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Abstract

This paper explores the ways in which resource
limitations influence the nature of perceptual and
cognitive processes.  A framework is developed that
allows early visual processing to be analyzed in terms of
these limitations.  In this approach, there is no one “best”
system for any visual process.  Rather, a spectrum of
systems exists, differing in the particular trade-offs made
between performance and resource requirements.1

Introduction
Consider a wildcat in its natural environment.  If it is to
catch prey and escape from predators, the cat must not
only be able to process visual information, but must also
do so in real time.  Its visual system is therefore best
explained not only in terms of limitations on the
information available to the eye, but also in terms of
limitations on other resources, such as time and space.
   There is an increasing awareness – especially within the
more computational sub-disciplines of cognitive science –
that these more general resource limitations influence
many kinds of perceptual and cognitive processes.  For
example, Cherniak [1984] argues that classical logics
cannot form the basis for cognition because such
cognition is computationally intractable; this has led to an
examination of heuristics by which fast reasoning could
take place [Levesque and Brachman, 1985; Levesque,
1989].  Similarly, Tsotsos[1987, 1990] has argued that the
processes of early vision must have at most polynomial-
time complexity if they are to be carried out in real time.
But although there is an increasing appreciation of the
role of resource limitations (e.g., [Bylander et al., 1989;
Kasif, 1986; Rosenfeld, 1987]), no general framework for
discussing these issues has emerged to date.

   1The work of R.A. Rensink was supported by NSERC grant,
via R.J. Woodham.  Much of the work by G. Provan was done
at the University of British Columbia, under NSERC grant
A9281.  The authors would like to thank Marion Rodrigues and
Marc Romanycia for their comments on earlier versions of this
paper.  Many thanks also to Bob Woodham for his support of
R.A. Rensink.

   This paper discusses  some of  the issues  that must  be
addressed in developing such a framework.  In partic-
ular, it focuses on the influence of resource limitations
on early visual processing.  Marr [1982] has made a
beginning in this domain, showing how vision can be
analyzed in terms of constraints that allow good use to
be made of the information available in the image.  We
will show how this framework can be expanded to
handle other kinds of resource limitations, yielding
added insight into the interconnections that exist among
task, algorithm, and architecture.  Since many of these
issues are general ones, the framework presented here
will contain elements that are also applicable to other
areas of perception and cognition.

Resource Limitations and Explanation
Many of the earlier analyses based on resource limi-
tations (e.g., [Norman and Bobrow, 1975]) focused on
limitations in the system architecture, for example,
limited memory or channel capacity.  These did not yield
the insights that had originally been hoped for; indeed, it
has been argued [Navon, 1984] that such limitations are
inherently incapable of leading to unequivocal insights
into the operation of perceptual and cognitive processes.
   But architectural limitations are not the only kind that
arise – more general limitations also exist, such as limits
on the available information, and on the time and space
allowed for a computation.  These “processor-
indifferent” limits are potentially more powerful than
those based on architectural limitations, essentially
describing the structure of the task itself.
   Given that these general limitations must be taken into
account, how might they be used to analyze the
underlying mechanisms?  One of the most successful
approaches to date has been the computational frame-
work put forward by David Marr [1982], in which visual
processing is analyzed in terms of constraints that allow
good use to be made of the information available in the
image.  In what follows, we will show that this
framework can be expanded to accommodate not only
limits on available information, but other kinds of
resource limits as well, and that such a revised frame-
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work can lead to a new understanding of several aspects
of early vision.

Marr’s Framework
According to Marr [1982], a complete analysis of a visual
process involves three distinct levels of explanation:2

1. Computational level.  Analysis at this level is entirely
concerned with the specification of the task itself.  This
consists of two parts: (i) describing the constraints that
exist between the input of a visual process and its output,
and (ii) describing the reasons why these constraints have
been chosen.

2. Algorithmic level.  This level views explanation in terms of
the representations and algorithms used for the process.
More precisely, an “algorithmic” explanation is a
constructive demonstration that there exists a formal
algorithm sufficient to perform the required task.

3. Implementational level.  This level is concerned with the
physical substrate on which the algorithms are
implemented.  An “implementational” explanation is a
constructive demonstration that there exists a physical
system sufficient to carry out the required computation.

   One of  the  great  strengths  of  Marr’s  approach  is  its
recognition of a “computational” level of explanation, in
which emphasis is placed upon determining the what and
the why of the particular operations being carried out.
This has helped clarify our understanding of several
processes of low-level vision, including edge detection
[Marr and Hildreth, 1980], stereopsis [Marr and Poggio,
1979], and motion perception [Hildreth, 1984].  Consider,
for example, the computational analysis of stereopsis.
Determining the what consists of finding the constraints
on the acceptable correspondences between features in
the left and right images, and constraints on the form of
the recovered surface.  These constraints must be suf-
ficient to describe a unique mapping between the image
and the resulting map of disparity estimates.  Determining
the why essentially consists of a demonstration that these
constraints serve to allow a satisfactory recovery of dis-
parity estimates from the image pairs.
   Hence,  the stereopsis problem can be  seen as the  spec-
ification of a mapping from a given set of image pairs to a
set of (reconstructed) surfaces.  This mapping can easily
be described by its “extension”, viz., a list of the pairings
made between individual images and surfaces.  Such a
description, however, does not really provide an explan-
ation for the process, any more than a list of planetary
positions over some given interval explains their motions.
Explanation must involve a description of the “invariants”

   2It is important to note that Marr considers explanations at
each level to be essentially independent of those at the other
two [Marr, 1982, chapter 1].  For example, analysis at the
algorithmic level is not concerned with ultimate purpose not
does it depend on any details of implementation.

or “deep structure” that underlie the particular mapping
that is made.  The constraints sought for at the comput-
ational level provide exactly this kind of explanation.
To justify the choice of a particular set of constraints
(explaining why) requires showing that the constraints
lead to an acceptable set of associations between image
and scene in the world under consideration.
   But  although  Marr’s  approach   has   helped   explain
several parts of low-level vision, it has not helped in our
understanding of many others, e.g., color perception or
texture perception [Morgan, 1984].  For example, in
texture perception, it is the resources available to the
processor (e.g., time and space) which are relatively
scarce, rather than the information in the image.  Marr’s
framework cannot handle such matters, since the
computational level of analysis (implicitly) assumes that
perception relies on processors with unlimited
computational resources.3

Resource Limitations and Constraints
To see how these more general kinds of resource limi-
tations influence the operation of a visual process, it is
important to note that these limitations fall into three
main groups:
1. Projective limitations.  The available information in the

image may be considered a basic resource acquired by
the sensors of the system; the limitations on this resource
stem from the way in which the scene is projected to the
image.  The type and amount of available information
may strongly influence the kinds of computations that
can be performed; if so, the process can be characterized
as “data-limited” [Norman and Bobrow, 1975].

2. Computational limitations .  A processor is also limited by
many aspects of the way in which is operates, aspects
which have no direct connection with its physical
composition.  Although many of these are specific to the
particular computational architecture used (e.g. the
particular set of elementary operations available,
bandwidths, etc), more general ones also exist.  It is this
latter set of resources – in particular the time and space
required for a computation – that will be considered
here.  Limitations on these resources will be referred to
here as complexity limitations.

3. Physical limitations.  A processor is also governed by
limitations stemming from its physical make-up.  Again,
many of these quantities refer to the particular architecture
of the processor.  But limitations also arise from more
general considerations, such as the matter and energy
required for a given task [Bennett, 1982; White, 1988].

   3Marr [1982] does consider efficiency to be important, but
only once the task itself has been laid out.  As such, it does not
enter into the general analysis carried out at the computational
level.
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   In order to overcome  these  sets  of  limitations,  a  pro-
cessor must impose corresponding sets of constraints on
its operation.  To completely understand a given process,
therefore, is to understand these sets of constraints.4

Thus, for example, in Marr’s framework, projective
limitations are the only kind that the visual system is
considered to grapple with.  To make up for such lost in-
formation, a corresponding set of projective constraints 5

is needed on the mappings between image and scene;
essentially, these determine which of the many possible
scenes actually corresponds to a given image.
   But such “processor-indifferent” explanations  need  not
be restricted to invariants of the form of this mapping –
there may also exist a set of constraints on the algorithm
and representation used to obtain it. More generally, such
“complexity” constraints describe the resources used by a
given process.  This in turn limits the kinds of mappings
that can be made.  To completely explain the form of a
mapping, then, both projective and complexity constraints
will usually be required.  Only when computational
resources are unlimited (as assumed in Marr’s approach)
will projective constraints alone be enough to explain a
visual process.
   Note that in  Marr’s framework,  no  general  constraints
are imposed on an algorithm, so that they often have a
large element of the ad hoc, being based on current
beliefs of psychology and physiology.  But complexity
constraints can provide such general guidelines, thereby
substantially reducing the need for the ad hoc element in
any particular model.

A Revised Framework
A computational explanation of a visual process, then,
will include a description and justification of the
projective, complexity, and physical constraints imposed
to handle the corresponding types of resource
limitations.6 Different levels of explanation still exist, but

   4In what follows, ‘limitations’ will be used when referring to
resource limits imposed on the system, limits over which the
process has no control (e.g., total amount of time, space,
energy, etc).  These must be distinguished from ‘constraints’,
which are imposed by the system itself to make good use of its
available resources. When talking about a system, the term
‘constraint’ will only be used in this latter sense.
   5The term ‘projective constraint’ is meant to replace ‘com-
putational constraint’ as used n Marr’s framework. The alter-
nate term is used to avoid confusion between constraints placed
on the form of the “interpretation mapping” between image and
scene, and the constraints on the algorithm used to compute it.
   6In this paper, much of the focus will be on complexity
constraints, since projective constraints are relatively well
understood, and physical constraints add little (at least at this
stage of development) to what can be learned by discussing
complexity constraints.

are now based on the degree of generality of the
constraints, rather than on issues of abstract mapping,
process, and implementation:
1. Computational level.  This includes not only the projective

constraints, but also those complexity and physical
constraints that are “processor-indifferent”.

2. Algorithmic level.  This involves the more specific
complexity and physical constraints that are placed on
the “internal” structure of the system to give the
algorithm and representation a unique determination;
since projective constraints have no further bearing on
this matter, they are necessarily absent from this level.

3. Implementational level.  Although not developed here, it is
apparent that this level concerns the remaining
constraints on the particular system being modelled.

Thus, the three levels of Marr’s framework are preserved
in large measure – analysis still occurs at each of the
computational, algorithmic, and implementational levels.
But the constraints required at the computational and
algorithmic levels of analysis have been tightened up
significantly, due to new sets of constraints.  The most
important change, however, is that analysis is based on
the generality of the constraints.  Since constraints on
algorithms and implementation result from both general
and more specific constraints, this provides an
interesting linkage between mappings, algorithms, and
implementation.

Analyzing Vision Systems
The explanation of a visual process is essentially the
description and justification of the projective, complex-
ity, and physical constraints that govern its operation.
Since the use of projective constraints is already an
integral part of “conventional” analysis, and physical
constraints are not considered here, we will focus on the
way in which complexity constraints can be used to
analyze the operation of a vision system.
  The theory of computational complexity (cf. [Garey and
Johnson, 1979]) can be used to formalize many of the
concepts pertaining to complexity constraints. Speci-
fically, it can define the time and space requirements of
particular tasks, independent of the algorithm or archi-
tecture.  For the purpose of this paper, it is sufficient to
distinguish tasks which can be solved quickly (e.g. the
class P of tasks solvable within a time proportional to
some polynomial of the input size), from more time-
consuming tasks (e.g., the class of NP-complete
problems, which – in the worst case – require time that
increases exponentially with the size of the input).7

7It is entirely possible that the average resource use is much more
representative than the worst-case situation, and this may be used as
one of the complexity measures.  However, worst-case situations
must still be dealt with.
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Efficient Use of Resources

If the computational demands of a task exceed the
resources available, it is obvious that the task will need to
be reformulated.  However, this reformulation may be
kept to a minimum by making efficient use of the time
and space that is available.  As used here, the term
“efficient” does not necessarily mean optimal; rather, all
that is meant is that relatively little time or space is
wasted.
   The efficient use of  resources depends greatly upon  the
choice of particular algorithms and representations used
in a process.  However, there exist a few general
considerations that are relevant:

1. Parallelism.  Perhaps the most obvious way of reducing the
time required for a task is to carry it out in parallel.
However, it must be noted that it is not always possible
for processes to take advantage of parallelism – e.g., there
can be no reduction in time for Constraint Satisfaction
Problems [Kasif, 1986], since they are inherently
sequential.  Thus, if a task is to take advantage of
parallelism, it must be such that most of its computations
can be done locally.  But each of these local computations
must operate within the given time, and – taken as an
ensemble – they must also operate within the given space.

2. Resource trade-offs.  The specification of a desired level of
performance does not uniquely determine the exact
resources necessary to attain it – trade-offs between
various computational resources can still be made.  One
well-known example of this is the trade-off between time
and space: for instance, look-up tables can be used instead
of computing values on demand.  Thus, Goad [1983]
presents an object-recognition scheme where the poses of
objects are pre-computed so that viewpoint determination
is speeded up.  Alternatively, redundant coding can often
be used to decrease processing time (see, e.g., [Arbib,
1987, pp 87-89]).  Note that this use of redundant
representations contrasts with Marr’s approach, in which
the goal is to use nonredundant (orthogonal) systems of
representation as much as possible.

3. A priori knowledge.  One final consideration that also enters
into the efficient use of resources in visual processing is
the possible use of “high-level” a priori constraints based
on the particular characteristics of the objects in the scene.
In many cases, higher-level constraints could significantly
reduce the computational complexity of a process; if these
constraints could be selectively “loaded into” lower-level
processes, this could often achieve a considerable speedup
of processing.  The relation between early vision and later
levels of processing is a complex one, and will not be
discussed here, but it is worth point out that if such
“downloading” of a priori knowledge does indeed occur,
issue of resource use will prove to be critical for its
analysis.

Performance Trade-offs

Even though a process is as efficient as possible, it may
still be impossible to carry it out using the available time
and space.  If so, the process cannot be used; it must be
replaced by one that does satisfy the resource con-
straints.  The efficiency of such “approximating” pro-
cessses is obtained by lowering the quality of the map-
ping between input and output.  More generally, there is
usually a trade-off between the complexity of the map-
ping between image and scene, and the resources requi-
red to compute the mapping.  Thus, depending on avail-
able computational resources, the visual process most
suitable for a particular task can range from “traditional”
process that use unlimited computational resources, to
“quick and dirty” systems that require only a small
amount of time and space.  Part of a computational ex-
planation of a visual process is therefore to specify what
the particular choice of trade-off is, and why it was made.
   There appear to be some general aspects to the meth-
ods by which performance can be “gracefully” traded off
for reduced computational complexity, and it is likely
that these strategies will enter into many of the particular
processes of early vision.  A few of these strategies
(together with some possible applications) will now be
discussed in regards to the reduction of processing time:
1. Reducing quantity of input.  In general, more information

requires more computation time [Levesque and
Brachman, 1985].  Thus, one way to reduce time is to
reduce the amount of data in the input that has to be
handled.  For example, visual search is an NP-complete
problem, requiring time that increases exponentially with
the size of the input [Tsotsos, 1987].  This time can be
reduced (see below) by taking advantage of the
coherence and uniformity of the world to represent the
original image by a smaller set of coarser-grained
patterns that could be comfortably handled with the
available resources.  As the grain of these patterns
increases, the number of distinctions that can be made in
the input decreases; however, these distinctions may be
quite suitable for many purposes.

2. Reducing the quantity of output.  Given that computational
complexity can be reduced by effectively reducing the
amount of information in the input, a natural “dual”
would be to reduce complexity by reducing the amount
of information in the output. Such outputs would contain
coarser-grained descriptions of the more important
aspects of the scene.  Note that this “coarse grain” need
not always correspond to a diminished resolution in
some property such as spatial location or velocity of
motion;  instead,  the “equivalence classes” of outputs 8

8An equivalence class  is defined as the set of algorithms and
representations which carry out the same mapping while using
the same information content and computational resources.
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could be based on such things as topological properties.
In a very general sense, then, these outputs may be re-
garded as providing qualitative descriptions of the scene.
For example, in Marr’s theory it is assumed that the three-
dimensional structures of objects in space are represented
as point-by-point mappings of local depth and/or
orientation.  Such representations are difficult to compute,
and it is possible that they are not computed at all.
Indeed, it appears that more qualitative descriptions –
such as descriptions of affine or ordinal structure – may
provide all the information that is required by subsequent
processes [Todd and Bressan, 1990].

3.  Reducing quality of the mapping.  Reducing the information
in the input and output of a mapping is often sufficient to
reduce complexity, but it isn’t always necessary. For
many processes, the availability of a spatiotopic array of
processors is sufficient to allow them to be carried out in
constant time.  For example, a simple remapping of all
intensities in an image can be done immediately on a
parallel array, no matter how much information is con-
tained in the input and output.  A process can therefore
trade off performance against complexity by altering the
nature of the mapping itself; essentially, it is the quality of
the mapping that is being traded off.  This is the strategy
adopted in rapid line interpretation (see below) –
increased speed is obtained by reducing the validity and
global coherence of the recovered scene.

Examples
To illustrate how resource constraints can help explain
various aspects of visual perception, we will briefly
sketch how this approach can be applied to two particular
processes in early vision: visual search and the pre-
attentive recovery of three-dimensional orientation from
line drawings.  If described in the “conventional” way,
i.e., making optimal use of information, both problems
are NP-complete.  But the processes of early vision are
generally carried out within several hundred milliseconds,
making it unlikely that these problems can be formulated
in this way.  This suggests a shift in the way these
processes should be viewed: instead of making optimal
use of information, they appear instead to emphasize
“quick and dirty” performance.

Visual Search
One of the first treatments of complexity in early vision
was that of Tsotsos [1987, 1990], who analyzed the pro-
cess of visual search.  Here, the problem is to determine
as rapidly as possible the presence or absence of a known
target pattern in an image.  Tsotsos showed that if optimal
decisions are to be made, this problem is NP-complete,
requiring an exponential amount of time in the worst
case.  This is at odds with evidence that many kinds of
targets can be reliably detected within several hundred
milliseconds, while others require a time directly

proportional to the number of items in the image (e.g.,
[Treisman and Gormican, 1988]).
   The first step in the analysis is to determine  the  extent
to which time and space can be reduced while main-
taining optimal detection performance.  Tsotsos shows
that hierarchical coding can help to minimize the
resources required, but that the problem still remains
NP-complete, since the target must be compared again
all possible aspects of all possible subsets of the image.
If visual search is to be carried out rapidly, this can only
be done for a select group of image subsets (or equiva-
lently, a select group of target patterns).
   Even by defining preferred patches  as convex  patches
with uniform properties (arising from the convexity and
uniformity of objects in the physical world), the time re-
quired is still too high to be compatible with the com-
plexity constraint.  Consequently, a more radical step is
taken:  information is thrown away.  This is done both
by reducing spatial resolution in the basis set of patterns
and by reducing the number of properties that can be
considered at any one time.  Although the completeness
of the system is thereby sacrificed, these constraints do
allow an architecture to be specified that is compatible
with the time and space limitations generally found in
biological systems.  Interestingly, this architecture has
many of the general characteristics of the human visual
system, viz., a small set of physically separated spatio-
topic maps, columnar organization of processors, and
coarse coding of local properties [Tsotsos, 1987, 1990].

Rapid Interpretation of Line Drawings
Another problem in which time limitations play an im-
portant part is the rapid interpretation of line drawings.
The goal of the line interpretation task is to recover the
three-dimensional structure of opaque polyhedral objects
from line drawings describing their projection onto the
two-dimensional image plane (see e.g.,[Sugihara,1986]).
Interpretations generally take the form of a labeled
drawing in which each line element (or region) is assig-
ned a unique interpretation as a three-dimensional struc-
ture (e.g., that the line has a particular three-dimensional
orientation, or that it forms the boundary of the object
being viewed, etc.).  This process has been shown to be
NP-complete [Kirousis and Papadimitriou, 1985], ruling
out the possibility that it is carried out in early vision.
  However, it has recently been shown (Enns and Rensink
[1990, 1991]) that the three-dimensional orientation of
some objects can be recovered at early stages of visual
processing, within several hundred milliseconds of dis-
play onset.  As in the case of visual search, then, optimal
use of information is not to be expected for such a
process; part of the explanation must involve complexity
as well as projective constraints.
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      In the model  proposed  by  Enns  and  Rensink,  inter-
pretation is accomplished via two parallel stages, each of
which involves only a small number of steps.  The first
stage is carried out in parallel on each trilinear junction in
the image.  These junctions are places in the image where
three line segments join up.  Any junction may cor-
respond to several three-dimensional structures in the
scene; here, however, only the most likely interpretation
is assigned.  Once these initial interpretations have been
established, consistency is tested by comparing the
interpretations at each junction against those of their
immediate neighbors.  This can be done within some con-
stant time simply by propagating the local estimates along
the lines that connect the junctions.
   If such a “quick and dirty” process is used  in  the  early
stages of vision, this should allow some line drawings to
“pop out” of a display on the basis of the three-dimen-
sional orientation of the block they describe.9  Enns and
Rensink [1991] show that this is exactly what happens.
   These findings suggest that other “quick and dirty”
processes may also be used in early vision.  For example,
it is possible to rapidly determine the concavity/convexity
of surfaces, based on the patterns of shading in the image
[Ramachandran, 1988].  If these processes are represen-
tative of the operations carried out at early levels, this will
force a new look at the nature of early visual processing.
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