}, x_{4}, x_{5}\right\}, C=\left\{x_{3}, x_{4}\right\}$.
Define $f_{A}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{3}\right\}\right),\left(x_{3},\left\{u_{4}, u_{5}\right\}\right)\right\}, f_{B}=\left\{\left(x_{3},\left\{u_{1}, u_{4}\right\}\right),\left(x_{4}, U\right),\left(x_{5},\left\{u_{3}\right\}\right)\right\}, f_{C}=$ $\left\{\left(x_{3},\{ \}\right),\left(x_{4},\{ \}\right)\right\}$. Then for all $x \in E$ we have $\left(f_{A} \cup f_{B}\right)(x)=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{3}\right\}\right)\right.$,
$\left(x_{3},\left\{u_{4}, u_{5}, u_{1}\right),\left(x_{4}, U\right),\left(x_{5},\left\{u_{3}\right\}\right)\right\}$ and $\left(f_{A} \cap f_{B}\right)(x)=\left\{\left(x_{3},\left\{u_{4}\right)\right\}\right.$. Also f_{C} is an empty soft set. Note that the difinition of classical subset is not valid for the soft subset. For example $f_{C} \subseteq f_{B}$ as soft subset but $f_{C} \nsubseteq f_{B}$ as classical subset.
Definition 2.4. Let $f_{R}, g_{R} \in S(U)$. Define $f_{R}+g_{R},-f_{R}, f_{R}-g_{R}, f_{R} \circ g_{R} \in S(U)$ as follows:

$$
\begin{aligned}
&\left(f_{R}+g_{R}\right)(x)=\cup\{ \left.f_{R}(y) \cap g_{R}(z) \mid y, z \in R, y+z=x\right\} \\
&-f_{R}(x)=f_{R}(-x) \\
&\left(f_{R}-g_{R}\right)(x)=\cup\left\{f_{R}(y) \cap g_{R}(z) \mid y, z \in R, y-z=x\right\} \\
&\left(f_{R} \circ g_{R}\right)(x)=\cup\left\{f_{R}(y) \cap g_{R}(z) \mid y, z \in R, y z=x\right\}
\end{aligned}
$$

for all $x \in R . f_{R}+g_{R}, f_{R}-g_{R}$ and $f_{R} \circ g_{R}$ are called the sum, difference, and product of f_{R} and g_{R}, respectively, and $-f_{R}$ is called the negative of f_{R}.
We can say that $f_{R}+g_{R}=g_{R}+f_{R}, f_{R}-g_{R}=f_{R}+\left(-g_{R}\right)$. Also since R is commutative, then $f_{R} \circ g_{R}=g_{R} \circ f_{R}$.

Proposition 2.5. Let $f_{R}, g_{R}, h_{R} \in S(U)$. Then $f_{R} \circ\left(g_{R}+h_{R}\right) \subseteq f_{R} \circ g_{R}+f_{R} \circ h_{R}$.

Proof. Let $w \in R$ and let $u, v \in R$ be such that $u v=w$. Then

$$
\begin{aligned}
f_{R}(u) \cap\left(g_{R}+h_{R}\right)(v) & =f_{R}(u) \cap\left(\cup\left\{g_{R}(y) \cap h_{R}(z) \mid y, z \in R, y+z=v\right\}\right) \\
& =\cup\left\{\left(f_{R}(u) \cap g_{R}(y)\right) \cap\left(f_{R}(u) \cap h_{R}(z)\right) \mid y, z \in R, y+z=v\right\} \\
& \subseteq \cup\left\{\left(f_{R}(u) \cap g_{R}(y)\right) \cap\left(f_{R}(u) \cap h_{R}(z)\right) \mid y, z \in R, u y+u z=u v\right\} \\
& \subseteq \cup\left\{\left(f_{R} \circ g_{R}\right)(u y) \cap\left(f_{R} \circ h_{R}\right)(u z) \mid y, z \in R, u y+u z=u v=w\right\} \\
& \subseteq\left(f_{R} \circ g_{R}+f_{R} \circ h_{R}\right)(w)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f_{R} \circ\left(g_{R}+h_{R}\right)(w) & =\cup\left\{f_{R}(u) \cap\left(g_{R}+h_{R}\right)(v) \mid u, v \in R, u v=w\right\} \\
& \subseteq\left(f_{R} \circ g_{R}+f_{R} \circ h_{R}\right)(w) .
\end{aligned}
$$

Definition 2.6. Let $f_{R}, g_{R} \in S(U)$. Define $f_{R} g_{R} \in S(U)$ as

$$
\left(f_{R} g_{R}\right)(x)=\cup\left\{\cap_{i=1}^{n}\left(f_{R}\left(y_{i}\right) \cap g_{R}\left(z_{i}\right)\right) \mid y_{i}, z_{i} \in R, 1 \leq n, n \in \mathbb{N}, \sum_{i=1}^{n} y_{i} z_{i}=x\right\}
$$

for all $x \in R$. Since R is commutative, then $f_{R} g_{R}=g_{R} f_{R}$.
The following proposition follows easily and we omit the proof.
Proposition 2.7. Let $f_{R}, g_{R}, h_{R} \in S(U)$. Then the following assertions hold.
(1) $f_{R} \circ g_{R} \subseteq f_{R} g_{R}$.
(2) If $f_{R} \subseteq g_{R}$, then $h_{R} f_{R} \subseteq h_{R} g_{R}$.
(3) $\left(f_{R} g_{R}\right) h_{R}=f_{R}\left(g_{R} h_{R}\right)$.
(4) $\left(f_{R} g_{R}\right)(x+y) \supseteq\left(f_{R} g_{R}\right)(x) \cap\left(f_{R} g_{R}\right)(y)$ for all $x, y \in R$.

Definition 2.8. Let $f_{R} \in S(U)$ and $n \in \mathbb{N}$. Define $f_{R}^{n}, f_{R}^{(n)}$ as follows $f_{R}^{1}=f_{R}, f_{R}^{n}=f_{R}^{1} f_{R}^{n-1}$ and $f_{R}^{(1)}=f_{R}, f_{R}^{(n)}=f_{R}^{(1)} f_{R}^{(n-1)}$.
Definition 2.9. Let $f_{R} \in S(U)$. Then f_{R} is called soft subring of R if
(1) $f_{R}(x-y) \supseteq f_{R}(x) \cap f_{R}(y)$,
(2) $f_{R}(x y) \supseteq f_{R}(x) \cap f_{R}(y)$,
for all $x, y \in R$. The set of all soft subrings of R is denoted by $S_{R}(U)$.
Definition 2.10. Let $f_{R} \in S(U)$. Then f_{R} is called soft subideal of R if
(1) $f_{R}(x-y) \supseteq f_{R}(x) \cap f_{R}(y)$,
(2) $f_{R}(x y) \supseteq f_{R}(x) \cup f_{R}(y)$,
for all $x, y \in R$. The set of all soft subideals of R is denoted by $S_{I}(U)$. As R is commutative so condition (2) is equivalent to $f_{R}(x y) \supseteq f_{R}(x)$.

Definition 2.11. ([3]) Let $f_{R} \in S(U)$ and $\alpha \in P(U)$. Define
(1) $f_{R}^{\alpha}=\left\{x \in R \mid f_{R}(x) \supseteq \alpha\right\}$ which is called α-inclusion of the soft set f_{A}.
(2) $f_{R}^{\star}=\left\{x \in R \mid f_{R}(x) \neq \emptyset\right\}$ which is called support of f_{A}.
(3) $f_{R}^{*}=\left\{x \in R \mid f_{R}(x)=f_{R}(0)\right\}$.

Proposition 2.12. Let $f_{R} \in S(U)$. Then $f_{R} \in S_{I}(U)$ if and only if f_{R}^{α} is an ideal of R, for all $\alpha \in f_{R}(R) \cup\left\{\beta \in P(U) \mid \beta \subseteq f_{R}(0)\right\}$.

Proof. Let $f_{R} \in S_{I}(U), \alpha \in P(U)$. If $x, y \in f_{R}^{\alpha}$ and $r \in R$, then $f_{R}(x-y) \supseteq f_{R}(x) \cap f_{R}(y) \supseteq$ $\alpha \cap \alpha=\alpha$ and $f_{R}(r x) \supseteq f_{R}(x) \supseteq \alpha$. Therefore $x-y, r x \in f_{R}^{\alpha}$ and so f_{R}^{α} is an ideal of R. Conversely, Suppose f_{R}^{α} be an idea of R for all $\alpha \in f_{R}(R) \cup\left\{\beta \in P(U) \mid \beta \subseteq f_{R}(0)\right\}$. Let $x, y, r \in R$ such that $\alpha=f_{R}(x) \cap f_{R}(y)$. Since $x-y \in f_{R}^{\alpha}$ so $f_{R}^{\alpha}(x-y) \supseteq \alpha=f_{R}(x) \cap f_{R}(y)$. If $\beta=f_{R}(x)$, then since $r x \in f_{R}^{\alpha}$ so $f_{R}^{\alpha}(r x) \supseteq \beta=f_{R}(x)$. Hence, $f_{R} \in S_{I}(U)$.
Proposition 2.13. Let $f_{R}, g_{R} \in S_{I}(U)$. Then the following assertions hold.
(1) $f_{R}(0) \supseteq f_{R}(x)$ for all $x \in R$.
(2) $f_{R}(x)=f_{R}(-x)$.
(3) If R is with identity 1 , then $f_{R}(1) \subseteq f_{R}(x)$ for all $x \in R$.
(4) If $f_{R}(x-y)=f_{R}(0)$, then $f_{R}(x)=f_{R}(y)$ for all $x, y \in R$.
(5) f_{R}^{*} is an ideal of R.
(6) Let for all $\alpha, \beta \in P(U)$, If $\alpha \neq \emptyset \neq \beta$, then $\alpha \cap \beta \neq \emptyset$. Then f_{R}^{\star} is an ideal of R.
(7) $f_{R}^{*} \cap g_{R}^{*} \subseteq\left(f_{R} \cap g_{R}\right)^{*}$.

Proof. (1) $f_{R}(0)=f_{R}(x-x) \supseteq f_{R}(x) \cap f_{R}(x)=f_{R}(x)$.
(2) $f_{R}(x)=f_{R}(0-(-x)) \supseteq f_{R}(0) \cap f_{R}(-x)=f_{R}(-x)=f_{R}(0-x) \supseteq f_{R}(0) \cap f_{R}(x)=f_{R}(x)$ and so $f_{R}(x)=f_{R}(-x)$.
(3) $f_{R}(x)=f_{R}(x 1) \supseteq f_{R}(1)$ for all $x \in R$.

$$
\begin{gather*}
f_{R}(x)=f_{R}(x-y+y)=f_{R}(x-y-(-y)) \supseteq f_{R}(x-y) \cap f_{R}(-y) \tag{4}\\
=f_{R}(0) \cap f_{R}(y)=f_{R}(y)=f_{R}(x-(x-y)) \supseteq f_{R}(x) \cap f_{R}(x-y)=f_{R}(x) \cap f_{R}(0)=f_{R}(x)
\end{gather*}
$$

and then $f_{R}(x)=f_{R}(y)$ for all $x, y \in R$.
(5) Let $x, y \in f_{R}^{*}$ and $r \in R$. Then $f_{R}(x-y) \supseteq f_{R}(x) \cap f_{R}(y)=f_{R}(0) \cap f_{R}(0)=f_{R}(0) \supseteq f_{R}(x-y)$ and so $f_{R}(x-y)=f_{R}(0)$. Also $f_{R}(r x) \supseteq f_{R}(x)=f_{R}(0) \supseteq f_{R}(r x)$. Thus, $x-y, r x \in f_{R}^{*}$, then f_{R}^{*} is an ideal of R.
(6) Let $x, y \in f_{R}^{\star}$ and $r \in R$. Since $f_{R}(x-y) \supseteq f_{R}(x) \cap f_{R}(y) \neq \emptyset$ and $f_{R}(r x) \supseteq f_{R}(x) \neq \emptyset$ so $x-y, r x \in f_{R}^{\star}$ and then f_{R}^{\star} is an ideal of R.
(7) If $x \in f_{R}^{*} \cap g_{R}^{*}$, then $x \in f_{R}^{*}$ and $x \in g_{R}^{*}$. Hence, $f_{R}(x)=f_{R}(0)$ and $g_{R}(x)=g_{R}(0)$. Now $\left(f_{R} \cap g_{R}\right)(x)=f_{R}(x) \cap g_{R}(x)=f_{R}(0) \cap g_{R}(0)=\left(f_{R} \cap g_{R}\right)(0)$. Thus, $x \in\left(f_{R} \cap g_{R}\right)^{*}$ and hence, $f_{R}^{*} \cap g_{R}^{*} \subseteq\left(f_{R} \cap g_{R}\right)^{*}$.
Proposition 2.14. If $f_{R}, g_{R} \in S_{I}(U)$ and $f_{R}(0)=g_{R}(0)$, then $f_{R}^{*} \cap g_{R}^{*}=\left(f_{R} \cap g_{R}\right)^{*}$.
Proof. Let $x \in\left(f_{R} \cap g_{R}\right)^{*}$ and so $\left(f_{R} \cap g_{R}\right)(x)=\left(f_{R} \cap g_{R}\right)(0)$. Then $f_{R}(x) \cap g_{R}(x)=f_{R}(0) \cap$ $g_{R}(0)=f_{R}(0) \subseteq f_{R}(x) \subseteq f_{R}(0)$ and hence, $f_{R}(x)=f_{R}(0)$. Similarly, $g_{R}(x)=g_{R}(0)$. Therefore $x \in f_{R}^{*} \cap g_{R}^{*}$ and so $\left(f_{R} \cap g_{R}\right)^{*} \subseteq f_{R}^{*} \cap g_{R}^{*}$. Also from Proposition 2.10 (7) we have that $f_{R}^{*} \cap g_{R}^{*} \subseteq$ $\left(f_{R} \cap g_{R}\right)^{*}$. Thus, $f_{R}^{*} \cap g_{R}^{*}=\left(f_{R} \cap g_{R}\right)^{*}$.
Proposition 2.15. Let $f_{R} \in S_{I}(U)$. Then for all $i \in \mathbb{N}$ the following assertions hold.
(1) $f_{R}^{i}(0)=f_{R}(0)$.
(2) $f_{R}^{(i)}(0)=f_{R}(0)$.

Proof. (1) The result is true for $i=1$. Assume the result is true for $i \geq 1$. Now $f_{R}^{i+1}(0)=$ $\cup\left\{f_{R}^{i}(x) \cap f_{R}(y) \mid x, y \in R, 0=x y\right\}=f_{R}(0)$. (Since the union is attained when $x=y=0$.) The result now follows by induction.
(2) By (1) and from $f_{R}(0)=f_{R}^{i}(0) \subseteq f_{R}^{(i)}(0) \subseteq f_{R}(0)$ we obtain $f_{R}^{(i)}(0)=f_{R}(0)$.

Proposition 2.16. Let $f_{R} \in S_{I}(U)$. Then for all $i \in \mathbb{N}$, we have the follwing statements.
(1) $\left(f_{R}^{i}\right)^{*} \subseteq f_{R}^{*}$.
(2) $\left(f_{R}^{(i)}\right)^{*} \subseteq f_{R}^{*}$.

Proof. (1) Let $x \in\left(f_{R}^{i}\right)^{*}$ then $f_{R}^{i}(x)=f_{R}^{i}(0)=f_{R}(0)$. Since $f_{R}^{i}(x) \subseteq f_{R}(x)$ so $f_{R}(0) \subseteq f_{R}(x) \subseteq$ $f_{R}(0)$ and hence, $f_{R}(x)=f_{R}(0)$.
(2) The proof is similar to (1).

Proposition 2.17. Let $f_{R} \in S_{I}(U)$ and $k \in \mathbb{N}$. If $x_{1}, x_{2}, \ldots, x_{k} \in R$, then
(1) $f_{R}^{k}\left(x_{1} x_{2} \ldots x_{k}\right) \supseteq \cap_{i=1}^{k} f_{R}\left(x_{i}\right)$.
(2) $f_{R}^{(k)}\left(x_{1} x_{2} \ldots x_{k}\right) \supseteq \cap_{i=1}^{k} f_{R}\left(x_{i}\right)$.

Proof. (1) The result is true for $k=1$. Suppose the result is true for $k \geq 1$. Now

$$
\begin{aligned}
f_{R}^{k+1}\left(x_{1} x_{2} \ldots x_{k+1}\right) & =\left(f_{R}^{k} \circ f_{R}\right)\left(x_{1} x_{2} \ldots x_{k}\right) \\
& \supseteq f_{R}^{k}\left(x_{1} x_{2} \ldots x_{k}\right) \cap f_{R}\left(x_{k+1}\right) \supseteq \cap_{i=1}^{k} f_{R}\left(x_{i}\right) \cap f_{R}\left(x_{k+1}\right)=\cap_{i=1}^{k+1} f_{R}\left(x_{i}\right) .
\end{aligned}
$$

and so $f_{R}^{k}\left(x_{1} x_{2} \ldots x_{k}\right) \supseteq \cap_{i=1}^{k} f_{R}\left(x_{i}\right)$.
(2) Use (1), and $f_{R}^{k} \subseteq f_{R}^{(k)} \subseteq f_{R}$.

Proposition 2.18. Let $f_{R}, g_{R}, h_{R} \in S_{I}(U)$. Then $f_{R} \circ g_{R} \subseteq h_{R}$ if and only if $f_{R} g_{R} \subseteq h_{R}$.
Proof. Let $f_{R} g_{R} \subseteq h_{R}$ then $f_{R} \circ g_{R} \subseteq f_{R} g_{R} \subseteq h_{R}$. Conversely, let $f_{R} \circ g_{R} \subseteq h_{R}$. Let $x \in R$ and $x=\sum_{i=1}^{n} y_{i} z_{i}$ such that $y_{i}, z_{i} \in R, i=1,2, . ., n$. We know that

$$
h_{R}\left(y_{i} z_{i}\right) \supseteq\left(f_{R} \circ g_{R}\right)\left(y_{i} z_{i}\right) \supseteq f_{R}\left(y_{i}\right) \cap g_{R}\left(z_{i}\right),
$$

for all $i=1,2, . ., n$. Now from Proposisition 2.14, we obtain

$$
h_{R}(x)=h_{R}\left(\sum_{i=1}^{n} y_{i} z_{i}\right) \supseteq \cap_{i=1}^{n} h_{R}\left(y_{i} z_{i}\right) \supseteq \cap_{i=1}^{n}\left(f_{R}\left(y_{i}\right) \cap g_{R}\left(z_{i}\right)\right) .
$$

Thus, $h_{R}(x) \supseteq \cup\left\{\cap_{i=1}^{n}\left(f_{R}\left(y_{i}\right) \cap g_{R}\left(z_{i}\right)\right) \mid x=\sum_{i=1}^{n} y_{i} z_{i}, n \in \mathbb{N}\right\}=f_{R} g_{R}(x)$. Therefore, $f_{R} g_{R} \subseteq$ h_{R}.
Proposition 2.19. If $f_{R}, g_{R} \in S_{R}(U)$, then $f_{R}^{\alpha}+g_{R}^{\alpha} \subseteq\left(f_{R}+g_{R}\right)^{\alpha}$ for all $\alpha \in P(U)$.
Proof. Let $x \in f_{R}^{\alpha}+g_{R}^{\alpha}$. Then $x=y+z$ such that $y \in f_{R}^{\alpha}$ and $z \in g_{R}^{\alpha}$. So $f_{R}(y) \supseteq \alpha$ and $g_{R}(z) \supseteq \alpha$. Now

$$
\left(f_{R}+g_{R}\right)(x)=\cup\left\{f_{R}(y) \cap g_{R}(z) \mid x=y+z\right\} \supseteq \alpha .
$$

Hence, $x \in\left(f_{R}+g_{R}\right)^{\alpha}$ and then $f_{R}^{\alpha}+g_{R}^{\alpha} \subseteq\left(f_{R}+g_{R}\right)^{\alpha}$.
Proposition 2.20. Let $\left\{f_{R}\right\}_{i \in I} \in S_{I}(U)$. Then $f_{R}=\cap_{i \in I}\left\{f_{R}\right\}_{i \in I} \in S_{I}(U)$.
Proof. Let $x, y \in R$. Then

$$
\begin{aligned}
f_{R}(x-y) & =\cap_{i \in I}\left\{f_{R}\right\}_{i \in I}(x-y)=\cap_{i \in I}\left(\left\{f_{R}\right\}_{i \in I}\right)(x-y) \\
& \supseteq \cap_{i \in I}\left(\left\{f_{R}\right\}_{i \in I}(x) \cap\left\{f_{R}\right\}_{i \in I}(y)\right)=\cap_{i \in I}\left\{f_{R}\right\}_{i \in I}(x) \cap \cap_{i \in I}\left\{f_{R}\right\}_{i \in I}(y) \\
& =f_{R}(x) \cap f_{R}(y) .
\end{aligned}
$$

Also

$$
\begin{aligned}
f_{R}(x y) & =\cap_{i \in I}\left\{f_{R}\right\}_{i \in I}(x y)=\cap_{i \in I}\left(\left\{f_{R}\right\}_{i \in I}\right)(x y)=\cap_{i \in I}\left(\left\{f_{R}\right\}_{i \in I}(x y)\right) \\
& \supseteq \cap_{i \in I}\left(\left\{f_{R}\right\}_{i \in I}(x)\right)=f_{R}(x) .
\end{aligned}
$$

Therefore, $f_{R} \in S_{I}(U)$.

3. Generated Soft Subideals

In this section, we introduce the concepts of generated goft subideals and investigte their properties.

Definition 3.1. Let $f_{R} \in S(U)$. Define $<f_{R}>=\cap\left\{g_{R} \mid f_{R} \subseteq g_{R}, g_{R} \in S_{I}(U)\right\}$ and is called the soft subideal of R generated by f_{R}. Note $\left\langle f_{R}\right\rangle$ is the smallest soft subideal of R containing f_{R}.

Corollary 3.2. Let $f_{R}, g_{R} \in S(U)$. Then
(1) $f_{R} \in S_{I}(U)$ if and only if $\left\langle f_{R}\right\rangle=f_{R}$.
(2) If $f_{R} \subseteq g_{R}$, then $<f_{R}>\subseteq<g_{R}>$.

Proposition 3.3. Let A be a nonempty subset of R and $<A\rangle$ is the ideal of R generated by A. Let $f_{R}, g_{R} \in S(U)$ such that $g_{R}(x)=\cup\left\{\cap_{y \in A} f_{R}(y)|A \subseteq R, 1 \leq|A|<\infty, x \in<A>\}\right.$ for all $x \in R$. Then $\left\langle f_{R}\right\rangle=g_{R}$.
Proof. It is obvious that $f_{R} \subseteq g_{R}$ and $g_{R}(-x)=g_{R}(x)$ for all $x \in R$. Let $x, y \in R$ and we prove $g_{R} \in S_{I}(U)$.
(1) If $x \in<A>, y \in, A, B \subseteq R, 1 \leq|A|<\infty, 1 \leq|B|<\infty$, then $x+y \in<A \cup B>$. Then

$$
g_{R}(x+y) \supseteq \cap_{z \in A \cup B} f_{R}(z) \supseteq\left(\cap_{u \in A} f_{R}(u)\right) \cap\left(\cap_{v \in B} f_{R}(v)\right),
$$

and so

$$
\begin{aligned}
g_{R}(x+y) & \supseteq \cup\left\{\left(\cap_{u \in A} f_{R}(u)\right) \cap\left(\cap_{v \in B} f_{R}(v)\right)|A, B \subseteq R, 1 \leq|A|,|B|<\infty, x \in<A>, y \in\}\right. \\
& =\left(\cup\left\{\left(\cap_{u \in A} f_{R}(u)\right)|A \subseteq R, 1 \leq|A|<\infty, x \in<A>\}\right)\right. \\
& \cap\left(\cup\left\{\left(\cap_{v \in B} f_{R}(v)\right)|B \subseteq R, 1 \leq|B|<\infty, y \in\}\right)\right. \\
& =g_{R}(x) \cap g_{R}(y)
\end{aligned}
$$

and hence, $g_{R}(x+y) \supseteq g_{R}(x) \cap g_{R}(y)$.
(2) Also if $B \subseteq R, 1 \leq|B|<\infty, y \in$, then $x y \in$. Therefore

$$
\begin{aligned}
g_{R}(x y) & =\cup\left\{\left(\cap_{z \in B} f_{R}(z)\right)|B \subseteq R, 1 \leq|B|<\infty, x y \in\}\right. \\
& \supseteq \cup\left\{\left(\cap_{z \in B} f_{R}(z)\right)|B \subseteq R, 1 \leq|B|<\infty, y \in\}\right. \\
& =g_{R}(y)
\end{aligned}
$$

and then $g_{R}(x y) \supseteq g_{R}(y)$.
Now (1) and (2) show that $g_{R} \in S_{I}(U)$. Let $h_{R} \in S_{I}(U)$ such that $f_{R} \subseteq h_{R}$. Suppose $x \in R$ and $A=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ with $x \in<A>$. Then there exist $x_{1}, x_{2}, \ldots, x_{n} \in R$ and integers $m_{1}, m_{2}, \ldots, m_{n}$ such that $x=\sum_{i=1}^{n} x_{i} y_{i}+\sum_{i=1}^{n} m_{i} y_{i}$. From $h_{R} \in S_{I}(U)$ we obtain

$$
\begin{aligned}
h_{R}(x) & =h_{R}\left(\sum_{i=1}^{n} x_{i} y_{i}+\sum_{i=1}^{n} m_{i} y_{i}\right) \\
& \supseteq h_{R}\left(\sum_{i=1}^{n} x_{i} y_{i}\right) \cap h_{R}\left(\sum_{i=1}^{n} m_{i} y_{i}\right) \supseteq\left(\cap_{i=1}^{n} h_{R}\left(x_{i} y_{i}\right)\right) \cap\left(\cap_{i=1}^{n} h_{R}\left(m_{i} y_{i}\right)\right) \\
& \supseteq \cap_{i=1}^{n} h_{R}\left(y_{i}\right) .
\end{aligned}
$$

Now

$$
\begin{aligned}
h_{R}(x) & \supseteq \cup\left\{\cap_{y \in A} h_{R}(y)|A \subseteq R, 1 \leq|A|<\infty, x \in<A>\}\right. \\
& \supseteq \cup\left\{\cap_{y \in A} f_{R}(y)|A \subseteq R, 1 \leq|A|<\infty, x \in<A>\}\right. \\
& =g_{R}(x)
\end{aligned}
$$

and so $h_{R} \supseteq g_{R}$. Hence, $<f_{R}>=g_{R}$.
Proposition 3.4. Let $f_{R}, g_{R} \in S_{I}(U)$ and $f_{R}(0)=g_{R}(0)$. Then
(1) $f_{R}+g_{R} \in S_{I}(U)$.
(2) $f_{R}+g_{R}=<f_{R} \cup g_{R}>$.

Proof. Let $x, y \in R$. It is clear that $\left(f_{R}+g_{R}\right)(-x)=\left(f_{R}+g_{R}\right)(x)$. Now

$$
\begin{align*}
& \left(f_{R}+g_{R}\right)(x+y)=\cup\left\{f_{R}(u) \cap g_{R}(v) \mid u, v \in R, u+v=x+y\right\} \tag{1}\\
\supseteq & \cup\left\{f_{R}\left(u_{1}+v_{1}\right) \cap g_{R}\left(u_{2}+v_{2}\right) \mid u_{1}, u_{2}, v_{1}, v_{2} \in R, u_{1}+u_{2}=x, v_{1}+v_{2}=y\right\} \\
\supseteq & \cup\left\{\left(f_{R}\left(u_{1}\right) \cap f_{R}\left(v_{1}\right)\right) \cap\left(g_{R}\left(u_{2}\right) \cap g_{R}\left(v_{2}\right)\right) \mid u_{1}, u_{2}, v_{1}, v_{2} \in R, u_{1}+u_{2}=x, v_{1}+v_{2}=y\right\} \\
= & \cup\left\{\left(f_{R}\left(u_{1}\right) \cap g_{R}\left(u_{2}\right)\right) \cap\left(f_{R}\left(v_{1}\right) \cap f_{R}\left(v_{2}\right)\right) \mid u_{1}, u_{2}, v_{1}, v_{2} \in R, u_{1}+u_{2}=x, v_{1}+v_{2}=y\right\} \\
= & \left(\cup\left\{f_{R}\left(u_{1}\right) \cap g_{R}\left(u_{2}\right) \mid u_{1}, u_{2} \in R, u_{1}+u_{2}=x\right\}\right) \cap\left(\cup\left\{f_{R}\left(v_{1}\right) \cap g_{R}\left(v_{2}\right) \mid v_{1}, v_{2} \in R, v_{1}+v_{2}=y\right\}\right) \\
= & \left(f_{R}+g_{R}\right)(x) \cap\left(f_{R}+g_{R}\right)(y) .
\end{align*}
$$

Also

$$
\begin{aligned}
\left(f_{R}+g_{R}\right)(x y) & \supseteq \cup\left\{f_{R}(x u) \cap g_{R}(x v) \mid u, v \in R, u+v=y\right\} \\
& \supseteq \cup\left\{f_{R}(u) \cap g_{R}(v) \mid u, v \in R, u+v=y\right\} \\
& =\left(f_{R}+g_{R}\right)(y) .
\end{aligned}
$$

Hence, $f_{R}+g_{R} \in S_{I}(U)$.
(2)

$$
\left(f_{R}+g_{R}\right)(x)=\cup\left\{f_{R}(u) \cap g_{R}(v) \mid u, v \in R, u+v=x\right\} \supseteq f_{R}(x) \cap g_{R}(0)=f_{R}(x)
$$

and then $f_{R}+g_{R} \supseteq f_{R}$. Similarly, $f_{R}+g_{R} \supseteq g_{R}$. Thus, $f_{R}+g_{R} \supseteq f_{R} \cup g_{R}$. Let $h_{R} \in S_{I}(U)$ and $f_{R} \cup g_{R} \subseteq h_{R}$. Then

$$
\begin{aligned}
\left(f_{R}+g_{R}\right)(x) & =\cup\left\{f_{R}(u) \cap g_{R}(v) \mid u, v \in R, u+v=x\right\} \\
& \subseteq \cup\left\{h_{R}(u) \cap h_{R}(v) \mid u, v \in R, u+v=x\right\}=h_{R}(x)
\end{aligned}
$$

and so $f_{R}+g_{R} \subseteq h_{R}$. Then $f_{R}+g_{R}$ is the smallest soft subideal of R such that $f_{R} \cup g_{R} \subseteq f_{R}+g_{R}$ and then $f_{R}+g_{R}=<f_{R} \cup g_{R}>$.

The proof of the following proposition is straightforward.
Proposition 3.5. Let $f_{R}, g_{R} \in S(U)$.
(1) If $f_{R} \in S_{I}(U)$, then $f_{R} \circ g_{R} \subseteq f_{R}$.
(2) If $f_{R}, g_{R} \in S_{I}(U)$, then $f_{R} \circ g_{R} \subseteq f_{R} \cap g_{R}$.

Proposition 3.6. If $f_{R}, g_{R} \in S_{R}(U)$, then $f_{R} g_{R} \in S_{R}(U)$.

Proof. It is easy to prove that $\left(f_{R} g_{R}\right)(-x)=\left(f_{R} g_{R}\right)(x)$ for all $x \in R$. From Prpposition 2.4 (4) we get that

$$
\left(f_{R} g_{R}\right)(x+y) \supseteq\left(f_{R} g_{R}\right)(x) \cap\left(f_{R} g_{R}\right)(y)
$$

for all $x, y \in R$. Let $x=\sum_{i=1}^{m} x_{i} s_{i}$ and $y=\sum_{j=1}^{n} y_{j} t_{i}$ where $x_{i}, s_{i}, y_{j}, t_{j} \in R$ for $1 \leq i \leq m, 1 \leq$ $j \leq n$. Now

$$
x y=\left(\sum_{i=1}^{m} x_{i} s_{i}\right)\left(\sum_{j=1}^{n} y_{j} t_{i}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(x_{i} y_{j}\right)\left(s_{i} t_{j}\right)
$$

and by the definition of $f_{R} g_{R}$ we have

$$
\begin{aligned}
\left(f_{R} g_{R}\right)(x y) & \supseteq \cap_{i=1}^{m} \cap_{j=1}^{n}\left(f_{R}\left(x_{i} y_{j}\right)\right) \cap\left(g_{R}\left(s_{i} t_{j}\right)\right) \\
& \supseteq \cap_{i=1}^{m} \cap_{j=1}^{n}\left(f_{R}\left(x_{i}\right) \cap f_{R}\left(y_{j}\right)\right) \cap\left(g_{R}\left(s_{i}\right) \cap g_{R}\left(t_{j}\right)\right) \\
& =\cap_{i=1}^{m} \cap_{j=1}^{n}\left(f_{R}\left(x_{i}\right) \cap g_{R}\left(s_{i}\right)\right) \cap\left(f_{R}\left(y_{j}\right) \cap g_{R}\left(t_{j}\right)\right) \\
& =\left(\cap_{i=1}^{m}\left(f_{R}\left(x_{i}\right) \cap g_{R}\left(s_{i}\right)\right)\right) \cap\left(\cap_{j=1}^{n}\left(f_{R}\left(y_{j}\right) \cap g_{R}\left(t_{j}\right)\right)\right)
\end{aligned}
$$

and hence,

$$
\begin{aligned}
\left(f_{R} g_{R}\right)(x y) & \supseteq\left(\cup\left\{\cap_{i=1}^{m}\left(f_{R}\left(x_{i}\right) \cap g_{R}\left(s_{i}\right)\right) \mid x_{i}, s_{i} \in R, 1 \leq i \leq m, x=\sum_{i=1}^{m} x_{i} s_{i}\right\}\right) \\
& \cap\left(\cup\left\{\cap_{j=1}^{n}\left(f_{R}\left(y_{j}\right) \cap g_{R}\left(t_{j}\right)\right) \mid y_{j}, t_{j} \in R, 1 \leq j \leq n, y=\sum_{j=1}^{n} y_{j} t_{i}\right\}\right) \\
& =\left(f_{R} g_{R}\right)(x) \cap\left(f_{R} g_{R}\right)(y)
\end{aligned}
$$

Therefore $f_{R} g_{R} \in S_{R}(U)$.
Proposition 3.7. Let $f_{R} \in S_{I}(U)$ and $g_{R} \in S_{R}(U)$. Then
(1) $f_{R} g_{R} \in S_{I}(U)$.
(2) $f_{R} g_{R}=<f_{R} \circ g_{R}>$.

Proof. Let $x, y \in R$. Then
(1) $\left(f_{R} g_{R}\right)(-x)=\left(f_{R} g_{R}\right)(x)$ and from Proposition $2.4(4)$ we have $\left(f_{R} g_{R}\right)(x+y) \supseteq\left(f_{R} g_{R}\right)(x) \cap$ $\left(f_{R} g_{R}\right)(y)$. Also

$$
\begin{aligned}
& \left(f_{R} g_{R}\right)(x y) \supseteq \cup\left\{\cap_{i=1}^{n}\left(f_{R}\left(x u_{i}\right) \cap g_{R}\left(v_{i}\right)\right) \mid u_{i}, v_{i} \in R, 1 \leq i \leq n, y=\sum_{i=1}^{n} u_{i} v_{i}\right\} \\
& \supseteq \cup\left\{\cap_{i=1}^{n}\left(f_{R}\left(u_{i}\right) \cap g_{R}\left(v_{i}\right)\right) \mid u_{i}, v_{i} \in R, 1 \leq i \leq n, y=\sum_{i=1}^{n} u_{i} v_{i}\right\}=\left(f_{R} g_{R}\right)(y)
\end{aligned}
$$

Thus, $f_{R} g_{R} \in S_{I}(U)$.
(2) By Proposision 2.4 (1) we obtain that $f_{R} \circ g_{R} \subseteq f_{R} g_{R}$. If $h_{R} \in S_{R}(U)$ and $f_{R} \circ g_{R} \subseteq h_{R}$, then

$$
\begin{gathered}
\left(f_{R} g_{R}\right)(x)=\cup\left\{\cap_{i=1}^{n}\left(f_{R}\left(y_{i}\right) \cap g_{R}\left(z_{i}\right)\right) \mid y_{i}, z_{i} \in R, 1 \leq i \leq n, x=\sum_{i=1}^{n} y_{i} z_{i}\right\} \\
\subseteq \cup\left\{\cap_{i=1}^{n}\left(f_{R} \circ g_{R}\right)\left(y_{i} z_{i}\right) \mid y_{i}, z_{i} \in R, 1 \leq i \leq n, x=\sum_{i=1}^{n} y_{i} z_{i}\right\}
\end{gathered}
$$

$$
\begin{aligned}
& \subseteq \cup\left\{\cap_{i=1}^{n} h_{R}\left(y_{i} z_{i}\right) \mid y_{i}, z_{i} \in R, 1 \leq i \leq n, x=\sum_{i=1}^{n} y_{i} z_{i}\right\} \\
& \subseteq \cup\left\{h_{R}\left(\sum_{i=1}^{n} y_{i} z_{i}\right) \mid y_{i}, z_{i} \in R, 1 \leq i \leq n, x=\sum_{i=1}^{n} y_{i} z_{i}\right\} \\
& =h_{R}(x)
\end{aligned}
$$

Therefore $f_{R} g_{R} \subseteq h_{R}$ and $f_{R} g_{R}=<f_{R} \circ g_{R}>$.
Proposition 3.8. Let $f_{R}, g_{R} \in S_{I}(U)$. Then $f_{R} g_{R} \subseteq f_{R} \cap g_{R}$.
Proof. The result follows from Proposition 2.15 and Proposition 3.5 (2).
Proposition 3.9. Let $f_{R}, g_{R}, h_{R} \in S_{I}(U)$ and $g_{R}(0)=h_{R}(0)$. Then $f_{R}\left(g_{R}+h_{R}\right)=f_{R} g_{R}+f_{R} h_{R}$.
Proof. From $g_{R} \subseteq g_{R}+h_{R}$ and $h_{R} \subseteq g_{R}+h_{R}$ we obtain $f_{R} g_{R} \subseteq f_{R}\left(g_{R}+h_{R}\right)$ and $f_{R} h_{R} \subseteq$ $f_{R}\left(g_{R}+h_{R}\right)$ and therefore $f_{R} g_{R}+f_{R} h_{R} \subseteq f_{R}\left(g_{R}+h_{R}\right)$. Suppose hat $x \in R$. Then

$$
\begin{aligned}
& \left(f_{R}\left(g_{R}+h_{R}\right)\right)(x)=\cup\left\{\cap_{i=1}^{n}\left(f_{R}\left(y_{i}\right) \cap\left(g_{R}+h_{R}\right)\left(z_{i}\right)\right) \mid y_{i}, z_{i} \in R, 1 \leq i \leq n, n \in \mathbb{N}, x=\sum_{i=1}^{n} y_{i} z_{i}\right\} \\
& =\cup\left\{\cap _ { i = 1 } ^ { n } \left(f_{R}\left(y_{i}\right) \cap\left(\cup\left\{g_{R}\left(u_{i}\right) \cap h_{R}\left(v_{i}\right) \mid u_{i}, v_{i} \in R, u_{i}+v_{i}=z_{i}\right\}\right) \mid y_{i}, z_{i} \in R, 1 \leq i \leq n, n \in \mathbb{N},\right.\right. \\
& \left.x=\sum_{i=1}^{n} y_{i} z_{i}\right\}=\cup\left\{\cap_{i=1}^{n}\left(f_{R}\left(y_{i}\right) \cap g_{R}\left(u_{i}\right) \cap h_{R}\left(v_{i}\right)\right) \mid u_{i}, v_{i}, y_{i} \in R, 1 \leq i \leq n, n \in \mathbb{N}, x=\sum_{i=1}^{n}\left(y_{i} u_{i}+y_{i} v_{i}\right)\right\} \\
& \subseteq \cup\left\{\left(\cap_{i=1}^{p}\left(f_{R}\left(s_{i}\right) \cap g_{R}\left(t_{i}\right)\right)\right) \cap\left(\cap_{k=1}^{q}\left(f_{R}\left(r_{k}\right) \cap h_{R}\left(w_{k}\right)\right)\right) \mid s_{i}, t_{i}, r_{k}, w_{k} \in R, 1 \leq i \leq p, 1 \leq k \leq q, p, q \in \mathbb{N},\right. \\
& \left.x=\sum_{i=1}^{p} s_{i} t_{i}+\sum_{k=1}^{q} r_{k} w_{k}\right\}=\cup\left\{\left(f_{R} g_{R}\right)(a) \cap\left(f_{R} g_{R}\right)(b) \mid a, b \in R, a+b=x\right\}=\left(f_{R} g_{R}+f_{R} h_{R}\right)(x) .
\end{aligned}
$$

Thus, $f_{R}\left(g_{R}+h_{R}\right) \subseteq f_{R} g_{R}+f_{R} h_{R}$. Therefore $f_{R}\left(g_{R}+h_{R}\right)=f_{R} g_{R}+f_{R} h_{R}$.

4. Residual Quotient of Soft Subideals

In this section, we introduce the residual quotient of soft subideals.
Definition 4.1. Let $f_{R}, g_{R} \in S(U)$. Define $f_{R}: g_{R} \in S(U)$ as follows:

$$
f_{R}: g_{R}=\cup\left\{h_{R} \mid h_{R} \in S_{I}(U), h_{R} \circ g_{R} \subseteq f_{R}\right\}
$$

Proposition 4.2. If $f_{R}, g_{R} \in S_{I}(U)$, then $f_{R} \subseteq f_{R}: g_{R}$ and $f_{R}: g_{R} \in S_{I}(U)$.
Proof. We know that $f_{R} \circ g_{R} \subseteq f_{R}$ and then $f_{R}: g_{R}=\cup\left\{h_{R} \mid h_{R} \in S_{I}(U), h_{R} \circ g_{R} \subseteq f_{R}\right\} \supseteq f_{R}$.
Now we prove $f_{R}: g_{R} \in S_{I}(U)$. Let $x, y \in R$. It is clear $\left(f_{R}: g_{R}\right)(-x)=\left(f_{R}: g_{R}\right)(x)$.

$$
\begin{align*}
\left(f_{R}: g_{R}\right)(x) \cap\left(f_{R}: g_{R}\right)(y) & =\left(\cup\left\{h_{R}(x) \mid h_{R} \in S_{I}(U), h_{R} \circ g_{R} \subseteq f_{R}\right\}\right) \tag{1}\\
& \cap\left(\cup\left\{k_{R}(y) \mid k_{R} \in S_{I}(U), k_{R} \circ g_{R} \subseteq f_{R}\right\}\right) \\
& =\cup\left\{h_{R}(x) \cap k_{R}(y) \mid h_{R}, k_{R} \in S_{I}(U),\left(h_{R} \circ g_{R}\right) \cup\left(k_{R} \circ g_{R}\right) \subseteq f_{R}\right\} \\
& \subseteq \cup\left\{\left(h_{R}+k_{R}\right)(x+y) \mid h_{R}, k_{R} \in S_{I}(U),\left(h_{R}+k_{R}\right) \circ g_{R}\right. \\
& \subseteq\left(f_{R}: g_{R}\right)(x+y)
\end{align*}
$$

(2)

$$
\begin{aligned}
\left(f_{R}: g_{R}\right)(x y) & =\left(\cup\left\{h_{R}(x) \mid h_{R} \in S_{I}(U), h_{R} \circ g_{R} \subseteq f_{R}\right\}\right) \\
& \supseteq \cup\left\{h_{R}(x) \mid h_{R} \in S_{I}(U), h_{R} \circ g_{R} \subseteq f_{R}\right\} \supseteq\left(f_{R}: g_{R}\right)(x)
\end{aligned}
$$

Then (1) and (2) show that $f_{R}: g_{R} \in S_{I}(U)$.
Proposition 4.3. Let $f_{R}, g_{R}, h_{R} \in S_{I}(U)$. If $f_{R} \subseteq g_{R}$, then
(1) $f_{R}: h_{R} \subseteq g_{R}: h_{R}$ and
(2) $h_{R}: f_{R} \supseteq h_{R}: g_{R}$.

Proof. (1)

$$
\begin{aligned}
\left(f_{R}: g_{R}\right) & =\cup\left\{k_{R} \mid k_{R} \in S_{I}(U), k_{R} \circ h_{R} \subseteq f_{R}\right\} \\
& \subseteq \cup\left\{k_{R} \mid k_{R} \in S_{I}(U), k_{R} \circ h_{R} \subseteq g_{R}\right\} \subseteq g_{R}: h_{R}
\end{aligned}
$$

(2)

$$
\begin{aligned}
h_{R}: f_{R} & =\cup\left\{k_{R} \mid k_{R} \in S_{I}(U), k_{R} \circ f_{R} \subseteq h_{R}\right\} \\
& \supseteq \cup\left\{k_{R} \mid k_{R} \in S_{I}(U), k_{R} \circ g_{R}=h_{R}: g_{R}\right.
\end{aligned}
$$

Proposition 4.4. Let $f_{R}, g_{R}, h_{R} \in S_{I}(U)$. Then
(1) $\left(f_{R}: g_{R}\right) g_{R} \subseteq f_{R}$.
(2) If $f_{R} \subseteq h_{R}$ and $h_{R} g_{R} \subseteq f_{R}$, then $h_{R} \subseteq f_{R}: g_{R}$.

Proof. Suppose that $x \in R$ and $x=\sum_{i=1}^{n} y_{i} z_{i}$ such that $y_{i}, z_{i} \in R, 1 \leq i \leq n, n \in \mathbb{N}$. If $f_{R} \supseteq h_{R} \circ g_{R}$, then

$$
f_{R}(x)=f_{R}\left(\sum_{i=1}^{n} y_{i} z_{i}\right) \supseteq \cap_{i=1}^{n} f_{R}\left(y_{i} z_{i}\right) \supseteq \cap_{i=1}^{n}\left(h_{R} \circ g_{R}\right)\left(y_{i} z_{i}\right) \supseteq \cap_{i=1}^{n}\left(h_{R}\left(y_{i}\right) \cap g_{R}\left(z_{i}\right)\right)
$$

and so $f_{R}(x) \supseteq \cap_{i=1}^{n}\left(\left(f_{R}: h_{R}\right)\left(y_{i}\right) \cap g_{R}\left(z_{i}\right)\right)$. Then

$$
f_{R}(x) \supseteq \cup\left\{\cap_{i=1}^{n}\left(\left(f_{R}: h_{R}\right)\left(y_{i}\right) \cap g_{R}\left(z_{i}\right)\right) \mid y_{i}, z_{i} \in R, 1 \leq i \leq n, n \in \mathbb{N}, x=\sum_{i=1}^{n} y_{i} z_{i}\right\}
$$

therefore, $\left(f_{R}: g_{R}\right) g_{R} \subseteq f_{R}$.
(2) By $h_{R} \circ g_{R} \subseteq h_{R} g_{R} \subseteq f_{R}$, we get $h_{R} \subseteq f_{R}: g_{R}$.

Proposition 4.5. If $\left(f_{R}\right)_{i}, g_{R} \in S_{I}(U)$, then $\left(\cap_{i=1}^{n}\left(f_{R}\right)_{i}\right): g_{R}=\cap_{i=1}^{n}\left(\left(f_{R}\right)_{i}: g_{R}\right)$ for all $i=$ $1,2,3, \ldots, n$.

Proof. It is enough to prove for $n=2$. Clearly, $\left(\left(f_{R}\right)_{1} \cap\left(f_{R}\right)_{2}\right): g_{R} \subseteq\left(\left(f_{R}\right)_{1}: g_{R}\right) \cap\left(\left(f_{R}\right)_{2}: g_{R}\right)$. Let $x \in R$ and $\alpha, \beta \in P(U)$. Let

$$
\alpha=\left(\left(\left(f_{R}\right)_{1} \cap\left(f_{R}\right)_{2}\right): g_{R}\right)(x)=\cup\left\{h_{R} \mid h_{R} \in S_{I}(U), h_{R} \circ g_{R} \subseteq\left(f_{R}\right)_{1} \cap\left(f_{R}\right)_{2}\right\}
$$

Now

$$
\begin{aligned}
& \left(\left(\left(f_{R}\right)_{1}: g_{R}\right) \cap\left(\left(f_{R}\right)_{2}: g_{R}\right)\right)(x)=\left(\left(f_{R}\right)_{1}: g_{R}\right)(x) \cap\left(\left(f_{R}\right)_{2}: g_{R}\right)(x) \\
& \quad=\left(\cup\left\{k_{R} \mid k_{R} \in S_{I}(U), k_{R} \circ g_{R} \subseteq\left(f_{R}\right)_{1}\right\}\right) \cap\left(\cup\left\{l_{R} \mid l_{R} \in S_{I}(U), l_{R} \circ g_{R} \subseteq\left(f_{R}\right)_{2}\right\}\right) \\
& \quad=\cup\left\{k_{R} \cap l_{R} \mid k_{R}, l_{R} \in S_{I}(U), k_{R} \circ g_{R} \subseteq\left(f_{R}\right)_{1}, l_{R} \circ g_{R} \subseteq\left(f_{R}\right)_{2}\right\}
\end{aligned}
$$

Let $k_{R} \circ g_{R} \subseteq\left(f_{R}\right)_{1}$ and $l_{R} \circ g_{R} \subseteq\left(f_{R}\right)_{2}$. If $\beta=k_{R}(x) \cap l_{R}(x)$, then $A=k_{R}^{\beta} \cap l_{R}^{\beta}$ is an ideal of R. Define $m_{R}: R \rightarrow P(U)$ as

$$
m_{R}(x)= \begin{cases}\beta & \text { if } x \in A \\ \emptyset & \text { if } x \notin A\end{cases}
$$

then $m_{R} \in S_{I}(U)$. Since $m_{R} \subseteq k_{R}$ and $m_{R} \subseteq l_{R}$ so $m_{R} \circ g_{R} \subseteq k_{R} \circ g_{R} \subseteq\left(f_{R}\right)_{1}$ and $m_{R} \circ g_{R} \subseteq$ $l_{R} \circ g_{R} \subseteq\left(f_{R}\right)_{2}$ and then $m_{R} \circ g_{R} \subseteq\left(f_{R}\right)_{1} \cap\left(f_{R}\right)_{2}$. Then $\alpha=\cup\left\{n_{R} \mid n_{R} \in S_{I}(U), n_{R} \circ g_{R} \subseteq\right.$ $\left.\left(f_{R}\right)_{1} \cap\left(f_{R}\right)_{2}\right\} \supseteq m_{R}(x)=\beta=k_{R}(x) \cap l_{R}(x)$. Therefore

$$
\begin{aligned}
\left(\left(\left(f_{R}\right)_{1} \cap\left(f_{R}\right)_{2}\right): g_{R}\right)(x)=\alpha & \supseteq \cup\left\{k_{R} \cap l_{R} \mid k_{R}, l_{R} \in S_{I}(U), k_{R} \circ g_{R} \subseteq\left(f_{R}\right)_{1}, l_{R} \circ g_{R} \subseteq\left(f_{R}\right)_{2}\right\} \\
& =\left(\left(\left(f_{R}\right)_{1}: g_{R}\right) \cap\left(\left(f_{R}\right)_{2}: g_{R}\right)\right)(x)
\end{aligned}
$$

Therefore $\left(\cap_{i=1}^{2}\left(f_{R}\right)_{i}\right): g_{R} \supseteq \cap_{i=1}^{2}\left(\left(f_{R}\right)_{i}: g_{R}\right)$. Then $\left(\cap_{i=1}^{2}\left(f_{R}\right)_{i}\right): g_{R}=\cap_{i=1}^{2}\left(\left(f_{R}\right)_{i}: g_{R}\right)$.
Definition 4.6. Let $f_{R} \in S(U)$ and $x \in R$. Let 0_{R} denotes the zero element of R. Define $f_{R}(0)_{\{x\}}: R \rightarrow P(U)$ as

$$
f_{R}(0)_{\{x\}}(y)=\left\{\begin{aligned}
f_{R}(0) & \text { if } y=x \\
\emptyset & \text { if } y \neq x
\end{aligned}\right.
$$

for all $y \in R$.
Definition 4.7. Let $f_{R} \in S(U)$ and $x \in R$. Then $f_{R}(0)_{\{x\}}+f_{R}$ is called a coset of f_{R}. Now for all $y \in R$ we have that

$$
\begin{aligned}
\left(f_{R}(0)_{\{x\}}+f_{R}\right)(y) & \left.=\cup\left\{f_{R}(0)_{\{x\}}\left(z_{1}\right) \cap f_{R}\left(z_{2}\right)\right\} \mid y=z_{1}+z_{2}\right\} \\
& \left.=\cup\left\{f_{R}(0) \cap f_{R}\left(z_{2}\right)\right\} \mid y=x+z_{2}\right\}=f_{R}\left(z_{2}\right)=f_{R}(y-x)
\end{aligned}
$$

We write $x+f_{R}$ for $f_{R}(0)_{\{x\}}+f_{R}$. Then $\left(x+f_{R}\right)(y)=f_{R}(y-x)$.
Proposition 4.8. Let $f_{R} \in S_{I}(U)$ and $x, y \in R$. Then $x+f_{R}=y+f_{R}$ if and only if $f_{R}(x-y)=$ $f_{R}(0)$.

Proof. If $x+f_{R}=y+f_{R}$, then $\left(x+f_{R}\right)(x)=\left(y+f_{R}\right)(x)$ and so $f_{R}(0)=f_{R}(x-x)=f_{R}(x-y)$. Conversely, if $z \in R$ and $f_{R}(x-y)=f_{R}(0)$, then

$$
\begin{aligned}
\left(x+f_{R}\right)(z) & =f_{R}(z-x)=f_{R}(z-y+y-x) \supseteq f_{R}(z-y) \cap f_{R}(y-x) \\
& =f_{R}(z-y) \cap f_{R}(0)=f_{R}(z-y)=\left(y+f_{R}\right)(z)
\end{aligned}
$$

and then $x+f_{R} \supseteq y+f_{R}$. Similarly, $y+f_{R} \subseteq x+f_{R}$. Therefore $x+f_{R}=y+f_{R}$.
Proposition 4.9. Let $f_{R} \in S_{I}(U)$. Define $R / f_{R}=\left\{x+f_{R} \mid x \in R\right\}$. Then $\left(R / f_{R},+\right.$. $)$ is a ring and is called the quotient ring of R by f_{R} such that + and. on R / f_{R} are as $\left(x+f_{R}\right)+\left(y+f_{R}\right)=$ $(x+y)+f_{R}$ and $\left(x+f_{R}\right) \cdot\left(y+f_{R}\right)=(x y)+f_{R}$ for all $x, y \in R$.

Proof. we prove that + and . are well defined. Let $x, y, z, t \in R$ and $x+f_{R}=z+f_{R}$ and $y+f_{R}=t+f_{R}$. Then by Proposition $4.8 f_{R}(x-z)=f_{R}(y-t)=f_{R}(0)$. Therefore

$$
\begin{aligned}
f_{R}(x+y-(z+t)) & =f_{R}(x-z+y-t) \supseteq f_{R}(x-z) \cap f_{R}(y-t) \\
& =f_{R}(0) \cap f_{R}(0)=f_{R}(0) \supseteq f_{R}(x+y-(z+t))
\end{aligned}
$$

so $f_{R}(x+y-(z+t))=f_{R}(0)$. Now by Proposition $4.8(x+y)+f_{R}=(z+t)+f_{R}$ and so + is well defined. Also

$$
\begin{aligned}
f_{R}(z t-x y) & =f_{R}(z t-z y+z y-x y) \\
& \supseteq f_{R}(z t-z y) \cap f_{R}(z y-x y) \\
& =f_{R}(z(t-y)) \cap f_{R}(y(z-x)) \\
& \supseteq\left(f_{R}(z) \cup f_{R}(t-y)\right) \cap\left(f_{R}(y) \cup f_{R}(z-x)\right) \\
& =\left(f_{R}(z) \cup f_{R}(0)\right) \cap\left(f_{R}(y) \cup f_{R}(0)\right)=f_{R}(0) \cap f_{R}(0)=f_{R}(0) \supseteq f_{R}(z t-x y)
\end{aligned}
$$

and then $f_{R}(z t-x y)=f_{R}(0)$. Now by Proposition $4.8(x y)+f_{R}=(z t)+f_{R}$ and so. is well defined.
Let 0_{R} denotes the zero element of R. Then $\left(0_{R}+f_{R}\right)(x)=f_{R}(x-0)=f_{R}(x)$ and then $0_{R}+f_{R}=f_{R}$. Also $-x+f_{R}+x+f_{R}=f_{R}$ then $-\left(x+f_{R}\right)=(-x)+f_{R}$ for all $x \in R$.

Proposition 4.10. If $f_{R} \in S_{I}(U)$, then $R / f_{R}^{*} \simeq R / f_{R}$.
Proof. Let $x, y \in R$ and define $\varphi: R \rightarrow R / f_{R}$ as $\varphi(x)=x+f_{R}$. Then $\varphi(x+y)=\varphi(x)+\varphi(y)$ and $\varphi(x y)=\varphi(x) \varphi(y)$ and so φ is a homomorphism of R onto R / f_{R}. Also

$$
\operatorname{ker} \varphi=\{x \in R \mid \varphi(x)=0\}=\left\{x \in R \mid x+f_{R}=f_{R}\right\}=\left\{x \in R \mid f_{R}(x)=f_{R}(0)\right\}=f_{R}^{*}
$$

Therefore $R / f_{R}^{*} \simeq R / f_{R}$.

In the following propositions we introduce the quotient soft subrings and soft subideals f_{R} relative to an ideal os R.
Proposition 4.11. Let $f_{R} \in S_{I}(U)$. Define $f_{R}^{(*)}: R / f_{R} \rightarrow P(U)$ as $f_{R}^{(*)}\left(x+f_{R}\right)=f_{R}(x)$ for all $x \in R$. Then $f_{R}^{(*)}$ is a soft subideal of R / f_{R}.

Proof. It is easy to prove that $f_{R}^{(*)}$ is well defined. Let $x, y \in R$, then

$$
\begin{aligned}
f_{R}(z t-x y) & \left.=f_{R}^{(*)}\left((x y)+f_{R}\right)\right) \\
& =f_{R}(x y) \supseteq f_{R}(x) \cup f_{R}(y)=f_{R}^{(*)}\left(x+f_{R}\right) \cup f_{R}^{(*)}\left(y+f_{R}\right)
\end{aligned}
$$

Also

$$
\begin{aligned}
f_{R}^{(*)}\left(\left(x+f_{R}\right)\left(y+f_{R}\right)\right) & \left.=f_{R}^{(*)}\left((x-y)+f_{R}\right)\right)=f_{R}(x-y) \\
& \supseteq f_{R}(x) \cap f_{R}(y)=f_{R}^{(*)}\left(x+f_{R}\right) \cap f_{R}^{(*)}\left(y+f_{R}\right)
\end{aligned}
$$

Thus, $f_{R}^{(*)}$ is a soft subideal of R / f_{R}.
Proposition 4.12. Let $f_{R} \in S_{R}(U)$ and let A be an ideal of R. Define $f_{R / A}: R / A \rightarrow P(U)$ as $f_{R / A}(x+A)=\cup\left\{f_{R}(z) \mid z \in[x]\right\}$ such that $[x]=x+A$ for all $x \in R$. Then $f_{R / A} \in S_{R / A}(U)$.

Proof. Let $x, y \in R$. Then

$$
\begin{aligned}
f_{R / A}([x]-[y]) & =f_{R / A}([x-y]) \\
& =\cup\left\{f_{R}(x-y+z) \mid z \in A\right\} \\
& \supseteq \cup\left\{f_{R}(x-y+a-b) \mid a, b \in A\right\} \\
& \supseteq \cup\left\{f_{R}(x+a) \cap f_{R}(y+b) \mid a, b \in A\right\} \\
& =\left(\cup\left\{f_{R}(x+a) \mid a \in A\right\}\right) \cap\left(\cup\left\{f_{R}(y+b) \mid b \in A\right\}\right) \\
& =f_{R / A}([x]) \cap f_{R / A}([y]) .
\end{aligned}
$$

Also

$$
\begin{aligned}
f_{R / A}([x][y]) & =f_{R / A}([x y])=\cup\left\{f_{R}(x y+z) \mid z \in A\right\} \\
& \supseteq \cup\left\{f_{R}(x y+(x b+a y+a b)) \mid a, b \in A\right\} \\
& =\cup\left\{f_{R}((x+a)(y+b)) \mid a, b \in A\right\} \\
& =\left(\cup\left\{f_{R}(x+a) \mid a \in A\right\}\right) \cap\left(\cup\left\{f_{R}(y+b) \mid b \in A\right\}\right) \\
& \supseteq \cup\left\{f_{R}(x+a) \cap f_{R}(y+b) \mid a, b \in A\right\} \\
& =\left(\cup\left\{f_{R}(x+a) \mid a \in A\right\}\right) \cap\left(\cup\left\{f_{R}(y+b) \mid b \in A\right\}\right) \\
& =f_{R / A}([x]) \cap f_{R / A}([y]) .
\end{aligned}
$$

This completes the proof.
The soft subideal R / f_{R} defined in the above Proposition is called the quotient soft subring of f_{R} relative to A and denoted by f_{R} / A.

5. Soft Subideals of Soft Subrings

In this section, we introduce the concepts of soft subideals of soft subrings.
Definition 5.1. Let $f_{R} \in S(U)$ and $g_{R} \in S_{R}(U)$ such that $f_{R} \subseteq g_{R}$. Then f_{R} is called soft subideal of g_{R} if
(1) $f_{R}(x-y) \supseteq f_{R}(x) \cap f_{R}(y)$,
(2) $f_{R}(x y) \supseteq f_{R}(y) \cap g_{R}(x)$,
for all $x, y \in R$.
By using similar method as in the proof of of Proposition 2.9 we obtain the following Proposition.

Proposition 5.2. Let $f_{R} \in S(U)$ and $g_{R} \in S_{R}(U)$. Then f_{R} is a soft subideal of g_{R} if and only if f_{R}^{α} is an ideal of g_{R}^{α} for all $\alpha \in f_{R}(R) \cup\left\{\beta \in P(U) \mid \beta \subseteq f_{R}(0)\right\}$.
Proposition 5.3. Let $g_{R} \in S_{R}(U)$ and f_{R} is a soft subideal of g_{R}. Then
(1) f_{R}^{*} is an ideal of g_{R}^{*}.
(2) Let for all $\alpha, \beta \in P(U)$, If $\alpha \neq \emptyset \neq \beta$, then $\alpha \cap \beta \neq \emptyset$. Then f_{R}^{\star} is an ideal of g_{R}^{\star}.

Proof. (1) Let $x, y \in f_{R}^{*}$ and then $f_{R}(x)=f_{R}(0)$ and $f_{R}(y)=f_{R}(0)$. Now

$$
f_{R}(x-y) \supseteq f_{R}(x) \cap f_{R}(y)=f_{R}(0) \cap f_{R}(0)=f_{R}(0) \supseteq f_{R}(x-y),
$$

and consequently $f_{R}(x-y)=f_{R}(0)$. Thus, $x-y \in f_{R}^{*}$. Also if $y \in f_{R}^{*}, x \in g_{R}^{*}$, then

$$
f_{R}(x y) \supseteq f_{R}(y) \cap g_{R}(x)=f_{R}(0) \cap g_{R}(0) \supseteq f_{R}(0) \cap f_{R}(0)=f_{R}(0) \supseteq f_{R}(x y),
$$

and so $f_{R}(x y)=f_{R}(0)$. Hence, $x y \in f_{R}^{*}$. Therefore, f_{R}^{*} is an ideal of g_{R}^{*}.
(2) Suppose that $x, y \in f_{R}^{\star}$. Hence, $f_{R}(x-y) \supseteq f_{R}(x) \cap f_{R}(y) \neq \emptyset$ and so $f_{R}(x-y) \neq \emptyset$. On the other hand, $x-y \in f_{R}^{\star}$. Also if $x \in g_{R}^{\star}$ and $y \in f_{R}^{\star}$, then $f_{R}(x y) \supseteq f_{R}(y) \cap g_{R}(x) \neq \emptyset$ and then $f_{R}(x y) \neq \emptyset$. Hence, $x y \in f_{R}^{\star}$. Therefore, f_{R}^{\star} will be an ideal of g_{R}^{\star}.
Proposition 5.4. If $f_{R} \in S_{I}(U)$ and $g_{R} \in S_{R}(U)$, then $f_{R} \cap g_{R}$ is a soft subideal of g_{R}.
Proof. Clearly, $f_{R} \cap g_{R} \subseteq g_{R}$. Let $x, y \in R$ then

$$
\begin{aligned}
\left(f_{R} \cap g_{R}\right)(x-y) & =f_{R}(x-y) \cap g_{R}(x-y) \\
& \supseteq f_{R}(x) \cap f_{R}(y) \cap g_{R}(x) \cap g_{R}(y) \\
& =\left(f_{R} \cap g_{R}\right)(x) \cap\left(f_{R} \cap g_{R}\right)(y) .
\end{aligned}
$$

Also

$$
\begin{aligned}
\left(f_{R} \cap g_{R}\right)(x y) & =f_{R}(x y) \cap g_{R}(x y) \supseteq f_{R}(x) \cap f_{R}(y) \cap g_{R}(x) \cap g_{R}(y) \\
& =\left(f_{R} \cap g_{R}\right)(x) \cap\left(f_{R} \cap g_{R}\right)(y) .
\end{aligned}
$$

Hence, $f_{R} \cap g_{R}$ is a soft subideal of g_{R}.
Proposition 5.5. Let $h_{R} \in S_{R}(U)$. If f_{R} and g_{R} be two soft subideals of h_{R}, then $f_{R} \cap g_{R}$ is also a soft subideal of h_{R}.
Proof. Obviously, $f_{R} \cap g_{R} \subseteq h_{R}$. Let $x, y \in R$. Then

$$
\begin{aligned}
\left(f_{R} \cap g_{R}\right)(x-y) & =f_{R}(x-y) \cap g_{R}(x-y) \\
& \supseteq f_{R}(x) \cap f_{R}(y) \cap g_{R}(x) \cap g_{R}(y)=\left(f_{R} \cap g_{R}\right)(x) \cap\left(f_{R} \cap g_{R}\right)(y) .
\end{aligned}
$$

Also

$$
\begin{aligned}
\left(f_{R} \cap g_{R}\right)(x y) & =f_{R}(x y) \cap g_{R}(x y) \supseteq f_{R}(y) \cap h_{R}(x) \cap g_{R}(y) \cap h_{R}(x) \\
& =\left(f_{R} \cap g_{R}\right)(y) \cap h_{R}(x) .
\end{aligned}
$$

Therefore, $f_{R} \cap g_{R}$ is a soft subideal of h_{R}.
Definition 5.6. ([3]) Let φ be a function from A into B and $f_{A}, f_{B} \in S(U)$. Then soft image $\varphi\left(f_{A}\right)$ of f_{A} under φ is defined by

$$
\varphi\left(f_{A}\right)(y)=\left\{\begin{aligned}
\cup\left\{f_{A}(x) \mid x \in A, \varphi(x)=y\right\} & \text { if } \varphi^{-1}(y) \neq \emptyset \\
\emptyset & \text { if } \varphi^{-1}(y)=\emptyset
\end{aligned}\right.
$$

and soft pre-image (or soft inverse image) of f_{B} under φ is $\varphi^{-1}\left(f_{B}\right)(x)=f_{B}(\varphi(x))$ for all $x \in A$.
Proposition 5.7. Let R and S be rings and $f_{R} \in S_{I}(U), f_{S} \in S_{I}(U)$. Let $\varphi: R \rightarrow S$ be a ring homomorphism and $0_{R}, 0_{S}$ denote the zero elements of R and S respectively. Then
(1) $\varphi\left(f_{R}\right)\left(0_{S}\right)=f_{R}\left(0_{R}\right)$.
(2) $\varphi\left(f_{R}^{*}\right) \subseteq\left(\varphi\left(f_{R}\right)\right)^{*}$.
(3) if f_{R} be constant on $\operatorname{ker} \varphi$, then $\left(\varphi\left(f_{R}\right)\right)(\varphi(x))=f_{R}(x)$ for all $x \in R$.
(4) if φ is onto, then $\varphi\left(f_{R}\right) \in S_{I}(U)$. Moreover if f_{R} is constant on $\operatorname{ker} \varphi$, then $\varphi\left(f_{R}^{*}\right)=\left(\varphi\left(f_{R}\right)\right)^{*}$.
(5) $\varphi^{-1}\left(f_{S}\right) \in S_{I}(U)$ and also $\varphi^{-1}\left(f_{S}\right)$ is constant on $\operatorname{ker} \varphi$.
(6) $\varphi^{-1}\left(f_{S}^{*}\right)=\left(\varphi^{-1}\left(f_{S}\right)\right)^{*}$.
(7) if φ is onto, then $\left(\varphi \circ \varphi^{-1}\right)\left(f_{S}\right)=f_{S}$.
(8) if f_{R} is constant on $\operatorname{ker} \varphi$, then $\left(\varphi^{-1} \circ \varphi\right)\left(f_{R}\right)=f_{R}$.

Proof. (1) $\varphi\left(f_{R}\right)\left(0_{S}\right)=\cup\left\{f_{R}\left(0_{R}\right) \mid \varphi\left(0_{R}\right)=0_{S}\right\}=f_{R}\left(0_{R}\right)$.
(2) Let $y \in \varphi\left(f_{R}^{*}\right)$, then $y=\varphi(x)$ and $f_{R}(x)=f_{R}\left(0_{R}\right)$. Now

$$
\varphi\left(f_{R}\right)(y)=\cup\left\{f_{R}(x) \mid y=\varphi(x)\right\}=\cup\left\{f_{R}\left(0_{R}\right) \mid y=\varphi(x)\right\}=f_{R}\left(0_{R}\right)=\varphi\left(f_{R}\right)\left(0_{S}\right)
$$

Then $y \in\left(\varphi\left(f_{R}\right)\right)^{*}$.
(3)

$$
\begin{aligned}
\left(\varphi\left(f_{R}\right)\right)\left(\varphi\left(x_{1}\right)\right) & =\cup\left\{f_{R}\left(x_{2}\right) \mid x_{2} \in R, \varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)\right\} \\
& =\cup\left\{f_{R}\left(x_{2}\right) \mid x_{2} \in R, \varphi\left(x_{1}-x_{2}\right)=0_{S}\right\} \\
& =\cup\left\{f_{R}\left(x_{2}\right) \mid x_{2} \in R, x_{1}-x_{2} \in \operatorname{ker} \varphi\right\} \\
& =\cup\left\{f_{R}\left(x_{2}\right) \mid x_{2} \in R, f_{R}\left(x_{1}-x_{2}\right)=f_{R}\left(0_{R}\right)\right\} \\
& =\cup\left\{f_{R}\left(x_{2}\right) \mid x_{2} \in R, f_{R}\left(x_{1}\right)=f_{R}\left(x_{2}\right)\right\} \\
& =f_{R}\left(x_{1}\right)
\end{aligned}
$$

for all $x_{1} \in R$.
(4) Let $y_{1}, y_{2} \in S$ such that $y_{1}=\varphi\left(x_{1}\right), y_{2}=\varphi\left(x_{2}\right)$ for some $x_{1}, x_{2} \in R$. Then

$$
\begin{aligned}
\varphi\left(f_{R}\right)\left(y_{1}-y_{2}\right) & =\cup\left\{f_{R}(z) \mid z \in R, f_{R}(z)=y_{1}-y_{2}\right\} \\
& \supseteq \cup\left\{f_{R}\left(x_{1}-x_{2}\right) \mid x_{1}, x_{2} \in R, y_{1}=\varphi\left(x_{1}\right), y_{2}=\varphi\left(x_{2}\right)\right\} \\
& \supseteq \cup\left\{f_{R}\left(x_{1}\right) \cap f_{R}\left(x_{2}\right) \mid x_{1}, x_{2} \in R, y_{1}=\varphi\left(x_{1}\right), y_{2}=\varphi\left(x_{2}\right)\right\} \\
& =\left(\cup\left\{f_{R}\left(x_{1}\right) \mid x_{1} \in R, y_{1}=\varphi\left(x_{1}\right)\right\}\right) \cap\left(\cup\left\{f_{R}\left(x_{2}\right) \mid x_{2} \in R, y_{2}=\varphi\left(x_{2}\right)\right\}\right) \\
& =\varphi\left(f_{R}\right)\left(y_{1}\right) \cap \varphi\left(f_{R}\right)\left(y_{2}\right) .
\end{aligned}
$$

Also

$$
\begin{aligned}
\varphi\left(f_{R}\right)\left(y_{1} y_{2}\right) & =\cup\left\{f_{R}(z) \mid z \in R, f_{R}(z)=y_{1} y_{2}\right\} \\
& \supseteq \cup\left\{f_{R}\left(x_{1} x_{2}\right) \mid x_{1}, x_{2} \in R, y_{1}=\varphi\left(x_{1}\right), y_{2}=\varphi\left(x_{2}\right)\right\} \\
& \supseteq \cup\left\{f_{R}\left(x_{1}\right) \cup f_{R}\left(x_{2}\right) \mid x_{1}, x_{2} \in R, y_{1}=\varphi\left(x_{1}\right), y_{2}=\varphi\left(x_{2}\right)\right\} \\
& =\left(\cup\left\{f_{R}\left(x_{1}\right) \mid x_{1} \in R, y_{1}=\varphi\left(x_{1}\right)\right\}\right) \cup\left(\cup\left\{f_{R}\left(x_{2}\right) \mid x_{2} \in R, y_{2}=\varphi\left(x_{2}\right)\right\}\right) \\
& =\varphi\left(f_{R}\right)\left(y_{1}\right) \cup \varphi\left(f_{R}\right)\left(y_{2}\right)
\end{aligned}
$$

Thus, $\varphi\left(f_{R}\right) \in S_{I}(U)$. From (2) we have that $\varphi\left(f_{R}^{*}\right) \subseteq\left(\varphi\left(f_{R}\right)\right)^{*}$ and we must prove $\left(\varphi\left(f_{R}\right)\right)^{*} \supseteq$ $\varphi\left(f_{R}^{*}\right)$. Let $y \in S$ such that $y=\varphi(x)$ for some $x \in R$. If $y \in\left(\varphi\left(f_{R}\right)\right)^{*}$, then $\left.\varphi\left(f_{R}\right)\right)(y)=$ $\left.\varphi\left(f_{R}\right)\right)\left(0_{S}\right)=f_{R}\left(0_{R}\right)\left(\right.$ from (1)). Now from (3) $\left(\varphi\left(f_{R}\right)\right)(\varphi(x))=f_{R}(x)=f_{R}\left(0_{R}\right)$ and so $x \in f_{R}^{*}$ and then $y=\varphi(x) \in \varphi\left(f_{R}^{*}\right)$.
(5) Let $x_{1}, x_{2} \in R$. Then

$$
\begin{aligned}
\varphi^{-1}\left(f_{S}\right)\left(x_{1}-x_{2}\right) & =f_{S}\left(\varphi\left(x_{1}-x_{2}\right)\right)=f_{S}\left(\varphi\left(x_{1}\right)-\varphi\left(x_{2}\right)\right) \\
& \supseteq f_{S}\left(\varphi\left(x_{1}\right)\right) \cap f_{S}\left(\varphi\left(x_{2}\right)\right)=\varphi^{-1}\left(f_{S}\right)\left(x_{1}\right) \cap \varphi^{-1}\left(f_{S}\right)\left(x_{2}\right)
\end{aligned}
$$

Also

$$
\begin{aligned}
\varphi^{-1}\left(f_{S}\right)\left(x_{1} x_{2}\right) & =f_{S}\left(\varphi\left(x_{1} x_{2}\right)\right)=f_{S}\left(\varphi\left(x_{1}\right) \varphi\left(x_{2}\right)\right) \\
& \supseteq f_{S}\left(\varphi\left(x_{1}\right)\right) \cup f_{S}\left(\varphi\left(x_{2}\right)\right)=\varphi^{-1}\left(f_{S}\right)\left(x_{1}\right) \cup \varphi^{-1}\left(f_{S}\right)\left(x_{2}\right)
\end{aligned}
$$

Hence, $\varphi^{-1}\left(f_{S}\right) \in S_{I}(U)$. If $x \in \operatorname{ker} \varphi$, then

$$
\varphi^{-1}\left(f_{S}\right)(x)=f_{S}(\varphi(x))=f_{S}\left(\varphi\left(0_{R}\right)\right)=f_{S}\left(0_{S}\right)
$$

and then $\varphi^{-1}\left(f_{S}\right)$ is constant on $\operatorname{ker} \varphi$.
(6) Let $x \in R$. Then $x \in \varphi^{-1}\left(f_{S}^{*}\right)$ if and only if $f_{S}(\varphi(x))=f_{S}\left(0_{S}\right)=f_{S}\left(\varphi\left(0_{R}\right)\right)$ if and only if $\varphi^{-1}\left(f_{S}\right)(x)=\varphi^{-1}\left(f_{S}\right)\left(0_{R}\right)$ if and only if $x \in\left(\varphi^{-1}\left(f_{S}\right)\right)^{*}$.
(7) Let $y \in S$ such that $y=\varphi(x)$ for some $x \in R$. Then

$$
\begin{aligned}
\left(\varphi \circ \varphi^{-1}\right)\left(f_{S}\right)(y) & =\varphi\left(\varphi^{-1}\left(f_{S}\right)\right)(y)=\varphi\left(\varphi^{-1}\left(f_{S}\right)\right)(\varphi(x))=\cup\left\{\varphi^{-1}\left(f_{S}\right)(x) \mid \varphi(x)=\varphi(x)\right\} \\
& =\varphi^{-1}\left(f_{S}\right)(x)=f_{S}(\varphi(x))=f_{S}(y)
\end{aligned}
$$

Therefore, $\left(\varphi \circ \varphi^{-1}\right)\left(f_{S}\right)=f_{S}$.
(8) Let $x \in R$. Then $\left(\varphi^{-1} \circ \varphi\right)\left(f_{R}\right)(x)=\varphi^{-1}\left(\varphi\left(f_{R}\right)\right)(x)=\varphi\left(f_{R}\right)(\varphi(x))=f_{R}(x)$ (from (3)).

Proposition 5.8. Let R and S be two rings and $\varphi: R \rightarrow S$ be a ring homomorphism.
(1) Let φ be onto. If $f_{R} \in S_{R}(U)$, then $\varphi\left(f_{R}\right) \in S_{S}(U)$. Moreover if $g_{R} \in S_{R}(U)$ and f_{R} is a soft subideal of g_{R}, then $\varphi\left(f_{R}\right)$ is a soft subideal of $\varphi\left(g_{R}\right)$.
(2) If $f_{S} \in S_{S}(U)$, then $\varphi^{-1}\left(f_{S}\right) \in S_{R}(U)$. Moreover if $g_{S} \in S_{S}(U)$ and f_{S} is a soft subideal of g_{S}, then $\varphi^{-1}\left(f_{S}\right)$ is a soft subideal of $\varphi^{-1}\left(g_{S}\right)$.

Proof. (1) Let $y_{1}, y_{2} \in S$ such that $y_{1}=\varphi\left(x_{1}\right), y_{2}=\varphi\left(x_{2}\right)$ for some $x_{1}, x_{2} \in R$. Then

$$
\begin{aligned}
\varphi\left(f_{R}\right)\left(y_{1}-y_{2}\right) & =\cup\left\{f_{R}(z) \mid z \in R, f_{R}(z)=y_{1}-y_{2}\right\} \\
& \supseteq \cup\left\{f_{R}\left(x_{1}-x_{2}\right) \mid x_{1}, x_{2} \in R, y_{1}=\varphi\left(x_{1}\right), y_{2}=\varphi\left(x_{2}\right)\right\} \\
& \supseteq \cup\left\{f_{R}\left(x_{1}\right) \cap f_{R}\left(x_{2}\right) \mid x_{1}, x_{2} \in R, y_{1}=\varphi\left(x_{1}\right), y_{2}=\varphi\left(x_{2}\right)\right\} \\
& =\left(\cup\left\{f_{R}\left(x_{1}\right) \mid x_{1} \in R, y_{1}=\varphi\left(x_{1}\right)\right\}\right) \cap\left(\cup\left\{f_{R}\left(x_{2}\right) \mid x_{2} \in R, y_{2}=\varphi\left(x_{2}\right)\right\}\right) \\
& =\varphi\left(f_{R}\right)\left(y_{1}\right) \cap \varphi\left(f_{R}\right)\left(y_{2}\right) .
\end{aligned}
$$

Also

$$
\begin{aligned}
\varphi\left(f_{R}\right)\left(y_{1} y_{2}\right) & =\cup\left\{f_{R}(z) \mid z \in R, f_{R}(z)=y_{1} y_{2}\right\} \\
& \supseteq \cup\left\{f_{R}\left(x_{1} x_{2}\right) \mid x_{1}, x_{2} \in R, y_{1}=\varphi\left(x_{1}\right), y_{2}=\varphi\left(x_{2}\right)\right\} \\
& \supseteq \cup\left\{f_{R}\left(x_{1}\right) \cap f_{R}\left(x_{2}\right) \mid x_{1}, x_{2} \in R, y_{1}=\varphi\left(x_{1}\right), y_{2}=\varphi\left(x_{2}\right)\right\} \\
& =\left(\cup\left\{f_{R}\left(x_{1}\right) \mid x_{1} \in R, y_{1}=\varphi\left(x_{1}\right)\right\}\right) \cap\left(\cup\left\{f_{R}\left(x_{2}\right) \mid x_{2} \in R, y_{2}=\varphi\left(x_{2}\right)\right\}\right) \\
& =\varphi\left(f_{R}\right)\left(y_{1}\right) \cap \varphi\left(f_{R}\right)\left(y_{2}\right) .
\end{aligned}
$$

Thus, $\varphi\left(f_{R}\right) \in S_{S}(U)$. Now from

$$
\begin{aligned}
\varphi\left(f_{R}\right)\left(y_{1} y_{2}\right) & =\cup\left\{f_{R}(z) \mid z \in R, f_{R}(z)=y_{1} y_{2}\right\} \\
& \supseteq \cup\left\{f_{R}\left(x_{1} x_{2}\right) \mid x_{1}, x_{2} \in R, y_{1}=\varphi\left(x_{1}\right), y_{2}=\varphi\left(x_{2}\right)\right\} \\
& \supseteq \cup\left\{f_{R}\left(x_{1}\right) \cap g_{R}\left(x_{2}\right) \mid x_{1}, x_{2} \in R, y_{1}=\varphi\left(x_{1}\right), y_{2}=\varphi\left(x_{2}\right)\right\} \\
& =\left(\cup\left\{f_{R}\left(x_{1}\right) \mid x_{1} \in R, y_{1}=\varphi\left(x_{1}\right)\right\}\right) \cap\left(\cup\left\{g_{R}\left(x_{2}\right) \mid x_{2} \in R, y_{2}=\varphi\left(x_{2}\right)\right\}\right) \\
& =\varphi\left(f_{R}\right)\left(y_{1}\right) \cap \varphi\left(g_{R}\right)\left(y_{2}\right) .
\end{aligned}
$$

we obtain that $\varphi\left(f_{R}\right)$ is a soft subideal of $\varphi\left(g_{R}\right)$.
(2) Let $x_{1}, x_{2} \in R$. Then

$$
\begin{aligned}
\varphi^{-1}\left(f_{S}\right)\left(x_{1}-x_{2}\right) & =f_{S}\left(\varphi\left(x_{1}-x_{2}\right)\right)=f_{S}\left(\varphi\left(x_{1}\right)-\varphi\left(x_{2}\right)\right) \\
& \supseteq f_{S}\left(\varphi\left(x_{1}\right)\right) \cap f_{S}\left(\varphi\left(x_{2}\right)\right)=\varphi^{-1}\left(f_{S}\right)\left(x_{1}\right) \cap \varphi^{-1}\left(f_{S}\right)\left(x_{2}\right) .
\end{aligned}
$$

Also

$$
\begin{aligned}
\varphi^{-1}\left(f_{S}\right)\left(x_{1} x_{2}\right) & =f_{S}\left(\varphi\left(x_{1} x_{2}\right)\right)=f_{S}\left(\varphi\left(x_{1}\right) \varphi\left(x_{2}\right)\right) \\
& \supseteq f_{S}\left(\varphi\left(x_{1}\right)\right) \cap f_{S}\left(\varphi\left(x_{2}\right)\right)=\varphi^{-1}\left(f_{S}\right)\left(x_{1}\right) \cap \varphi^{-1}\left(f_{S}\right)\left(x_{2}\right)
\end{aligned}
$$

Therefore, $\varphi^{-1}\left(f_{S}\right) \in S_{R}(U)$. Moreover

$$
\begin{aligned}
\varphi^{-1}\left(f_{S}\right)\left(x_{1} x_{2}\right) & =f_{S}\left(\varphi\left(x_{1} x_{2}\right)\right)=f_{S}\left(\varphi\left(x_{1}\right) \varphi\left(x_{2}\right)\right) \\
& \supseteq f_{S}\left(\varphi\left(x_{1}\right)\right) \cap g_{S}\left(\varphi\left(x_{2}\right)\right)=\varphi^{-1}\left(f_{S}\right)\left(x_{1}\right) \cap \varphi^{-1}\left(g_{S}\right)\left(x_{2}\right)
\end{aligned}
$$

and then $\varphi^{-1}\left(f_{S}\right)$ is a soft subideal of $\varphi^{-1}\left(g_{S}\right)$.

References

[1] U. Acar, F. Koyuncu and B.Tanay, Soft sets and soft rings, Comput. Math. Appl., 59 (2010), 3458-3463.
[2] H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci., 177 (2007), 2726-2735.
[3] A. O. Atagun and A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl., 61(3)(2011), 592-601.
[4] N. Cagman and S. Enginoglu, Soft set theory and uni-int decision making, European J. Oper. Res. 207 (2010), 848-855.
[5] M. Hamidi, F. Smarandache, Neutro-BCK-Algebra, International Journal of Neutrosophic Science, 8(2) (2020), 110-117.
[6] M. Hamidi, and F. Smarandache, Valued-inverse Dombi neutrosophic graph and application, AIMS Mathematics, $\mathbf{8 (1 1)}$ (2023), 26614-26631.
[7] M. Hamidi, Extended BCK-ideal Based On Single-valued Neutrosophic Hyper BCK-Ideals, Bulletin of the Section of Logic, 52/4 (2023), 411-440.
[8] M. Hamidi, F. Smarandache, Single-Valued Neutro Hyper BCK-Subalgebras, Journal of Mathematics, 2021 (2021), 1-11.
[9] D. Molodsov, Soft set theory - First results, Computers \& Mathematics with Applications, 37(4/5) (1999), 19-31.
[10] R. Rasuli, Soft Lie Ideals and Anti Soft Lie Ideals, The Journal of Fuzzy Mathematics Los Angeles 26(1) (2018), 193-202.
[11] R. Rasuli, Extension of Q-soft ideals in semigroups, Int. J. Open Problems Compt. Math., 10(2) (2017), 6-13.
[12] R. Rasuli and F. Hassani, Q-soft Subgroups and Anti- Q-soft Subgroups in Universal Algebra, The Journal of Fuzzy Mathematics Los Angeles, 26(1) (2018), 139-152.
[13] R. Rasuli, Anti Q-soft Normal Subgroups, The Journal of Fuzzy Mathematics, 21(1) (2020), 237-248.
[14] F. Smarandache, New Types of Soft Sets: HyperSoft Set, IndetermSoft Set, IndetermHyper Soft Set, and Tree Soft Set, International Journal of Neutrosophic Science, 20(04) (2023), 58-64.
[15] M. Gharib, F. Smarandache \& M. Mohamed, CSsEv: Modelling QoS Metrics in Tree Soft Toward Cloud Services Evaluator based on Uncertainty Environment, International Journal of Neutrosophic Science, 23 (2) (2024), 32-41.
[16] F. Smarandache, Extension of Soft Set to Hypersoft Set, and then to Plithogenic Hypersoft Set, Neutrosophic Sets and Systems, 22 (1) (2018), 168-170.
[17] F. Smarandache, Applications of Extended Plithogenic Sets in Plithogenic Sociogram, International Journal of Neutrosophic Science, 20 (4) (2023), 8-35.
[18] F. Smarandache, Introduction to Neutrosophic Genetics, International Journal of Neutrosophic Science, 1 (1) (2021), 1-5.

Department of Mathematics, Payame Noor University(PNU), P. O. Box 19395-4697, Tehran, Iran. E-mail address: m.hamidi@pnu.ac.ir, rasuli@pnu.ac.ir

