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Abstract: In this paper I introduce a sequent system for the propositional modal logic
5. Derivations of valid sequents in the system are shown to correspond to proofs in
a novel natural deduction system of circuit proofs (reminiscient of proofnets in linear
logic [9, 15], or multiple-conclusion calculi for classical logic [22, 23, 24]).

The sequent derivations and proofnets are both simple extensions of sequents and
proofnets for classical propositional logic, in which the new machinery—to take ac-
count of the modal vocabulary—is directly motivated in terms of the simple, universal
Kripke semantics for 5. The sequent system is cut-free (the proof of cut-elimination
is a simple generalisation of the systematic cut-elimination proof in Belnap’s Display
Logic [5, 21, 26]) and the circuit proofs are normalising.

This paper arises out of the lectures on philosophical logic I presented at Logic
Colloquium 2005. Instead of presenting a quick summary of the material in the
course, I have decided to write up in a more extended fashion the results on
proofnets for 5. I think that this is the most original material covered in the
lectures, and the techniques and ideas presented here gives a flavour of the
approach to proof theory I took in the rest of the material in those lectures.
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The modal logic 5 is the most straightforward propositional modal logic — at
least when you consider its models. The Kripke semantics for 5 is just about
the smallest modification to classical propositional logic that you can make
once you add the idea that propositions may vary in truth value from context
to context. We add just one new operator, �, with the proviso that �A is true
in a context when and only when A is true in every context. (The dual operator
♦ is definable in terms of� in the usual way. We could start with ♦ as primitive,
and then � is the defiable connective. Nothing hangs here on the choice of �
as primitive.)
The modal logic 5 has very simple models. A (universal) 5 frame is a non-

empty set P of points. An evaluation relation 
 is an arbitrary relation between
points and atomic formulas. A (universal) 5 model 〈P,
〉 is a frame together
with an evaluation relation on that frame. Given a model, the evaluation rela-
tion may be extended to the entire modal language as follows:

• x 
 A ∧ B iff x 
 A and x 
 B.

• x 
 ¬A iff x 6
 A.

• x 
 �A iff for every y ∈ P, y 
 A.

A formula �A is true at a point just when A is true at all points. In this case, A
is not merely contingently true, but is unavoidably, or necessarily true. (We util-
ise the primitive vocabulary {∧,¬,�}, leaving ∨ and→ as defined connectives
in the usual manner. In addition, the modal operator ♦ for possibility is defin-
able as ¬�¬.) A formula A is 5-valid if and only if for every model 〈P,
〉, for
every point x ∈ P, we have x 
 A. An argument from premises X to a conclu-
sion A is 5-valid if and only if for each model 〈P,
〉, for every x ∈ P, if x 
 B

for each B ∈ X, then x 
 A also. Clearly every classical tautology, and every
classically valid argument is 5-valid. Here are some examples of distinctively
modal 5 validities.

�(A → B) ` �A → �B �A ∧ �B ` �(A ∧ B) ` �(A ∨ ¬A)

�A ` A �A ` ��A A ` �¬�¬A

When it comes to models, 5 is simple. Models for other modal logics com-
plicate things by relativising possibility. (A point y is possible from the point
of view of the point x, and to evaluate �A at point x, we consider merely the
points that are possible relative to x.) You can then find interesting modal lo-
gics by constraining the behaviour of relative possibility in some way or other
(is it reflexive, transitive, etc.) The logic 5 can be seen as a system in which
relative possibility has disappeared (possibility is unrelativised) or equivalently,
as one in which relative possibility has a number of conditions governing it:
typically, reflexivity, transitivity and symmetry. Once relative possibility is an
equivalence relation, from the perspective of a point inside some equivalence
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class you can ignore the points outside that class with no effect on the satisfac-
tion on formulas, and the model may as well be universal. In other words, you
can consider 5 as a logic in which there is not much machinery at all (there
is no relation of relative possibility) or it is one in which there is quite a bit of
machinery (we have a notion of relative possibility with a number conditions
governing it). This difference in perspectives plays a role when it comes to the
proof theory for 5.
Despite the simplicity of the formal semantics, providing a natural account

of proof in 5 has proved to be a difficult task. We have little idea of what a nat-
ural account of proofs in 5 might look like. There are sequent systems for 5,
but the most natural and straightforward of these are not cut-free [20]. The
cut-free sequent systems in the literature tend to be quite complicated [10, 19],
partly because they treat 5 as a logic withmany rules (that is, the systems cover
many modal logics and 5 is treated as a logic in which relative possibility has a
number of features — so we have many different rules governing the behaviour
of relative possibility), or they are quite some distance from Gentzen’s straight-
forward sequent system for classical propositional logic [5, 26].1 On the other
hand, sequent systems can be modified by multiplying the kind or number of
sequents that are considered [3, 16], or by keeping a closer eye on how formulas
are used in a deduction [7]. These approaches are closest to the one that I shall
follow here, but the present approach brings something new to the discussion.
In this paper I introduce and defend a simple sequent system for 5, with the
following innovations: the main novelty of this result is that the generalisation
of sequents in this system (superficially similar, at least, to hypersequents [3])
have a straightforward interpretation both in terms of the models for 5, and in
terms of natural deduction proofs for this modal logic. Sequent derivations are,
in a clear and principled manner, descriptions of underlying proofs.

1 
Our aim is to defend a simple, cut-free sequent calculus for the modal logic 5,
in which derivations correspond in some meaningful way to constructions of
proofs. The guiding idea for this quest looks back to the original motivation
of the sequent system for intuitionistic propositional logic [13]. For Gentzen,
a derivation of an intuitionistic sequent of the form X ` A is not merely a
justification of the inference from X toA, and the sequent system is not merely
a collection of rules with some pleasing formal properties (each connective
having a left rule and a right rule, the subformula property, etc.) Instead, the
derivation can be seen as a recipe for the construction of a natural deduction

1Display logic is a fruitful way of constructing sequent systems for a vast range of logical
systems, but it comes at the cost a significant distance from traditional sequent systems. We do
not extend the sequent system for classical logic with new machinery to govern modality. We
must strike at the heart of the sequent system to replace the rules for negation, at the cost of a
proliferation of the number of sequent derivations.
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proof of the conclusion A from the premises X. For example consider, the
derivation of the sequent A → B ` (C → A) → (C → B):

A ` A B ` B

A → B,A ` B C ` C

A → B,C → A,C ` B

A → B,C → A ` C → B

A → B ` (C → A) → (C → B)

may be seen to guide the construction of the following natural deduction proof.

A → B

[C → A]$ [C]∗

A

B
(∗)

C → B
($)

(C → A) → (C → B)

However, a proof may be constructed in more than one way. The first three
lines of the proof (fromA → B,C → A,C to B) may be analysed by the different
derivation

A ` A C ` C

C → A,C ` C B ` B

A → B,C → A,C ` B

In this case, the natural deduction proof constructed is no different, but the
analysis varies. Instead of thinking of the tree as starting with a proof of from
A → B and A to B (that is, A → B,A ` B) and then justifying the premise A by
means of the addition of the two extra premises C → A and C, we think of the
proof as starting with the proof from C → A and C to A, and then we add the
premise A → B to deduce B. So, the sequent rules

X ` A Y,B ` C
[→L]

X, Y,A → B ` C

X,A ` B
[→R]

X ` A → B

can be seen as being motivated and justified by considerations of natural deduc-
tion inferences. The rule [→L] can be motivated by the thought that if we have
a proof π1 of A from X and another proof π2 from B to C (with extra premises
Y) then we may use π1 to deduce A from X, and use the new premise A → B

to deduce (using an implication elimination in the natural deduction system)
B. Now using Y and the newly justified B, we may add the proof π2 to dedce
the desired conclusion C. In other words, X, Y,A → B ` C. The rule [→R] is
motivated similarly. If we have a proof π from X,A to B, then we may discharge
A to deduce X ` A → B.2

2There are niceties here about how many instances of A are discharged, and whether se-
quents have of lists, multisets, or sets of formulas on the left-hand side. Most likely the struc-
tural rule of contraction will play a role at this point.
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These two derivations of the sequent A → B,C → A,C ` B differ in the
order of the application of the [→L] rules. In some sense, this difference is
merely “bureaucratic”: The sequent system imposes a difference (you must ap-
ply either this rule or that rule first) when the natural deduction proof does not
(the rules are applied—the order is only imposed when we decide to read the
proof from top to bottom, or from bottom to top, or from the inside out or
in some other way). There is an important sense in which the sequent system,
as a theory of proof, is parasitic on a prior notion of proof found in natural de-
duction. Some of the merely bureaucratic differences in the sequent calculus
are absent from the natural deduction system. This increase in bureaucracy is
not without its virtues, of course. The sequent system makes explicit what is
implicit in natural deduction proofs. The sequent A → B,C → A,C ` B tells us
quite explicitly that at the stage of the proof at which B is the conclusion, the
premises A → B, C → A and C are all undischarged. This can only be “read
off” the natural deduction proof with some skill. You must look down from B

to notice that the two discharges (∗) and ($) occur below, and hence that at
the point of the proof where B is deduced, C → A and C are still active.
In the rest of this paper, I aim to do the same thing for the modal logic 5.

Instead of taking the sequent calculus for classical propositional logic andmodi-
fying it, we will first endeavour to construct a natural deduction proof theory
for 5, and from this, reconstruct a sequent calculus that makes explicit the
kinds of implicit inferential relationships between premises and conclusions
that are found in our proofs.

2  
The sequent calculus for classical logic uses sequents with multiple formulas
on each side of the turnstile: it has the form X ` Y where both X and Y may
involve more than one (or less than one) formula. If a derivation of the sequent
X ` A constructs a proof from premises X to conclusion A, then it is natural
to think of a derivation ending in X ` Y as constructing a proof π with the
formulas in X as premises or inputs and the formulas in Y as conclusions, or
outputs. We could think of a proof as having a shape like this:

A1 A2 · · · An

B1 B2 · · · Bm

This is a very natural idea. It goes back at the least ot William Kneale who
introduced his tables of development in the 1950s [17]. The simple natural deduc-
tion rules for conjunction and negation are these:

A B

A ∧ B

A ∧ B

A

A ∧ B

B A ¬A

A ¬A
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Tables of development are found by chaining basic inferences together formula-
to-formula. Here is a proof of the conclusion ¬(A ∧ ¬A).

¬(A ∧ ¬A) A ∧ ¬A A ∧ ¬A ¬(A ∧ ¬A)

A ¬A

Notice that it has two instances of the one conclusion ¬(A ∧ ¬A). (This phe-
nomenon is just like the case of the simple Gentzen-style natural deduction
proof of A ∧ ¬A ` ⊥, which has two instances of the premise A ∧ ¬A— one
to justify A and the other to justify ¬A, which are then combined to infer the
falsum ⊥.) In what follows, we will call this proof of ¬(A ∧ ¬A), ‘π’. The proof
π corresponds to a derivation δ of the sequent ` ¬(A∧¬A),¬(A∧¬A). In the
sequent calculus we may chain two instances of δ together with an application
of a [∧R] rule, to derive ¬(A ∧ ¬A) ∧ ¬(A ∧ ¬A).

δ

` ¬(A ∧ ¬A),¬(A ∧ ¬A)
[WR]

` ¬(A ∧ ¬A)

δ

` ¬(A ∧ ¬A),¬(A ∧ ¬A)
[WR]

` ¬(A ∧ ¬A)
[∧R]

` ¬(A ∧ ¬A) ∧ ¬(A ∧ ¬A)

This (essentially) utilises the rule of contraction on the right of the turnstile.
(The steps labelled “WR”.) There is no corresponding move in the natural de-
duction system. If we want to introduce a conjunction, we are free to paste
together two instances of π

π π

¬(A ∧ ¬A) ¬(A ∧ ¬A) ¬(A ∧ ¬A) ¬(A ∧ ¬A)

¬(A ∧ ¬A) ∧ ¬(A ∧ ¬A)

but as you can see, we have leftover conclusions ¬(A ∧ ¬A). Each time we
add another proof π to provide another conjunct for one conclusion, we add
another unconjoined instance ¬(A∧¬A). This would not matter if there were a
proof which concluded in merely one instance of ¬(A∧¬A), but it is easy to see
that with these rules there is no such proof. (Proceed by way of an induction
on the construction of a proof: every proof has at least either two conclusions,
or two premises or one premise and once conclusion. So, each proof with no
premises has at least two conclusions.) Tables of development, as defined here,
are incomplete for classical logic.3

Tables of development face more prosaic problem, and that is is that it is not
straightforward to typeset them. It turns out that we can solve both of our

3Patching the system is not a simple matter. The canonical references here are Shoesmith
and Smiley’sMultiple Conclusion Logic [23] and Ungar’sNormalisation, Cut-Elimination, and the The-
ory of Proofs [24].
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problems: the notational problem and the contraction problem in one go. It
is much more flexible to change our notation completely. Instead of taking
proofs as connecting formulas in inference steps, in which formulas are repres-
ented as characters on a page, ordered in a tree, think of proofs as taking inputs
and outputs, where we represent the inputs and outputs as wires. Wires can be
rearranged willy-nilly—we are all familiar with the tangle of cables behind the
stereo or under the computer desk—so we can exploit this to represent cut
straightforwardly. In our pictures, then, formulas label wires. This change of
representation will afford another insight: instead of thinking of the rules as
labelling transitions between formulas in a proof, we will think of inference
steps (instances of our rules) as nodes with wires coming in and wires going
out. Proofs are then circuits composed of wirings of nodes. The nodes for the
connectives are then:

¬I
¬A A

¬E
¬A A ∧I

A B

A ∧ B

∧E1

A ∧ B

A

∧E2

A ∧ B

B

The proof π for ` ¬(A ∧ ¬A),¬(A ∧ ¬A) is now represented as follows:

¬E

∧E1

¬I

∧E2

¬I
¬(A ∧ ¬A)

A ∧ ¬A

A ¬A

A ∧ ¬A

¬(A ∧ ¬A)

(The arrow notation for wires allows us to lay proofs out in a way that infer-
ence need not go from the top of the page to the bottom of the page.) We
can construct a circuit with one conclusion wire by contracting the two original
conclusions like this:

¬E

∧E1

¬I

∧E2

¬I

WI

¬(A ∧ ¬A)

A ∧ ¬A

A ¬A

A ∧ ¬A

¬(A ∧ ¬A)

¬(A ∧ ¬A)
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The new WI node corresponds to the contraction of the two conclusions
into one in the sequent proof. We can then combine these proofs to obtain
the proof of the desired conclusion: ¬(A ∧ ¬A) ∧ ¬(A ∧ ¬A).

¬E

∧E1

¬I

∧E2

¬I

WI

¬(A ∧ ¬A)

A ∧ ¬A

A ¬A

A ∧ ¬A

¬(A ∧ ¬A)
¬E

∧E1

¬I

∧E2

¬I

WI

¬(A ∧ ¬A)

A ∧ ¬A

A ¬A

A ∧ ¬A

¬(A ∧ ¬A)

∧I
¬(A ∧ ¬A) ¬(A ∧ ¬A)

¬(A ∧ ¬A) ∧ ¬(A ∧ ¬A)

There is much more that one can say about classical circuits. The first detailed
presentation of classical proofnets is found in Robinson’s 2003 paper [22]. Our
style of presentation here follows Blute, Cockett, Seely and Trimble’s work on
weakly (or linearly) distribtutive categories [6]. I will leave the detail for the
next section in which we introduce modal operators.

3 5 
We hope to find rules for introducing a �-formula, and for eliminating a �-
formula. If these rules are to be anything like the rules in a natural deduction
system, they should step from �A to A, and vice versa:

�E
�A A

�I
A �A

From �A, we can infer A. Similarly, from A (at least, sometimes) we can infer
�A. The analogy with rules for the universal quantifier should be clear. From
∀xFx we infer Fa, and if we have derived Fa in a special way (the a is arbitrary)
we may infer ∀xFx. In the modal setting, we do not have something playing the
role of names. So, we need some other way to ensure that [�E] is stronger than it
appears (in the quantifier case, we may infer Fa for any object a) and that [�I] is
weaker than it appears (what is the restriction on its application, corresponding
to the condition on names for ∀x?) Consider models for the modal operators:
If �A is true at a point, what can we infer about A? It follows that A is true at
every point: not just the point at which we derived (or assumed) �A. So, if we
infer A from �A, we are free to infer A not only here (in this context) but also
there (whatever other context “there” might be). So, we can think of the output
A wire in the [�E] node as freely ‘applying to’ a context other than the one in
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which we have evaluated A. It it is in a sense such as this that [�E] is stronger
than merely the inference that straightforwardly strips the box from the front
of the formula.
Consider [�I]. Under what conditions can our inference of A justify the

step to�A? We can infer�Awhen our inference toA is general— that is, when
we have inferred A at an arbitrary context. What does it mean for a context to
be arbitrary? Here we take our cue from the proof theory for predicate logic.
We can infer ∀xFx from some proof of Fa just when the conclusion Fa is the
only part of the proof (premises or conclusion) to contain information about
a (that is, to be formulas containing the name a). We can do the same thing
here. If we have all of the premises and conclusions in our proof applying to
a collection of contexts, and only the conclusion A applies to context, then we
can infer �A, since that context was arbitrary. We have the conclusion of A

generally, in a manner which is appropriate for any context.
But contexts are not like names in predicate logic, they do not explicitly

show up in the syntax of the logic 5. All that this talk of contexts requires
is that we pay attention to whether or not a formula in a proof occurs in the
same context as another formula.
We can make suggestive ideas more precise in the following way. We start

by defining the class of inductively generated circuits, and the equivalence relation
of nearness (ν) on wires in a circuit.

 [  , ] Inductively gen-
erated circuits are defined in the following manner.

• An identity wire: A for any formula A is an inductively generated circuit.
The sole input type for this circuit is A and its output type is also (the very
same instance) A. As there is only one wire in this circuit, it is near to itself.

• Each boolean connective node presented in the list below is an inductively
generated circuit.

¬E
¬A A

¬I
¬A A

∧I
A B

A ∧ B

∧E1

A ∧ B

A

∧E2

A ∧ B

B

The inputs of a node are those wires pointing into the node, and the outputs
of a node are those wires pointing out. The input and output wires of a each of
these nodes are in the same nearness equivalence class.

• Given an inductively generated circuit π with an output wire labelled A, and
an inductively generated circuit π ′ with an input wire labelled A, we obtain a
new inductively generated circuit in which the output wire of π is plugged in to
the input wire of π ′. The output wires of the new circuit are the output wires
of π (except for the indicated A wire) and the output wires of π ′, and the input
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wires of the new circuit are the input wires of π together with the input wires
of π ′ (except for the indicated A wire).
A wire in the new circuit near another wire if and only if either those two wires
are near in π or close in π ′, or one wire is near to the ouputA in π and the other
wire is close to the input A in π ′. (In other words, the equivalence classes for ν

on the new circuit are those classes in the old circuit, except for the classes for
the wire at the point of composition. The two classes for this wire are merged.)

• Given an inductively generated circuit π with two input wires A, a new induct-
ively generated circuit is formed by plugging both of those input wires into the
input contraction node  . In the new circuit, the relation ν is the same as
the original relation, except that the classes for the two contracted input wires
are merged, and the new single input A is in the same class. Similarly, two out-
put wires with the same label may be extended with a contraction node  .
The two output wires are now near in the new circuit, as before.

• Given an inductively generated circuit π, we may form a new circuit with the
addition of a new output, or output wire (with an arbitrary label) using a weak-
ening node  or  .4

π

X

Y

KI

B

π

X

Y

KE

B

The new wires are not near any other wires in the proof. (They are arbitrary
extra conclusions or premises, and they could well be in any context.)

• A �E node is also an inductively generated circuit. In this node, the input wire
�A is not nearby the output wire A.

�E
�A A

• Given an inductively generated circuit π in which a conclusion wire A is not
nearby any other conclusion wire, and is not nearby any premise wire, then the
result of plugging in�I to the conclusion wireA is a new inductively generated
circuit. The new conclusion �A is not nearby any other wire of the circuit.

�I
A �A

4Using an unlinked weakening node like this makes some circuits disconnected. It also forces
a great number of different sequent derivations to be represented by the same circuit. Any
derivation of a sequent of the form X ` Y, B in which B is weakened in at the last step will
construct the same circuit as a derivation in which B is weakened in at an earlier step. If this
identification is not desired, then a more complicated presentation of weakening, using the
‘supporting wire’ of Blute, Cockett, Seely and Trimble [6] is possible. Here, I opt for a simple
presentation of circuits rather than a comprehensive account of “proof identity.”
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This completes our definition of the proofs for 5.

Inductively generated circuits represent valid reasoning in 5. Here is an ex-
ample, showing how one can derive �¬�¬A from A. The circuit below has A

as its only input, an �¬�¬A as its only output.

¬E �E ¬I �I
A ¬A �¬A ¬�¬A �¬�¬A

It is a useful exercise to show that this circuit may be inductively generated
from left-to-right. The sub-circuit

¬E �E ¬I
A ¬A �¬A ¬�¬A

is inductively generated, because each of the nodes are themselves circuts. In
this circuit, the equivalence relation ν relates theA and ¬A wires, and it relates
the �¬A and ¬�¬A wires. But the nearness relation does not relate the wires
on the left to the wires on the right. As a result, we may apply [�I], since the
output wire ¬�¬A is not near to any other wire on the periphery of the circuit.
The result is the complete circuit with input A and output �¬�¬A.
This proof tells us more than simply that in any model in any world where

A is true, �¬�¬A is true (though it does tell us this too). Since the output
wire �¬�¬A is not close to the input wire A, it tells us that there is no model
at all where there is a world where A is true and a world where �¬�¬A is
not true. Those worlds need not be the same. To speak in terms of contexts,
it is incoherent to assert A in one context and to deny �¬�¬A in another
context. This is an example of the following general result, on the soundness
of inductively generated circuits.

 [] Given an inductively generated circuit with input wires
X1, . . . , Xn and output wires Y1, . . . , Yn, where each Xi ∪ Yi is an equivalence class
for the nearness relation, then for any 5 model, there is no set w1, . . . , wn of worlds
where each Xi is true atwi and each Yi is false atwi.

Proof: The proof is a trivial induction on theconstruction of the proof. Identity,
boolean nodes, contraction, weakening are all immediate. The cut rule is a
simple consequence of the transitivity of consequence in s5-models. For [�E]

we note that there is no model in which there is no pair of worlds, where �A is
true in one andA is false in the other. For [�I], we note that if there there is no
model satisfying some condition (concerning the rest of the wires in the proof
π except for the one output A which is near no other wire in the periphery)
where there is a world in whichA is false, then in these models there is noworld
in which A is false, and hence, there no world in which �A is false either. But
this is the condition for [�I].
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So, circuits encode valid reasoning in our models. To show that they encode
all of the validities of our models, we need a completeness proof. To discuss
the completeness proof, we will examine another way of representing the beha-
viour of circuits.

4 5 
We may represent the periphery of a circuit as a general sequent, in which the
input wires are formulas in antecedent position, and the output wires are for-
mulas in consequent position. However, this leaves out the nearness relation,
which we need to model the behaviour of modal operators. So, in a sequent,
we will keep track of the nearness of formulas. One way to do this is by segreg-
ating formulas into equivalence classes, and in those classes, into antecedent
and consequent position. The picture, then, is of a hypersequent5

X1 ` Y1 | · · · | Xn ` Yn

a multiset of sequents, in which each Xi and Yi is a multiset of formulas.6 We
think of the sequent Xi ` Yi as forming one of the zones of the hypersequent.

The hypersequent calculus for s5 has the following connective rules:7

X ` A, Y | ∆
[¬L]

X,¬A ` Y | ∆

X,A ` Y | ∆
[¬R]

X ` ¬A, Y | ∆

X,A ` Y | ∆
[∧L1]

X,A ∧ B ` Y | ∆

X,B ` Y | ∆
[∧L2]

X,A ∧ B ` Y | ∆

X ` A, Y | ∆ X ′ ` B, Y ′ | ∆ ′

[∧R]

X,X ′ ` A ∧ B, Y, Y ′ | ∆ | ∆ ′

X,A ` Y | ∆
[�L]

�A ` | X ` Y | ∆

` A | ∆
[�R]

` �A | ∆

which are motivated by way of the rules for constructing circuits. For [¬L], if
we have a circuit in which A is an output formula, then we may expand the
circuit by adding a [¬I] node, plugged in at the A wire, which will give us a
circuit in which ¬A is an input wire. It is nearby all and only the formulas that

5These are hypersequents due to Arnon Avron [1, 2, 3, 27]. However, the account here differs
in two ways from Avron’s presentation. First, hypersequents are motivated in terms of an under-
lying deductive machinery. Second, the behaviour of the modal operators is captured by a single
pair of left and right rules. There is no special “modal splitting rule” connecting hypersequents
and the modal operators.

6In other words, the one hypersequent may be presented as p ` q, r | s, t ` u or as t, s ` u |

p ` r, q, but this is not the same as the hypersequent p, p ` q, r | s, t ` u | s, t ` u. The order
of formulas or zones in a hypersequent does not matter (in just the same way that the order of
wires does not matter in a circuit) but the number of instances of formulas does (just as it does
in a circuit).

7To save space, I present the rules for conjunction, but not disjunction. You can think of
disjunction as a define connective, or you can use the obvious rules for disjunction, dual to these
rules for conjunction.
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are nearby to the A, and so, in the hypersequent, it is a part of the same zone.
Similarly, for [�R], if we have a circuit in which A is an output wire, adjacent to
no other wires on the periphery of the circut (so, we have a sequent in which
` A in a zone of its own), then we may add a [�I] node at this point, and the
new output A is nearby no other point in the circut—that is, ` �A is in a zone
of its own. The appropriate rules for identity and cut are straightforward

A ` A
X ` A, Y | ∆ X ′, A ` Y ′ | ∆ ′

[Cut]
X,X ′ ` Y, Y ′ | ∆ | ∆ ′

With the system as it stands, we may make a number of derivations.

A ` A
[¬L]

¬A,A `
[�L]

A ` | �¬A `
[¬R]

A ` | ` ¬�¬A
[�R]

A ` | ` �¬�¬A

A ` A
[�L]

�A ` | ` A
[∧L]

�A ∧ �B ` | ` A

B ` B
[�L]

�B ` | ` B
[∧L]

�A ∧ �B ` | ` B
[∧R]

�A ∧ �B ` | �A ∧ �B ` | ` A ∧ B
[�R]

�A ∧ �B ` | �A ∧ �B ` | ` �(A ∧ B)

Clearly, to be able to derive all of the valid sequents, we must add a few struc-
tural rules. To mimic the behaviour of circuits closely, we allow contraction
inside zones in a circut, and weakening into a new zone.

X,A,A ` Y | ∆
[WL]

X,A ` Y | ∆

X ` A,A, Y | ∆
[WR]

X ` A, Y | ∆

∆
[KL]

A ` | ∆

∆
[KR]

` A | ∆

Finally, to ensure that we can derive all of the valid hypersequents, we need to
be able to throw away information by merging zones in sequents.

X ` Y | X ′ ` Y ′ | ∆
[merge]

X,X ′ ` Y, Y ′ | ∆

This rule in a sequent proof has no parallel node in the structure of a circuit.8
It corresponds to taking a circuit and merging two zones, or taking two equi-
valence classes to coalesce. One simple example is taking the circuit consisting
of a [�E] node alone, with input �A and output A to prove for us �A ` A

(that there’s no model with a world w in which �A is true and A is false). This
is throwing away information, as the circuit can also be read as telling us that
�A ` | ` A (that there’s no model with a world w at which �A is true and w ′

where A is false). This is a more general fact. There is no harm in throwing
away information, and it is helpful to have a rule such as this for when it comes

8Actually, the effect of a merge can be found by contracting two instances of A in different
zones in the proof. Then X,A ` Y | X ′, A ` Y ′ merge to be come X,X ′, A ` Y, Y ′. It seemed too
confusing to introduce contraction in this more general form. It can be modelled straightfor-
wardly as an application of merge and then [WL].
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to proving completeness, to the effect that any valid hypersequent is provable.9
Before moving on to consider completeness, we will state, without proof, the
fact that motivated the construction of this sequent system.

 [] A hypersequent X1 ` Y1 | · · · | Xn ` Yn decor-
ates a circuit if and only if the input wires for the circuit are X1, . . . , Xn, the
output wires are Y1, . . . , Yn, and if two wires are close in the circuit, they ap-
pear in the same zone in the hypersequent.10

 [] For each inductively generated circuit, and for any hyper-
sequent decorating that circuit, there is a derivation of that hypersequent. Conversely, for
any derivation of a hypersequent, there is an inductively generated circuit decorated by
that hypersequent.

5    
In the next section, I will cover quite quickly some properties of the sequent
system. The discussion is necessarily (for reasons of space), compressed. The
aim is to explore the behaviour of this presentation of 5.

 [] A hypersequent X1 ` Y1 | · · · | Xn ` Yn is valid in
a model if and only if there are no worlds w1, . . . , wn in that model in which
each formula in Xi is true at wi and each formula in Yi is false at wi.

The soundness theorem, proved in the section before last, then, may be re-
stated as saying that the hypersequent corresponding to a inductively gener-
ated circuit (that is, a derivable hypersequent) is valid. The completeness the-
orem is the converse.

 [] A valid hypersequent is derivable.

This result may be proved in a number of ways. One is simple, but it relies
upon a prior completeness result.

Proof []: (i) Convert each hypersequent into a formula which
is derivable if and only if the hypersequent is derivable, and valid if and only if
the formula is valid, and then show that (ii) every axiom in some axiomatisation
of 5 is derivable, and the rules in that axiomatisation preserve derivability.
Stage (i) is simple. Convert each sequent X ` Y inside a hypersequent to

` ¬(
∧

X ∧ ¬
∨

Y). The resulting hypersequent is derivable if and only if the
9The situation is somewhat analagous with the role of weakening in the sequent system for

intuitionistic propositional logic and the natural deduction system. There is no normal natural
deduction proof from premises p, q to conclusion p, but there is a sequent derivation of p, q ` p.
We take the identity proof from p to p (consisting of the formula itself ) to tell us not only that
p ` p, but also that p, X ` p for any collection of formulas X.

10This allows �A ` A to decorate the single [�E] node, as well as �A ` | ` A.
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original hypersequent is derivable, and valid if and only if the original hyper-
sequent is valid. Then, encode a hypersequent of the form ` A1 | · · · | ` An

as a particular formula in the form ` A1 ∨ �A2 ∨ · · · ∨ �An and this, too, is
co-derivable and co-valid with the original hypersequent.11

For the second part, show that every axiom in your favourite axiomatisation of
5 is derivable in the sequent system. The verification of this part is routine. To
show that modus ponens (say in the form of the inference from ¬(A∧¬B) and A

to B) preserved derivability, we must use the rule cut, to extend the derivations
as follows:

···
` A

···
` ¬(A ∧ ¬B)

A ` A

B ` B
[¬R]

` ¬B,B
[∧R]

A ` A ∧ ¬B,B
[¬L]

¬(A ∧ ¬B), A ` B
[Cut]

A ` B
[Cut]

` B

That proof is simple, but it does not tell us much about the proof system. It is
more interesting to prove completeness directly.

Proof [model construction]: Given an underivable hypersequent, we construct a
model in which that hypersequent is invalid. One way to do this is to show
that any underivable sequent must have an unsuccessful derivation search, from
which a model can be constructed. This technique can succeed without the use
of the cut rule. Firstly, notice that the following rules can be derived on the
basis of the connective rules (and contractions, merges and weakenings).

X,¬A ` A, Y | ∆
[¬Ls]

X,¬A ` Y | ∆

X,A ` ¬A, Y | ∆
[¬Rs]

X ` ¬A, Y | ∆

X,A,B,A ∧ B ` Y | ∆
[∧Ls]

X,A ∧ B ` Y | ∆

X ` A,A ∧ B, Y | ∆ X ` B,A ∧ B, Y | ∆
[∧Rs]

X ` A ∧ B, Y | ∆

X,�A ` Y | X ′, A ` Y ′ | ∆
[�Ls]

X,�A ` Y | X ′ ` Y ′ | ∆

X ` �A, Y | ` A | ∆
[�Rs]

X ` �A, Y | ∆

Now consider what happens with an underivable hypersequent. If a hyper-
sequent is underivable, and it has the form of one of the lower hypersequents
in that table above, then one of the hypersequents above that line must also
be underivable. In particular, that means that we do not get a hypersequent in
which the same formula finds itself on both sides of a turnstile in the one zone.

11Why the boxes on all formulas other than one? First, to make the translation of a
hypersequent with a single zone the identity translation. Second, the valid hypersequent
` ¬�A | ` A may be translated as ` ¬�A ∨ �A, which is also valid.
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(Any hypersequent containing a zone of the form X,A ` A, Y is derivable, us-
ing weakenings and merges.) So, we can think of an underivable hypersequent
as a partial description of a model. Each zone partially describes world. Ante-
cedent formulas are true, and consequent formulas are false. The search rules
above tell us that if we have a negation true, its negand is false, if a negation
is false, its negand is true. Similarly for conjunction, and for necessity, if �A is
true, then A is true in each zone, and if �A is false, then there is some zone in
which A is false.
So, search for a derivation, by taking a hypersequent and whenever we have

a formula in a zone that is ‘unprocessed’ (a negation whose negand is not in
the opposite zone, �A true in a zone, but A not appearing in some zone),
process it by means of the rules we have seen. (This might require branching in
the case of a conjunction in consequent position.) Continue this process. If
the original sequent is underivable, the result will be a partial description of a
model in which each zone describes a world. The model will falsify the original
hypersequent.

This technique (which is, in effect, constructing a tableaux system from this
sequent calculus) has the advantage of not requiring the cut rule. A corollary
of soundness and completeness proved in this way is that cut is admissible.
That is, since we know that the cut rule preserves validity in models, and since
we know that validity in models is captured exactly by the hypersequents with
cut-free derivations, we know that if the premise hypersequents of a cut rule
are derivable, so is the endsequent.
This proof tells us nothing about how to convert a proof involving cuts into

one that does not use cut. We can adopt the standard cut-elimination tech-
nique [13]. My presentation follows from Belnap’s systematic account in his
Display Logic [5, 21], which in turn follows Curry’s formulation of the proof [8,
page 250]. First, we check that the rules of the hypersequent calculus satisfy a
number of conditions.

/ That is, the Cut on an identity sequent is redundant:

A ` A X ′, A ` Y ′ | ∆ ′

[Cut]
X ′, A ` Y ′ | ∆ ′

Clearly, a cut on an identity sequent may be left out completely.

  Next we have conditions on parameters in rules. In
our case, a parameter in an inference falling under a rule is every formula except
for the major formulas in a connective rule (the formula with the connective
introduced below the line and its ancestor formulas above the line), and the
cut formulas in a cut rule. Every other formula is a parameter. Parameters
may appear both above and below the line. A parametric class is a collection
of instances of a formula in a proof. Two formulas are a part of the same
parametric class if they are represented by the same letter in a presentation
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of the rule (the instances of A in an inference of contraction, for example) or
if they occur in the same place in a structure (such as an antecedent X or a
hypersequent term ∆).

 The regularity condition is that if a cut formula is parametric in
an inference immediately before the cut, the cut may be permuted above that
inference. For example the segment

X ` A,A, Y | ∆
[WR]

X ` A, Y | ∆ X ′, A ` Y ′ | ∆ ′

[Cut]
X,X ′ ` Y, Y ′ | ∆ | ∆ ′

can be replaced by this segment, in which cuts take place on the top sequents,
at the cost of duplicating material in the derivation.

X ` A,A, Y | ∆ X ′, A ` Y ′ | ∆ ′

[Cut]
X,X ′ ` A, Y, Y ′ | ∆ | ∆ ′ X ′, A ` Y ′ | ∆ ′

[Cut]
X,X ′, X ′ ` Y, Y ′ | ∆ | ∆ ′ | ∆ ′

[W and merge]
X,X ′ ` Y, Y ′ | ∆ | ∆ ′

And similarly,

X ` A, Y | ∆

X ′, A, B ` Y ′ | ∆ ′

[�L]

�B ` | X ′, A ` Y ′ | ∆ ′

[Cut]
�B ` | X,X ′ ` Y, Y ′ | ∆ | ∆ ′

becomes
X ` A, Y | ∆ X ′, A, B ` Y ′ | ∆ ′

[Cut]
X,X ′, B ` Y, Y ′ | ∆ | ∆ ′

[�R]

�B ` | X,X ′ ` Y, Y ′ | ∆ | ∆ ′

-   Two formulas in the same parameter
class are in the same position (either antecedent position or consequent posi-
tion). This is straightforward to check.12

-   Parametric classes have only onemem-
ber below the line of an inference. This is straightforward to check.
The previous conditions all concern permuting cuts over inferences when one
side or other is parametric.

   A formula is principal in a rule if it is not
parametric. The single principal constituent condition is that each inference
has only one principal formula below the line. This is immediate.

12This condition rules out inferences such as “matched weakening”, leading from X ` Y to
X,A ` A, Y in which the parameteric class for A would appear in both antecedent and con-
sequent position.
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     An instance of
cut in which the cut formula is principal in both inferences immediately before
the cut may be traded in for a cut (or cuts) on subformulas of the cut formula.
The interesting case in our system is for �A. We have:

` A | ∆
[�R]

` �A | ∆

X,A ` Y | ∆ ′

[�L]

�A ` | X ` Y | ∆ ′

[Cut]
X ` Y | ∆ | ∆ ′

Clearly we could have made the cut before the introduction:

` A | ∆ X,A ` Y | ∆ ′

[Cut]
X ` Y | ∆ | ∆ ′

Given that our system satisfies these conditions, we may eliminate cuts from
derivations.

 [  ] Given a derivation in which the rule [Cut] is
applied, we may effectively transform this derivation into one in which cut is not used.

Proof: We perform an induction on the complexity of the cut formula. The
hypothesis is that for every subformula of A (and for every, X,X ′, Y, Y ′, ∆, ∆ ′) if
X ` A, Y | ∆ and X ′, A ` Y ′ | ∆ ′ are derivable, so is X,X ′ ` Y, Y ′ | ∆ | ∆ ′,
and we wish to show that this is the case for the formulaA also. So, suppose we
have derivations δ and δ ′ of X ` A, Y | ∆ and X ′, A ` Y ′ | ∆ ′ respectively. If
the cut-formulaA indicated in the concluding inferences of δ and δ ′ is principal,
then we may apply the eliminability of matching principal constituents condition and
our induction hypothesis to eliminate the cut. If, on the other hand, A is
parametric in either δ or δ ′, we proceed as follows. Without loss of generality,
suppose A is parametric in δ. Consider the class A of occurrences of A in δ

found by tracing up the derivation and selecting each parametric instance of A
congruent with the A in the conclusion of δ. We commute the cut on A (with
the other premise X ′, A ` Y | ∆ ′) past each inference in which an instance
in A features, using regularity. The result is a derivation in which there may
be many more cuts, but for each cut on A introduced, there are no parametric
instances of A in consequent position. For each copy of δ ′ introduced, we may
form the set A ′ of instances of A congruent with the A in antecedent position
in the cut inference. We commute the cut with each inference crossing the
set A ′ to construct a derivation in which the cut on A occurs only on prinicpal
instances of A, and this case has already been covered.

6  
We will end by looking at a number of ways to extend this approach.
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 Elimination of cuts corresponds quite directly to the norm-
alisation of circuits, by way of the translation between derivations and circuits.
The circuit presentation of this system gives us scope for examining other ways
in which proofs may be normalised.

 Not every plugging of a wires in nodes produces a circuit.
(Consider the putative “inference” in which the output wires of [∨E] are plugged
into the input wires of [∧I]. This does not tell us that we may infer A∧B from
A ∨ B.) The literature on proofnets has introduced the notion of a correctness
criterion [15, 9]. It is an open question as to what might be an appropriate
correctness criterion for these circuits.

 Natural deduction systems lend themselves to a representation in a
term calculus, according to which proofs correspond to terms, where formulas
are types. An appropriate term calculus for these circuits is, also, an open ques-
tion. It seems that Philip Wadler’s recent work on term calculi for classical
linear logic will provide a useful starting point [25].

   We have not said when two circuits represent the
same proof. Clearly, these circuits are not the last word for proof identity. Even
in the classical case, proof identity is a complicated business. There are many
prposals in the literature [4, 11, 12, 18]. The key idea in this literature that a the-
ory of proofs has the structure of a category. A proof from A to B is, essentially,
an arrow in that category. It is less clear that this is what we want in the case of
modal reasoning. In the category-centred approach, we take a proof for X ` Y

to be an arrow f :
∧

X →
∨

Y. In the case of hypersequents, we do not have an
obvious translation in terms of formulas. Take the hypersequent A ` | ` B. It
can be thought of from the perspective of A (so it tells us that A ` �B) or from
B (it tells us that ♦A ` B). The proof from A to �B cannot be the same as the
proof from ♦A to B, as the source formulas differ, and the target formulas dif-
fer.13 So, which arrow in the category is the proof? Could a more natural model
for these deductions be a different generalisation of a category? If we quotient
our proofnets with some congruence relation (respecting the kind of identities
we might expect, given our preferences about the way to go here) then what
kind of “category-like” structure do we find? This is an open question.

  Finally, it is clear that we need to generalise this account to
cover modal logics other than 5. To do this, we need to step from a simple re-
lation of which ignores anything other than the identity and difference of con-
texts for wires in a proof, to something more subtle. In an inference [�E] from
�A, we step not to an arbitrary context, but to a successor context. The rule [�I]
must similarly be modified. The aim, of course, is an account of proof in which
the rules for the modal operators are untouched, and the structural rules (in this

13They are not only different, they will not be isomorphic is the categories, as they have differ-
ent inferential roles.
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case, the behaviour of nearness and the relations of ancestor/descendant) play
the role of determining which modal logic is found. Exploring these matters
must be left for another time.
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