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Informal Summary

. We start with a propositional language £~ consisting of the following
symbols:

Symbol Notation Type
propositional variables pi,po, ... ()
plural variables pp1,Pp2; - ()
operator variables O1,09,... ()
identity symbol = (.0
inclusion symbol < (), 00
existential quantifier 3 (())
negation symbol - ()
conjunction symbol A (0, 0)
parentheses (,) -

We also introduce some abbreviations:



Notation Abbreviates
L p1(p1 A —p1)
020 —(p=1)

2. We enrich .Z~ to a language .Z, by adding the following symbols:

Symbol Notation Type
condition constants Qi,...,Q, (())
resolution increase 1 ()
resolution decrease | ()

The condition constants are used to express “procedures”. Intuitively,
a procedure Q might be used to characterize an operator Oy, relative
to a space of propositions.

I'll say more about the arrows below.

3. We work with a hierarchy of sets of “worlds”, of increasing levels of
resolution:

e For W a non-empty set,
- WY'=WwW
— Pp=QPWn)
— Wttt ={{w, e}, ....e") w e W Ael C P}

4. This allows us to define “superworlds”:

e A superworld is a sequence (w’, w!, w?,...) such that:

— wh e W,

— each w” is “refined” by wk*!. 2

ntuitively, e is the extension of Q; at world (w,e},... e") € Wntl
2Intuitively, w” is refined by w**! when it agrees about the extension of each Q; as far
as propositions in Py}, are concerned.



e Superworlds are assessed at a given level of resolution.

— A superworld (w® w', w?,...) assessed at resolution level k
behaves like w.

5. The arrows, T and |

e 1 increases by 1 the level of resolution with respect to which su-
perworlds are assessed.

e | decreases by 1 the level of resolution with respect to which su-
perworlds are assessed. 3

6. The result is a well-behaved system:

e One gets standard axioms, when attention is restricted to £ .

e One gets sensible axioms for the general case, including a nice
comprehension principle.

7. One gets a system that does not encourage lapsing into nonsense

e [f logical space is genuinely open-ended, talking about “all possible
refinements” is problematic. (For example, it can lead to revenge
issues.) But having 1 and | instead of { allows us to stay well
within the range of sense.

2 The language
Definition 1 .Z is a language built from the following symbols:

e the propositional variables py, pa, . .., which are of type ();

e the plural propositional variables ppy,pps, . .., which are of type (){);
e the propositional identity symbol, =, which is of type ({), ());

e the propositional inclusion relation <, which is of type ({), ()())

e the operator variables Oy, Os, ..., which are of type (());

3Unless it is already 0, in which case | does nothing.



forr >0, the indefinitely extensible constants Q, ..., Q,, which are of
type (());

the existential quantifier, 3, which binds variables of any type;

the negation symbol, —, the conjunction symbol, N\, and parentheses;

the refinement operator, T, and unrefinement operator, |, which are of
type (())-

Definition 2 The expressions “L.7, “T 7 N7, “V7 “=7 and “" are defined,
in the usual way. In addition:

e Op=1l#¢ Op=¢=T
°* O> Y= (d=(dNY))

Definition 3 The formulas of £ are defined recursively, in the obvious way.
A sentence is a formula in which every occurrence of a variable is bound by
a quantifier.

3 Some Results

Here are some results, which presuppose that attention is restricted to “nat-
ural” models:

For

e ET:=3p(OpAp)
e 7 :=3p(Op A —p)

Prior FO(E™) — (EtTANE™)

Extensional Prior = Vp[(p +» E7) — (Op — (ET A E7))]
An immediate consequence of Prior is:

Modal Prior = =VpdVq(Oq <> (¢ =p))

But we can also show:



Modal Prior Next: = Vp1TOVq(Qiq <> (¢ =p))
or, equivalently:
Modal Prior Next: = VpOVq(1Qiq <> (¢ =p))

There are obvious generalizations of Modal Prior and Modal Prior Next:

Kaplan = —VppOVq(Oq <+ (¢ < pp))
Kaplan Next = Vpp1OVq(Qiq < q < pp)
or, equivalently:

Kaplan Next: = VppOVq(1Qiq ¢+ ¢ < pp)

The intensional case yields different results. With no need to restrict to
natural models, we have:

= 13003p(1Qip 4+ Op)
and therefore
% VOQOVP(1Qip <+ Op)
Regarding Russell-Myhill, we have:
Russell-Myhill = 303P(0Op = Pp A —=Vq(Oq < Pq))
But also:

Russell-Myhill Next Whenever Q; and Q; are independent, =1 (Q;p #
Q;p)

Here is an outline of the behavior of 1 and |:

o E(=1¢) < (1-9)

o = (019) < (109)

e E (T ATY) & T(ANAY)

e = (T¢ = 1Y)« 1t (o=1)



=1T(p)<p

= T(p<pp) > p<pp
= 1(Op) <> Op

= (11¢) < (111 ¢)
e ¢ = E1¢

Existential Generalization Let 1 be free for p in ¢. For k = vg(¢),*

E olv/p] — 1 3p 1

Comprehension Let & = vy(¢) and let p be a variable not occurring free
in ¢. Then:
= 1" 3p(p =1"0)

4 Frames

We use a non-empty set of “worlds” W to characterize a hierarchy with one
level for each natural number. At level n, we introduce a set of n-level worlds
(W™), a set of n-level propositions (P"), a set of n-level “extensions” (E"),
and a set of n-level intensions (I™). (An n-level proposition is a set of n-
level worlds; an n-level extension is a set of n-level propositions; an n-level
intension is a function from n-level propositions to n-level propositions.) The
0-level worlds are just the members of W. An (n + 1)-level world w™™! is
a sequence consisting of a 0-level world and an n-level extension for each
indefinitely extensible constaint Qq, ..., Q,. Formally,

Definition 4 (Worlds, propositions, extensions, intensions)
For W a non-empty set,

k=1 1 ¥ :=1...]. The valence of 1, v°(3), is a syntactically character-
——

k times k times
ized upper bound on the resolution that is needed to describe the proposition expressed

by 1, when evaluated externally at resolution 0 (assuming a variable assignment of level
0).



o WO=W

Py, = 0

o Ey = Q(Fy)

Ly ={f: Py — Py}

Wt = {(w,el,...;e") :w e W Ael € B}

T

o W™ = UnEN wr

In some applications we may not want to count some worlds in W as “in-
admissible”, on metaphysical grounds. We therefore introduce the following
additional definitions:

Definition 5 (Frames) A frame is a pair (W, A), where W is a non-empty
set and A C W,

Definition 6 (Admissible Worlds) For (W, A) a frame, we let:

OWB\:W

Wit = {(w,ef,....er) e Arwe W A€l € By, }
Py, = QW)
Ey, = Q(Py,)

Fo={f Pty = Fi,)

Definition 7 (Refinements) Fiz a frame (W, A). Intuitively speaking,

o For w"™ € W4 and w" € WZH, w" >y, wtt states that world w"
is “refined” by world w1, relative to (W, A).

e Forp" € Py, and = P, the (n + 1)-level proposition [p”]%l is
the set of worlds in Wﬁﬂ that are “refinements” of some world in p".

Formally:
o W' Dy, wh = 3eY .. e) € By (wh = (w’ e, ... €)))

»ETr
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o [p"]%l = {w"t e Wit Ju" € pt(w" By, w1}
[ ]
W Dy, w™? = JweW et el e By, et ep € Byl
( "= (w, el .. el) AwmT = (w, el er T A

vp" (p" €el & [p" ]”“ € e’f“) A

Vp™ <pn € el > [p ]n+1 c en—i-l))
Definition 8 (Admissible Frames) A frame (W, A) is admissible iff for
any n € N and w" € Wj:

e ifn >0, w" refines some world in W5™!

(i.e. there is some w™™' € Wi~ is such that w™™! >y, w");

o w" is refined by some world in VV”Jrl

(i.e. there is some w™™ € Wit is such that w™ >y, w"*!);

Proposition 1 (There are admissible frames) The frame (W, A) is ad-
missible whenever A = W,

Proof For n € N, let w™ € Wy, . We need to verify two claims:

e if n > 0, then w" refines some world in ij’l

Since n > 0, we can let w" = <w e ,w:f*1>. If n =1, the result
is trivial, since we can let w™ = w. So we may suppose that n > 1. For
each 1 < r let

72: {pn—Q c Pa/;Q . [pn 2n 1 n 1}

Let w" ! = (w, el %, ..., w'?). Since A =W>, w" ' € Wi
In addition, since A = W, Py, = Py, . So:

vpn—Q (pn—Z c 6?_2 o [pn 2]n 1 c 6” 1))
So it follows from the definition of >y, that w™ ! >y, w™
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e w" is refined by some world in WZ“

Suppose, first, that n = 0, and let w™™ = (w™,0,...,0). Since A =
W wtt € Wit And it follows immediately from the definition of
>y, that w” >y, w™t,

Now suppose that n > 0 and let w" = (w,ef™",...,e"™'). For each
1 <rlet

-1 -1 -1
et ={lp" " e Py, Py, €6}
Let w™! = (w, e}, ..., w"). Since A =W w™t e Wit

In addition, since A = W, Py, = Py, . So:

Vpn—l <pn—1 c 6?_1 o [pn—l]%A c 6?))
So it follows from the definition of >y, that w™ >y, w™.
Proposition 2 (Injectivity of Refinement) Fiz a frame (W, A). For o™ w™ €

W% and w™tt € Wit

V" Dy, WA w" Dy, w't " ="

Proof Since the result is trivial if n = 0, we assume n > 0. Let w"! =

(w, e, ..., em. Since w" >y, w", w" must be (w,ef ™", ..., er™) for some
et ..., er™l Since v" >y, w"tt W™ must be (w, f{'7', ..., fr1) for some
n—1 n—1
1 9000y f/r. .

Suppose, for reductio, that v™ # w". Then it must be the case that
et # f71 for i < r. We may assume with no loss of generality that for
some p" 1 € P{}Vj, pte el but pt ¢ f71 Since w" >y, w"tt and
p"~t € el it follows from the definition of >y, that [p"~1]" € €. But
since v" >y, w" and p"~t ¢ f'7' it follows from the definition of >y,
that [p"~1]" ¢ e, which contradicts an earlier assertion.

5 Superworlds

Definition 9 (Superworlds) Fiz a frame (W, A). A superworld W of
(W, A) is an infinite sequence (w°, w', w?,...) (w™ € W%) such that:

w’ Bwa w? Bwa w? Dwy -

Some additional notation:



o W, is the set of superworlds of (W, A).

o Forw € Wy, w(n) is the nth member of .

Proposition 3 (Every world is part of a superworld) Fixz an admissi-
ble frame (W A). For any w™ € W}, there is some W € Wy such that
w(n) =w"

Proof Since (W, A) is admissible, there must be a sequence
<v0,...,v”’1,w B T Vi

such that

n

v° Bw, v -1 Bwy w" Bwa "t Bwa "t Dwy -

Proposition 4 (No backwards divergence for superworlds) Fora,v €
Wy and n,k € N, U(n + k) = W(n + k) entails v(n) = @(n).

Proof Assume 9(n) # w(n). By proposition 2, v(n + 1) # w(n + 1). Again
by proposition 2, #(n + 2) # w(n + 2). After k iterations of this procedure,
we get U(n + k) 75 w(n+ k).

Definition 10 (Superpropositions)
e A superproposition p’ of (W, A) is a set of superworlds in W4.
o Py, ={p:pCWa}.
o P}, ={p€ Py, :d(n) =1u(n) — (& € p<+> v € p)}
e Forpe Py,, we let p(n) = {w(n): @ € p}.°

Proposition 5 (Monotonicity of Superpropositions) For n € N, j €
Py, = e Py

Proof Assume p'€ Py}, . We suppose w(n + 1) = 9(n + 1) and o € p, and
we show ¢ € p. By proposition 4, w(n + 1) = ¢(n + 1) entails @(n) = v(n).
So W € p guarantees v € p.

PNote that {u(n) : @ € p} = {v" € Py, : 30 € plv™ = #(n))}.
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Proposition 6 (p(n) is well-behaved, part 1) If p,€ Py, then @ €
7 w(n) € pn).

Proof Suppose, first, that @ € p. By definition, p(n {v ey, WE plo™

Since @ is a true instance of the following ex1stent1al
30 € p(ui(n) = v(n))

we have w(n) € p(n).

Now suppose that w(n) € p(n). By definition, p(n) = {v" € Py, : 30 € p(v" =

So the fact that w(n) € p(n) entails that there must be some Z' € p 7such that
Z(n) = @i(n). But since p, € B, 2 € p'and Z(n) = w(n) entail that @ € p.

Proposition 7 (5(n) is well-behaved, part 2) Ifp,q € Py, ,, thenp(n) =

q(n) entails p = q.

Proof
wepP <« wWn)epn) by proposition 6
< d(n) € g(n) since p(n) = ¢(n)
— wWeq by proposition 6

Proposition 8 (p(n) is well-behaved, part 3) Assumep € Py,,. Then:
pln) =p" < p=A{d € Wa:d(n) € p"}

Proof
Left to right: We assume p(n) = p™, and therefore

{w" : 3 € plw" = w(n))} = p"

To verify p = {WJ € Wy : @i(n) € p"}, it suffices to check each of the
following:

o If ¥(n) € p", then v € §
Suppose that ©(n) € p™. By our initial assumption, there is some & € p’
such that:
v(n) = w(n)
But since p' € Py, , this entails
EPVED

which means that we have v € p, as desired.

11



o If U(n) & p”, then ¥ & p.

Suppose that #(n) ¢ p". By our initial assumption, every o € p'is such
that:

5(n) # w(n)

from which it follows that o & p.
Right to Left: Assume p'= {w € W4 : @(n) € p"}. By proposition 3:
{wi(n) : @(n) € p"} =p"
equivalently:
{W(n): W e{WeWy:wn)ep't} =p"
So, by our assumption,
{w(n) : @ € p} =p”

which is what we want:
p(n) =p

Definition 11 (Superextensions)
o A superextension € of (W, A) is a set of superpropositions of (W, A).
o by, ={€:¢€C Py,}.
o By, ={e:ecpry, }

Definition 12 (Superintensions)

o A superintension i of (W, A) is a function from superpropositions of

(W, A) to superpropositions of (W, A).
o Iy, ={7:71s a function from Py, into Py,}.
] I{/TVA = {76 IWA Vp e PWA (’7(]5) € PIZLVA)}

Proposition 9 (Monotonicity of Superintensions) Forn € N,7¢€ I}, —
re

Proof Let7 € Iy, and p € Py,. Since 7€ I3}, , Ap) € Py,,. So proposi-
tion 5 entails that W(p) € P!

pn+1) =v(n+1) and W € p, and we show ¥ € p. By proposition 4,
w(n+ 1) =d(n+ 1) entails wW(n) = v(n). So W € p guarantees U € p.

12



6 Extensions for Q;

Definition 13 (Extension Predicate for Q;) Fiz a frame (W, A). For
W e Wy andn € N, let u7(n +1) = (w,el,...,e"). Then:

rEr

(W Exty,) (W) = {pe Py, : Ip" € e} (p(n) = p")}

Proposition 10 (Monotonicity of Extensions) For any @ € W4 and

ﬁe PWA;
pE UXE%tg} (W) —pe &VExtEl} ()

Proof Let W(n + 1) = (w,el, ... e"), W(n+2) = <w entl o n+1> Let

»ETr

p € [WExt}, | (@). We verify that 7'is also in [VExt%™] ().

By the definition of [YExtg, | (@), p € Py, and there is some p" € €] such
that p(n) = p". Since p'is in Py}, , it is also in P la. So, by the definition
of "VExtg™], it suffices to verify each of the following two propositions:

o p(n+1) ="y,

Proof: By definition,

Pl = {o™ e pt(w” Dy, 0"}
which is equivalent to the following, by proposition 3

P = {0 +1): 0 e WanFuw" € p™(w" >w, 7(n+1))}
which is equivalent to the following, by proposition 2,
"l = {vn+1):d(n) € p"}
But we know that p(n) = p". So:
", = {9 +1):9(n) € p(n)}

which is equivalent to

", = {0 +1):3(n) € {w(n) - @ € p}}
equivalently:

", ={vn+1): 7€ p}

which is what we want:

" = pln+1)

13



° [pn]nJrl c 6nJrl

Proof: Since W(n+1) >y, wW(n+2), we know that p” € e > [’p"]%;l €

e, So the result is immediate.

Proposition 11 (Conservativity of Extensions) For any @ € Wy and
pe PRy, (neN),

pE &VExtEl] (W) - pe [szxth ()

Proof Let @w(n+1) = (w,e},...,er), W(n+2) = (w,ef™, ... er*t). Let j

be in both P, and [[WExtgH ] (). We verify that fis also in [YExtg, | ().
By the definition of [YExt}'] (i), there is some p™ € ef*! such that
pn+1) =p". Let
pt={w" e Wh: I € p"H(w" Dy, w"h)}

We have p' € Py}, . So in order to show p' € m’Exth (), it suffices to verify
each of the following two propositions:

'

e p(n)=p
Proof: By definition,

pt={w" e Wh: I € p" (W Dy, w"Th)}

Since p(n + 1) = p™*,
pt={w" e Wi: " € pln+1)(w" >w, w)}
which is equivalent to:
pt={w" e Wji: I € {dn+1): 7 € p} (w" >w, w)}
or, equivalently,
pt=A{w" e Wj: 30 ep (w" >w, Win+1))}

which is equivalent to the following, by proposition 2,

"={w" e W, :3wep (w" =d(n))}

14



But, by proposition 3, this is equivalent to:
p" ={0(n): T e W4 AW € p(¥(n) =d(n))}
But we are assuming that that p'€ Py}, and, therefore, that, for any
W, v € Wy,
U(n) =d(n) = (V€ P+ W €p)
which allows us to conclude:
p" ={v(n): 7€ p}

which delivers the desired result:

o Pt ey

Proof: Since w(n+1) >w, wW(n+2), we know that p" € e} + [pn]%j €

ef*!. So it suffices to show that [p"]j,i! € ef*'. By definition:
P = {o"t T e pt(w" D, ")}
So, brining in the definition of p”,
P = o Fw e (W e Pt AW Dy, T A W™ Dy, 0" )

"1 we have:

But, since p(n+1) =p
[p”]%l = {v": Ju" I (W € Pln+ 1) Aw" By, W AW Dy, 0"}
equivalently:
Pl = {o" 3w I (W e {Zn+ 1) s Z e P Aw” Dy, wT AW Dy, 0"}
Simplifying:

P = o™t w30 € P (w” D, Wn+ 1) Aw” >y, 0"}
which by proposition 2 is equivalent to:

prlptt = {v" 30 € p(w(n) Bw, v}

15



so proposition 3 gives us
[p”]’;[;;\l = {t(n+1): 30 € p (W(n) >w, v(n+1))}
and again by proposition 2,
", = {v(n+1): 30 € p (@(n) = v(n))}

But we are assuming that that p'€ Py}, and, therefore, that, for any
Zﬁ, U e W,
w(n) =v(n) = (W€ p<> U € p)

which allows us to conclude:
"W, = {o(n+1): 7 €p}
Or, equivalently,
" = pln+1)
which gives us the desired result, since we are assuming that p(n+1) =
p"*tand pntt € et

7 Models

Definition 14 A model is a quadruple (W, A, d, k), for (W, A) an admis-
sible frame, & € Wx, and k € N. (Intuitively, & is the actual superworld and
k is a level of “resolution” with respect to which truth is to be assessed.)

Definition 15 A wvariable assignment for (W, A d k) is a function o
such that:

° O'(pi) € PWA;
e o(ppi) C Py, and o(pp;) # 0;
° O'(OZ) c ]WA'

Definition 16 (Truth at a superworld) Fiz a model (W, A,d, k). For ¢
a formula of £, W € Wy, and o a variable assignment for (W, A, &, k), we
define the truth of ¢ at @ with respect to o at resolution k (in symbols: @ E=F
@) using the following recursive clauses:

16



W EE p; iff @€ o(p;);

o(ps) € [;VExtg;l] (@), if k>0
1, ifk=0

o ER Qp; Zﬁ{

W =y Ojps iff @ € 0(0;)(0(pi));

W =5 pi < pp; iff o(pi) € o(ppy);

GER g = iff (TeWa:TEr ¢} = {TeWa:TEE )
W =~ iff WL 6

WL (O AY) iff @ L ¢ and @ L

W = 3pig iff for some ¢ € Py, W EEL, L ¢;

W =X Jppid iff for some AcC Pll/CVA: A 240 and @ = é:

o [I‘Y/ ppi]

=k 30,6 iff for some Te I, , W ):c]j[f/oj} o;
W LT ¢ iff W ¢

g i k> 0
=06, if k=0

WL ¢ iff {
Proposition 12

@ L O iff {T€ Wa: 5L 0} #0;

W EE O iff {TeWa:TEE ¢} =Wy,
: ’ll_; l;él; J—;'

2
3
b @R (¢ =) iff if @ E o, then @ [=E o
5
6

~

S (6 0 w) iff W L 0 il W 0
- WL Vg iff for any 7 € Py, W ELG ) 65

7.0k ppid iff for any AC Py @ EE o6

17



8. @ =k YO iff for any T e I, & 0 65
Proof
1. Recall that (¢ := =(¢ = L).
. g}:ﬁqs:Liff{w:w):(’j(b} ={w ek L}iff {&:wk L ¢} =
o Wb (p=L1)iff {@:d Lo} #0
2. Recall that O¢ := (¢ = T).

e WEFg=Tiff {0: T Lo} ={w e =L T}Hiff {w:wh Lo} =
Wa.

The remaining proofs are trivial.

8 Truth and Validity

Definition 17 An n-level variable assignment for (W, A, a, k) is a vari-
able assignment o such that:

o o(pi) € Py ,;
e o(ppi) C Py, and o(pp;) # 0;
e 0(0;) € Iy,

Proposition 13 (Monotonicity of Assignments) For n,k € N, if o is
an n-level assignment, it is also a (n + 1)-level assignment.

Proof Assume that o is an n-level assignment. To show that o is also an
(n + 1)-level assignment, we need to verify:

e o(p;) € P{}VT

Proof: Since o is an n-level assignment, we have o(p;) € Py,,. So
proposition 5 entails o(p;) € P{}V;l.

18



e o(ppi) C PR}
Proof: Since o is an n-level assignment, we have o (pp;) C Py}, . So, for
each ¢ € o(pp;), proposition 5 entails ¢ € P%Zl. So a(pp;) C Pﬁ\,t‘l.

° O'(OZ) c ])7/1\}:1

Proof: Since o is an n-level assignment, we have ¢(0;) € Iy},,. So
proposition 9 entails ¢(0;) € [)T/val-

Definition 18 (Truth) For a formula ¢ of L to be true at model (W, A, d, k)
is for it to be the case that @ =X ¢ for every k-level assignment o.

Definition 19 (Validity) For ¢ to be valid (in symbols = ¢) is for it to
be true at every model.

Definition 20 Let £~ be the fragment of £ that excludes T, |, and Q1, ..., Q,.

Proposition 14 ¢ € £~ is valid in the present framework if and only if it
1s valid in a standard higher-order framework.

Proof

Right to Left: Suppose ¢ fails to be valid in the present framework. Then
there is some model (W, A, &, k) at which ¢ fails to be true. But when the
clauses for vocabulary outside .~ 1 are ignored, our semantic clauses are
totally standard. So ¢ will also fail to be true when (W, A, &, k) is thought
of as a standard higher-order model.

Left to Right: Suppose ¢ fails to be valid with respect to a standard
higher-order model theory. Then it fails to be true according to some stan-
dard model. But every standard higher-order model of £~ is isomorphic to
some model of the form (W, A, a,0). So ¢ must fail to be true according to
some model of the present framework.

9 Substitution
Definition 21 (Notation)

e o[1)/p] is the result of substituting 1 for each free occurrence of p in ¢.

19



o(n), ifn#p
g, ifn=rp

e olq/pl(n) = {

o We say that ¥ is free for p in ¢ iff no free variables in 1 become
bound when substituting 1 for every free occurrence of p in ¢.

Proposition 15 (Trivial Substitution) If p does not occur free in ¢,
WG ¢ < W Eyg, ¢
Proof We proceed by induction on the complexity of ¢:
* ¢ =npi.

Since p does not occur free in ¢, p # p;. So we have o(p;) = o[q/p](p:)
and therefore:

W =y pi <> W ):Z[q/p] Di

o ¢ = Q;p;. If n =0, the result is immediate, by the semantic clause for
jS
W Qjpi < L > W ):g[q*/p] Q;pi
We therefore assume n > 0. Since p does not occur free in ¢, p # p;.
So we have o(p;) = o[¢/p|(p:;) and therefore:

i b Qups e olps) € [WExtS | & ola/pl(p) € [VExtS| 0 0 Fiigy Qi

[ ] ¢ iS O]pl
Since p does not occur free in ¢, p # p;. So we have o(p;) = o[q/p](p:)
and therefore:

W =y O;pi > o(pi) € 0(0;) < olq/pl(pi) € olq/pl(O;) « W ):Z[q/p] O;pi

® ¢isp; < pp;
Since p does not occur free in ¢, p # p;. So we have o(p;) = o[q/p](p:)
and therefore:

o(pi) € o(pp;) < old/pl(p:i) € old/pl(pp;)

from which the result follows by the semantic clause for <.
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e pisf=¢
Since p does not occur free in ¢, it must not occur free in # or £. So,
by inductive hypothesis:

W5 0 0 W =g 0
W =y € <> b }:Z[J/p] 3
and therefore
{W W =L 0} < {'LB i ):g[q../p} 0}
{00 =5 €} o {00 =y, €
So we have:
{U_j . w ):Z 0} = {U_; . U_j ):Z g} < {U_j . U_; ):Z[(T/p] 9} = {U_j . U_; ):Z[lf/p] 5}
from which the result follows by the semantic clause for =.

o ¢is 0

Since p does not occur free in ¢, it must not occur free in 6. So, by
inductive hypothesis:

W00 0 gy 0
and therefore
000 Py 0
from which the result follows by the semantic clause for —.
e pis (AN

Since p does not occur free in ¢, it must not occur free in 6 or £. So,
by inductive hypothesis:

@6 @ gy 9

Wy § W ):Z[(j/p] §

So we have:

(W g 0 N =y €) <> W =g, 0 AT Eg €0

from which the result follows by the semantic clause for A.
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® ¢ is 3]710
By the semantic clause for 3:
W =gigp it < I € Py 0 =G,
There are two cases:

— Suppose p = p;. Then o[F/p;] = o[q/p][¥/p:]. So, merging the
above biconditionals gives us:

W =g 3pid < W g, i
which is what we want.

— Suppose p # p;. Then the fact that p does not occur free in
entails that it does not occur free in §. So, by inductive hypothesis:

W Eolrp) 0 € 0 Fotepaiar ?
But since p # p;, o[F/pi][d/p] = o[d/p][F/pi]. So we have:
W Eolrp 0 € W Fotgperm 0
So, merging the above biconditionals gives us:
W =y 3pid < WG, Ipif
which is what we want.
e ¢ is dpp;6 or 40,0
Analogous to the second case of the preceding item.
e pist

Since p does not occur free in ¢, it must not occur free in 6. So, by
inductive hypothesis:

— n+1 - n+1

W 00 0 gy 0

But, by the semantic clause for 1:
B (16) @ 0
w IZZ[(T/IJ} (10) > @ ):Z[Z”}p] 0

So the result is immediate.
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e 9pis |0
Suppose, first that n = 0. Then:
B (16) 0 @ D0

W Foigp) (L0) < 0 o) 0
Since p does not occur free in ¢, it must not occur free in 6. So by
inductive hypothesis:

@6 @ gy 9

So the result is immediate.

Since p does not occur free in ¢, it must not occur free in 6. So, by
inductive hypothesis:

w R 19%11)):"

q/p

But, by the semantic clause for |:
@D (L6) <@ = 6
'U) IZO' [q/p] (\l/9> A 'lU ):a'[q/p]
So the result is immediate.

Proposition 16 (Substitution Principle) Let ¢ and ¢ be formulas with
no free variables in common. For & € Wy and ¢ = {0 : & =l ¢},

W =y o[y /p| < W ):Z[(T/p] ¢

Proof If p does not occur free in ¢, ¢[¢)/p] = ¢, which means that the result
is immediate, since by proposition 15, we have:

Wy ¢ < W Eyg, ¢

We shall therefore assume that p occurs free in ¢. We proceed by induction
on the complexity of ¢:
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* ¢ =pi
Since p occurs free in ¢, it must be that p; = p. So ¢ = p and @[y /p] =
1. We can therefore argue as follows:

GEL Y o d e (i d B V)
W weq
W =y Y > b ):Z[q/p} p
W =g O[/p] & W =gy @
o o = Q,p;. If n =0, the result is immediate, by the semantic clause for

jS

W=y Qipilt/p) & L & @ g g, Qipi
We therefore assume n > 0. Since p occurs free in ¢, it must be the
case that p = p;. So ¢ = Q,p and ¢[¢p/p|] = Q;1, which means that ¢
must itself be a variable, which we call p;. We can therefore argue as
follows:

olp) € [XExty| (@) o (520 b p) € [YExtg?] ()
o(pr) [WE to, 1] —qe [WEth 1} ()
)

o) € [WExt '] (@) © ola/pl(p) € [VExts!] (@)
W=y Qb W oz P
W=y gl /p] <> @ ):Z'[(T/p] ¢
e ¢is Ojp;
Since p occurs free in ¢, it must be that p; = p and therefore that ¢ is

O;p and 9 is a variable, which we call p;. We may therefore argue as
follows:

o(p) € 0(0;) < {0 =7 pi} € 0(0;)
o(p) € 0(0;) <> ¢ € 0(0;)

o(p) € 0(0;) < alq/pl(p) € olq/pl(0;)
W =y Ojpy < W )Zg[q/p] O
W =y gl /p] <> @ ):Z[(T/p] 0
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® ¢is p; < pp;
Since p occurs free in ¢, it must be that p; = p and therefore that ¢ is
p < pp; and 9 is a variable, which we call p;. We may therefore argue
as follows:

o(p) € o(pp;) <> {0 : @ =y pi} € o(pp))

o) € o(pp;) < 4 € o(pp;)
o(p) € o(pp;) <> old/pl(p) € o(q/pl(pp;)
W =y pi < ppj < W Ey g, P < PDj
W=y P[P /p] < W =g, ¢
o pisf=¢

Since 1 is free for p in ¢, it must also be free for p in 6 or £. So, by
inductive hypothesis:

W =g O /pl < W g, 0
Wy &l /p] < W g €
So we can argue as follows:
{0 =5 0w /pl} = {0 =5 €[ /pl} o {0 0 gy 0 = {0 0 gy €}
W =gy (010 /p] = E[0/p]) € @ =5y (0 =29)
@ D (0 = [/p] & T Eigy 0=6)
o ¢is 0

Since 1) is free for p in ¢, it must also be free for p in 6. So, by inductive
hypothesis:

W =y Oy /p] <> @ ):Z[(T/p] 0
Equivalently:
Wy 01 [p] <> W g, 0

So, by the relevant semantic clause:

W =y =00 /p] < W g, 0
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o pis (O NE)
Since v is free for p in ¢, it must also be free for p in 6 or £&. So, by
inductive hypothesis:

W =g 0l
@ €l
So we can argue as follows:
(@ =5 0l /p] A b=y E[0/p]) < (W g 0 A0 Eagm €)
W=y 0 /p] AE[Y /Pl ¢ W Epg (0 AE)
0y (O NE[/p] < W Epg (BN

pl < W =g 0

/
/p] < W ):Z[(T/p] §

e ¢ is dp;f

By the semantic clause for 3:

@y (3pib) [ /p] < @ =) 3pi([/p)) <> 3¢ € Py, (u_f =

q'/pi]

(6w /p))
Since v is free for p in ¢, p; cannot occur free in ¢». So, by proposition 15:

w ):an ):n[q/p]w

which means that:
{@: @0, 0} =100 v} =
Since 1 is free for p in ¢, it must also be free for p in 6. So, by inductive
hypothesis:
B, 00/n] o w e

q'/pi]
Since p occurs free in ¢, p # p;. So

wE" 0 < @ ="

old /ps ][Q/P]

old /pilla/pl ola/plld /p:]
Putting all of this together:
w ):Z (Elpz‘g) [¢/p] < Elq, € P;LVA (117 ):Z[(T/p][t?/pi] 9)

But, by the semantic clause for 3,

W Fglgm b < 30 € Py, (ﬁ = taslid /i 9)

So the desired result follows.
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e ¢ is dpp;0 or 30,0

Analogous to the preceding case.

e pisT4H
Since 1 is free for p in ¢, it must also be free for p in 6. So, by inductive
hypothesis:

@ L 0] @ 6

But, by the semantic clause for 1:
Wy (TO)[0/p] < @ E 1 (01 /p]) < @ =5 0y /p)

w Izn [@/p] (TG) o w ):Z[Jcrl}p]

So the result is immediate.

e 9pis |0
Suppose, first that n = 0. Then:

@ (LO)[/p] < @ L6010 /p) < 0 2 01 /)

W Eoigm (H0) € 0 Fogg 0
Since 1 is free for p in ¢, it must also be free for p in 6. So the result
follows immediately from our inductive hypothesis:

W =g Ov/p] < W =gy 0

Now suppose n > 0. Since 9 is free for p in ¢, it must also be free for
p in 6. So, by inductive hypothesis:

@ 000 o @ 2 0
But, by the semantic clause for |:
Wy (LO)[W/p] < @ L (01/p]) <> @ =57 0/p)

w |:n [@/p] (10) < w ’:g[q/p]

So the result is immediate.
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Proposition 17 (Validity Substitution) Let ¢ have no variables in com-
mon with ¥ or 6 and suppose that |= 1 <> 0. Then:

W =g ¢y /p] < @ = 6[0/p]
Proof Let p = {W: & 2 ¢} and ¢ = {& : @ 2 0}. Then, by proposi-
tion 16,
W=y o[ /p] <> W ):Z{ﬁ/p} ¢ W =y l0/p] <> W ):Z[q/p] 0

But since we have |= 1 <> 6, it must be the case that p = ¢ and therefore
that o[p/p] = o[q/p], which allows us to conclude:

W =y o[Y/pl < W =] 9[0/p]

10 Comprehension

Definition 22 (Valence)

Intuitively, the valence of a formula ¢, relative to a level of resolution k,
1s a syntactically characterized upper bound on the resolution that is needed
to describe the proposition expressed by ¢, when evaluated externally at res-
olution k (assuming a variable assignment of level 0).

Formally, for ¢ a formula and | € N, the valence of ¢ relative to k,
written vg(@), is defined recursively, as follows:

o 0i(d) = k, if & is atomic:
o up(¢p =) =

o o

(¢ A ) = max(vi(e), ve(¥))
k(3pio) = max(k, v(¢))
(
(
(1

[ ]
-t

o vx(Ippig) = max(k, vi(¢))
e v:(30;¢) = max(k, vi(¢p))

}) = Vk41(0);

® UL
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vr—1(9), if k> 0;

Pl {vo<¢>, k=0,

Lemma 1 (Level Lemma) Let ¢ be a formula of L. For any n,m € N,
let o be an assignment of level m and let k = max(m,v,(¢)). We then have:

{@:d ;o) € Py,
Proof We proceed by induction on the complexity of ¢.

—

For each of the base cases, we proceed by supposing that w(k) = v(k)
and W = ¢, and verifying that ¢ = ¢.

e ¢ = p;. The relevant semantic clause gives us @/ € o(p;). Since o is
a level-m assignment and m < k, it is also a level-k assignment. So
the fact that w(k) = v(k) guarantees that we also have v € o(p;) and
therefore v =" ¢.

o ¢ = Q,p;. If n =0, the result is immediate, since
117 ):S- Q]pz e J_ < ’U ):2_ Q]pl

So let us assume that n > 0. By the definition of valence, v,(Q;p;) =
n. So we have k = max(m,n) and therefore n < k. Since w(k) =
v(k), it follows that w(n) = v(n) (by proposition 4). Let w(n) =
v(n) = <w, et ,ef}_1>. By the semantic clause for Q;p;, W =)} ¢ is
equivalent to

o(pi) € [XExty| (@)
which, by the definition of [szxtgl] () is equivalent to
o(p)e{pe Py, " e (pn—1)=p"")}
which, by the definition of [Z"Extgzl] (7) is equivalent to
o(p) € [XExtg | ()
which is equivalent to ' =2 ¢.
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e ¢ = O;p;. By the relevant semantic clause, W =} ¢ is equivalent to
w € o(0;)(o(pi)). Since o is a level-m assignment and m < k, it is also
a level-k assignment. So the fact that @/(k) = U(k) guarantees that we
also have 7 € 0(0;)(o(p;)) and therefore v = O;p;.

o ¢is (¢ =6) or p; < pp,;. The result follows from the fact that @ =)} ¢
does not depend on .

For the remaining cases, we assume our inductive hypothesis for arbitrary o,
m, and n:

e ¢ = ). By inductive hypothesis,
{(Z: 2, v} e Py,
But if a subset of W4is in P{,“VA, then so is its complement. So:
{Z:Z%Z@/J}GP,’}VA
which is what we want.
e o = (Y ANO). For k¥ = max(m,v,(¢))) and k” = max(m,v,(f)) our
inductive hypothesis gives us:
{(z:7Frytep),  {d:0EL0}ePR),,
Let k* = max(k’, k”). By proposition 5, we have:
{Z: ZFp v} w0 =) 0} € Py,
Now recall that k& = max(m,v,(¢) A 0)). By the definition of valence,
v (¥ A 0) = max(v, (¥), v,(0)). So:

k= max(m, max(v,(¢),v,(0)))
= max(max(m,v,(1)), max(m,v,(9)))
= max(k’, k")
= k*

We therefore have:
{Z: ZFp v} {0 d =) 0} € P,
But if two subsets of W are in P, .» then so is their intersection. So:
{(Z:ZEL YN0} € Py,

which is what we want.
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e ¢ = dp;yp. Let wi(k) = v(k) and assume @ = ¢. By the semantic
clause for 3, we know that for some ¢ € Py, , W ):Z[q*/m] 1. Since o is
an assignment of level m, o[q/p;] is an assignment of level max(n,m).
Let k" = max(max(n,m),v,(¢)). Our inductive hypothesis gives us:

{Z: 2B ¥} € P,
But, by the definition of valence, v, (Ip;1) = max(n, v,(v)). So

ax(m, v, (Ip;))

ko= (

ax(m, max(n, v, (1))
(
(ma

ax(m, n, v, (1))

ax(max(m, n), va(4))

B B B B

-
We therefore have:

7. 7Ln k
{Z: 2 Fogm) ¥1 € P,
Since w(k) = v(k), this means that @ =7, ¢ entails ¥ =7, 1 . In

other words: we know that for some ¢ € Py, , v ’:g[cf/m} 1. So, by the

semantic clause for 3, U =2 Ip;e).
¢ = Jppsyp or ¢ = 30;7. Analogous to previous case.

¢ = 14 Let w(k) = v(k) and assume that @ =211. By the semantic
clause for 1, we have W =271 1)

By the definition of valence, v,(T ©¥) = v,41(¢)) and therefore k =
max(m, v, (1)) = max(m, v,41(¢)). So our inductive hypothesis gives
us:

{z: 7=y} e B,

So the fact that w(k) = v(k) gives us ¥ =2 1) and therefore v =2 1),
which is what we wanted.

¢ = L. Let W(k) = v(k) and assume that @ =2] 1. We show that
7 .
First, suppose n = 0. By the semantic clause for |,

@ L o @
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So we have @ =Y 1. The definition of valance gives us vy(}%) = vo(v))
and therefore k = max(m, vo(11)) = max(m,vy(¢))). So our inductive
hypothesis gives us:

{Ezglzgw}EPfVA
So the fact that (k) = (k) gives us ¥ =2 ¢ and therefore v 2 |4,
which is what we wanted.

Now suppose n > 0. By the semantic clause for |,
o AR

So we have  E""! 4. Since n > 0, the definition of valence gives us

U ($%) = v,—1(¢) and therefore k = max(m, v, (1 ¢)) = max(m, v,_1(¥)).
So our inductive hypothesis gives us:

{z: 2"y} e P,

So the fact that w(k) = v(k) gives us ¥ 2! ) and therefore v " |1,
which is what we wanted.

Proposition 18 (Level Advance) For any k € N and formula ¢,
Vk1(0) = V() V Vr11(0) = vx(9) + 1

Proof We proceed by induction on the complexity of ¢:

e ¢ atomic

Then vi41(¢) = k+ 1 and vg(¢) = k. So the result is immediate.
e pisyp =40

Then vy41(¢) = 0 = vg(¢p) = k. So the result is immediate.
e ¢is Y

By the definition of valence,

Ve (7Y) = e (V) o(—Y) = v(¥)
And, by inductive hypothesis:

k1 (V) = vr(V) V op1 (V) = vp(tp) + 1

So the result is immediate.
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e pisyY N
By the definition of valence,
vk (¥ A 0) = max(vg(¥), ve(0))

Uk (§ A 0) = max(vg41(¢), vr41(0))
And by inductive hypothesis:

U1 (¥) = v(¥) V v () = v(¥) + 1

Vg41(0) = vk (0) V vg1(0) = ve(0) + 1
Assume, with no loss of generality, that v (1) > vi(0). So

o(Y A 0) = max(vi(1), vk (0)) = vi(¢)
If v41(¢) = vk(¥) + 1, it follows from our inductive hypotheses that

Vk+1(VA0) = max(vg41(¢), vr11(0)) = viy1 (V) = v () +1 = v (YAD)+1

which gives us what we want.

So we may assume both vi(¢) > wvp(0) and wve1(¥) = ve(v). If
Uk41(0) = vg(0), it follows from our inductive hypotheses that

U1 (¥ A 0) = max(vet1 (¥), ve11(0)) = ver (V) = vk(¥) = v (b A 0)
which, again gives us what we want.

So we may assume vj(¢)) = vk(0), vr1(¢) = vk(¥), and vy (0) =
vi(0) + 1. Since v (v) > vi(0) and vgy1(v) = vk(¢0), our inductive

hypothesis entails that are only two remaining options:

— Ug1(¥) > vp41(0), in which case it follows from our inductive
hypotheses that

V1 (YD) = max(v11(¢), vi41(0)) = ve41(¥) = v(¥) = v (YAD)

which gives us what we want.

— Uk+1(0) = vgy1(¥) + 1 (and therefore vg(¢)) = vg()). So we have:
Vkr1(WAE) = max(vgy1 (), vpr1(0)) = ver1(0) = vk(0)+1 = ve(V)+1 = v (PYAO)+1

which gives us what we want.
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o ¢is dpy
By the definition of valence,

vk(3py) = max(k, ve(v)) v (3pY) = max(k + 1, vp11 (¢))

And by inductive hypothesis:
V1 (V) = v (Y) V vpa () = op(¥) + 1

Suppose first that k& > vx(v), and therefore:

vE(IpY) = max(k, vp(¢)) = k.

By our inductive hypothesis, it must be the case that k+ 1 > vg1 ().
So we have

Uk1(FIpt) = max(k + 1 vp () =k + 1 = ve(Fpyp) + 1

which gives us what we want.

Now suppose v (1)) > k, and therefore:

ve(Ipp) = max(k, vi(v)) = vr(¥).

By our inductive hypothesis, it must be the case that vgq(¢0) >k + 1.
So we have

Up1(3pY) = max(k + 1, vp11(¥)) = vk (V)
By our inductive hypothesis, this means that:

V1 (FpY) = v (¥) V i1 (Fp) = v (¥) + 1
Since vg(3py) = vk (1)), this gives us what we want.

e ¢ is dppy or 40

Analogous to preceding case

® ¢is Te

By the definition of valence,

Ve(TY) = e (V) e (1Y) = vppa ()
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And by inductive hypothesis:

V2 (V) = Up1 (V) V Upga (V) = Vg1 (¥) +1

Putting the two together gives us what we want:

Vi1 (1Y) = ve(TY) V 01 (T90) = ve(T)) + 1

¢ is L
Suppose, first, that £k = 0. Then, by the definition of valence,

Uk(iw) = Uk(w) Uk+1(¢?/f) = Uk(?/f)

which gives us what we want.

Now suppose that £ > 0. By the definition of valence,

(V) = vp—1(¥) Ver1($0) = (V)

And by inductive hypothesis:

ve(¥) = v (Y) V ur(¥) = vpa () +1

Putting the two together gives us what we want:

vkt (40) = 0L V o1 (L) = wp(bep) + 1

Proposition 19 (Level Advance Corollary) For any formula ¢ and k €

vo(¥) < v(d) < wo(d) +k

Proof By proposition 18,

v(g) < w(g) < w(d)+1
vi(¢) < w(g) < w(d)+1
vp—1(¢) < Uk@) < wpoa(g) +1

which together entail

vo(1) < v(d) < wole) +k
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Definition 23
=11 WFe=1...1

—— =

k times k times

Theorem 1 (Existential Generalization) Let ¢ and v be such that ¢ is
free for p in ¢. For k = vy(),

= o[w/p] = 1 3p e

Proof Fix a model (W, A ,d,n). It suffices to verify the following for an
arbitrary n-level assignment o:

ay olv/p] = 1" 3p e
We assume @ =" ¢[¢)/p] and show @ =" t*3p [* ¢. For | = max(n,v,(v)),

lemma 1 gives us:

{@:d ;) € Py,
Note that it must be the case that | < (n+k): if [ = n the result is immediate;
and if [ = v, (), we can use proposition 19 to show:

l=v,(¥) <vo(¥)+n=k+n
So, by proposition 5, we have:
{0 f=y 0} € B
Accordingly, there exists ¢’ € P;‘\Z‘k such that
7={m: @k )

By proposition 16,
a =y ol/pl < d Eyg @

So, by our initial assumption:
@ Folgp ¢

which is equivalent to the following, by the semantic clause for |:
> _n+k |k
@ Fogmt
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Since ¢ € Pﬁ\,:k , the semantic clause for 3 entails that
aEy™Iplte

which gives us our desired conclusion, by the semantic clause for T,
afEytaplte

Corollary 1 (Comprehension) For ¢ a formula, let k = vo(¢) and let p
be a variable not occurring free in ¢. Then:

1. = 1*3p [ p = 9)
2. 1% 3p(p =1%¢)

Proof Since p does not occur free in ¢, ¢ is free for p in p = ¢. So, by
Theorem 1,

= (p=9¢)o/pl = 1t 3Ip 1" (p = ¢)

Since (p = ¢)[o/p] = (¢ = ¢), part 1 follows immediately by the semantic
clauses for = and —.

To verify part 2, fix a model (W, A, &, n). It suffices to verify the following
for an arbitrary n-level assignment o

a k" 3pp =15 9)
By part 1, we know that:

akpt*aplF(p=19)
which, by the semantic clause for 1, is equivalent to:

aEyt =9
So, by the semantic clause for 3, there is some ¢ € P%Zk such that:

a ):Z[yfp]ik (p=9)
which, by the semantic clause for |, is equivalent to:
a Folgm P =9
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which, by the semantic clause for =, is equivalent to:
{@ 0 =31 p} = {@ 0 =1 0}
which is just
¢ = {0 g 0}
which, by the semantic clause for |, is equivalent to:
7= {w @ ¢k¢}
which is just
-, = n+k o -, = n+k k
(@0 ity v} = {0 w =y Vo
which, by the semantic clause for =, is equivalent to:
— n+k _ 1k
0 Folgy P =10
Since ¢ € P;‘V;k , the semantic clause for J entails that this is equivalent to:
aErtt I = L)
which, by the semantic clause for 1, is equivalent to:
a =y 1 3p(p = 1%0)

Proposition 20 (Non-triviality) There is a frame (W, A), a level-n as-
signment o (n € N), and a formula ¢ of £ such that

{0 |=5 0} ¢ Py,

Proof Let W = {0} and A = W*>. Let w' = <0,i{0}} ey {{O}};> and

r times

vl = <0,@, . ,@>. Let @ and ¥ be such that @(1) = w' and (1) = v'. Let
——

r times

o be a level-0 assignment such that o(p;) = Wy, and let ¢ =1 Q;(p1). Our
semantic clauses then entail:

WM Qi(pr) @ =) Qipr) > Wa € [WExt) | ()
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But by the definition of [’Y Exty | and the fact that w! = <O, {{0}},..., {{O}}>

Vv
r times

/\Hp € {{0}} (#(0) = p")

> ﬁeP
< pe py, Ap(0) = {0}
> ﬁ:W

pe [{Exty,] (@)

So we have @ =21 Q1(p;1). In contrast, we don’t have v 21 Q;(py). For,
again by our semantic clauses,

T EQi(p1) ¢ T =L Qulp) <> Wa € [WExty,] (7)

And we know from the definition of m}ExtOQl] and the fact that v' =

<0,®,...,®> that
W—/

r times
pe [WExty ] (@) + L

—

Since @/(0) = ¥(0) = 0, we may conclude that

{Z: 201 Q(m)} ¢ Py,

11 Axioms and Rules
Proposition 21 (Quantifiers)

1. Universal instantiation (propositional): = Vp(¢) — ¢
Universal instantiation (plural): = Vpp(¢) — ¢
Universal instantiation (intensional): = VO(¢) — ¢
Ezistential generalization (propositional): = ¢ — Jp ¢.

FEzistential generalization (plural): = ¢ —F= Ipp ¢.

S & e e

Ezistential generalization (intensional): = ¢ —F= 30 ¢.

Proof
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1.

Universal Instantiation (we focus on the propositional case; the others
are analogous)

Fix a model (W, A, d,n). For an arbitrary n-level assignment o, we
assume @ =2 Vp(¢) and show @ =2 ¢. Using the (derived) semantic
clause for V, our assumption entails that for any ¢ € Py

a Egig ¢

So this is true, in particular, when ¢ = o(p) and therefore o = o[q/p],
which means that we have:

aly ¢
as desired.

FEzistential Generalization (we focus on the propositional case; the oth-
ers are analogous)

Fix a model (W, A, &, n). For an arbitrary n-level assignment o, we
assume @ =" ¢ and show @ =2 Ip¢. By the semantic clause for 3, it
therefore suffices to verify that for some ¢ € Py,

& Foigm ¢
Let ¢ = o(p). Accordingly, o = o[¢/p]. So all we need to verify is
al=g ¢

which is precisely what we had assumed.

Proposition 22 (Rules)

1.

Modus Ponens: if = ¢ and |= ¢ — 1, then |=1).

Universal generalization (propositional): if |= ¢, then = Vp ¢.
Universal generalization (plural): if = ¢, then = Vpp ¢.
Universal generalization (intensional) if = ¢, then = YO ¢.

Ezistential generalization (propositional): if = ¢ — Jp ¢.
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6. Existential generalization (plural): if = ¢ —= Jpp ¢.

7. Ezistential generalization (intensional): if = ¢ —F= 30 ¢.
8. Next Introduction: if = ¢, then =1 ¢.

9. Necessitation: if = ¢, then = Q.

Proof

1. Modus Ponens

Fix a model (W, A, d, n). It suffices to verify the following for an arbi-
trary n-level assignment o: if @ =2 ¢ and @ " ¢ — 1, then @ I 1),
which follows immediately from the (derived) semantic clause for —.

2. Universal Generalization (we focus on the propositional case; the others
are analogous)

Assume = ¢ and fix a model (W, A, a,n). It suffices to verify the
following for an arbitrary n-level assignment o: & 2 Vpo. By the
(derived) semantic clause for V, it therefore suffices to verify that for
any q € Py,

& Folg/p) ¢
But this is an immediate consequence of |= ¢, since o[¢/p] is an assign-
ment of level n.

5. Next Introduction

Assume = ¢ and fix a model (W, A, a,n). It suffices to verify the
following for an arbitrary n-level assignment o: @ =" 1 ¢. By the
semantic clause for 1 it therefore suffices to verify:

dEgt e

But since o is a level-n assignment, proposition 13 entails that it is also
a level-(n + 1) assignment. So the result is an immediate consequence

of = ¢.

6. Necessitation Assume |= ¢ and fix a model (W, A, @, n). It suffices to
verify the following for an arbitrary n-level assignment o: a =2 O¢.
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By the (derived) semantic clause for [ it therefore suffices to verify
that, for arbitrary @ € Wy:

W=y @
which follows immediately from = ¢.

Proposition 23 (The behavior of 1)

1 (= 1¢) < (1-9¢)
2. | (019) ¢ (109)
5. F (o ATY) & T(dAY)
4- B0 = 1Y) o 1 (o=1)
5. 1(p) &
6. F1(p<pp)<p=<pp
= 1(0p) < Op
= (1) < (T19)

o =

Proof Fix a model (W, A, @, n). For an arbitrary n-level assignment o:
L E(E=10) < (T9)

A oo dE e

G gt 6o d = g

dp -t o dakst o
2. | (019) « (109)

[@:@ 2 0} £0 6 {00 2t 6} #0
(@0 216} #0 0 d ot 00
&L 016 ¢ @ 106
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3. (o ATY) & T(oAY)

(@R o NaETT ) o (@RS ONG BT Y)
(@5 1o Ad I T0) o d =T (0AY)
Ay (to ATY) & a5 1 (OAY)

4 (16 = 1) & 1o =1)

{@: @ o} ={w:w =y ¢} o {d:d BT o) = {wa T )
(@@ ) 1o} = {00 =) Moy o d =T o=
dEr(te = T9) o dl=r o =1)
5. F1() <p
acalp) & dcalp)
Akttt peakrp
dEy t(p) < dEyp

6. =T(p<pp) < p=<pp

o(p) € a(pp) < o(p) € o(pp)
aEf (p=pp) o dE=rp=<pp
Ay T (p<pp) < dEyp<pp

7. = 1(Op) < Op

a e o(0)(o(p) ¢ @ e a(0)(o(p))
akErtt (Op) < aEy Op
a =y 1(Op) < d =y Op
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8. (111¢) ¢ (1149)

aEptt oo dkErt ¢
aky (1)« dbpt? (Lo)
aErt (L1e) e dkrtt (149)
aEr (o) < dkr (114e)

12 The behavior of Q

Definition 24 A natural model is a model (W, A,d,n) such that A =
Wee.

Proposition 24 (Non-functionality of Refinement) Fix a natural model
(W, A,@,n). For any w™ € W4, there are and w™, o™ € Wit such that

v L L hut

n+1 n+1

w" Dy, W AW Dy, v
Proof Suppose, first, that n = 0 and therefore that w” = w € W. Let
el = 0 and f) = {W}. For i such that 1 < i < r, let € = f? = (. Let

w'™ = (w, e}, ... w?) and o™ = (w, f,..., f2). Since (W, A,a,n) is a
natural model, w™ o™t € Wit!. And since ) # f7, w™tt # o™ But it

follows from the definition of >y, that

n+1 n+1

w" Dy, W AW Dy, v
Now suppose that n > 0 and let w" = <w, et ,e?_1>. Since (W, A, @, n)
is a natural model (and therefore A = W), it follows from Cantor’s The-
orem that |P§V:‘1| > [Py, |- So there must be some p" € Py, that is
not identical to [p"~'[j,, for p"7! € P"}V:‘l. For each i < r, let fI* =
{lp" "5 Pt eef !} Let ef = frU{p"}, and for i such that 1 <i <r,
let e = f. Let w"™ = (w,ef,...,w") and v"* = (w, f',..., f™). Since

(W, A,@,n) is a natural model, w™ o™ € Wit And since e} # f7,
w"tt £ "t But it follows from the definition of >y, that

w" By, W AW By, 0"
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Proposition 25 (Non-triviality of the Superproposition Hierarchy)
Fiz a natural model (W, A, d,n). For anyn € N, there is a super-proposition
q such that § € P"™ but ¢ & Py, .

Proof Let w be an arbitrary world in W,. By proposition 24, there are
o™t 2t e Wi such that o™t #£ 2" but

W(n) Bw, " AG(n) >y, 2"

By proposition 3, w™*! and v"*! we may assume that there are superworlds
¥ and Z such that v(n + 1) = v"* and Z(n + 1) = 2"™! and therefore such
that U(n 4+ 1) # Z(n + 1). And by proposition 2, ¥(n) = w(n) = Z(n).

Let ¢ = {y€Wa:y(n+1)=v(n+1)}. Trivially, ¢ € Pj,,. But ¢ ¢
Py, ., since 2 ¢ ¢ even though @(n) = Z(n).

Proposition 26 (Prior and Kaplan) When attention is restricted to nat-
ural models:

1. No Same Level: = 3p—=Q;p

2. Kaplan Next: = Vpp1OVq(Qiq < q < pp)

3. Kaplan Next: = VppOVq(1Qiq <> q < pp)

4. Modal Prior Next: = Vp1OVq(Qiq <> ¢ =p)

5. Modal Prior Next: = VpOVq(1Qiq <+ q¢ = p)
Proof

1. E3p-Qp

Fix a natural model (W, A, @, n). Suppose, first, that n = 0 and let o
be an arbitrary n-level assignment. By the semantic clause for Q

afEy Qip
So, by the semantic clause for —,

a gy —Qip
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So, by existential generalization (proposition 21),
a =y Ip-Qip

Now assume n > 0 and let ¢’'be in Py, but not P{}V:‘l (since (W, A, d,n)
is a natural model, proposition 25 entails that such a ¢ must exist).
Suppose, for reductio, that for some n-level assignment o, @ =2 Q;p.
By the semantic clause for Q;,

7 e [WExty '] (@)

Now let let d(n) = <w, et e"*1>. By the definition of [Z"Extgl] ,

qe [ZVExt’éZ__l] (@) < (q_'E P%;l At el N gn—1) = p"fl))

]

So we have ¢ € P;lv:\l? which contradicts an earlier assumption. It
follows that for every n-level assignment o:

afEy Qip

So we can get the desired result by replicating the reasoning we de-
ployed in the case n = 0.

. | Vpp 1 OVq(Qiq > g < pp)
Fix a natural model (W, A, @, n). Fix arbitrary v € W and B C Py,
(B # 0) and let

B ={p" e Py, 3 B =pn)} v = (v.el. o el)

where e = B" for each j # r. Since (W, A, d@,n) is a natural model,
vt e Wﬁ“. So, by proposition 3, there is a superworld v € W4 such
that v(n + 1) = v™*1.

Now pick an arbitrary ¢ € P! We verify:
7€ [WExt} ] (0) <> 7€ B

o —
Assume ¢ € [WExtg, | (7). By the definition of ['YExtp |, we have:

g € Py, AIp" € ef(qn) =p")

46



and therefore
Ip" € B"(q(n) =p")
So, by the definition of B":
" e {p" e Ry, 1 35 e B =) | (@ln) = p")
equivalently
Ip" € Py 3p € B(p" = p(n) Adln) =p")

We may therefore fix p" € Pyj, and p' € B such that

tion 7 entails:

which is what we wanted.

.
Assume ¢ € B. Since B C Py ., 4 € Py,. So our assumption is
equivalent to:
which is equivalen to:
3" € Py, 30 € Bp" = pn) AGln) = p")
and therefore
W e {p e By, 35 e Bt = i) } @n) = p)

which, by the definition of B", is equivalent to:

Ip" € B*(q(n) = p")
which is equivalent to

" € e (qn) = p")
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Since ¢ € Py}, ,, we may conclude:
g€ Py, ANIp" €el(qn) =p")
which gives us what we want, by the definition of &VEX‘CEJ:
qe [JExty,] (v)
We have shown that for arbitrary ¢ € P%Zl and B C Py, (B #£0),
g€ [WVExth ] (¥) «» g€ B

So, by the semantic clause for Q and <, we have the following for an
arbitrary level n assignment o:

= n+l

0B SP P = PP

But since ¢ was an arbitrary member of P{}V:l, the (derived) semantic
clause for V gives us:

U n+1

Since U € Wy, this gives us:

=, = n+1
{ww o5 /o] Vp(QpHp<pp)}7é@

So, by the (derived) semantic clause for O,

- n+1

o5 QVP(QP < p < pp)

So, by the semantic clause for 7,
Q) 5 TOVP(Qp > p < pp)

But since B C Py, was chosen arbitrarily, the (derived) semantic
clause for V gives us:

a = Vpp 1 OVp(Qp <> p < pp)

which is what we wanted.
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3. | VppOVq(1(Qiq) <> ¢ < pp)
Fix a natural model (W, A, @, n). Fix arbitrary v € W and B C Py,

(é # ()) and define ¥ as in the previous case. As in the previous case,
we can show for arbitrary ¢ € P;Lvt‘l

ge [WVExth] (7)< ge B

So, by the semantic clause for Q and <, we have the following for an
arbitrary level n assignment o:

e d TL+]. — n
o8 ol 2P U B s P = PP

So, by the semantic clause for 7,
Ui T (9P T g g P < PP

and therefore

g n

B/l 1 (9P) &P =P
But since ¢ was chosen arbitrarily from Pﬁvil, proposition 5 guarantees
that the result also holds when ¢ is chosen arbitrarily from Py, . So
the (derived) semantic clause for V gives us:

U5/ YP(T(Qp) < p < pp)
Since v € Wy, this gives us:

{117 L0y VPO T(QP) < p < pp)} 70

So, by the (derived) semantic clause for ¢,

O =05y OVP(T(Qp) < p < pp)

But since B C Py, was chosen arbitrarily, the (derived) semantic
clause for V gives us:

a =y VppOvp( 1(Qp) < p < pp)

which is what we wanted.
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4. = Vpp1OVe(Qiq <> ¢ < pp)

Analogous to the proof of more general result.

5. = VpOVq(1Qiq < ¢ = p)

Analogous to the proof of more general result.

Definition 25 Fiz a model (W, A,da,m). Q; and Q; are independent (rel-
ative to the relevant model) if and only if, for any p € Py, (n € N), there is
w € Wy such that

e Bty ] (@) & 7 [V Bty | ()

Proposition 27 (Some models exemplify independence) Wheneveri #
J, Qi and Q; and independent relative to any natural model.

Proof Assume, with no loss of generality, that ¢« = 1 and j = 2. Let
(W, A, d,m) be a natural model and let '€ Py;,, (n € N). For any w € W,
let

wt = <w,{ﬁ(n)}, 0,...,0 >
——

(r—1) times
Since (W, A, & m) is a natural model, w"t* € W4, So, by proposition 3,
there is @ € Wy such that w(n + 1) = w™"!. We then have:
pe By, Apn) =pn), —(L)
pe Py A" e{pn)}(pn) =p"), —(e Py, AIp" € b(pln) =p"))
pe [WExty,] (@), p¢[XExty,] (w)

Proposition 28 (Russell-Myhill Next) Whenever Q; and Q; are inde-
pendent, =1(Qip # Q1)

Proof Let Q; and Q; be independent and assume, for reductio, that p=1

—(Q;p = Q;p). By our assumption, there is a model (W, A, &, n) and an
n-level assignment o such that:

a g —(Qip = Qjp)
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which, by proposition 23, is equivalent to:
alfEy =1 (Qip= ij)

which, by the semantic clause for —, is equivalent to:

a =gt (Qip = Q5p)
which, by the semantic clause for 1, is equivalent to:

a ):ZH Qip = ij
which, by the semantic clause for =, is equivalent to:

{13 T Qip} = {u7 i = ij}
So, for any W € Wy,
0T Qip o @ T Qpp
So, by the semantic clause for Q, the following holds for any w € Wy,
o(p) € [WExty,] (@) + a(p) € [VExtd,] (&)

which contradicst the assumption that Q; and Q; are independent.

Proposition 29 (Intensional Cases)

1. = 13003p(1(Qip) 4 Op)
2. [ YOOp(1(Qip) < Op)

Proof

1. = 13003p(1(Qip) # Op)

Fix a model (W, A, @, n) and an arbitrary n-level assignment, o. Let
7 € Iy, be defined as follows:

(@) = {@ € Wa: @ i) Q)
Let us verify that 7 € 1—17/1\;;1:
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We assume ¢ € P%f and show 7(q) € P,’}VT. Since ¢ €
Pﬁvjl, and since o is an assignment of level n, o[¢/p] is an
assignment of level n+1. So Lemma 1 gives us:

{@ e Wy T Qip} € P;I\Z‘l
which is what we wanted.

So we know that 7 € I}/ and therefore that o[7/O] is an assignment
of level n + 1.

Choose U € Wy arbitrarily and let ¢ € Py, . Then propositions 10
and 11 give us:

7€ [WExtE™] (0) « 7€ [WExtd ] (¥)
So, by the semantic clause for Q;,
= |_n+t2 = | ntl
U Estoliam QP < U Foigy Qi
which is equivalent to:
= |_n+t2 = |/ n+1
U Fomonam QP 9> U Foigm Qb
which is equivalent to:
S 42 ~ - o nAtl
U EGkoyam Qb ¥ U € {“’ EWaw Fpy, Qip}
s0, by the definition of 7,
— n—+2 — —,
TSl QP ¥ U € 1)
So, by the semantic clauses for T and Op,
= |_n+l = |_n+l
U Eotoliarm T(Qip) 9 U =0 OP
So, by the semantic clauses for Boolean operators,
= |_n+l
U Fomoigm T(Qip) # Op

Since ¢'is in Py}, and therefore in Pﬁ;‘l, the semantic clause for 3 gives
us:

7 Enblo Ip(1(Qip) 4 Op)
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Since v € W4 was chosen arbitrarily, this gives us:
{77 ooy 3(1(Q) # Op) b = Wa
So, by the (derived) semantic clause for [J,
a Elto OFp(1(Qip) # Op)
But since 7’ € I;LVJ;I, the semantic clause for 3 gives us

& = 3003p(1(Qip) 4 Op)

So, by the semantic clause for 7,

& =" 13003p(1(Qip) 4 Op)

which is what we wanted.

2. = YOOVP(1(Qip) <> Op)

Suppose otherwise:

= YOOVp(1(Qip) «» Op)

By proposition 22, this means that:

=1 YOOVp(1(Qip) +» Op)

But by the previous result, we have

= +3003p(1(Qip) # Op)

which is equivalent to:
= = 1VOQVP(1(Qip) <+ Op)
Proposition 30 (Validity Failures)

e FTo— 0o

Proof
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e Consider a model (W, A,&,0), where W = {0}, A = W*, w! =
<0,{®},...,{®}>, and @ is such that @(1) = w'. Let ¢ be an as-
—_———

r times

signment such that o(p) = 0. So we have o(p) € Py,, and o(p)(0) =
{w6(0) : @ € o(p)} = 0. We verify that @ E2 1Q;(p) but @ Y Q,(p):

The latter is an immediate consequence of the semantic clause for Q.
So it suffices to verify the former. But, trivially,

" € {0} (0=1p")

And since o(p) € Py, and o(p)(0) = 0, this gives us:
a(p) € Py, A’ € {0} (o(p)(0) = p°)
equivalently,
o(p) € {7 e Py, : 3 € {0} (70) = p")}

So, by the definition of [YExt, |

o(p) € [VExty,]
So, by the semantic clause for Q;

=, Qi(p)

So, by the semantic clause for 1:

d =g 1Qi(p)

13 Examples

A proof of Prior: =OE~ — (ET ANE™)
e ET:=3p(OpAp)
e £ :=3p(Op A —p)

1. OE~ (assumption) [1]

o4



H
I

11.

L o N o otk W

—E~ (assumption) [2]

—=Vp(Op — p) (from 2, by definition) |2]

Vp(Op — p) (from 3, by Double Negation Elimination) |2]

(OE~ — E7) (from 4, by Universal Instantiation) [2]

E~ (from 1 and 5, by Modus Ponens) |2, 1]

E~ (from 6 discharging 2, by Conditional Proof) [1]

(O(E~) A E7) (from 7 and 1, by Conjunction Introduction) [1]
Ip(Op A p) (from 8, by Existential Generalization) [1]

(E* A E7) (from 7 and 9, by Conjunction Introduction) [1]

OE~ — (E* A E7) (from 10, discharging 1, by Conditional Proof)

A proof of Modal Prior: = Ip00-Yq(Oq < (¢ = p))

1.

e e T

L 0 N o otk W

¥4(Oq > (q = B-)) (assumption) [1]

OFE~ < (E~ = E7)) (from 1, by UG) [1]

OFE~ (from 1, by MP and reflexivity of identilty) [1]
OE~ — (ET NE™) (Prior) ||

ET AN E~ (from 3 and 4 by MP) [1]

Ip(Op A —p) (from 5, by conjunction elimination) [1]
(Op A =p) (from 6, by EI) [1]

Op <> (p = E7) (from 1, by UG) [1]

p=-FE" (from 7 and 8), by MP and conj. elim.) [1]

—E~ (from 7 and 9), by identity subs. and conj. elim.) [1]

. Wq(Oq <> (¢ = E7)) (by reductio, from 5 and 10, discharging 1) ||
. O0-Vq(Oq <> (¢ = E7)) (from 11, by Necessitation) ||
. Ip0-V¢(Oq < (¢ = p)) (from 12, by Existential Generalization) ||
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