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Abstract

Neutrosophy has been introduced some years ago by Florentin Smarandache as a new branch of philosophy dealing with “the
origin, nature and scope of neutralities, as well as their interactions with different ideational spectra”. A variety of new theories have
been developed on the basic principles of neutrosophy: among them is neutrosophic logics, a family of many-valued systems that
can be regarded as a generalization of fuzzy logics. In this paper we present a critical introduction to neutrosophic logics, focusing
on the problem of defining suitable neutrosophic propositional connectives and discussing the relationship between neutrosophic
logics and other well-known frameworks for reasoning with uncertainty and vagueness, such as (intuitionistic and interval-valued)
fuzzy systems and Belnap’s logic.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Neutrosophy has been proposed by Smarandache [23] as a new branch of philosophy, with ancient roots, dealing
with “the origin, nature and scope of neutralities, as well as their interactions with different ideational spectra”. The
fundamental thesis of neutrosophy is that every idea has not only a certain degree of truth, as is generally assumed
in many-valued logic contexts, but also a falsity degree and an indeterminacy degree that have to be considered
independently from each other. Smarandache seems to understand such “indeterminacy” both in a subjective and an
objective sense, i.e. as uncertainty as well as imprecision, vagueness, error, doubtfulness, etc.

Neutrosophy has laid the foundation for a whole family of new mathematical theories generalizing both their
classical and fuzzy counterparts, such as neutrosophic set theory, neutrosophic probability, neutrosophic statistics and
neutrosophic logic. In recent years neutrosophic algebraic structures have been investigated (see for instance [16,17]),
while the neutrosophic framework has found practical applications in a variety of different fields, such as relational
database systems, semantic web services [24], financial data set detection [18] and new economies growth and decline
analysis [19].

It is clear that all of these proposals, promising as they are, still need to be refined from a formal point of view. In
this paper we will introduce and discuss some basic features of neutrosophic logics, which is a family of many-valued
systems that can be regarded as a generalization of fuzzy logics; we will try to point out its many appealing aspects as
well as the most controversial ones.
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2. From fuzzy to neutrosophic values

Since the introduction of fuzzy logic, many systems have been developed in order to deal with approximate and
uncertain reasoning: among the latest and most general proposals is neutrosophic logic, introduced by Smarandache
[23] as a generalization of fuzzy logic and several related systems. We shall now briefly review some of these systems
in order to gradually introduce the basic notions of neutrosophic logic.

In fuzzy logics the two-point set of classical truth values {0, 1} is replaced by the real unit interval [0, 1]: each
real value in [0, 1] is intended to represent a different degree of truth, ranging from 0, corresponding to false in
classical logic, to 1, corresponding to true. The standard logical connectives are defined as functions on [0, 1], such as
x ∧ y = min(x, y), x ∨ y = max(x, y) and so on.

Given a sentence p whose truth degree is v(p) = t ∈ [0, 1], in fuzzy logic it is implicitly assumed that it also has a
falsity degree given by 1 − t . This need not hold in general in the so-called intuitionistic fuzzy logic, a generalization of
fuzzy logic introduced by Atanassov [4]. It should be noted that Atanassov’s use of the term “intuitionistic” is at least
misleading, since there is no significant connection between the structure suggested by Atanassov and intuitionistic
mathematics and logic. This issue has been widely debated in recent years (see for instance [8,3,14]): to avoid future
confusion in the literature, a good compromise might be to maintain the acronym IFL (IFS for the corresponding fuzzy
set theory), but interpreting it as “Incomplete” or “Indefinite” Fuzzy Logic (Sets). We shall do so in the rest of this
paper.

In IFL the falsity degree of each sentence is explicitly represented by a second real value f ∈ [0, 1] so that the value
of a sentence p is an ordered pair v(p) = (t, f ) with t + f �1. The main novelty of Atanassov’s approach is that since
one may have t + f < 1, a certain amount indeterminacy or incomplete information is allowed. The main novelty of
neutrosophic logic, as we shall see, is that we do not even assume that the incompleteness or “indeterminacy degree”
is always given by 1 − (t + f ).

One may also consider the possibility that t + f > 1, so that inconsistent beliefs are also allowed, that is, a
sentence may be regarded as both true and false at the same time. In this way we obtain a family of paraconsistent
logics which have been investigated by Priest (see for instance [20,21]) and by Ginsberg [13], Fitting [11] and others
within the framework of algebraic structures known as bilattices. The best known among these systems is Belnap’s
four-valued logic [6], which is based on the following set of truth values: F = {0, 1} × {0, 1} = {(0, 0), (0, 1),

(1, 0), (1, 1)}.
We can interpret Belnap’s values in terms of the classical ones as follows: (1, 0) corresponds to true, (0, 1) to false,

(0, 0) to unknown (i.e. not known to be either true or false) and (1, 1) to contradictory (i.e. known to be both true and
false). However, it should be noted that Belnap’s are “epistemic” truth values: strictly speaking (1, 0) is not intended to
mean “true” in the classical sense but rather “at least true”. In other words, only positive information has been received
about a sentence, so its truth value may eventually become (1, 1) if more information is obtained (likewise for (0, 1)

that should be read as “at least false”).
Kleene’s three-valued logic is also related to these systems: in fact it can be regarded as a special case of Belnap’s

logic where the set of truth values is K = {(0, 0), (0, 1), (1, 0)} ⊂ F , with (0, 0) corresponding to undefined as in the
theory of partial functions.

While it is very debatable that the Kleene–Belnap logics are adequate to properly handle uncertainty and contradiction
(see [9] for a critical discussion), they are undoubtedly interesting systems that have proved useful in many applications
and deserve further investigation. In this context it is important to note that Atanassov’s IFL and the Kleene–Belnap
logics, though strictly related from a formal point of view (as shown for instance in [1]), differ significantly with regards
to the interpretation of the truth values. In fact the Kleene–Belnap systems can be considered as essentially based on a
two-valued framework, even if it is assumed that there may be truth value gaps and contradictory information. On the
other hand, Atanassov’s system, as well as neutrosophic logic (which is a generalization of IFL), share with the original
fuzzy logic the interpretation of the non-classical truth values as different degrees of truth (as opposed to degrees of
certainty or information).

Another important issue when reasoning with uncertainty is whether to employ “crisp” truth values or intervals.
In fact, many authors contend that in most cases we may even be unable to determine the exact truth value of a
sentence, knowing only that it belongs to some interval [t1, t2] with 0� t1 � t2 �1. This is the main idea behind the
so-called interval-valued fuzzy sets (see for instance [5]) and may be regarded as a further stage in the process of
fuzzification.
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Combining interval-values with paraconsistency, we may consider not just one interval but an ordered pair of intervals
for each sentence, representing, respectively, its truth and falsity degree: in this way we obtain a simplified form of
interval neutrosophic logic [24].

We are now ready to give Smarandache’s original definition of the neutrosophic set of truth values.
Let N be a set defined as follows: N = {(T , I, F ): T , I, F ⊆ [0, 1]}. A neutrosophic valuation is a mapping from

the set of propositional formulas to N , that is, for each sentence p we have v(p) = (T , I, F ). So to each sentence
is assigned an ordered triple representing its truth degree, indeterminacy degree and falsity degree. Intuitively, the set
I ⊆ [0, 1] may represent not only indeterminacy but also vagueness, uncertainty, imprecision, error, etc. Note also that
T , I, F , called the neutrosophic components, are subsets of [0, 1] and not necessarily intervals, so that we may be able
to handle information coming from different, possibly conflicting sources.

For instance, suppose we consult two experts, the first saying that the truth degree of a sentence p is 0� t �0.3, the
second saying it is 0.7� t �0.9. We may represent this by taking as truth component of v(p) the set T = {[0, 0.3] ∪
[0.7, 0.9]}, and of course we may proceed in the same way for the I and F components.

As another example, consider a voting process where 5 voters out of 10 say “yes” to some proposal p, 3 say “no” and
2 are undecided. We may represent this as v(p) = (0.5, 0.2, 0.3). Or maybe we are even unable to determine the exact
number of the votes, knowing only that the “yes” are between 5 and 7, the “no” between 1 and 3 and the undecided
between 0 and 4, thus having v(p) = ([0.5, 0.7], [0, 0.4], [0.1, 0.3]).

Before further examining the neutrosophic formalism, let us note that from an intuitive point of view the interpretation
of the neutrosophic components poses non-trivial problems, especially with regard to the indeterminacy degree, and
how it can be independent of the truth and falsity degrees.

Smarandache and Schumann [22] seem to adopt a strong, objective interpretation: “In simple neutrosophic logic,
where t, i, f are singletons, the tautologies have the truth value 〈1, 0, 0〉, the contradictions the value 〈0, 1, 1〉. While for
a paradox, we have the truth value 〈1, 1, 1〉. Indeed, the paradox is the only proposition true and false in the same time
in the same world, and indeterminate as well” (p. 13). However, this does not seem quite convincing, since intuitively
it is not clear why for instance 〈0, 1, 1〉 should be a contradiction more than 〈0, 0, 1〉 (see also Section 4).

We would suggest a more cautious interpretation, i.e. to consider the indeterminacy degree as a measure of the
reliability (conversely, the imprecision, error etc.) of a certain source of information. In this way, a value like (1, 0, 0)

may be interpreted as “known to be true with absolute precision”, while (1, 1, 1) would mean “known to be contradictory
(or paradoxical) according to (two or more) very unreliable sources”. A similar interpretation has been adopted by
Smarandache et al. [24], who employed the indeterminacy component to evaluate the trustworthiness of semantic web
services.

It is easy to see that the neutrosophic set of truth values can be regarded as a generalization of all the previous ones:
for instance if we set v(p) = (t, 0, 1 − t) for every sentence p we obtain the set of truth values corresponding to fuzzy
logic, if we set v(p) = (t, 1− t −f, f ) with t +f �1 we get IFL and so on. We may then define suitable propositional
operators that generalize the standard connectives of fuzzy logic, IFL, etc.

3. Neutrosophic connectives

We shall now consider some possible definitions for the basic propositional connectives of neutrosophic logic; we
will concentrate on the simplest case, that is, when the neutrosophic components are real values instead of intervals or
subsets of the unit interval.

Negation: Three kinds of negation have been proposed for neutrosophic logic so far. Given a sentence p and a
neutrosophic valuation v such that v(p) = (t, i, f ) ∈ N , the truth value of ¬p may be defined as:

(N1) v(¬p) = (1 − t, 1 − i, 1 − f ) [23].
(N2) v(¬p) = (f, i, t) [2].
(N3) v(¬p) = (f, 1 − i, t) [24].

(N1), introduced by Smarandache [23], is a rather straightforward generalization of the most widely used negation in
fuzzy logic. However, from the standpoint of neutrosophic logic, it has the serious drawback that the truth and falsity
degree are not related to each other via the negation operator. Consider for example a proposition p whose value is
v(p) = (0, 1, 0): intuitively we may say that we do not have any evidence for the truth or falsity of p, while we have a
high degree of indeterminacy. If we adopt (N1) we get v(¬p) = (1, 0, 1), that is, a sentence known with the greatest
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precision to be both true and false. Therefore the negation of a sentence whose value is completely unknown becomes
a paradoxical statement: this seems quite unintuitive.

We may avoid this difficulty adopting (N2) or (N3) instead, for then we get respectively, ¬(0, 1, 0) = (0, 1, 0) and
¬(0, 1, 0) = (0, 0, 0). It is not difficult to see that (N3) also yields some unintuitive result: in fact, if v(p) = (1, 0, 0)

is supposed to mean that we know with the greatest precision that p is true, then we should also know with the greatest
precision that ¬p is false. But we have ¬(1, 0, 0) = (0, 1, 1), that is we correctly conclude that ¬p is false but we also
get an unjustified amount of indeterminacy.

We may also consider our voting example again. We have 10 voters, 5 of them saying “yes” to some proposal
p, 3 saying “no” and 2 being undecided: so we write v(p) = (0.5, 0.2, 0.3). What about ¬p? Intuitively we may
argue that those who said “yes” to p would say “no” to ¬p, and conversely those who said “no” to p would now say
“yes to ¬p, while those who were undecided about p would still be undecided about ¬p. Therefore we should have
v(¬p) = (0.3, 0.2, 0.5): but if we apply (N3) to determine the value of ¬p we get v(¬p) = (0.3, 0.8, 0.5), as if we
had now 16 voters instead of our original 10.

One may conclude that, from an intuitive point of view, (N2) seems to be the best definition for a negation operator
in neutrosophic logic. As Ashbacher [2] points out, the intuition behind this choice is simply that the amount of
indeterminacy associated with a sentence should remain unchanged when we apply the negation operator. We may also
note that (N2) is a rather straightforward generalization of the Belnap negation, which exchanges the truth and falsity
components, while the negation of unknown is still unknown.

Conjunction and disjunction: Given two sentences p1, p2 and a neutrosophic valuation v such that v(p1) =
(t1, i1, f1) ∈ N , and v(p2) = (t2, i2, f2) ∈ N , the truth value of the conjunction p1 ∧ p2 may be defined as:

(C1) v(p1 ∧ p2) = (t1 · t2, i1 · i2, f1 · f2) [23].
(C2) v(p1 ∧ p2) = (min(t1, t2), min(i1, i2), max(f1, f2)) [2].
(C3) v(p1 ∧ p2) = (min(t1, t2), max(i1, i2), max(f1, f2)) [2].

Each one of these functions enjoys some basic properties of classical conjunction, i.e. is associative, commutative and
admits a unit element, that is, for all x, y, z ∈ N :

1. (x ∧ y) ∧ z = x ∧ (y ∧ z) (associativity),

2. x ∧ y = y ∧ x (commutativity),

3. there is an e ∈ N such that e ∧ x = x ∧ e = x (identity).

(C1), introduced by Smarandache [23], is a generalization of the conjunction used in product logic [15], where x · y

denotes the usual product operation between real numbers, but it apparently needs some refinement before being applied
to the neutrosophic framework. In particular, it is quite unintuitive that the falsity degree should decrease when we
apply the conjunction operator. In general, it seems clear that any connective that may be regarded as a generalization
of classical conjunction should not treat the truth, indeterminacy and falsity components in the same way.

(C2) and (C3), introduced by Ashbacher [2], are both generalizations of the conjunction used in Gödel logic [10],
and unlike (C1) are also idempotent, that is, x ∧ x = x for all x ∈ N . If we restrict the set N to a bilattice (that
is, if we disregard the indeterminacy component), then (C2) and (C3) collapse into the Belnap conjunction, that is,
the meet with respect to the “logical lattice”. We may also note that if we adopt (C2) then we have, for instance,
(0, 1, 0) ∧ (1, 0, 0) = (0, 0, 0): that is (1, 0, 0) is not an identity. If we interpret (1, 0, 0) as true, this may be an
unwanted result because in fuzzy logic it is usually required that 1 (corresponding to true in classical logic) be the unit
element of conjunction.

As in classical logic, ¬ and ∧ may be used as a basis to define disjunction through De Morgan’s laws. If we combine
negations (N2) and (N3) with conjunctions (C2) and (C3) we obtain the following disjunction connectives:

(D1) v(p1 ∨ p2) = (max(t1, t2), max(i1, i2), min(f1, f2)).
(D2) v(p1 ∨ p2) = (max(t1, t2), min(i1, i2), min(f1, f2)).

Both (D1) and (D2) are associative, commutative, idempotent and admit unit elements, which are, respectively, (0, 0, 1)

and (0, 1, 1). (N2), (C3) and (D1) have been used by Ashbacher [2] as the basic connectives for paraconsistent
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neutrosophic logic, whose underlying set of truth values is N = {(t, i, f ) ∈ [0, 1]3}. (N2), (C2) and (D2) have
been employed by the same author for what he called (again, improperly) intuitionistic neutrosophic logic, where
N = {(t, i, f ) ∈ [0, 1]3} with t + i + f �1.

If we adopt (N3), (C3) and (D2) we obtain a fragment of the so-called interval neutrosophic logic [24], but in order
to develop the whole system we need to introduce also an implication connective.

Implication: Given two sentences p1 and p2 and a neutrosophic valuation v such that v(p1) = (t1, i1, f1) ∈ N and
v(p2) = (t2, i2, f2) ∈ N , we may define p1 → p2 in the following ways:

(I1) v(p1 → p2) = v(¬p1 ∨ p2),
(I2) v(p1 → p2) = (min(1, 1 − t1 + t2), max(0, i2 − i1), max(0, f2 − f1)).

(I1) is just the standard definition of classical logic, usually called an S-implication in the fuzzy logics literature.
S-implications are not widely employed in fuzzy systems because they are too weak, in the sense that even basic
tautologies such as p → p do not hold.

Consider for instance Ashbacher’s INL, whose basic connectives are (N2), (C2), (D2) and (I1). We can easily see
that this system has no tautologies, that is, there is no sentence p such that v(p) = (1, 0, 0) for every neutrosophic
valuation v.

(I2) can be regarded as a generalization of the implication connective used in Łukasiewicz logic (see for instance
[7]), and unlike (I1) yields some tautologies like p → p. If we add (I2) to (N3), (C3) and (D2) we obtain interval
neutrosophic logic, which we shall describe in further detail in the following section.

4. Neutrosophic systems

In order to be able to compare the neutrosophic truth values, we need to define an order relation on the elements
of N = {(t, i, f ) ∈ [0, 1]3}. This may not be a trivial matter since we have to consider each one of the neutrosophic
components.

For instance, suppose we want our order relation �N to reflect the degree of truth associated with each element of
N . An obvious choice would be to require that (t1, i1, f1)�N (t2, i2, f2) iff t1 � t2 and f1 �f2, but then we must deal
with the indeterminacy component too. So we may consider two possible definitions:

1. (t1, i1, f1)�N1(t2, i2, f2) iff t1 � t2, f1 �f2 and i1 � i2,
2. (t1, i1, f1)�N2(t2, i2, f2) iff t1 � t2, f1 �f2 and i1 � i2.

It can be easily verified that �N1 and �N2 are well-defined partial order relations on N , but neither of them seems
to have a clear intuitive interpretation. Consider for instance �N2, which has been employed by Smarandache et al.
[24] for interval neutrosophic logic. The least and greatest elements with respect to �N2 are (0, 1, 1) and (1, 0, 0).
Now, if we want the negation operator to exchange the least and greatest element w.r.t. our order relation (as is usual in
many-valued logics), that is, if we want to have ¬(0, 1, 1) = (1, 0, 0), we are forced to adopt negation (N1) or (N3),
which we have already criticized in the previous section.

As to �N1, it seems to suffer from even greater drawbacks. In fact we have, for instance, that (1, 0, 0)�N1(1, 1, 0).
This is quite unintuitive: it is hard to see why our order relation should prefer a sentence known to be true but with
great indeterminacy (imprecision, error, etc.) to a sentence which is just known to be true with the greatest precision.

Ashbacher [2] defined several alternative orderings onN , but they do not help much in this context because they are
even harder to interpret in an intuitive way. Perhaps a possible solution would be to simultaneously apply more than
one order relation on N , as has been done introducing the truth and knowledge orderings on bilattices [13]. Then the
next problem would be to define connectives that provide a suitable relation between the two (or more) orderings.

In order to define a consequence relation in neutrosophic logic we have to choose a set D ⊂ N of truth-like values,
which are usually called the designated elements ofN . Then we say that p implies q (p�q) iff for every neutrosophic
valuation v, v(p) ∈ D implies v(q) ∈ D. A sentence p is a tautology (�p) iff v(p) ∈ D for every neutrosophic
valuation v. If no such sentence exists, we shall say that the system is purely inferential; from a syntactical point of
view, this means that there can be no axioms but only rules of inference.

The simplest choice is to set D = {x} for some x ∈ N , e.g. D = {(1, 0, 0)}, but if we have defined a suitable order
relation �N on N we may also set D = {x ∈ N : y�N x} for some y ∈ N .
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We are now going to examine two particularly interesting examples of neutrosophic systems, due, respectively, to
Ashbacher [2] and Smarandache et al. [24].

Paraconsistent neutrosophic logic (PNL). The underlying set of truth values is N = {(t, i, f ) ∈ [0, 1]3}. The basic
connectives are negation (N2) and conjunction (C3). Disjunction (D1) is defined via De Morgan’s laws as p ∨ q =
¬(¬p ∧ ¬q), while implication (I1) is defined as p → q = ¬p ∨ q. The only designated element is (1, 0, 0), so that
we have p�q iff for every neutrosophic valuation v, v(p) = (1, 0, 0) implies v(q) = (1, 0, 0).

It is not difficult to see that PNL is purely inferential, i.e. has no tautologies. For instance, if v(p) = v(q) = (1, 1, 1)

then

v(¬p) = v(¬q) = v(p ∧ q) = (1, 1, 1).

So there can be no sentence p such that v(p) = (1, 0, 0) for every neutrosophic valuation v. Therefore PNL has no
axioms. Note also that the structure 〈N , ∧, ∨〉 is not a lattice since the absorption laws do not hold.

We have already noted that Belnap’s logic [6] is related to the neutrosophic systems: we are now going to show that
in fact it can be regarded as a special case of PNL.

The set of Belnap’s truth values is F = {(0, 0), (0, 1), (1, 0), (1, 1)}, with (1, 0) as the only designated element, and
the basic connectives are 〈¬, ∧, ∨〉, defined by the following truth tables:

¬ (0,0) (0,1) (1,0) (1,1)
(0,0) (1,0) (0,1) (1,1)

∧ (0,0) (0,1) (1,0) (1,1) ∨ (0,0) (0,1) (1,0) (1,1)
(0,0) (0,0) (0,1) (0,0) (0,1) (0,0) (0,0) (0,0) (1,0) (1,0)
(0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,0) (0,1) (1,0) (1,1)
(1,0) (0,0) (0,1) (1,0) (1,1) (1,0) (1,0) (1,0) (1,0) (1,0)
(1,1) (0,1) (0,1) (1,1) (1,1) (1,1) (1,0) (1,1) (1,0) (1,1)

If we restrict the setN of neutrosophic truth values requiring that t, f ∈ {0, 1} and i = 0 for all (t, i, f ) ∈ N , we may
verify that the connectives of PNL (N2), (C3) and (D1) yield exactly Belnap’s truth tables.

It follows that, given two sentences p and q, if p implies q in PNL, then the same also holds in Belnap’s logic.
Denoting by �PNL and �B respectively the logical consequence relations in PNL and in Belnap’s logic, we have that

if p�PNLq then p�Bq. (1)

It is possible to show that the converse is also true. In order to prove this result, let us consider the following set of
rules:

(R1)
p ∧ q

p
, (R2)

p ∧ q

q
, (R3)

p q

p ∧ q
,

(R4)
p

p ∨ q
, (R5)

p ∨ q

q ∨ p
, (R6)

p ∨ p

p
,

(R7)
p ∨ (q ∨ r)

(p ∨ q) ∨ r
, (R8)

p ∨ (q ∧ r)

(p ∨ q) ∧ (p ∨ r)
, (R9)

(p ∨ q) ∧ (p ∨ r)

p ∨ (q ∧ r)
,

(R10)
p ∨ q

¬¬p ∨ q
, (R11)

¬(p ∨ q) ∨ r

(¬p ∧ ¬q) ∨ r
, (R12)

¬(p ∧ q) ∨ r

(¬p ∨ ¬q) ∨ r
,

(R13)
¬¬p ∨ q

p ∨ q
, (R14)

(¬p ∧ ¬q) ∨ r

¬(p ∨ q) ∨ r
, (R15)

(¬p ∨ ¬q) ∨ r

¬(p ∧ q) ∨ r
.

We will write p�q iff q can be derived from p using rules (R1)–(R15). It is easy to check that this set of rules is sound
with respect to the semantics of PNL, that is, for all sentences p and q:

if p�q then p�PNLq. (2)
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Moreover, it has been shown (for instance by Font [12]) that rules (R1)–(R15) are sound and complete with respect to
the semantics of Belnap’s logic, that is, for all sentences p and q:

p�q if and only if p�Bq. (3)

Combining (1)–(3) we obtain

p�PNLq if and only if p�Bq. (4)

Therefore we see that, from an inferential point of view, PNL turns out to be equivalent to Belnap’s logic. Clearly
this shows an important limitation of PNL, since it means that the neutrosophic set of truth values can be essentially
reduced to Belnap’s four-point set. In particular, the indeterminacy component turns out to be “useless” within PNL. We
may conclude that, if we want to take advantage of all the neutrosophic components, the definitions of the connectives
of PNL need to be modified in some way. An obvious suggestion would be to introduce an alternative implication
connective, such as (I2): in this way we would obtain a system very similar to interval neutrosophic logic, which we
are now going describe.

Interval neutrosophic logic (INL). As in PNL, the set of truth values is N = {(t, i, f ) ∈ [0, 1]3}. The basic
connectives are negation (N3) and implication (I2). Disjunction (D2) and conjunction (C3) can be defined as

p ∨ q = (p → q) → q,

p ∧ q = ¬(¬p ∨ ¬q).

As in PNL, the only designated element is (1, 0, 0), but unlike PNL, in INL there are tautologies such as p → p.
Smarandache et al. [24] noted that, from an algebraic point of view, the structure 〈N , ∧, ∨〉 is a distributive lattice.

We may add that 〈N , ∧, ∨〉 is bounded and ¬(x ∨ y) = ¬x ∧ ¬y for all x, y ∈ N , so that the following structure is a
De Morgan algebra:

〈N , ∧, ∨, (1, 0, 0), (0, 1, 1), ¬〉.
The lattice order on N is given by the latter order relation we have considered at the beginning of this section, that is
we have (t1, i1, f1)�N (t2, i2, f2) iff t1 � t2, f1 �f2 and i1 � i2. We may verify that conjunction (C3) is an N-norm in
the sense of Smarandache et al. [24], that is, for all x, y, z ∈ N :

1. (x ∧ y) ∧ z = x ∧ (y ∧ z) (associativity),
2. x ∧ y = y ∧ x (commutativity),
3. (1, 0, 0) ∧ x = x ∧ (1, 0, 0) = x (identity),
4. if x�N y then x ∧ z�N y ∧ z (monotonicity).

Conversely, disjunction (D2) is an N-conorm, that is, for all x, y, z ∈ N :

1. (x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity),
2. x ∨ y = y ∨ x (commutativity),
3. (0, 1, 1) ∨ x = x ∨ (0, 1, 1) = x (identity),
4. if x�N y then x ∨ z�N y ∨ z (monotonicity).

We may list some well-known laws of classical logic that do not hold in INL:

1. p ∨ ¬p (excluded middle),
2. ¬(p ∧ ¬p) (non-contradiction),
3. (p → q) → (¬q → ¬p) (contraposition),
4. (p ∧ ¬p) → q (Pseudo Scotus).

We have already noted that (I2) can be regarded as a generalization of the Łukasiewicz implication connective. Indeed,
if we restrict the set of neutrosophic truth values requiring that t + f + i = 1 and i = 0 for all (t, i, f ) ∈ N , we
may verify that the connectives of INL, (N3) and (I2), coincide with the negation and implication of Łukasiewicz
infinite-valued logic.
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Therefore, denoting by �INL and �L, respectively, the logical consequence relations in INL and in Łukasiewicz logic,
we have that for arbitrary sentences p and q:

if p�INLq then p�Lq.

In this case the converse does not hold. Consider the following axioms, where p, q and r denote arbitrary sentences:

(A1) p → (q → p),

(A2) (p → q) → ((q → r) → (p → r)),

(A3) ((p → q) → q) → ((q → p) → p),

(A4) (¬p → ¬q) → (q → p).

It has been shown (see for instance [7]) that (A1)–(A4), together with the modus ponens rule, provide a sound and
complete axiomatization of Łukasiewicz infinite-valued logic. While (A1)–(A3) are also valid in INL, (A4) is not.
However, we can introduce the following rule in INL:

¬p → ¬q

q → p
.

Smarandache et al. [24] have given a list of axioms and rules for INL assuming 〈¬, ∧, ∨, →〉 as basic connectives, but
no proof of completeness has been published so far.

5. Conclusion and future work

Throughout the previous sections we have tried to show that the neutrosophic formalism is a very general and
appealing framework, both needing and deserving further investigation from a logical point of view. First of all, as we
have said, it would be very useful to define suitable order relations on the set of neutrosophic truth values; the next step
would be to introduce propositional connectives that provide well founded and (if possible) intuitive relations between
the two or more different orders.

Another central issue will be to define suitable syntactical consequence relations and to prove completeness with
respect to the various neutrosophic semantics that have been considered in the literature, such as the semantics of the
other neutrosophic systems introduced by Ashbacher [2] besides PNL, of interval neutrosophic logic, etc.

And finally, the neutrosophic formalism might be further extended in many directions. We have already mentioned
the possibility to deal with modal contexts; temporal neutrosophic logics may also be considered, where the components
T, I, F are set-valued vector functions or operators depending on many parameters such as space, time, etc. Another
rather straightforward extension would be to let T, I, F be subsets of some partially or linearly ordered lattice L instead
of the real unit interval [0, 1], or even to consider different lattices L1, L2, L3 such that T ⊆ L1, I ⊆ L2 and F ⊆ L3.

Atanassov et al. [5] said about neutrosophy that “these ideas, once properly formalized, will have a profound impact
on our future dealings with imprecision”. We share their opinion, and hope that this paper will encourage others to
pursue deeper investigations that may lead to such proper formalization.
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