
SELF-REFERENCE AND THE LANGUAGES OF ARITHMETIC

RICHARD G. HECK, JR.

1. A PUZZLE ABOUT SELF-REFERENTIAL REASONING

Consider the following sentence:1

(1) (1) is true iff the right-hand side of (1) is false.

The so-called T-scheme delivers:

(2) (1) is true iff [(1) is true iff the right-hand side of (1) is false].

By the associativity of the biconditional,

(3) [(1) is true iff (1) is true] iff the right-hand side of (1) is false,

and obviously, the left-hand side of (3) is a logical truth. Hence

(4) the right-hand side of (1) is false.

But

(5) the right-hand side of (1) is “the right-hand side of (1) is false”,

and so:

(6) “the right-hand side of (1) is false” is false.

But now the T-scheme tells us that

(7) “the right-hand side of (1) is false” is true iff the right-hand side of (1) is false.

Hence,

(8) “the right-hand side of (1) is false” is true.

1See ? for discussion of how similar examples arise in the discussion of deflationism.
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But that contradicts 6.

That the T-scheme threatens to lead to paradox is not news. But it is surprising—at least, it was very
surprising to me—how hard it is to replicate the argument just given in some of the formal systems
in which the T-scheme is frequently studied. One such system is Peano Arithmetic formulated in
the language {0,S,+,×} and augmented by a one-place predicate T . Call that system PAS—‘S’
for standard language.2

The obvious way to proceed is as follows. Fix some standard Gödel numbering and consider the
formula:

(9) T (x)≡ ∃y(rhs(x,y)∧¬T (y)),

where rhs(x,y) is a formula representing the relation: y is (Gödel number of) the right-hand side
of the biconditional (whose Gödel number is) x. Diagonalization then yields a formula G such that
PAS proves:

(10) G≡ [T (pGq)≡ ∃y(rhs(pGq,y)∧¬T (y))],

where, as usual, pGq abbreviates the numeral denoting the Gödel number of the formula G. The
surprise is that one cannot then replicate the argument rehearsed above for the inconsistency of
(1)—not, at least, if one follows Gödel’s proof of the diagonal lemma (?) or that in the standard
textbook Computability and Logic (??). The problem is that the formula G that is delivered by
these ‘standard’ proofs of the diagonal lemma is not a biconditional but an existentially quantified
formula. It has no right-hand side, so we can get no further.

As it happens, in this particular instance, inconsistency with the T-scheme can be reached in an-
other way. Not only is

(11) ∃y(rhs(pGq,y)∧¬T (y))

false, it is refutable: We can prove that G has no right-hand side. By the associativity of the
biconditional, however, (10) leads to

(12) [G≡ T (pGq)]≡ ∃y(rhs(pGq,y)∧¬T (y))],

whence PAS proves:

(13) ¬[G≡ T (pGq)],

which of course contradicts the T-scheme. But that is not the intuitive argument given above, and
it is just a happy accident that such an argument is available in this case.

A similar problem arises with the following example:

2It will not matter for our purposes whether induction is extended to include formulae in which T appears, except in
section 3.4, where the issue arises tangentially.
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(14) the right-hand side of (14) is true iff the left-hand side of (14) is false.

This sentence replicates the postcard paradox in a single sentence.3 There is an obvious argument
that (14) is paradoxical. Again, however, that argument cannot be formalized in PAS, at least not
in the most obvious way. The obvious way to proceed this time is to consider the formula

(15) ∃y(rhs(x,y)∧T (y))≡ ∃y(lhs(x,y)∧¬T (y)).

Diagonalization, as standardly proven, then delivers a formula P such that PAS proves

(16) P≡ {∃y(rhs(pPq,y)∧T (y))≡ ∃y(lhs(pPq,y)∧¬T (y))}.

But again, the formula in question is not a biconditional. It therefore has neither a left- nor a right-
hand side. Hence both halves of the right-hand side of (16) are false and, indeed, refutable, so PAS

actually proves the right-hand side of (16) and so proves P. Far from being inconsistent with the
T-scheme, then, P is actually a theorem of PAS (and, indeed, of far weaker systems).

The most common statement of the diagonal lemma for PAS is as follows:

Lemma. (Diagonal Lemma) Let B(x) be a formula in the language of PAS, with just x free. Then
there is a sentence G such that PAS proves: G≡ B(pGq).

And what I am calling the standard proof of it goes roughly as follows.4

Proof. Given a formula A(x) with just x free, let the diagonalization of A(x) be the sentence:
∃x(x = pA(x)q∧A(x)). Diagonalization is a (primitive) recursive syntactic function and, as such, is
representable in PAS by a formula diag(x,y) meaning: y is the Gödel number of the diagonalization
of the formula whose Gödel number is x. We want to show that, for every formula B(x) with
just x free, there is a sentence G such that PAS proves: G ≡ B(pGq). So consider the formula:
∃y(diag(x,y)∧B(y)). Its diagonalization is the sentence:

(17) ∃x[x = p∃y(diag(x,y)∧B(y))q∧∃y(diag(x,y)∧B(y))],

which will prove to be the wanted G. Since diag(x,y) represents diagonalization and (17) is, as
said, the diagonalization of ∃y(diag(x,y)∧B(y)), PAS proves:

3The postcard paradox is so-called because it can be formulated as follows: Imagine a postcard on one side of which
is written “The sentence on the other side of this card is false”; the sentence on the other side is “The sentence on the
other side of this card is true”.
4This version is adapted from ?, Ch. 15 The proof in the new edition (?, Ch. 17) is somewhat different, though not in
ways that matter here.
Note that the proof does not actually use the fact that only x is free in B(x): One can just as easily prove
that, for each formula B(x,y1, . . . ,yn), there is a formula G(y1, . . . ,yn) such that PAS proves: G(y1, . . . ,yn) ≡
B(pG(y1, . . . ,yn)q,y1, . . . ,yn).
The proof can also be extended to the case of multiple formulae (?, pp. 53-4): Given formulae
A1(x1, . . . ,xn,y), . . .An(x1, . . . ,xn,y), where y represents additional parameters, there are formulae G1, . . . ,Gn such
that, for each i, PAS proves: Gi(y)≡ Ai(pG1q, . . . ,pGnq,y).
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(18) diag(p∃y(diag(x,y)∧B(y))q,p(17)q)

By logic, then, PAS proves that (17) is equivalent to B(p(17)q), as wanted. �

As is clear, however, the relevant sentence G—that is, (17)—is always an existentially quantified
formula and is never a biconditional, a disjunction, or what have you.

What is the significance of these examples? In “Outline of a Theory of Truth”, Saul Kripke remarks
that the standard proof of the diagonal lemma “show[s] that [self-referential sentences] are as
incontestably legitimate as arithmetic itself” (?, p. 692).5 Now, in a sense, that is surely true. The
formula G produced by this proof of the diagonal lemma certainly is self-referential—in a way.
But although G refers to itself, it does not do so by name but rather by description. What G says
is that there is one and only one formula that is a diagonalization of ∃y(diag(x,y)∧B(y)) and that
this formula satisfies B(x). The formula in question is, as it happens, G itself, and provably so. It
is therefore natural to compare G to Tarski’s examples of ‘empirical’ liars, that is, formulae such
as:

There is one and only one sentence displayed in bold italics on page 4 of this
paper, and it is not true.

This sentence does not refer to itself by name, but it does describe itself uniquely, and so in that
sense does refer to itself.

The point here is easy to overlook—or, at least, it was easy for me to overlook. Consider the
standard example of a liar sentence:

(The Liar) The Liar is not true.

This sentence refers to itself by name. Now consider the liar sentence produced by diagonalization.
We consider the formula ¬T (x) and diagonalize, thus getting a formula Λ such that PAS proves:

(19) Λ≡ ¬T (pΛq)

There is supposed to be a sentence here that ‘says of itself’ that it is not true. Comparing (19) with
The Liar, one might naturally suppose that the self-referential sentence was ¬T (pΛq). But it is
not. The sentence ¬T (pΛq) refers to a sentence all right, but it simply refers to Λ, and Λ is most
certainly not the sentence ¬T (pΛq). Rather, Λ is constructed in accord with the standard proof of
the diagonal lemma and so is the sentence:

(Λ) ∃x[x = p∃y(diag(x,y)∧¬T (y))q∧∃y(diag(x,y)∧¬T (y))]

5It is clear that Kripke has this sort of proof in mind, for he says: “Gödel. . . showed that, for each predicate Q(x),
a syntactic predicate P(x) can be produced such that the sentence (x)(P(x) ⊃ Q(x)) is demonstrably the only object
satisfying P(x). Thus, in a sense, (x)(P(x)⊃Q(x)) ‘says of itself’ that it satisfies Q(x).” (?, p. 692) Note the remark I
have italicized: Perhaps Kripke was uncomfortable with the idea that the mentioned sentence is truly self-referential.
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As noted above, this formula says, roughly: There is a sentence that is a diagonalization of
∃y(diag(x,y)∧¬T (y)), and it is not true. As it happens, the sentence in question is Λ itself.
So, Λ does in some sense refer to itself, namely, by description. But it does seem noteworthy that
the ‘self-referential’ sentence diagonalization produces is quite different from the sentence that
was our inspiration. And it is worth emphasizing again that ¬T (pΛq) is not self-referential in any
sense: The only sentence to which it refers is Λ.

Of course, in many cases, perhaps even in most cases, this difference makes no difference. Since
Λ is provably equivalent to ¬T (pΛq), even if it is not actually ¬T (pΛq)—whereas The Liar really
is just “The Liar is not true”—we can work back and forth across the biconditional when we seek
to replicate the liar paradox in PAS. But what the examples presented earlier show is that the
difference does make a difference in some cases.

The foregoing thus suggests two questions. First, the preceding shows that there is natural, infor-
mal reasoning involving self-reference that cannot be replicated in PAS via the diagonal lemma.6

In what kinds of theories can the preceding reasoning be formalized, then? Second, the limiations
of PAS and the usual form of the diagonal lemma make for some amusing and perhaps instructive
examples. But are they of any real significance?

2. TWO SOLUTIONS TO THE PUZZLE

The difficulties we encountered above with these examples

(1) (1) is true iff the right-hand side of (1) is false.
(14) The right-hand side of (14) is true iff the left-hand side of (14) is false.

derive from the fact that these sentences make reference to features of their own syntax.7 The
formulae that are produced by the standard proofs of the diagonal lemma, however, do not pre-
serve the syntactic structures of the formulae from which they are produced: If we diagonalize
on T (x) ≡ ∃y(rhs(x,y)∧T (y)), then we get a formula G that is provably equivalent to T (pGq) ≡
∃y(rhs(pGq,y)∧T (y)), but G does not have the same syntactic structure as this formula and so
(for some purposes) is not an appropriate formalization of the self-referential sentence (1). What
we need, then, is a strengthened form of the diagonal lemma that produces a sentence that has the
same syntactic structure as the sentence on which we are diagonalizing.

6As a couple readers pointed out, this is, strictly speaking, not surprising, since no one would have expected reasoning
involving reference to the orthography of English sentences—consider “This sentence is true if, and only if, the clause
contained in it that begins with the word ‘the’ is false”—to be replicable in PA. But the examples we are discussing
exploit nothing but resources that are anyway needed in theories of truth for the language of arithmetic: We need,
for example, to be able to say that a biconditional is true if, and only if, its left- and right-hand sides have the same
truth-value. It therefore is, or so it seems to me, unexpected that the foregoing reasoning cannot easily be formalized.
7As a result, it is reasonably easy to formulate examples that illustrate the problem with which we’re concerned by
using purely syntactic predicates. (Consider, for example: “This sentence is a biconditional”.) Such examples do not,
however, suggest—as, I take it, the above examples do—that this phenomenon might be any more than a curiosity.
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2.1. Enriching the Language. One way to get a stronger form of the diagonal lemma is to enrich
the language in which we are working. The problem we are discussing arises because PAS is term-
poor. If one works with a language that has more terms than PAS does, then this problem does not
arise. Suppose, in particular, that we expand the language of arithmetic so that it contains function
symbols for all primitive recursive functions and add as axioms the equations that primitively
recursively define the relevant functions: Call the resulting theory PA+. Then we can prove the
diagonal lemma in the following strong form:8

Lemma. (Strong Diagonal Lemma) Let B(x) be a formula containing just x free. Then there is a
term τB such that PA+proves: τB = pB(τB)q.

Then, of course, PA+ will also prove B(τB)≡ B(pB(τB)q), and the formula B(τB)—which is now
playing the role of G—really is self-referential: The formula denoted by τB really is B(τB). And
obviously B(τB) will have the same syntactic structure as the formula B(x) on which we were
diagonalizing, except for the fact that the former contains a complex term where the latter contains
only a variable. Thus, for example, in the case of (1), the strong diagonal lemma produces a term
τ such that PA+ proves:

(1′) τ = pT (τ)≡ ∃y(rhs(τ,y)∧¬T (y))q.

By the laws of identity, then, PA+ proves:

(20) T (τ) ≡ T (pT (τ)≡ ∃y(rhs(τ,y)∧¬T (y))q).

One instance of the T-scheme is then:

(21) T (pT (τ)≡ ∃y(rhs(τ,y)∧¬T (y))q) ≡ [T (τ)≡ ∃y(rhs(τ,y)∧¬T (y))]

So, if (21), then:

(2′) T (τ) ≡ [T (τ)≡ ∃y(rhs(τ,y)∧¬T (y))],

and so by the associativity and reflexivity of the biconditional:

(4′) ∃y(rhs(τ,y)∧¬T (y))

But now T (τ) ≡ ∃y(rhs(τ,y)∧¬T (y)) really does have a right-hand side, namely, ∃y(rhs(τ,y)∧
¬T (y)), and PA+ proves this fact. That is, PA+ proves:

(5′) rhs(τ,y)≡ [y = p∃y(rhs(τ,y)∧¬T (y))q]

So PA+ proves that, if (21), then:

8This version of the diagonal lemma seems to have made its first appearance in ?. It figures importantly in discussions
of some non-classical theories of truth, such as Kripke’s (?), since Λ≡¬T (pΛq) is not true (it is, in fact, paradoxical)
and so had better not be a theorem. See ? for some related observations.
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(6′) ¬T (p∃y(rhs(τ,y)∧¬T (y))q).

But now the T-scheme delivers:

(7′) T (p∃y(rhs(τ,y)∧¬T (y))q)≡ ∃y(rhs(τ,y)∧¬T (y)),

and so PA+ proves that, if (21) and (7′), then:

(8′) T (p∃y(rhs(τ,y)∧¬T (y))q),

since (4′) is the right-hand side of (7′). But (8′) contradicts (6′). So PA+ proves that (21) and (7)
lead to contradiction, and the formal argument is simply a transcription of the informal argument
considered earlier.

Consideration of other such examples—I’ll leave the formal derivation of a contradiction from (14)
as an exercise—makes it plausible that a great deal of informal reasoning involving self-reference,
though it cannot be replicated in PAS using the diagonal lemma, can be replicated in PA+ using
the strong diagonal lemma. There is, of course, such reasoning that cannot be formalized in PA+,
since it appeals to mathematical principles stronger than any available in PA+. But the contrast
between PAS and PA+ in which we are interested concerns the form of the diagonal lemma that
is provable in the two theories, and that contrast is a function not of their strength—PAS and PA+

have the same proof-theoretic strength, since PA+ can be interpreted in PAS via the usual definition
of primitive recursive functions in the latter—but rather of the expressive power of the languages
in which they are formulated. We could therefore replace PAS in the discussion to follow with
ZFC, formulated in the usual language {∈}, since this language, like that of PAS, is term-poor:
The diagonal lemma as it is typically proven in ZFC is of the weaker rather than the stronger form,
and so the informal arguments we have been discussing cannot be formalized in ZFC either, at
least not straightforwardly.

So let us ask this question: Can informal reasoning involving self-reference that can be replicated
in PA+ using the strong diagonal lemma also be replicated in PAS, somehow or other?

2.2. The Structural Diagonal Lemma. The informal reasoning that establishes the inconsistency
of (1) and (14) can be replicated in PAS via a form of the diagonal lemma that is stronger than the
standard form mentioned earlier. We may call it the “structural” form of the diagonal lemma:9

Lemma 1. (Structural Diagonal Lemma) Let P be a truth-functional schema in (distinct) sentence-
letters p1, ..., pn. Let A(x) be the substitution instance of P in which each pi has been replaced by
a corresponding formula Ai(x) containing just x free. Then there is a formula G such that:

9I do not know to what extent this result can be extended so that G reflects the quantificational structure of A(x).
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(i) G is the substitution instance of P in which each pi has been replaced by a
corresponding formula Gi;
(ii) PAS ` Gi ≡ Ai(pGq);
(iii) PAS ` G≡ A(pGq).

In fact, (iii) follows from (i) and (ii): If G just is the result of substituting Gi for pi in P, and A(x)
is the result of substituting Ai(x) for pi in P, then A(pGq) is the result of substituting Ai(pGq) for
pi in P; and so, since PAS proves: Gi ≡ Ai(pGq), it certainly proves G≡ A(pGq). I should perhaps
emphasize that there is no misprint in condition (ii): The condition is not that PAS should prove:
Gi ≡ Ai(pGiq). This weaker condition would not serve our purposes.10

Let me give a simple example to illustrate what the structural diagonal lemma says. Let A(x) be:
A1(x)∨ (A2(x)∧¬A3(x)), x being the sole free variable. Then the structural diagonal lemma says
that there is a sentence G = G1 ∨ (G2 ∧¬G3) such that PAS proves that each subsentence Gi is
equivalent to Ai(pGq) and that G itself is equivalent to A(G).

If we had the structural diagonal lemma, then we could resolve our puzzlement about (1) and (14).
Consider (1), again. We start as before with the formula:

(9) T (x)≡ ∃y(rhs(x,y)∧¬T (y))

and now apply the structural diagonal lemma to get a formula G of the form G1 ≡ G2 such that
PAS proves:

(22) G1 ≡ T (pGq)
(23) G2 ≡ ∃y(rhs(pGq,y)∧¬T (y))
(24) G≡ [T (pGq)≡ ∃y(rhs(pGq,y)∧¬T (y))]

Working in PAS, we can now replicate the informal reasoning that led us to a contradiction. By
(24) and the associativity of the biconditional, [G ≡ T (pGq)]≡ ∃y(rhs(pGq,y)∧¬T (y))]. So, by
the T-scheme, ∃y(rhs(pGq,y)∧¬T (y)). And now G really is a biconditional and it really does
have a right-hand side, namely, G2, and this fact is provable in PAS: rhs(pGq,y) ≡ y = pG2q.
So ¬T (pG2q). But then by the T-scheme again, ¬G2 and so, by (23), ¬∃y(rhs(pGq,y)∧¬T (y)).
Contradiction.

2.3. Proof of the Structural Diagonal Lemma. The structural diagonal lemma would thus solve
the problem with which I opened this note. So let’s prove it. We can derive it from the diagonal
lemma as Gödel originally proved it.11

10With this weaker condition replacing the stronger one, the lemma would follow from the generalized diagonal
lemma—the version that applies to several formulae simultaneously. See note 4.
11Note again that nothing in the proof actually requires the assumption that A(x) contains only x free, so the proof
about to be given easily adapts to a proof of the form that allows parameters.
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Proof. We need some definitions. Given a formula A(x) containing just x free, the standard proof
of the diagonal lemma to which I referred earlier yields a sentence GA(x) such that PAS proves:
GA(x) ≡ A(pGA(x)q). We can think of the proof as defining a syntactic function, whose value for
a formula A(x) is the formula GA(x). This function is obviously recursive, so it is representable in
PAS. Let spdl(x,y) represent it. So spdl(x,y) means: y is the Gödel number of the formula that
the standard proof of the diagonal lemma yields when applied to the formula whose Gödel number
is x. We may, of course, also think of spdl(x,y) the other way around, as it were: Since it defines
a one-one relation, we may think of it as determining from a formula GA(x) the formula A(x) from
which it was constructed—if, of course, GA(x) is a formula of the appropriate kind, that itself being
decidable.

The function that we actually need is definable from this one: Given a formula GA(x), recover the
formula A(x) from which it was constructed; then substitute pGA(x)q for x in A(x), thus getting our
old friend A(pGA(x)q), which we shall call the Gödel equivalent of GA(x)—so called because it is
the formula the standard proof of the diagonal lemma shows to be equivalent to GA(x). Clearly,
Gödel equivalence is also recursive and so is representable in PAS by a formula gdleq(x,y), which
means: y is the Gödel number of the the Gödel equivalent of the formula whose Gödel number is
x. And so in general, then, PAS proves:

gdleq(pGA(x)q,y)≡ y = pA(pGA(x)q)q

Now, by the supposition of the structural diagonal lemma, A(x) is a substitution instance of a
formula P containing the sentence-letters p1, ..., pn, where each pi is replaced by Ai(x). Let
GdleqA(x)(x) be the formula that results from replacing each pi by: ∃y(gdleq(x,y)∧Ai(y)). Then
the standard proof of the diagonal lemma gives us a formula S such that PAS proves:

S≡ GdleqA(x)(pSq).

Claim. PAS ` gdleq(pSq,y)≡ y = pGdleqA(x)(pSq)q.

Proof. Since gdleq(x,y) represents Gödel equivalence, it is enough to show that GdleqA(x)(pSq) is
indeed the Gödel equivalent of S. But S is the formula you get by diagonalizing on GdleqA(x)(x):
That is, S is GGdleqA(x)(x). So the Gödel equivalent of S is the formula you get by substituting the
numeral for the Gödel number of S into GdleqA(x)(x), that is: GdleqA(x)(pSq), as wanted. �

As it happens, the proof of the diagonal lemma in ?, pp. 53–4 also delivers the structural diagonal lemma. The point
is that what Boolos calls ‘pseudo-terms’ are eliminated in a way that gives the newly introduced quantifiers narrow
scope: It is, in a sense, ‘compositional’, so it does not alter the truth-functional structure of the sentence to which it
is applied. (Thanks to Albert Visser for explaining this point to me.) We might therefore say that what the examples
with which we began show is that the treatment in ? is superior to the treatment in ?, because the former does not give
rise to anomalies to which the latter does give rise.
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Consider now GdleqA(x)(pSq): It will turn out to be our wanted formula G. By construction, it is
itself a substitution instance of P, where each pi is replaced by: ∃y(gdleq(pSq,y)∧Ai(y)). These
are the Gi. What we must show is that, for each i, PAS proves: Gi ≡ Ai(pGq). That is, we must
show that PAS proves:

∃y(gdleq(pSq,y)∧Ai(y))≡ Ai(pGdleqA(x)(pSq)q).

But this follows immediately from the claim.

As noted earlier, it now follows that PAS proves: G ≡ A(pGq). In this case, what follows is that
GdleqA(x)(pSq) is provably equivalent to the formula that results from replacing each pi in P by
Ai(pGdleqA(x)(pSq)q). �

The proof may make more sense as applied to an example. Suppose as earlier that A(x) is A1(x)∨
(A2(x)∧¬A3(x)). Then GdleqA(x)(x) is:

∃y(gdleq(x,y)∧A1(y)) ∨ [∃y(gdleq(x,y)∧A2(y)) ∧ ∃y(gdleq(x,y)∧A3(y)) ]

Diagonalization then yields a formula S such that PAS proves:

S≡ ∃y(gdleq(pSq,y)∧A1(y))∨ [∃y(gdleq(pSq,y)∧A2(y))∧∃y(gdleq(pSq,y)∧A3(y))].

The right-hand side of this formula is our formula G. Each Gi is the corresponding part of G.
That is, Gi is: ∃y(gdleq(pSq,y)∧ Ai(y)). Since G is the Gödel equivalent of S, PAS proves:
gdleq(pSq,y) ≡ y = pGq, and so each Gi is provably equivalent to Ai(pGq). Hence G itself is
provably equivalent to: A1(pGq)∨ (A2(pGq)∧¬A3(pGq)).

3. SELF-REFERENCE AND THE LANGUAGES OF ARITHMETIC

The informal reasoning that demonstrates the inconsistency of (1) and (14) can thus be replicated
in PAS via the structural diagonal lemma. The examples with which we began thus serve only to
highlight the significance of that form of the diagonal lemma. But there are other examples that
pose quite a different problem.

Consider the following two principles:12

(Not) The negation of a sentence A is true iff the sentence A itself is not true.
(Disq) A sentence of the form pt is trueq is true iff t denotes a sentence that is itself true.

These two principles—the usual clause for negation and the disquotation principle—taken together,
are intuitively inconsistent. Consider again the liar sentence:

(The Liar) The Liar is not true.

12I have discussed the philosophical significance of (Disq), and of the results to be discussed here, elsewhere (?). Note
that the term t in (Disq) may be an arbitrary closed term.
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Since The Liar is the sentence “The Liar is not true”, The Liar is true if, and only if, “The Liar is
not true” is true. By the first of the two principles above, however, “The Liar is not true” is true if,
and only if, “The Liar is true” is not true. By the second, “The Liar is true” is not true if, and only
if, The Liar is not true. So The Liar is true if, and only if, The Liar is not true. Contradiction.

This argument may be formalized straightforwardly in PA+. We may formalize (Not) and (Disq)
as follows:13

(NotF ) T (p¬Aq)≡ ¬T (pAq)
(DisqF ) T (t)≡ T (pT (t)q)

where t may be any closed term. This theory is easily seen to be inconsistent via the argument just
discussed. For, by the strong form of the diagonal lemma, there is a term λ such that PA+ proves
λ = p¬T (λ )q and therefore proves:

T (λ )≡T (p¬T (λ )q), by identity

≡¬T (pT (λ )q), by (NotF )

≡¬T (λ ), by (DisqF )

As we shall see, however, there are models of PAS +(NotF)+(DisqF), which is therefore consis-
tent.

A great deal of care is needed here regarding what theory is being said to be consistent. As noted
above, the expression pAq is an abbreviation for the numeral that denotes the Gödel number of the
expression A. So, for example, if the Gödel number of A is 3084, then pAq abbreviates: S · · ·S︸ ︷︷ ︸

3084

0.

The important point for present purposes is that what pAq abbreviates depends upon what Gödel
numbering we are using. For this reason, there is no such thing as the theory PAS + (NotF) +
(DisqF). There are as many such theories as there are Gödel numberings.

13These axioms should be understood as restricted to sentences of the language in question. Strictly speaking, that is
to say, “sentence(t)→” should precede both axioms. I will ignore this fact below to simplify the exposition. I will
also stick here with the case of truth rather than deal with the more general notion of satisfaction. What follows should
smoothly extend to that case.
As Albert Visser pointed out to me, one needs to take (DisqF ) in the form given in the text: The weaker principle

(Not∗F ) T (pAq)≡ T (pT (pAq)q)

will not suffice, since it then will not follow that T (λ ) ≡ T (pT (λ )q), λ being a term rather than a numeral. Indeed,
the resulting theory is then consistent.
Visser also raised the question what the relation is, in general, between the weaker principles, such as (Not∗F ), and
the corresponding stronger priniciples, such as (NotF ) , and he speculated that the stronger principle can be derived
from the weaker one if we have the following rule of inference, which acts as a principle of extensionality: From
` A ≡ B, infer ` T (A) ≡ T (B). Visser was right: The proof is by induction on the depth of the embedding and is
fairly straightforward. For example, suppose ` λ = pAq. Then ` T (λ )≡ T (pAq), by identity, so also ` T (pT (λ )q)≡
T (pT (pAq)q). So, given (Not∗F ), we thus have ` T (λ )≡ T (pT (λ )q).
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In many contexts, this point is not particularly relevant and so is not explicitly noted.14 When
we were discussing different forms of the diagonal lemma above, for example, we did not specify
any particular Gödel numbering that we were using, for we did not really need to do so: No
matter what Gödel numbering g we are using, there will be, for each formula A(x), a formula
G such that PAS proves: G ≡ A(pGqg), where pGqg means: the numeral denoting g(G), that is,
the Gödel number of G, where g is the Gödel numbering we are using. Something similar is
true of the argument just given: No matter what Gödel numbering g we are using, there will be
a term λg such that PA+ proves: λg = p¬T (λg)qg. Which term λg is will depend upon which
Gödel numbering we are using, but its existence does not so depend, and so the proof of the
inconsistency of PA++(NotF)+(DisqF) therefore does not depend upon which Gödel numbering
we are using, either. For that reason, we may pretend that there is such a thing as the theory
PA++(NotF)+(DisqF), although in fact there is not: There are many such theories, one for each
Gödel numbering of the expressions of the language of PA+. All of these theories are inconsistent,
however, and parallel proofs demonstrate the inconsistency in each case.

We are about to see, however, that, in the investigation of axiomatic theories of truth formalized
in PAS, it can matter very much which Gödel numbering we are using and so which of the many
different formalizations of (Not) and (Disq) we consider.15 In particular, we shall see that, if we use
certain Gödel numberings—the most natural ones—then the relevant formalization is consistent,
but, if we use other Gödel numberings—quite unnatural ones—then the relevant formalization is
inconsistent. To put the point differently, there are consistent theories of the ‘form’ PAS+(NotF)+
(DisqF) and there are inconsistent theories of the ‘form’ PAS+(NotF)+(DisqF)—where the form
is given content by our choosing a particular Gödel numbering.

3.1. The Consistency of Some Theories of the Form PAS+(NotF)+(DisqF). Let me begin by
proving the former claim.

For the moment, leave open which Gödel numbering of the language of PAS we are using. I shall
now define a set E and prove that the interpretation of the language of PAS that interprets T by
E and is otherwise standard verifies both (NotF ) and (DisqF )—if the Gödel numbering satisfies a
certain condition. This is a condition all the usual sorts of Gödel numberings do indeed satisfy.

14Thus, to illustrate with just one example (chosen only because we shall discuss this paper further below): In their
investigations of axiomatic theories of truth ?, Friedman and Sheard never specify a particular Gödel numbering,
apparently assuming without comment that their results will not depend upon which Gödel numbering is used. As we
shall see, this assumption appears to have been correct, but that is only because of other assumptions they make. Had
they instead considered a different base theory formulated in a different base language—in particular, had they worked
in PAS rather than in PA+—the assumption would have needed defense and would have failed but for their assumption
of what I shall call below the ‘basic truth-principles’.
15That there are contexts in which it matters what Gödel numbering we use is a central point of Feferman’s classic
(?). But those sorts of cases, connected with Gödel’s second incompleteness theorem, are very different from the ones
considered here.
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Consider some closed sentence S. This sentence may contain various sub-formulae of the form
T (si), where si is a closed term (which need not be a numeral) that denotes the Gödel number of a
closed sentence Si of the form: ¬kT (ti),16 where k may be zero and ti is also a closed term (which,
similarly, need not be a numeral). Now consider the result of replacing each such term si by a
left quote, followed by the sentence Ai, followed by a right quote. Of course, the result of this
replacement is not a sentence of the language of arithmetic, but never mind that: It is a sentence
of a different language, one that will serve our purposes here, and—importantly for later—it can
be discussed in the language of PAS using Gödel numbering. So, that said, this new expression
may itself contain closed sentences of the form T (si), where the si are again closed terms that
are the Gödel numbers of sentences Si that are also of the form: ¬kT (ti). If so, replace si by:
‘Si’, and then continue the process.17 Call this the process of quotational expansion and, if the
process terminates in a given case, call the end result the quotational expansion of the original
sentence. Call a sentence even if it has a quotational expansion that contains an even number of
negation symbols and odd if it has a quotational expansion that contains an odd number of negation
symbols. The obvious induction shows that, if a sentence has a quotational expansion at all, it has
a unique one. So no sentence is both even and odd. But we are not assuming, and have not proven,
that every sentence has a quotational expansion, so we are not assuming, and have not proven, that
every sentence is either even or odd.

Without addressing that issue, however, we can already use the notion of quotational expansion to
show that all theories of this form

(Not→) T (p¬Aq)→¬T (pAq)
(DisqF ) T (t)≡ T (pT (t)q)

are consistent, no matter what Gödel numbering we might be using. Let E be the set of even sen-
tences. Interpret the standard language of arithmetic in the usual way and take the extension of T to
be the set E. Then it is easy to see that (DisqF ) is true: The first step in the quotational expansion of
T (pAq) is to replace it with: ‘A’, so if A has a quotational expansion A′, the quotational expansion
of T (pAq) is just: ‘A′’; hence either both are even or neither is. And (Not→) is also true: If ¬A
is even, then it has a quotational expansion that contains evenly many negation symbols; but the
quotational expansion of A is just the quotational expansion of ¬A without the initial negation, so
it is not even but odd.

It should be clear that a corresponding argument shows that the corresponding theory is consis-
tent in PA+. But we cannot prove that the full theory PA++(NotF)+ (DisqF) is consistent—
fortunately, since we have already seen that it is inconsistent—because we cannot show that

16Here, ¬kA means: ¬ . . .¬︸ ︷︷ ︸
k

A.

17To be completely precise here, we may need to make use of the kind of machinery found in ?.



SELF-REFERENCE AND THE LANGUAGES OF ARITHMETIC 14

(Not←) ¬T (pAq)→ T (p¬Aq)

is true in the corresponding interpretation. That a sentence A is not even is, for all we have said so
far, compatible with its not having a quotational expansion at all: It won’t have one if the process
of quotational expansion does not terminate. And if the process does not terminate when applied
to A, then it will not terminate when applied to ¬A, either, in which case ¬A will not be even—nor
will it be odd—and (Not←) will be false. If, on the other hand, the process terminates for every
sentence A, then every sentence is either even or odd. Hence, if A is not even, then it is odd, that
is, it has a quotational expansion that contains an odd number of negation symbols. But then, the
quotational expansion of ¬A is just the quotational expansion of A with an extra negation in front
and ¬A is therefore even. Hence, (Not←) is true.

We may state this result as a lemma:

Lemma 2. Given a particular Gödel numbering for the sentences of the language of a theory Θ,
the corresponding theory of the form Θ+(NotF)+(DisqF) is consistent if the process of quota-
tional expansion—applied to sentences of the language of Θ using that Gödel numbering—always
terminates.

Of course, what we proved above already implies that, if the theory in question is PA+, then it is
impossible to define a Gödel numbering with respect to which the process of quotational expansion
will always terminate: PA++(NotF)+ (DisqF) is inconsistent no matter what Gödel numbering
is being used. Nonetheless, it is worth noting that we can prove this fact directly.

Fix a Gödel numbering for the language of PA+. By the strong form of the diagonal lemma, there
is a term τ such that PA+ proves: τ = pT (τ)q. Since everything PA+ proves is true, the term τ

really does denote the Gödel number of the sentence T (τ). Hence, the first step of the process of
quotational expansion would have us replace τ in T (τ) by: ‘T (τ)’, thus arriving at: T (‘T (τ)’).
This sentence now contains a sentence of the form T (t) where the term t denotes a sentence of the
form: ¬kT (u): Unfortunately, the term in question is just τ again, and the next step in the process
of expansion simply yields: T (‘T (‘T (τ)’)’). The process of expansion as applied T (τ) thus fails
to terminate.

On the other hand, if the language is the standard language of arithmetic, then the process of
quotational expansion will terminate if we use either of the Gödel numberings employed by ? or
?, ch 15, and indeed most of the ones usually employed.18 Such Gödel numberings satisfy the
following conditions:19

18There are so many, of course, that there is really no prospect of checking them all.
19Here t and u are arbitrary closed terms. The Gödel numberings mentioned also satisfy similar conditions with
respect to the other truth-functional operators and even with respect to quantifiers, though we shall not need these facts
here.
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p0q≥ 0

pStq> S(ptq)

pt +uq> ptq+puq

pt×uq> ptq×puq

pT (t)q> ptq

p¬Aq> pAq

Let us call such a Gödel numbering regular. By the obvious inductions:

ptq≥ den(t)

p¬kT (t)q> ptq

where den(t) is the denotation of the term t. Hence:

p¬kT (t)q> den(t).

That is to say, regular Gödel numberings are well-founded with respect to the process of quotational
expansion: If one has a sentence of the form T (s), where s is the Gödel number of a sentence of the
form ¬kT (t) and t is a closed term, then the term t must denote a number that is strictly less than
what s denoted. If so, then the process of quotational expansion must terminate: The denotations
of these terms cannot decrease endlessly.

We thus have the following result:

Theorem 3. Let g be a regular Gödel numbering. Then the result of adding the axioms

(NotgF ) T (p¬Aqg)≡ ¬T (pAqg)

(Disqg
F ) T (t)≡ T (pT (t)qg)

to PAS is consistent.20

Something even stronger is true: This theory is consistent if PAS is, because it is actually inter-
pretable in PAS. We can define the notions of quotational expansion and of an even sentence in the
language of PAS and then, so long as our Gödel numbering is provably regular, prove in PAS that
every formula has a quotational expansion and so is either odd or even. Having done so, we can
then add to PAS the definition T (x)≡ Even(x) and prove (NotF ) and (DisqF ) as above. And it can
be proven in PAS (and in far weaker theories, too) that we can do all of that. So PAS itself proves
that, if PAS is consistent, then so is PAS+(NotgF)+(Disqg

F), so long as g is provably regular.

20Indeed, the result of adding these axioms to the set of all truths in {0,S,+,×} is consistent.
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3.2. A Result In Which the Notion of Self-Reference Occurs Essentially. We can adapt the
foregoing to state a result in which the notion of self-reference occurs essentially, that is, in which
the assumption that there exists a self-referential sentence of a certain form cannot be replaced by
an assumption to the effect that something of the form G≡ A(pGq) is provable.

Let O be an interpreted language containing a predicate T , intended to be understood as a truth-
predicate. Consider the principle:21

(25) pT (t)q is true iff the denotation of t is true.

This principle is of interest because it is the obvious principle to adopt as governing the truth-
predicate contained in O: What (25) says is that a sentence of O of the form pT (t)q is true if, and
only if, the sentence denoted by t is itself a true sentence of O . The principle (25) is thus perfectly
analogous to such familiar semantic clauses as:

(26) pt is redq is true iff the denotation of t is red

and

(27) pt is evenq is true iff the denotation of t is even.

It is important to note, moreover, that (25) fully respects the distinction between object-language
and meta-language: There is no truth-predicate here that applies to sentences of the meta-language;
in particular, both the predicate ‘is true’, which belongs to the meta-language, and the predicate T ,
which belongs to the object-language, can be supposed intelligibly to apply only to sentences of the
object-language.22 So one might hope that (25) would be immune to inconsistency. But it is not. If
the object-language contains a self-referential liar sentence, then only very weak assumptions are
needed to generate a contradiction within a classical meta-language.23

So suppose that O contains a truly self-referential liar sentence, that is, that O contains a term λ

that denotes the sentence p¬T (λ )q. That is, suppose that:

(28) the denotation of λ is p¬T (λ )q.

One instance of (25) is then:

(29) pT (λ )q is true iff the denotation of λ is true.

21I am now using corner quotes in Quine’s way, to denote, in this case, the result of putting t in the argument place of
T . (Note that ‘T ’ is a name of a predicate, not a predicate.)
22The language O does not respect this distinction.
23Those familiar with the literature on the liar paradox will recognize that the phrase “within a classical meta-language”
hides several other assumptions that can be and have been denied in an effort to avoid inconsistency. But the point here
is not to introduce a new form of the liar paradox—I’m sure this one can be accomodated by extant approaches—but
to contrast forms of it that depend upon diagonalization with one that makes direct use of self-reference. In short: My
intent here is to throw some light on self-reference, not on truth.
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But then, by (28) and (29):

(30) pT (λ )q is true iff p¬T (λ )q is true.

If, now, we have the usual clause for negation:

(31) p¬Aq is true iff A is not true,

that will deliver:

(32) p¬T (λ )q is true iff pT (λ )q is not true.

But then, putting (30) and (32) together, we have:

(33) pT (λ )q is true iff pT (λ )q is not true.

And that is a classical contradiction, one derived in an informal meta-theory that is therefore in-
consistent.24

Formalizing the foregoing, we thus have the following result.

Lemma 4. Let O be a language (not necessarily a first-order language) containing a predicate T
and a unary operator ¬; let Σ be a classical semantic theory for O formulated in a language M

containing the following (primitive or defined) expressions: termO(x), x is a term of O; sentO(x),
x is a sentence of O; neg(x,y), x is the negation of y; denO(x,y), x denotes y in O; and trueO(x),
x is true in O . Suppose that Σ proves:

(1) termO(λ )∧denO(λ ,p¬T (λ )q)], for some term λ

(2) termO(t)∧ sentO(s)∧denO(t,s)→ trueO(pT (t)q)≡ trueO(s), for all s and t
(3) sentO(s)∧ sentO(s′)∧neg(s′,s)→ trueO(s′)≡ ¬trueO(s), for all s and s′

Then Σ is inconsistent.

This result is closely related to one discussed in section 3.1: We can use theorem 3 to show that,
if our Gödel numbering is regular, then PAS plus (2) and (3) from the lemma is consistent, even
if the object-language is the language of PAS itself. Of course, if there is to be a possibility that
this language contains a truly self-referential sentence, sentences must be numbers. So fix some
standard Gödel numbering of the sentences of the language and identify sentences with their Gödel
numbers: That turns (2) into (DisqF ) and (3) into (NotF )—more or less—and we know that the
resulting theory is consistent. What saves the theory from inconsistency is the fact that (1) fails:
There is no truly self-referential liar sentence in this language.

24To reach a formal contradiction, of the form p∧¬p, one has to use classical rules—in particular, classical structural
rules—that can be denied (?). But, again, we are working in a purely classical meta-language here. See note 23.
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We thus cannot simply replace (1) in the lemma with the assumption that, for some sentence Λ,
Λ≡ ¬T (pΛq) is true in O , that is, with:25

(1′) for some sentence Λ, T (pΛ≡ ¬T (pΛq)q).

It simply isn’t true that a (classical) theory satisfying (1′), (2), and (3) must be inconsistent: We
have just seen a counter-example. To be sure, there are various ways inconsistency can be restored.
We could, for example, add the usual clause for the biconditional:26

(Bicon) T (pA≡ Bq)≡ [T (pAq)≡ T (pBq)].

But that is an assumption we did not have to make for the proof of lemma 4 and whose addition
would therefore weaken the result. We did not assume in the lemma that O so much as contains
a biconditional, nor anything in terms of which one might be defined, let alone assume anything
about how such an expression might behave.27

3.3. The Strong Diagonal Lemma in the Standard Language of Arithmetic. As noted earlier,
most of the Gödel numberings actually used in practice are regular. What we have seen is thus
that informal arguments involving self-reference cannot always be replicated in PAS using the
usual sorts of Gödel numberings. One such argument is the informal argument that (NotF ) and
(DisqF ) are inconsistent: Since PAS+(NotF)+(DisqF) is consistent with respect to regular Gödel
numberings, there is not going to be a derivation in PAS of a contradiction from (NotF ) and (DisqF ),
so long as we are using a regular Gödel numbering.

The question is still open, however, whether this particular informal argument can be replicated in
PAS using some other Gödel numbering, one that is not regular: Is there a Gödel numbering with
respect to which the corresponding theory of the form PAS +(NotF)+ (DisqF) is inconsistent?
The answer to this question is “yes”. In fact, we can show something stronger: We can prove that
there is a Gödel numbering of the formulae of the language of PAS with respect to which we can
prove the strong form of the diagonal lemma that was used to establish the inconsistency of PA++

(NotF)+ (DisqF), and we can then use the same argument used to establish the inconsistency of
PA++(NotF)+ (DisqF) to establish the inconsistency of PAS +(NotF)+ (DisqF), with respect

25One might have wanted to suggest we should replace (1) with the assumption that Λ≡¬T (pΛq) is provable. But in
what theory? O is not a theory: It is a language. Certainly we can consider a theory TO formulated in O and assume
that it proves Λ≡ ¬T (pΛq), but, as a little experimentation will show, we will need to make further assumptions, for
example, that if TO proves A≡ B, then A is true iff B is true.
26Given (Bicon) and that T (pΛ≡¬T (pΛq)q), we then have T (pΛq)≡ T (p¬T (pΛq)q). By (NotF ) , T (p¬T (pΛq)q)≡
¬T (pT (pΛq)q); by (DisqF ) , ¬T (pT (pΛq)q) ≡ ¬T (pΛq); hence, T (pΛq) ≡ ¬T (pΛq). See section 3.4 for more on
this.
27For this same reason, we did not assume in lemma 4 (anything that implies) that all the T-sentences are truths of O ,
since we did not assume that the T-sentences for O could even be expressed in O . Nor, it is perhaps worth noting, did
we assume that all T-sentences for O were truths of the meta-language M , since, similarly, we did not assume that
they could be expressed in M : The object-language O could be arbitrarily weaker or stronger in expressive power
than the meta-language M , and the proof would still go through.
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to that Gödel numbering. More generally, then, we might say: Any argument exploiting self-
reference that can be formalized in PA+ using the strong form of the diagonal lemma can be
formalized in PAS using the non-standard Gödel numbering I am about to describe, for the strong
form of the diagonal lemma holds for it, too.28

Fix some typical Gödel numbering of the formulae of the language of PAS: For definiteness, let it
be the Gödel numbering given in ?, ch 15. This Gödel numbering is a function b(A) from expres-
sions to natural numbers. Of course, b is a computable function whose inverse is also computable.
Moreover, there is a computable enumeration φ of the formulae of the language of PAS that contain
just the variable x free,29 whose inverse is also computable. We can, in fact, take this enumera-
tion to be determined by b, for we can effectively order the formulae by their Gödel numbers and
then take χn(x) to be the nth formulae in this ordering that contains just x free. The inverse is
also clearly computable: Given a formula A(x) containing just x free, one need only determine its
Gödel number and then determine how many other formulae containing just x free precede it.

We now define a new Gödel numbering as follows. If, for some i, A is the formula χi(2i+1)—that
is, if A is the result of substituting the numeral for 2i+1 for x in the i th formula in the enumeration
mentioned above—let its new Gödel number be 2i+1. If A is not χi(2i+1) for any i, let its new
Gödel number be twice its old one. That is:

g(A) =

2i+1 , if A is χi(2i+1)

2×b(A) , otherwise

It should be clear that g is, indeed, a Gödel numbering: It is a one-one function from expressions
to natural numbers, and, in virtue of how it was defined, it is a computable function whose inverse
is also computable. Moreover, the strong form of the diagonal lemma is provable with respect to
this Gödel numbering: For every formula A(x) with just x free, there is quite definitely a term t
such that PAS proves: t = pA(t)qg, where pA(t)qg abbreviates the numeral that denotes g(A(t)).
For A(x) is χi(x) for some i, so we may simply take t to be 2i+1. Since the Gödel number of
A(2i+1) is 2i+1, what is being claimed is simply that PAS proves: 2i+1 = 2i+1, which it most
certainly does.30

28The basic idea here is mentioned in passing by ?, p. 80. I discovered it for myself when trying to reconstruct a line
of thought mentioned by ?, p. 693, fn 6. I have since learned that Albert Visser develops Kripke’s suggestion in more
detail in as yet unpublished work (?).
29As usual, the proof does not actually depend upon the assumption that A(x) contains only x free. So we can apply
this reasoning to formulae of the form A(x,y) to show that, for each such formula, there is a term tA(x,y) such that
PAS ` tA(x,y) = pA(tA(x,y),y)q, whence of course we have that PAS ` A(tA(x,y),y)≡ A(pA(tA(x,y),y)q,y).
30Moreover, the proof can be adapted to deal with multiple formulae simultaneously. We begin by (primitive recur-
sively) enumerating the finite sets of formulae. Suppose the first set contains A(x,y) and B(x,y). Then we will want
to assign the Gödel numbers 1 and 3 to A(1,3) and B(1,3), respectively, and so forth, using the odd numbers in this
process and leaving the even numbers for expressions not otherwise assigned a Gödel number. It is rather harder to
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It should be clear that all syntactic notions that are numeralwise representable using the old Gödel
numbering b are also numeralwise representable using the new one g. In fact, there is a simple
relationship between formulae that represent syntactic notions with respect to b and ones that
represent those same syntactic notions with respect to g: For example, a number n is a new Gödel
number of a sentence if, and only if, the number that is the old Gödel number of the expression31

whose new Gödel number is n is itself the old Gödel number of a sentence.

More formally, consider the function b ◦ g−1: Its value for a number x is the old Gödel number
of the formula (if any) whose new Gödel number is x. This function is intuitively computable.
By Church’s thesis, then, it is recursive, so it is representable in PAS by some formula bog(x,y).
And if synt(x) represents some syntactic notion with respect to b, then ∃y(bog(x,y)∧ synt(y))
represents it with respect to g. For example, suppose sent(x) represents “x is a sentence” with
respect to b: That is, PAS proves: sent(n), if n = b(A) for some sentence A, and refutes it oth-
erwise. Then ∃y(bog(x,y)∧ sent(y)) represents “x is a sentence” with respect to g: That is, PAS

proves: ∃y(bog(n,y)∧sent(y)), if n= g(A) for some sentence A, and refutes it otherwise. For since
bog(x,y) represents b ◦ g−1 and, obviously, b(A) = b ◦ g−1(n), PAS proves: ∀x[bog(n,x) ≡ x =

b(A)]. If A is a sentence then PAS proves: sent(b(A)), and so proves: sent(b(A))∧bog(n,b(A)),
and so proves: ∃y(bog(n,y)∧ sent(y)). If A is not a sentence PAS proves: ¬sent(b(A)), and so
proves: ∀x(bog(n,x)→ ¬sent(x)), that is, ¬∃x(bog(n,x)∧ sent(x)). Syntactic facts that were
formalized and proven using the old Gödel numbering can therefore easily be reformalized and
reproven using the new one.

It’s theft rather than honest toil, to be sure, but it works.

3.4. A Comparison. Harvey Friedman and Michael Sheard (?) provide a complete catalog of the
consistent and inconsistent subsets of a large collection of intuitive principles about truth.32 They
assume as a background theory PA+, rather than PAS, and they assume three further principles
specific to the truth-predicate, which are the universal closures of:33

write down a formula describing the new Gödel numbering in this case, but it should be clear on reflection that the
method described will work.
31If any, of course, but let us not worry about what to do with this case.
32See also ?, which continues the theme.
33The point of assuming these principles is that they guarntee that BaseT regards PA+ as true: If A is a theorem of
PA+, then BaseT ` T (pAq).
That might suggest that the basic truth-principles are strong indeed, and, in the form in which Friedman and Sheard
state them, they are. Here’s an illustration of that strength. Reason in BaseT . Suppose A is a theorem of PA+. Then
there are axioms A1, . . . ,An of PA+ such that A1∧·· ·∧An→ A is valid. By (A11), T (pA1∧·· ·∧An→ Aq), and so by
(A10): T (pA1∧·· ·∧Anq)→ T (pAq). So BaseT proves that, if every conjunction of axioms of PA+ is true, then every
theorem of PA+ is true.
But we can also prove in BaseT that every conjunction of axioms of PA+ is true: For any x and y , x→̇(y→̇x∧̇y) is
valid and so, by (A11), true; but then logic and (A10) yield: T (x)∧T (y)→ T (x∧̇y), and induction and (A12) yield
our conclusion. So we can prove in BaseT the generalization that every theorem of PA+ is true—not just, of every
theorem, that it is true. It follows that BaseT proves that, if there is some sentence in the language of PA+that is not
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(A10) T (px→ yq)∧T (x)→ T (y)
(A11) valid(x)→ T (ucl(x))
(A12) axiom(x)→ T (x)

where valid(x) formalizes: x is the Gödel number of a valid first-order formula; ucl(x): the uni-
versal closure of the formula with Gödel number x; and axiom(x): x is the Gödel number of an
axiom of PA+. The result of adding these principles to PA+ is the theory Friedman and Sheard call
BaseT .

Our (NotF ) and (DisqF ) comprise one of the axiom sets Friedman and Sheard show to be inconsis-
tent: These are equivalent to their {T -Cons,T -Comp,T -Del,T -Rep}.34 As we have seen, however,
these principles cannot be proved inconsistent in PAS unless we select a very particular Gödel num-
bering with which to work. So it is reasonable to ask two questions about Friedman and Sheard’s
treatment: To what extent do their results depend upon the choice of PA+ as opposed to PAS? To
what extent do their results require the use of (A10), (A11), and (A12)—which, together, we may
call the ‘basic truth-principles’?

The answer is that, in the presence of the basic truth-principles, their results do not depend upon
the choice of PA+ as opposed to PAS. Indeed, Friedman and Sheard do not actually make use of
the strong form of the diagonal lemma in their arguments. Rather, their proofs of inconsistency
assume only the existence of the sort of sentence that would be delivered by the weaker form of
the diagonal lemma, namely, a sentence Λ such that PA+ proves:

(19) Λ≡ ¬T (pΛq)

It then follows from the basic truth principles that BaseT proves:

(34) T (pΛq)≡ T (p¬T (pΛq)q),

true, then PA+ is consistent. So any set of truth-theoretic principles strong enough to imply the antecedent of this
claim will, if added to BaseT , prove Con(PA+), and there are ostensibly very weak such sets of principles.
The contrast with the usual situation regarding Tarskian truth-theories is striking: We do not need induction for formu-
lae containing T for this argument. In effect, the basic truth-principles are doing the work induction on such formulae
normally does in ‘trivial’ consistency proofs based on Tarskian theories of truth.
But the above argument would collapse if the basic truth-principles were weakened so that they took a schematic form
rather than a quantified form. So (A11), for example, would become: valid(t)→ T (ucl(t)), for each term t. Even
in schematic form, the basic truth-principles imply all instances of T (pA∧Bq) ≡ T (pAq)∧ T (pBq) and therefore
imply all instances of our (Bicon) from section 3.2: T (pA ≡ Bq) ≡ [T (pAq) ≡ T (pBq)]. (The basic truth-principles
do not imply all instances of the corresponding principle for disjunction.) So: Since PA+ proves (19), BaseT proves
T (pΛ ≡ ¬T (pΛq)q), whence (34) follows from the relevant instance of (Bicon). The schematic forms will thus be
enough for most, and possibly all, of Friedman and Sheard’s results, though the proof of the inconsistency of T -Rep,
T -Del, T -Intro, and T -Elim would need to be checked carefully.
34Our (NotF ) is equivalent to the conjunction of T-Cons, which is¬[T (t)∧T (¬̇t)], and T-Comp, which is T (t)∨T (¬̇t);
our (DisqF ) is equivalent to the conjunction of T-Del, which is T (pT (t)q)→ T (t), and T-Rep, which is T (t)→
T (pT (t)q).
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For similar reasons, BaseT proves:35

(35) T (p¬Λq)≡ T (pT (pΛq)q).

The only non-logical facts Friedman and Sheard use in the derivations of the main inconsistencies
are (19), (34), and (35) (?, pp. 14–15). But these will all be provable in PAS plus the basic-
truth principles, too, since PAS obviously proves (19). So, in particular, (NotF ) and (DisqF ) are
inconsistent in PAS plus the basic truth-principles, no matter what Gödel numbering we employ.36

The basic truth-principles, however, are not dispensible. Working in PA+, we can find a term λ

such that PA+ proves: λ = p¬T (λ )q. If we now take Λ to be the sentence ¬T (λ ), then we will
be able to prove (19) and (34). So most of Friedman and Sheard’s proofs of inconsistencies go
through in PA+. But one of Friedman and Sheard’s proofs assumes that there is a Λ for which
just (35) can be proven, and two of them assume that there is a single sentence Λ for which both
(19) and (35) can be proven.37 I do not myself see how to construct either sort of sentence in
PA+. More significantly, Friedman and Sheard’s proof that our (DisqF )—which is their T -Rep
and T -Del conjoined—is inconsistent with the two rules

(T -Intro) A ` T (pAq)
(T -Elim) T (pAq) ` A

makes such heavy use of the basic truth-principles—in particular, of (A10)—that it is difficult to
see how the proof could be constructed without them. The moral, then, is that the basic truth-
principles are highly non-trivial assumptions. Perhaps it is not so surprising that the difference in
which we have been interested vanishes, at least to some extent, in their presence.38

But however that may be, it is clear that, if we were to work in PAS using a standard, regular
Gödel numbering, and if we did not assume the basic truth-principles, our catalog of consistent
and inconsistent theories would look somewhat different from what we would get if we worked in
PA+ and made use of the strong diagonal lemma: At least one collection of truth-principles would
be differently classified, namely: {T -Cons,T -Comp,T -Del,T -Rep}.

4. PHILOSOPHICAL REFLECTIONS

The technical situation is thus reasonably clear: There are Gödel numberings with respect to which
the relevant formalizations of (NotF ) and (DisqF ) are inconsistent with PAS, and there are others

35Negate both sides of (19) and then reason as in the previous note.
36The model given above to demonstrate the consistency of (NotF ) and (DisqF ) with PAS verifies (A10)—if a condi-
tional is even and so is its antecedent, then so is its consequent—but does not verify (A11). Whether it verifies (A12)
will depend upon the exact formulation of PA+, in particular, upon the formulation of induction.
37The theories in question are {T -Comp,T -Rep,¬T -Intro}—which is the one for which we need just (35)—
{T -Cons,¬T -Elim,T -Del} and {T -Comp,T -Rep,T -Elim}. I do not know whether these are consistent with PA+.
38



SELF-REFERENCE AND THE LANGUAGES OF ARITHMETIC 23

with respect to which the relevant formalizations are consistent. It would probably be best if I
simply made that point and were satisfied. But I am a philosopher, and so I am by nature driven to
ask another question.

As we saw above, the following two principles

(Not) The negation of a sentence A is true iff A itself is not true.
(Disq) A sentence of the form pt is trueq is true iff t denotes a sentence that is itself true.

are intuitively inconsistent: That is to say, there is a compelling informal proof of their inconsis-
tency. For all that it is informal, however, the proof is a perfectly legitimate proof, and we may
wish to ask about it, as we ask about other informal proofs, in what sorts of systems it can be
formalized. Now, we have certainly seen that, in some sense, the informal proof of a contradiction
from (Not) and (Disq) can be formalized in PAS: There are non-standard Gödel numberings one
can use to formalize that proof. But I find myself wanting to say that that proof is a cheat and that
the informal proof cannot really be formalized in PAS.

Consider a different question. It is sometimes said that Tarski proved that the naïve theory of truth,
given by the scheme

(36) ‘S’ is true iff S,

is inconsistent with arithmetic. This claim is based upon the somewhat more precise claim that
Tarski’s Theorem shows that the scheme

(37) T (pAq)≡ A,

which we may regard as a formalization of (36), is classically inconsistent with PAS (and, in fact,
with far weaker theories). I think it is reasonable to credit Tarski with both results. But it is
essential to its being reasonable to report Tarski’s Theorem in these ways that his proof does not
depend upon the Gödel numbering used. Tarski’s Theorem would be of far less interest if it had
to be stated as: For some Gödel numberings, the relevant formalization of (37) is inconsistent,
although for some it is not. If that were all Tarski had shown, then I would not wish to report him
as having shown that (37) is inconsistent with PAS nor as having shown, in this way,39 that (36)
is inconsistent with arithmetic. Of course, what Tarski actually showed is that, if you add a one-
place predicate T to the standard language of formal arithmetic and take as axioms all instances
of a formalization of (37), then, no matter what Gödel numbering is in use, the resulting theory is
inconsistent, so long as certain very weak arithmetic assumptions are in place.40

And so, similarly, if we ask whether these two principles

39The caveat reflects that fact that, if Tarski had proven that (37) was inconsistent with PA+, then I might still wish
to regard him as having shown that (36) is inconsistent with arithmetic. The issue here, though, is what one counts as
arithmetic, not what one counts as a proof of the inconsistency of some informal claim.
40And so long as the logic remains classical. See ?.
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(NotF ) T (p¬Aq)≡ ¬T (pAq)
(DisqF ) T (t)≡ T (pT (t)q)

are inconsistent with PAS, then, or so it seems to me, we should answer “No”. Not only are we
unable to show that the relevant formalizations of these principles will be inconsistent no matter
what Gödel numbering we use, the most natural Gödel numberings are ones with respect to which
their formalizations are not inconsistent.41 And for that same reason, I find myself wanting to
deny that the informal argument that demonstrates the inconsistency of (Not) and (Disq) can be
formalized in PAS. Perhaps I would feel differently if the situation were reversed, that is, if the
only Gödel numberings with respect to which (NotF ) and (DisqF ) were jointly consistent were
very unnatural. But that is not the actual situation.

5. CLOSING

I have tried to answer two questions here. The first is in what kinds of theories truly self-referential
reasoning can be formalized. The answer is that it can be formalized in theories in which the
strong form of the diagonal lemma can be proven. One such theory is PA+; the strong form of the
diagonal lemma can be proven in PAS, too, but only if we use a non-regular Gödel numbering. The
second question was whether there is any mathematical significance to the sort of phenomenon
illustrated by the examples with which we began. I have argued that there is. There are, for
example, collections of intuitively plausible principles concerning truth that are inconsistent with
PA+ but consistent with PAS, if we use a standard Gödel numbering. So it is at least of some
mathematical significance whether we work in a language in which true self-reference is possible.
It is not yet clear how significant the phenomenon is, but it certainly seems worth asking whether
there are similar examples in other areas of logic in which self-reference is important.42
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