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Abstract 

The canonical Bayesian solution to the ravens paradox faces a problem: it entails that black 

non-ravens disconfirm the hypothesis that all ravens are black.  I provide a new solution that 

avoids this problem.  On my solution, black ravens confirm that all ravens are black, while 

non-black non-ravens and black non-ravens are neutral.  My approach is grounded in certain 

relations of epistemic dependence, which, in turn, are grounded in the fact that the kind raven 

is more natural than the kind black.  The solution applies to any generalization “All F’s are 

G” in which F is more natural than G. 

 

1. Introduction 

 Black ravens provide some evidence that all ravens are black, but non-black non-

ravens do not.  Why is this, given that all ravens are black if and only if all non-black things 

are non-ravens?  I will present a new Bayesian solution to this much-discussed paradox.   
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 A new approach is needed because the canonical Bayesian solution faces a serious 

problem.  It relies on two independence assumptions that jointly entail that black non-ravens 

disconfirm the hypothesis that all ravens are black.  This is problematic because intuitively, 

black non-ravens are just as irrelevant as non-black non-ravens.   

 I begin the case for my alternative approach by showing that if we retain one of the 

independence assumptions but reject the other, we get exactly the right results: black ravens 

confirm the hypothesis that all ravens are black, but black non-ravens and non-black non-

ravens are irrelevant.  The assumption retained is that the probability of sampling a raven at 

random from the universe is independent of the proposition that all ravens are black.  This 

can be explained by the fact that our beliefs about the number of ravens do not depend on our 

beliefs about their color.  The assumption rejected is that the probability of sampling a non-

black thing is independent of the proposition that all ravens are black.  This is false because 

our beliefs about the number of non-black things do depend in part on our beliefs about 

whether all ravens are black.  For example, if we were to learn that all ravens are black, we 

should slightly increase our estimate of the number of black things and slightly decrease our 

estimate of the number of non-black things.  Ultimately, these dependence claims are 

grounded in the fact that the kind raven is more natural than the kind black.  This means that 

the solution applies to any generalization of the form “All F’s are G,” provided that F is more 

natural than G. 

 

 



 

 

 

2. Formulating the Paradox 

The paradox can be stated as follows:
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Nicod’s Criterion (NC):  A proposition of the form “Object a is both F and G” (that is, FaGa) 

confirms the hypothesis “All F’s are G.” 

 

Equivalence Condition (EC):  If E confirms H1, then E also confirms H2, if H1 and H2 are 

logically equivalent. 

 

These two plausible principles entail the following: 

 

Paradoxical Conclusion (PC):  The proposition “Object a is a non-black non-raven” (that is, 

~Ba~Ra) confirms the hypothesis “All ravens are black.” 

 

 Why does this follow?  (NC) entails that ~Ba~Ra confirms “All non-black things are 

non-ravens,” which is logically equivalent to “All ravens are black.”
3
  So, by (EC), ~Ba~Ra 

also confirms “All ravens are black.”  But this is absurd.  The observation of a non-black 

non-raven is irrelevant to the hypothesis that all ravens are black. 

                                                 
2
 Many slightly different formulations appear in the literature.  The first is in Hempel (1945). 

3
 This is because x(R(x)  B(x)) is equivalent to x(~B(x)  ~R(x)).  Some philosophers have attempted to 

solve the paradox by denying that the English “All ravens are black” is equivalent to the first-order x(R(x)  

B(x)), and therefore denying that the English “All ravens are black” is equivalent to the English “All non-black 

things are non-ravens.”  A discussion of this approach is beyond the scope of this paper.  Bayesian 

commentators have typically accepted that these hypotheses are equivalent, and I will do the same. 



 

 

 

 The first step is to evaluate (NC) and (EC) within a Bayesian framework.  However, 

these principles need to be re-stated because in their current form they fail to mention 

background knowledge.  On Bayesianism, confirmation is a three-place relation between an 

evidence proposition (E), a hypothesis (H), and background knowledge (K).  E confirms H 

relative to K just in case P(H|E&K) > P(H|K), which holds if and only if P(E|H&K) > P(E|K) 

if and only if P(E|H&K) > P(E|~H&K).  (Probabilities are interpreted as subjective degrees 

of belief, or credences.)  It is easy to see how (EC) should be re-stated: 

 

Equivalence Condition* (EC*):  If E confirms H1 relative to background knowledge K, then 

E also confirms H2 relative to the same background knowledge K, if H1 and H2 are logically 

equivalent. 

 

(EC*) is true according to Bayesianism, since logically equivalent propositions have 

the same probability.
4
  However, things are less straightforward in the case of (NC).  Here is 

one version: 

 

Nicod’s Criterion, Revision 1 (NCR1):  “FaGa” confirms “All F’s are G” relative to all 

possible background knowledge K. 

  

                                                 
4
 In more detail: Suppose E confirms H1 relative to K.  That is, P(H1|E&K) > P(H1|K).  Since H1 and H2 are 

logically equivalent, P(H1|J) = P(H2|J), for all J.  So, P(H2|E&K) = P(H1|E&K) and P(H2|K) = P(H1|K).  So 

P(H2|E&K) > P(H2|K).   



 

 

 

In combination with (EC*), (NCR1) yields: 

 

Paradoxical Conclusion, Revision 1 (PCR1): ~Ba~Ra confirms “All ravens are black” 

relative to all possible background knowledge K. 

 

 (PCR1) is truly absurd.  However, the Bayesian is not committed to (PCR1), since it 

is easy to show that (NCR1) is false in a Bayesian framework.  Good (1967) provides what is 

probably the earliest counterexample to (NCR1), but others appear in Swinburne (1971) and 

Rosenkranz (1982).
 5

  

 One might conclude from this that Bayesianism solves the ravens paradox, by 

showing that one of its key premises is false.  However, I think this would be premature.  

(NC) has considerable plausibility.  Even though (NCR1) is false, there might be some other 

version of (NC) that is true.  If so, this principle might give rise to a problematic version of 

(PC).    

I will describe two other versions of (NC) that are true in a Bayesian framework.  

However, neither gives rise to a genuinely problematic version of (PC).  Here is the first: 

 

                                                 
5
 Here’s a simple counterexample to (NCR1), similar to the one found in Good 1967: Suppose you know that if 

all ravens are black, there is only one raven; but if not all ravens are black, there are millions of ravens, most of 

which are black but one of which is white.  Relative to this background knowledge, you are much more likely to 

encounter a black raven if the ravens hypothesis is false than if it’s true; so, the observation of a black raven 

does not confirm “All ravens are black” (in fact, it disconfirms it). 



 

 

 

Nicod’s Criterion, Revision 2 (NCR2):  Let “a” refer to an object known to have been 

sampled at random from the set of F’s.  Suppose we know nothing else about object a.  Then, 

FaGa confirms the hypothesis that all F’s are G.
6
 

 

Since we know that object a was sampled from the set of F’s, our background 

information, K, includes the fact that object a is F.  However, we know nothing else about 

object a; in particular, we don’t know whether object a has property G or not.  Thus, 

P(FaGa|K) < 1.  However, P(FaGa|All F’s are G & K) = 1.  So, FaGa confirms “All F’s are 

G” relative to this particular K. 

(NCR2), in combination with (EC*), entails the following: 

 

“Paradoxical” Conclusion, Revision 2 (PCR2): If we know that object a was sampled at 

random from the set of non-black things, and we know nothing else about object a, then 

~Ba~Ra confirms “All ravens are black.”  

 

However, (PCR2) is not genuinely paradoxical.  ~Ba~Ra should confirm “All ravens 

are black” in this context.  Since object a was chosen from the set of non-black things, if the 

ravens hypothesis is true, then it must be a non-raven.  However, if the ravens hypothesis is 

false, it might be a raven.  Learning that object a is, in fact, not a raven vindicates a 

prediction of the ravens hypothesis, thereby confirming it.  There is no paradox here. 
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 This version of (NC) plays a large role in treatments of the paradox by Royall (1997), Godfrey-Smith (2003), 

Horwich (1982), and others. 



 

 

 

 Here is the second true version of Nicod’s Criterion: 

 

Nicod’s Criterion, Revision 3 (NCR3):  A proposition of the form “Fa  Ga” (“” is the 

material conditional) confirms “All F’s are G” relative to any background information K 

such that P(Fa  Ga|K) < 1. 

 

Fa  Ga simply says that object a is not a non-G F.  So, P(Fa  Ga|All F’s are G & 

K) = 1, which means that P(Fa  Ga|All F’s are G & K) > P(Fa  Ga|K).  So, Fa  Ga 

confirms “All F’s are G” relative to K.   

(NCR3), in combination with (EC*), yields (PCR3): 

 

“Paradoxical” Conclusion, Revision 3 (PCR3):  A proposition of the form “~Ba  ~Ra” 

confirms “All ravens are black” relative to any background information K such that P(~Ba  

~Ra|K) < 1. 

 

Once again, this version of (PC) is not genuinely paradoxical.  ~Ba  ~Ra is 

logically equivalent to Ra  Ba; both say simply that object a is not a non-black raven.  

Learning only that a particular object is not a counterexample to a hypothesis should confirm 

that hypothesis.  This is true regardless of whether the object is in fact a black raven, or a 

non-black non-raven, or a black non-raven (learning ~Ba  ~Ra doesn’t tell us which).  



 

 

 

 We have discussed three different precisifications of (NC).  The first, most general 

version does give rise to a problematic version of (PC).  However, it is false.  The second two 

versions of (NC) are true; but, the versions of (PC) that they entail are not genuinely 

problematic.  I take this to be good evidence that the ravens paradox does not arise in a 

Bayesian framework.   

 Even if this is right, though, there is still an unanswered question.  Why is it that, 

upon first hearing the paradox, we find it so natural to think that black ravens confirm the 

hypothesis (H) that all ravens are black and non-black non-ravens are irrelevant?  These 

particular evidential relations seem privileged in a way that is not explained by what has been 

said thus far.  It’s true that finding a known raven to be black confirms H; but, likewise, 

finding a known non-black object to be a non-raven confirms H.  Learning “Ra  Ba” 

confirms H; but, so does “~Ba  ~Ra.”  These cases that might loosely be described as 

confirmation of H by non-black non-ravens are unproblematic; but, the symmetry of these 

examples does not explain the asymmetry that most people feel upon first hearing the ravens 

paradox.  Does Bayesianism have the resources to explain this? 

 Many Bayesians think so.  Indeed, this is the purpose of the so-called “canonical” 

Bayesian solution. 

 

3. Existing Bayesian Solutions 

 The basic idea behind the canonical Bayesian solution first appears in Hosiasson-

Lindenbaum (1940).  Versions of it are defended in Mackie (1963), Alexander (1958), 



 

 

 

Howson and Urbach (1993), and many others.  However, as several authors (Horwich 

(1982), Maher (1999), Vranas (2004), and others) have noted, the canonical solution has a 

problematic consequence: it entails that black non-ravens disconfirm the hypothesis that all 

ravens are black.   

 The aim of the canonical solution, as noted in the previous section, is to find an 

asymmetry between the evidential import of black ravens and non-black non-ravens.  More 

specifically, the aim is to establish the two results below.  For simplicity, we assume that all 

we know about object a is that it was chosen at random from the (finite) set of all things in 

the universe. 

 

Result 1: ~Ba~Ra does confirm “All ravens are black,” relative to our actual background 

knowledge, but the degree of confirmation is minute. 

 

Result 2: RaBa confirms “All ravens are black,” relative to our actual background 

knowledge, much more strongly than does ~Ba~Ra. 

 

So, although BaRa and ~Ba~Ra both confirm H, the degree of confirmation of the 

former is substantial, while the degree of confirmation of the latter is tiny—so tiny, in fact, 

that we mistake it for no confirmation at all.   

Defenders of the canonical solution show that their two results follow from these 

three assumptions: 



 

 

 

 

A1) P(~Ba|K) >> P(Ra|K) 

A2) P(Ra|H&K) = P(Ra|K) 

A3) P(~Ba|H&K) = P(~Ba|K) 

 

A1 is plausible, given that K represents our actual background knowledge.  The other 

two assumptions, A2 and A3, are known as the “independence assumptions,” and they have 

been criticized in the literature.  Both Horwich (1982) and Vranas (2004) argue that, although 

A3 is not particularly implausible, it is not particularly plausible, either.  There doesn’t seem 

to be any good justification for it.  Moreover, A2 and A3 jointly entail the problematic 

consequence mentioned earlier, namely, that Ba~Ra disconfirms H.  That is, if you choose an 

object at random from the universe and find that it’s a black non-raven, it follows from A2 

and A3 that this information must lower your confidence that all ravens are black.  But this is 

absurd; black non-ravens are just as irrelevant to the ravens hypothesis as non-black non-

ravens. 

We might pause here to reflect on methodology.  I have been assuming that any 

adequate solution to the paradox must accommodate our judgments that BaRa confirms H, 

and ~Ba~Ra and Ba~Ra are neutral.  But why am I entitled to assume this, given that 



 

 

 

mistakes about basic probabilistic matters are not uncommon?  Recall, for example, the base 

rate fallacy, Simpson’s paradox, the gambler’s fallacy, the Monty Hall problem, etc.
7
 

The moral of these findings, I take it, is that, before endorsing a probabilistic 

intuition, we should make sure it is not an instance of a known fallacy, and think carefully 

about whether there is any other compelling theoretical argument against it.  The moral is not 

that we should discard every one of our intuitions that concerns probability.  Indeed, this 

would spell disaster, as we need to rely on probabilistic judgments all the time in ordinary 

life.   For example, I judge that a green light is evidence that it is safe to cross the 

intersection; I judge the presence of a breeze to be neutral (no evidence either way) with 

respect to the location of my car in a parking lot; I judge that a helicopter’s looking red is 

evidence that it is red; etc.  In a Bayesian framework, every one of these is a probabilistic 

judgment, just like the judgments that black ravens are evidence that all ravens are black, but 

non-black non-ravens and black non-ravens are neutral.  We are entitled to rely on such 

judgments, so long as they are not an instance of any known fallacy, and there is no other 

compelling theoretical argument against them.  The three judgments I presuppose in this 

paper pass both tests.  Thus, it is a serious problem that A2 and A3—two assumptions for 

which no justification has been provided—have the counterintuitive consequence that black 

non-ravens disconfirm “All ravens are black.”  

Why do A2 and A3 have this consequence?  Understanding this will be helpful later 

on, when I present my improved Bayesian solution.  First, consider these four mutually 
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exclusive and exhaustive propositions: BaRa, Ba~Ra, ~BaRa, and ~Ba~Ra.  Initially you 

have some non-zero credence in each, as depicted in table 1 below.  P(BaRa) = q, P(Ba~Ra) 

= r, etc.
8
  In accordance with the laws of probability, q + r + s + t = 1. 

 

Table 1:  Initial Credences 

 R ~R 

B q r 

~B s t 

 

Now consider your credences conditional on H.  P(~BaRa|H) = 0; so, your credences 

for the other three propositions must now sum to 1.  The credence you initially had in ~BaRa 

(s in table 1) must be distributed among these remaining three possibilities.  The crucial 

question is, how? 
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 For simplicity I have omitted “K,” but the reader should keep in mind that credences are always implicitly 

conditional on your background knowledge K. 



 

 

 

Table 2:  Credences Conditional on H 

 R ~R 

B ? ? 

~B 0 ? 

 

 A2 says that P(Ra|H) = P(Ra); equivalently, P(BaRa|H) + P(~BaRa|H) = P(BaRa) + 

P(~BaRa).  That is, the sum of the values in the left-hand column (under R) in table 2 must 

equal the sum of the values in the left-hand column in table 1, namely, q + s.  Since 

P(~BaRa|H) = 0, it follows that P(BaRa|H) = q + s, as in table 3: 

 

 Table 3:  Credences Conditional on H, With A2  

 R ~R 

B         q + s ? 

~B 0 ? 

 

This makes it look like the effect of conditionalizing on H is to redistribute your 

initial credence for ~BaRa (namely, s) by adding it to your credence for BaRa.  But see what 

happens when we add the A3 assumption: P(~Ba|H) = P(~Ba), equivalently, P(~Ba~Ra|H) + 



 

 

 

P(~BaRa|H) = P(~Ba~Ra) + P(~BaRa).   A3 requires that the sum of the values in the bottom 

row must equal the sum of the values in the bottom row in table 1, namely, s + t.  Since 

P(~BaRa|H) = 0, it follows that P(~Ba~Ra|H) = s + t, as in table 4: 

 

 Table 4:  Credences Conditional on H, With A2 and A3: 

 R ~R 

B         q + s ? 

~B 0        s + t 

 

 This is a bit puzzling.  It looks as though A2 tells you to redistribute your old 

credence for ~BaRa (namely, s) by adding it all to BaRa; but, A3 seems to tell you to 

redistribute by adding it all to ~Ba~Ra.  How can you do both?  You only have s amount of 

newly-freed credence, not 2s.   

The answer is inescapable: the only way to satisfy both A2 and A3 is to subtract 

precisely s from your initial credence in the fourth proposition, Ba~Ra, as in table 5: 

 

 

 

 

 



 

 

 

Table 5:  Credences Conditional on H, With A2 and A3: 

 R ~R 

B         q + s        r – s 

~B 0        s + t 

 

 Accepting both A2 and A3 forces us to set P(Ba~Ra|H) = P(Ba~Ra) – s.
 9

  That is 

why these two assumptions entail that Ba~Ra disconfirms H. 

 The canonical Bayesian solution is in trouble.  Its reliance on the combination of A2 

and A3 results in the consequence that black non-ravens disconfirm “All ravens are black.”  

This is just as problematic as the consequence the canonical solution was designed to 

address—namely, that non-black non-ravens confirm “All ravens are black.”  The canonical 

solution has simply traded one problem for another.
10

  

In the next section I present an improved Bayesian solution that involves accepting 

A2 but rejecting A3.  On this solution, credences conditional on H are as displayed in table 6. 
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 Here is a more formal version of the proof.  The laws of probability dictate the following: P(BaRa) + 

P(Ba~Ra) + P(~BaRa) + P(~Ba~Ra) = 1 = P(BaRa|H) + P(Ba~Ra|H) + P(~BaRa|H) + P(~Ba~Ra|H).  A2 says: 

P(BaRa|H) + P(~BaRa|H) = P(BaRa) + P(~BaRa).  A3 says: P(~Ba~Ra|H) + P(~BaRa|H) = P(~Ba~Ra) + 

P(~BaRa).  Replacing P(~BaRa) with s and P(~BaRa|H) with 0 yields: P(BaRa) + P(Ba~Ra) + s + P(~Ba~Ra) = 

P(BaRa|H) + P(Ba~Ra|H) + 0 + P(~Ba~Ra|H), and A2: P(BaRa|H) = P(BaRa) + s, and A3: P(~Ba~Ra|H) = 

P(~Ba~Ra) + s.  Substituting the A2 and A3 consequences into the equality yields: P(BaRa) + P(Ba~Ra) + s + 

P(~Ba~Ra) = P(BaRa) + s + P(Ba~Ra|H) + P(~Ba~Ra) + s.  Many terms cancel to yield P(Ba~Ra|H) = 

P(Ba~Ra) – s. 
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 Note that assumptions A1 – A3 do not entail that the degree of disconfirmation by Ba~Ra will be minute. 



 

 

 

Table 6:  Credences Conditional on H, According to the New Solution: 

 R ~R 

B         q + s           r  

~B 0           t 

 

 This way of redistributing credence yields the desired results exactly: our credences 

for Ba~Ra and ~Ba~Ra are unchanged, and so these two pieces of evidence are neutral.  

However, P(BaRa|H) > P(BaRa), and so BaRa confirms.  In filling out the solution, I will 

provide a deeper reason that explains why our credence should be re-distributed in this way, 

and why A2 but not A3 should be accepted.  

First, though, I will discuss another existing Bayesian treatment of the paradox, in 

Fitelson and Hawthorne (2010).  They aim to establish a merely comparative result about the 

strength of confirmation of BaRa versus ~Ba~Ra.  More specifically, let c(E,H|K) measure 

the degree to which E confirms H relative to background knowledge K.   Fitelson and 

Hawthorne seek to establish that c(BaRa,H|K) > c(~Ba~Ra,H|K).  They show that this result 

follows from these two assumptions: 

 

 

 

 



 

 

 

FHA1) P(~Ba|K) >> P(Ra|K) 

FHA2) P(~Ba|K) / P(Ra|K) is greater than or approximately equal to
11

 

 P(~Ba|H&K) / P(Ra|H&K) 

 

FHA1 is the same as A1 above.  FHA2 is strictly weaker than A2 and A3; it is 

entailed by them.  Fitelson and Hawthorne do not aim to provide a justification for it; they 

argue only that it is more plausible than A2 and A3, since it is logically weaker.  Moreover, it 

is superior to the A2/A3 combination because it does not entail the problematic result that 

Ba~Ra disconfirms H.  Although Fitelson and Hawthorne do not provide a justification for it, 

my considered view is that FHA2 should be accepted, because it is entailed by the solution I 

develop in the next section. 

 So, I think that Fitelson and Hawthorne are on the right track, but that more can be 

said.  Since their result is merely comparative, it is compatible with strong disconfirmation 

by both BaRa and ~Ba~Ra (in which case BaRa would disconfirm less) and also compatible 

with strong confirmation by both (in which case BaRa would confirm more).  So while their 

result does establish an asymmetry between these two pieces of evidence, it doesn’t explain 

why BaRa confirms and why ~Ba~Ra is neutral.  The solution I present in the next section 

entails these stronger results, and is entirely compatible with Fitelson and Hawthorne’s 

approach. 
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 The precise meaning of this is explained in their technical addendum: 

http://fitelson.org/wason_addendum.pdf. 



 

 

 

 Let’s take stock.  Although we did not see any way to formulate a version of the 

traditional ravens paradox in the Bayesian framework, the following question remained: how 

do we explain the persistent thought that certain evidential relations—that BaRa confirms, 

and ~Ba~Ra is neutral—are privileged?  We considered the most popular Bayesian attempt 

to answer this question (the canonical solution), and found that it has a serious problem: 

when combined, the A2 and A3 assumptions yield the problematic consequence that Ba~Ra 

disconfirms.  We considered a recent Bayesian approach that does not appeal to A2 and A3 

(Fitelson and Hawthorne (2010)), and found that, though it sought to establish an asymmetry 

between black ravens and non-black non-ravens, it didn’t explain the intuition that black 

ravens should confirm, and non-black non-ravens should be neutral.   

 

4.  A New Bayesian Solution 

Recall the problem at hand.  Object a was chosen at random from the universe.  

Although we know that there is some possible background information relative to which 

BaRa disconfirms H, and some possible background information relative to which ~Ba~Ra 

significantly confirms H, the thought persists that certain evidential relations are privileged: 

that BaRa confirms H, and ~Ba~Ra and Ba~Ra are irrelevant to it.  How can this be 

explained?  

Recall from the previous section that the evidential import of these types of evidence 

is determined by the way in which our credence for ~BaRa is re-distributed upon 

conditionalizing on H.  Conditional on H, our credence in ~BaRa goes to zero, and we must 



 

 

 

distribute this credence somehow among the remaining three possibilities: BaRa, ~Ba~Ra, 

and Ba~Ra.   

The crucial thing to notice is that, as noted in the previous section, one particular way 

of redistributing credence yields exactly the desired results.  Suppose the only effect of 

conditionalization on H is that our pre-H credence in ~BaRa shifts over to be added to our 

credence in RaBa.  Then our pre- and post-H credences in ~Ba~Ra and Ba~Ra are 

unaffected; and so, these pieces of information are neutral to H.  We needn’t try to explain 

away our intuition that ~Ba~Ra is neutral by claiming that we mistake minuscule 

confirmation for no confirmation—rather, our intuition is that ~Ba~Ra should be neutral 

because it is, as a matter of fact, neutral.  Our pre-H credence in BaRa is less than our post-H 

credence in it, and so BaRa confirms H.  Here, copied from the previous section, are two 

tables that depict this particular way of redistributing credence: 

 

 

 

 

 

 

 

 

 



 

 

 

Table 1:  Initial Credences 

 R ~R 

B q r 

~B s t 

 

 

Table 6:  Credences Conditional on H, According to the New Solution: 

 R ~R 

B         q + s           r  

~B 0           t 

 

This shows that Bayesianism is compatible with our intuitions.  But there is a further 

question:  Why is it that our credence should move in this way?  Although we have seen that 

it yields intuitive results, it is natural to wonder whether there is a deeper reason.  At the very 

least, there is one puzzle that needs to be cleared up: redistributing credence in this way 

commits us to accepting A2 but denying A3.  In a sense this is good, because we saw that 

accepting both leads to trouble.  But in a sense it is puzzling, because we wonder what the 



 

 

 

relevant asymmetry is.  What is wrong with A3, and why is it that we should retain A2 at the 

expense of A3?  Is there a deeper reason for this? 

Indeed, there is.  First, notice that the following thought would naturally motivate A2: 

suppose that your beliefs concerning the number of ravens are unaffected by learning H.  If 

so, then it would be natural to adopt the A2 assumption, according to which the probability of 

sampling a raven from the universe is unchanged by conditionalization on H.
12

  

Alternatively, however, suppose your beliefs about the number of black things were 

unchanged by learning H.  This would naturally motivate the A3 assumption, on which the 

probability of sampling a black thing is unchanged by conditionalization on H.
13

   

The question, then, is this: does it make sense to think that your beliefs about the 

number of ravens are unchanged by learning H, but that your beliefs about the number of 

black things would be changed by learning H?  If so, what is the asymmetry? 

The asymmetry is that beliefs about the number of black things depend in part on 

beliefs about the color of ravens—such as how many are black—whereas beliefs about the 

number of ravens do not depend on beliefs about their color.  So, learning that all ravens are 

black changes your beliefs about the number of black things, but does not affect your beliefs 

about the number of ravens.
14

 

Let’s begin with the number of black things.  If you were to try to estimate this 

number, it would be natural to begin by considering which types of things have some black 
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 Some readers may notice that this depends, also, on my beliefs about the size of the universe.  This is 

discussed below. 
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 Above the A3 assumption is stated as P(~Ba|H) = P(~Ba); this is equivalent to P(Ba|H) = P(Ba). 
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 There are some possible cases in which this fails, as I explain later. 



 

 

 

instances (for example, chairs, mushrooms, ravens, etc.), and then considering, for each of 

these types, how many are black.  (How many of the chairs are black?  How many of the 

ravens?  etc.)  This reveals that our beliefs about the number of black things depend in part 

on our beliefs about the color of ravens.  Prior to learning H we think that some of the ravens 

might be non-black, and so it may be that only a fraction of the ravens contribute to the total 

number of black things.  However, learning H tells us that all of the ravens are black, and so 

all of the ravens contribute to the total number of black things.  Since this information 

doesn’t affect our beliefs about the numbers of other kinds of things (such as chairs or 

mushrooms) or the percentages of them that are black, overall one’s estimate of the number 

of black things should go up upon learning H. 

Now consider our beliefs about the number of ravens.  It would be very unnatural to 

attempt an estimate of the number of ravens by trying to answer questions like these:  First, 

how many black things are there?  Now, what percentage of them are ravens?  Next, how 

many white things are there, and what percentage of them are ravens?  How many red things 

are there, and what percentage are ravens?  Etc.  This reveals that our beliefs about the 

number of ravens do not depend on beliefs of this kind.  If they did, then learning H would 

affect our beliefs about the number of ravens.  Learning H tells us that the percentage of 

white things that are ravens is zero, the percentage of red things that are ravens is zero, etc.  

So, if it did make sense to estimate the number of ravens in this way, then learning H would 

affect our beliefs about the number of ravens, via its effect on our beliefs about the 

percentages of white, red, etc. things that are ravens.  However, it would be extremely 



 

 

 

unnatural to estimate the number of ravens in this way.  Our beliefs about the number of 

ravens do not depend on beliefs of this kind, and so they are unaffected by learning H. 

Of course, it is true, as a bare mathematical fact, that the number of ravens is equal to 

the number of black things that are ravens plus the number of white things that are ravens 

plus…etc. for all the colors.  What I am denying is that our beliefs about the former depend 

on our beliefs about the latter, in the distinctively epistemic sense of dependence that I am 

employing here.   

This epistemic dependence relation is closely connected with the basing relation.  In 

general, if an agent’s belief about whether P is based (at least in part) on the agent’s belief 

about whether Q—and the agent is not irrational in so basing her belief—then whether P 

depends, epistemically, on whether Q.  I will not attempt to give necessary and sufficient 

conditions for dependence; the notion is intuitive enough that we can apply it to the cases 

discussed in this paper without a precise definition.  However, I will give a few examples, to 

make sure we all have the same concept in mind.   

Relations of epistemic dependence are commonplace.  One’s belief about what the 

temperature is depends on one’s belief about what the thermometer reads.  The detective’s 

belief about whether the butler did it depends (in part) on his belief about whether the 

butler’s fingerprints were found at the scene of the crime.  And, I claim, our beliefs about the 

number of black things depend, in part, on our beliefs about whether all ravens are black, 

while our beliefs about the number of ravens do not depend on our beliefs about whether all 

ravens are black. 



 

 

 

Is there a deeper reason why these epistemic dependence relations hold?  Why does it 

seem so natural to estimate the number of black things by estimating the number of ravens, 

and other kinds, and the percentages of each that are black, but so unnatural to estimate the 

number of ravens by estimating the number of black things, and the other colors, and the 

percentages of each that are ravens?   

The answer, I suggest, is that raven, the natural kind, is more natural than the kind 

black.  This is what ultimately explains why it makes sense to estimate the number of black 

things via a procedure that involves holding fixed the number of ravens, but it does not make 

sense to estimate the number of ravens via a procedure that involves holding fixed the 

number of black things. 

Naturalness also plays a role in the famous solution to the ravens paradox proposed in 

Quine 1969, but in a way that is very different from the solution presented here.  Quine 

suggested restricting Nicod’s Criterion to natural kinds.  The predicates raven and black are 

both considered natural, so this proposal correctly predicts that black ravens should confirm 

“All ravens are black.”  However, non-black and non-raven do not count as natural, which 

allows the proposal to explain why non-black non-ravens do not confirm “All non-black 

things are non-ravens” (which, recall, is equivalent to “All ravens are black.”)  However, 

Quine’s restriction is too severe.  There are some generalizations involving non-natural 

predicates that do seem instance-confirmable (for example, “All ravens are non-white.”)  

Quine was right that naturalness is a key part of the solution to the ravens paradox.  

However, the proper role for naturalness is different from the one he proposed.  We should 



 

 

 

not issue an absolute prohibition against predicates that are not deemed sufficiently natural.  

Rather, the crucial issue concerns comparative degrees of naturalness, and, in particular, 

whether F is more natural than G in a generalization of the form “All F’s are G’s.” 

Here, then, is an overview of my proposal.  That raven is more natural than black 

grounds the fact that our beliefs about the number of ravens do not depend on our beliefs 

about the color of ravens, but our beliefs about the number of black things do depend (in 

part) on our beliefs about the color of ravens.  These dependence relations, in turn, explain 

why we should adopt the A2 assumption but reject the A3 assumption, which explains why 

BaRa confirms H but ~Ba~Ra and Ba~Ra are neutral.  Below I will provide a more formal 

presentation this line of thought, but first I need to address a potential worry. 

The view just described succeeds in explaining why we find certain evidential 

relations so intuitively plausible—that BaRa confirms H, while ~Ba~Ra and Ba~Ra are 

neutral.  However, we know that by changing the background information, we can get the 

evidential relations to come out differently.  One might worry that the view just described 

cannot accommodate this fact.  After all, it was claimed that what ultimately grounds the 

privileged evidential relations is that raven is more natural than black.  But this difference in 

naturalness holds regardless of what background information one has.  How, then, can the 

evidential relations be appropriately sensitive to background information? 

The answer is that certain kinds of background information can sever the connection 

that otherwise would hold between the naturalness facts and the dependence facts. 



 

 

 

It will help to begin by considering cases in which one’s background information is 

very minimal—one knows only that some ravens exist, and has whatever empirical 

knowledge (if any) is required to grasp ordinary concepts such as raven and black.
15

  Since 

there is no background information that might prevent it from doing so, the difference in 

naturalness inherent in the predicates raven and black will determine the dependence 

relations, as described above: beliefs about the number of ravens will not depend on beliefs 

about their color, but beliefs about the number of black things will. 

Moreover, there is a very wide range of different background information one could 

acquire, including our actual background information, that would leave this connection 

untouched.  We actually know quite a lot about ravens—we know that they are particularly 

intelligent birds, that they are larger than crows, that they are widespread in the United 

States, etc.  But none of this affects the dependence relations, and so they are still determined 

by the difference in naturalness between raven and black, just as in the case of minimal 

background information. 

However, some possible background information would get in the way of this 

connection.  For example, suppose you know that there are a certain number of ravens living 

in the temperate zones of the world, all of which are black.  You also know that there is a 

certain population of white birds in the Arctic, but you do not know whether they are crows 
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 Some authors (including Good (1968) and Maher (2004)) have argued that relative to merely tautological 

background information, finding a black raven could actually disconfirm “All ravens are black.”  Their claim is 

highly controversial; space constraints prevent me from discussing the debate here.  However, their argument 

does not go through if we know that there are at least some ravens, as I have stipulated.  So it does not endanger 

my claim that black ravens confirm relative to this minimal background information. 



 

 

 

or ravens.  There are no other possible raven populations.  Relative to this background 

knowledge, learning H would affect your beliefs about the number of ravens.  Given what 

you know, H is true if and only if the white Arctic birds are crows rather than ravens.  So, if 

H is true, the white Arctic birds are not ravens, and so your estimate of the total number of 

ravens would go down.  But learning H would not affect your beliefs about the number of 

black things, because you already know which ravens contribute to the number of black 

things, regardless of whether H is true—namely, the ravens that inhabit the temperate 

zones.
16

 

As we might expect, since this background information undercuts the connection that 

would otherwise hold between the naturalness facts and the dependence relations, the 

evidential relations are also altered.  Now, sampling a black raven from the universe provides 

no evidence whatsoever for H, because the number of black ravens is the same, regardless of 

whether H is true (i.e. regardless of whether the white Arctic birds are ravens or crows).  

However, finding a non-black non-raven confirms H, because there will be more of them if H 

is true (because then the white Arctic birds are crows, and so contribute to the overall number 

of non-black non-ravens).  

The upshot is that the solution proposed here has the flexibility to accommodate 

differences in evidential relations due to differences in background information, while 

nevertheless explaining the persistent thought that certain evidential relations are privileged.  

Relative to minimal background information, the difference in degree of naturalness between 
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raven and black makes it the case that beliefs about the number of black things do, but beliefs 

about the number of ravens do not, depend on beliefs about the color of ravens.  This, in turn, 

helps explain why BaRa confirms H, while ~Ba~Ra and Ba~Ra are neutral.  Moreover, a 

very wide range of possible background information, including our actual information, leaves 

these connections undisturbed.  In such cases, these privileged epistemic relations hold in 

virtue of properties inherent to the predicates themselves: the fact that the kind raven is more 

natural than the kind black.   

Henceforth I will presuppose that we are focusing on cases in which this connection 

is undisturbed, but it should not be forgotten that there is always some possible background 

information that would undercut this effect of the difference in naturalness. 

Returning to the main thread, there is one extra complexity that needs to be taken into 

account.  I have claimed that learning H affects our beliefs about the number of black things, 

but not the number of ravens, and that this explains why we should accept A2 but reject A3.  

However, the probability of sampling a raven from the universe depends not only on our 

beliefs about the number of ravens, but also our beliefs about the size of the universe.  There 

is, then, a gap in the informal argument I’ve been developing for A2 and against A3. 

However, the gap is easily filled, because our beliefs about the number of things in 

the universe are unaffected by learning H.  This is because these beliefs depend on beliefs of 

the following kind: how many chairs there are; how many trees; how many frogs; how many 

ravens; etc. for all the kinds that are instantiated.  Since one’s estimate of none of these is 



 

 

 

affected by learning what color ravens are, one’s beliefs about the number of things in the 

universe is not affected by learning H. 

It’s time to give a more formal presentation of the line of thought I’ve been 

developing.  What I aim to establish, recall, is that conditionalization on H should prompt 

only the following change: that we redistribute our old probability for ~BaRa by adding it to 

our credence for BaRa.  This is encapsulated in the following three desired conclusions: 

 

(C1) P(BaRa|H) = P(BaRa) + P(~BaRa) 

(C2) P(Ba~Ra|H) = P(Ba~Ra) 

(C3) P(~Ba~Ra|H) = P(~Ba~Ra) 

 

Below, I will prove that these conclusions follow from premises P1 – P3: 

 

P1) i k [P(R = i & U = k) = P(R = i & U = k|H)]
17

 

P2) i k [P(BNR = i & U = k) = P(BNR = i & U = k|H)] 

P3) i k [P(NBNR = i & U = k) = P(NBNR = i & U = k|H)] 

 

Notation is as follows: R = the number of ravens; U = the number of things in the 

universe; BNR = the number of black non-ravens; NBNR = the number of non-black non-

ravens.  Premises P1 – P3 are justified by claims about epistemic dependence of the sort 
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 I assume that there is some large number n such that for all k > n, P(U = k) = 0. 



 

 

 

described above.  Let’s begin with P1.  Above, I noted that our beliefs about the number of 

ravens and the number of things in the universe are unaffected by learning H.  We can 

express this more precisely by saying that our credences in propositions of the form R = i & 

U = k are unaffected by conditionalization on H, which is precisely what P1 says. 

Turn now to P2.  We have seen that our beliefs about the number of things in the 

universe are unaffected by H, but what about our beliefs concerning the number of non-

ravens that are black?  These beliefs depend on answers to questions about what types there 

are other than ravens (e.g. chairs, frogs, trees, etc.) and, for each type, what percentage are 

black.  Such beliefs are not affected by H, which is a claim about the color of ravens, and 

does not affect our beliefs about the colors of types other than ravens (for example, how 

many of the shoes are black). 

Similar considerations motivate P3: our beliefs about the number of non-black non-

ravens depend, again, on our beliefs about which types of things there are, other than ravens, 

and what percentage of each type is non-black.  Once again, learning H—a claim about the 

color of ravens—doesn’t affect our beliefs about the color of non-ravens, such as tables, 

chairs, or bowls. 

It remains only for me to prove that the desired conclusions C1 – C3 do, indeed, 

follow from the premises P1 – P3: 

 

By the laws of probability (specifically, the theorem of total probability): 



 

 

 

(1) P(Ra) = ∑ i ∑ k [P(Ra|R = i & U = k)P(R = i & U = k)]
18

 

The Principal Principle (Lewis (1986)) lets us replace P(Ra|R = i & U = k) with (i / k): 

 (2) P(Ra) = ∑ i ∑ k [(i / k)P(R = i & U = k)] 

By the laws of probability (again, the total probability theorem): 

(3) P(Ra|H) = ∑ i ∑ k [P(Ra|R = i & U = k & H)P(R = i & U = k|H)] 

The Principal Principle lets us replace P(Ra|R = i & U = k & H) with (i / k): 

(4) P(Ra|H) = ∑ i ∑ k [(i / k)P(R = i & U = k|H)] 

Our first premise, P1, says: i k [P(R = i & U = k) = P(R = i & U = k|H)] 

From (2), (4), and P1 we infer P(Ra|H) = P(Ra); therefore, 

P(BaRa|H) + P(~BaRa|H) = P(BaRa) + P(~BaRa) 

Since P(~BaRa|H) = 0, we have our first desired conclusion: 

(C1) P(BaRa|H) = P(BaRa) + P(~BaRa) 

Analogous lines of reasoning take us from P2 to C2 and from P3 to C3. 

I will now consider an objection.  According to my view, if one chooses an object at 

random from the set of black things and obtains a raven, this constitutes evidence for H.  But 

many authors (including Hempel (1945), Godfrey-Smith (2003), and Royall (1997)) have 

held that this type of evidence should be neutral, since the procedure of sampling from the 

black things does not allow for the possibility of turning up a counterexample to H; there is 

no way that one could falsify H by following this procedure. 
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It is true that one will never find a non-black raven by sampling from the set of black 

things.  However, the mere fact that a procedure does not allow for the possibility of 

falsification does not mean that there is no possibility for probabilistic confirmation.  Once 

again, this consequence of my view can be explained by plausible assumptions about 

relations of epistemic dependence.  If all ravens are black, then it is reasonable to think that 

there are more black ravens than one previously thought.  However, learning H does not 

affect our beliefs about the numbers of other kinds of things that are black (for example, the 

number of black mushrooms).  So, we are more likely to find a raven among the black things 

if H is true.  Thus, doing so provides some positive evidence for H.   

Finally, I will close with a comment on the generality of the solution.  I have focused 

on the particular example “All ravens are black.”  But the core insight of the solution applies 

much more broadly.  Whenever F is more natural than G in a generalization “All F’s are G,” 

we can use the account developed here to explain why certain evidential relations—that 

FaGa confirms while ~Ga~Fa and Ga~Fa are neutral—are privileged.  Just as in the ravens, 

our beliefs about the number of G’s, but not our beliefs about the number of F’s, will depend 

on our belief about whether all F’s are G’s, and these dependence relations will ground the 

privileged evidential relations.  F is more natural than G in a great many hypotheses of 

interest: “All sodium salts burn yellow” (Hempel’s other favourite generalization), “All 

electrons have negative charge,” “All emeralds are green,” and so forth. 

One of the broad morals of the existing literature on the paradox is that evidential 

relations are highly dependent on the details of one’s background knowledge.  The new 



 

 

 

analysis given here shows that we can say something more: despite this sensitivity to 

background information, when F is more natural than G, certain evidential relations are 

privileged, in the sense that they hold relative to minimal background information, and 

continue to hold for the same reasons relative to a wide variety of other background 

information one could acquire.  The evidential relations that are privileged in this way are 

that FaGa confirms “All F’s are G’s,” while GaFa and Ga~Fa are neutral.   

 

5. Conclusion 

 It is a weakness of the canonical Bayesian solution to the paradox of the ravens that it 

requires both that the probability of sampling a raven, and that the probability of sampling a 

black thing, be independent of the hypothesis that all ravens are black.  Together, these 

assumptions have the unwelcome consequence that black non-ravens disconfirm the 

hypothesis.  I have developed a new Bayesian solution that involves retaining the former 

independence assumption but dropping the latter.  That it makes sense to do so is explained 

by appeal to certain epistemic dependence claims.  These, in turn, have their source in the 

fact that the kind raven has a greater degree of naturalness than the kind black.  This 

approach to the paradox yields exactly the right results: black ravens confirm the hypothesis 

that all ravens are black, while non-black non-ravens and black non-ravens are irrelevant to 

it.  Moreover, the solution applies to any universal generalization of the form “All F’s are G” 

where F is more natural than G. 
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