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Abstract
A recent paper by Jakl, Jung and Pultr (2016, Electron. Notes Theor. Comput. Sci., 325, 201–219) succeeded for the first
time in establishing a very natural link between bilattice logic and the duality theory of d-frames and bitopological spaces. In
this paper we further exploit, extend and investigate this link from an algebraic and a logical point of view. In particular,
we introduce classes of algebras that extend bilattices, d-frames and N4-lattices (the algebraic counterpart of Nelson’s
paraconsistent logic) to a setting in which the negation is not necessarily involutive, and we study corresponding logics.
We provide product representation theorems for these algebras, as well as completeness, algebraizability (and some non-
algebraizability) results for the corresponding logics.
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1 Introduction

Bilattices and bilattice-based logics are well-known formalisms of paraconsistent logic which have
had a considerable impact in AI and computer science [2, 9]. In recent years, interesting connections
have been highlighted [17, 18], both on a formal level and from the point of view of motivation, with
logics of so-called strong negation such as the paraconsistent version of Nelson’s logic [1, 13]. On the
other hand, a clear parallelism also seems to exist between bilattices and other formalisms motivated
by the attempt to deal with inconsistency in computer science, notably the theory of d-frames and
bitopological spaces [11]. This latter connection, however, had never been clearly stated in formal
terms until the recent paper [10] introduced a mathematical framework that may be a possible
way of bridging this gap. The present paper is an attempt at connecting, further exploring and
developing both the above-mentioned links, introducing a uniform logical and algebraic framework
which encompasses paraconsistent Nelson systems, bilattice-based logics and (the finitary aspects
of) d-frame theory.

One of the main intuitions behind bilattices is that truth values may be viewed as split into
two components, representing positive and negative evidences, respectively, concerning a given
proposition. Since positive and negative evidence are not assumed to be the complement of each
other as in classical logic, this allows one to deal with partial, as well as inconsistent information.
On an algebraic level, this intuition is ref lected in the fact that every bilattice can be represented
as a special product (known in the literature as bilattice product or twist-structure) of two lattices,
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974 Non-Involutive Twist-Structures

the positive-evidence lattice and the negative-evidence lattice. In principle, the two need not be
related, i.e. the domains of positive and negative evidence may not have the same structure. To
give an example from computability, consider the question of whether a given Turing machine will
stop, i.e. the ‘halting problem’. Positive evidence for the machine stopping is the observation that it
actually has stopped. Until this has happened, we do not have any positive evidence at all and so the
lattice of positive evidence has just two elements, ‘unknown’and ‘has stopped’. Negative evidence,
on the other hand, should be treated quite differently, since we cannot observe non-halting behaviour
directly. Instead, we employ the lattice of natural numbers together with a top element, where each
natural number n indicates that we have observed that the machine has been running for n steps
(or units of time) and has not yet stopped. The top element means non-termination, but it is an
‘ideal’ value that cannot be observed directly but is the supremum of the infinite set of propositions
‘has not stopped after n steps’.

If one wants to have a negation connective in the language, then the only available candidate
in the literature until recently was ‘strong negation’ (essentially the same in bilattices and Nelson
lattices), which requires the two domains to be isomorphic lattices. The situation changed with the
recent [10], which introduced a novel and very natural way of defining a weaker negation operator
that allows for the positive and the negative domain to be truly independent of each other and gives
rise to interesting structures that are moreover supported by a clear topological interpretation. To
continue the discussion of the halting problem from this perspective, negation would allow us to
formalize evidence for the statement ‘it is not true that the machine will stop’. However, this need
not change our distinction between positive and negative evidence. We can continue to insist that
positive evidence must be ‘real evidence’, e.g. the observation that the machine has returned to a
state that it had assumed before, hence, will be trapped in an infinite loop forever. Again, this is a
binary observation; once we make it, we know that the program will loop, but until we have made it
we know nothing. The negative lattice, on the other hand, can again be used to express doubt about
the statement, and it may be useful to have an infinite scale to express shades of doubt. For example,
if the program contains nondeterministic constructs (such as the ones that arise from parallelism)
then negative evidence could be that the program always stopped on n previous runs.

The present work expands and exploits the main ideas of [10] introducing algebraic structures,
called non-involutive bilattices, that have a pre-bilattice reduct and a negation operator that is no
longer required to be involutive nor to satisfy all the De Morgan identities. This algebraic framework
allows us to rigorously formulate a very natural and expected connection between bilattice-based log-
ics on the one hand and the topological setting of d-frames and bitopological spaces on the other. We
show in particular how many well-known structures can be seen as special cases of non-involutive
bilattices, namely pre-bilattices, bilattices with an involutive negation and the nd-frames of [10]. If
we further introduce Nelson-type implications into the language, we can show how N4-lattices, Nel-
son algebras and implicative bilattices nicely fit into the picture as well. We axiomatize the logics cor-
responding to these algebraic structures, showing how some of them turn out to be more algebraically
well-behaved than others, and we provide equational presentations, as well as twist-structure
representation theorems. A preliminary version of this paper (containing results which roughly
correspond to the present Section 3, but with a more categorical focus) has been presented in [12].

The paper is organized as follows. In Section 2 we introduce the notation and recall some
preliminary results. Section 3 introduces the class of non-involutive bilattices, a generalization of
bilattices in which the negation operator ¬ is not necessarily involutive, i.e. does not satisfy the
identity ¬¬x = x. We provide an abstract presentation for these algebras, as well as a product
representation, and we characterize the congruence lattice of a non-involutive bilattice in terms
of those of its factors. In Section 4 we add two implication operators to the algebraic language
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Non-Involutive Twist-Structures 975

of non-involutive bilattices (ref lecting the fact that both factors of a d-frame carry a definable
Heyting implication), we give an abstract axiomatization, as well as a product representation
for the corresponding algebras, that we call non-involutive implicative bilattices. The expressive
power gained thanks to the implications allows us to define a Hilbert calculus (Section 5) whose
consequence is equivalent to the equational consequence of the (equationally-definable) class of non-
involutive implicative bilattices, i.e. we prove that the syntactically-defined logic is algebraizable
(in the sense of [3, Definition 2.10]) and has the variety of non-involutive implicative bilattices
as its equivalent algebraic semantics [3, Definition 2.8]. We also consider a weaker logic which
can be defined in a natural way using non-involutive implicative bilattices as its semantics; even
though this logic is not algebraizable in the above-mentioned sense, we are able to introduce a
complete calculus for it. In Sections 6 and 7 we show that the algebraizability result holds true
even if we consider a more restricted algebraic language, essentially disregarding the bilattice
knowledge order and operations. This allows us to establish a link between our setting and that
of paraconsistent Nelson logic, introducing a class of algebras that generalize both non-involutive
implicative bilattices and N4-lattices (the algebraic counterpart of paraconsistent Nelson logic). We
obtain in this way a generalized version of a well-known result which characterizes N4-lattices as
subreducts of implicative bilattices. Finally, in Section 8 we present a negative result that explains
our choice of focussing on a richer algebraic and logical language than the one considered in [10] and
[4]: we show that the logic that one could naturally associate to the class of algebras introduced in
[10] is not equivalential, and so not algebraizable either (i.e. it does not correspond to the equational
consequence of any class of algebras).

2 Preliminaries

2.1 Logics, algebras and matrices

Given an algebraic signature, we denote by Fm the absolutely free algebra built over a countable
set of propositional variables. A logic defined over Fm, denoted L = 〈Fm, �〉, is a structural
consequence relation.

We will be dealing with matrix semantics for logics (see [19] for further details). A matrix is a
pair M = 〈A, D〉, where A is an algebra (a non-empty set A equipped with a family of finitary
operations) and D ⊆ A is a subset of designated elements. Each matrix M = 〈A, D〉 determines a
logic �M by defining Γ �M ϕ if and only if, for all homomorphisms h : Fm → A, we have that
h(Γ ) ⊆ D implies h(ϕ) ∈ D. We say that M is a matrix for a logic L when �L⊆�M (i.e. M is sound
for L). A class of matrices M = {Mi : i ∈ I} defines a logic �M by setting Γ �M ϕ if and only if
Γ �Mi ϕ for all i ∈ I .

The Leibniz congruence of a matrix M = 〈A, D〉, usually denoted ΩA(D), is the largest
congruence of A that is compatible with D, meaning that, for all elements a, b ∈ A, if
a ∈ D and 〈a, b〉 ∈ ΩA(D), then b ∈ D. The reduction of M = 〈A, D〉 is the matrix
M∗ = 〈A/ΩA(D), D/ΩA(D)〉, where A/ΩA(D) is the usual quotient algebra and D/ΩA(D) =
{a/ΩA(D) : a ∈ D}. A matrix M = 〈A, D〉 reduced when ΩA(D) is the identity, i.e. when M is
isomorphic to its own reduction M∗. Any matrix M defines the same logic as its reduction M∗,
which makes reduced matrices particularly important in the semantical study of logics. In fact, any
logic is complete with respect to the class of all reduced matrices for it. The class

Alg∗(L) := {
A : 〈A, D〉 is a reduced matrix for L

}

consists of all algebras A that are the reducts of some reduced matrix for L.
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976 Non-Involutive Twist-Structures

Any logic L is (trivially) complete with respect to the class of matrices ML = {〈Fm, T 〉 :
T is a theory of L}. This class can itself be reduced in the following way. ML is an example of a
generalized matrix (g-matrix), i.e. a pair 〈A, C〉, where A is an algebra and C is a closure system
on A (i.e. a family A ∈ C ⊆ P(A) closed under arbitrary intersections). The Tarski congruence
of a g-matrix 〈A, C〉 is the largest logical congruence θ of A, i.e. the largest congruence such that
〈a, b〉 ∈ θ implies that the closure of a equals the closure of b. The reduction of 〈A, C〉 is the g-
matrix 〈A /θ , C/θ〉, where C/θ = {D/θ : D ∈ C}. A g-matrix 〈A, C〉 is just a particular class of
matrices that share the same underlying algebra A, hence, all definitions about classes of matrices
are extended to g-matrices. The Lindenbaum–Tarski g-matrix of a logic L is the reduction M∗

L of
the g-matrix ML = {〈 Fm, T 〉 : T is a theory ofL}. The algebraic reduct of M∗

L, denoted Fm∗, is
the Lindenbaum–Tarski algebra of L. The class of L-algebras

Alg(L) := {
A : 〈A, C〉 is a reduced g-matrix for L

}

consists of all algebras A that are the reducts of some reduced g-matrix for L. So, in particular,
Fm∗ ∈ Alg(L). The inclusion Alg∗(L) ⊆ Alg(L) holds for any logic, while the converse need not
hold in general (we refer the reader to [8] for further details).

We will be dealing mainly with quasiequational and equational classes of algebras, also known
as quasivarieties and varieties (see [6] for further details). For our purposes, it will be enough to
know that a quasivariety is a class of algebras that is definable via quasiequations, i.e. universally
quantified implications whose premiss is a finite conjunction of equations and whose conclusion is
a single equation. We shall also refer to the fact that quasivarieties are closed under the operation
of taking isomorphic images and subalgebras, but not necessarily under homomorphic images.
Varieties are quasivarieties that can be axiomatized using equations only, i.e. implications of the
above-defined type with an empty set of premisses. A quasivariety is a variety if and only if it is
closed under homomorphic images.

2.2 Bilattices

In this section we introduce definitions and well-known results about bilattices (see [4] for further
details and proofs).

DEFINITION 2.1 (Interlaced pre-bilattice).
An interlaced pre-bilattice is an algebra B = 〈B,∧,∨,�,�〉 such that 〈B,∧,∨〉 and 〈B,�,�〉 are
lattices and each one of the four operations {∨,∧,�,�} is monotonic with respect to both lattice
orders.

The lattice 〈B,∧,∨〉 is called the truth lattice (t-lattice) and its order is denoted by ≤ and is
called the truth order (t-order). The lattice 〈B,�,�〉 is called the knowledge (or information) lattice
(k-lattice) and its order � the knowledge order (k-order).

The following construction is known as product bilattice in the bilattice literature and as ( full)
twist-structure in the literature on Nelson logics.1 Besides showing an easy way of constructing an
interlaced pre-bilattice, its importance lies in the fact that all interlaced pre-bilattices can be obtained
in this way.

1The word ‘full’ refers to the fact that the universes of algebras thus built are direct products, whereas a non-full twist-
structure might correspond to a subreduct of one such product, see e.g. Section 6.
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Non-Involutive Twist-Structures 977

DEFINITION 2.2 (Product pre-bilattice).
Let L+ = 〈L+,∧+,∨+〉 and L− = 〈L−,∧−,∨−〉 be lattices. The product pre-bilattice
〈L+ × L−,∧,∨,�,�〉 is defined as follows. For all 〈a+, a−〉, 〈b+, b−〉 ∈ L+ × L−,

〈a+, a−〉 ∧ 〈b+, b−〉 = 〈a+ ∧+ b+, a− ∨− b−〉
〈a+, a−〉 ∨ 〈b+, b−〉 = 〈a+ ∨+ b+, a− ∧− b−〉
〈a+, a−〉 � 〈b+, b−〉 = 〈a+ ∧+ b+, a− ∧− b−〉
〈a+, a−〉 � 〈b+, b−〉 = 〈a+ ∨+ b+, a− ∨− b−〉.

Thus, the lattice reduct 〈L+ ×L−,�,�〉 is just the standard direct product L+× L−, while the reduct
〈L+ × L−,∧,∨〉 is the direct product L+× (L−)op, where (L−)op denotes the lattice 〈L−,∨−,∧−〉.

It is straightforward to check that a product pre-bilattice is always an interlaced pre-billatice in
which the two orders are given, for all 〈a+, a−〉, 〈b+, b−〉 ∈ L+ × L−, by

〈a+, a−〉 ≤ 〈b+, b−〉 iff a+ ≤+ b+ and b− ≤− a−

〈a+, a−〉 � 〈b+, b−〉 iff a+ ≤+ b+ and a− ≤− b−,

where ≤+ and ≤− denote the lattice orders of L+ and L−, respectively. This ref lects the intuition
that an element 〈a+, a−〉 ∈ L+ × L− can be thought of as encoding evidence about some assertion:
evidence for it (represented by a+) and evidence against (represented by a−). Then an increase in
information (knowledge) amounts to saying that overall evidence goes up, while an increase in truth
means that evidence for increases and evidence against decreases.

THEOREM 2.3
Every interlaced pre-bilattice B= 〈B,∧,∨,�,�〉 is isomorphic to the product pre-bilattice of B+ =
〈B/≡+,∧,∨〉 and B− = 〈B/≡−,∨,∧〉, where

≡+ =
{〈a, b〉 ∈ B2 : a ∧ b = a � b

} ≡− =
{〈a, b〉 ∈ B2 : a ∧ b = a � b

}

through the map ι : B → B/≡+ ×B/≡− given by ι(a) = 〈[a]+, [a]−〉 for all a ∈ B, where [a]+ and
[a]− denote the equivalence classes of a ∈ B in the quotients B/ ≡+ and B/ ≡−.

The above result is proved in full generality (for unbounded pre-bilattices) in [5, Theorem 3.2].
It is useful to notice that the relations defined in Theorem 2.3 correspond, in a product pre-bilattice
L+ × L−, to the following:

≡+ =
{〈〈a+, a−〉, 〈a+, a′−〉〉 ∈ (L+ × L−)2}, ≡− =

{〈〈a+, a−〉, 〈a′+, a−〉〉 ∈ (L+ × L−)2}.

Theorem 2.3 provides a very convenient way of proving properties about interlaced pre-bilattices:
by checking that they hold in product pre-bilattices. The following corollary lists a few that will be
used in subsequent proofs.

COROLLARY 2.4
Let B be an interlaced pre-bilattice and let a, b, c ∈ B be such that a � b � c. Then,

(i) (a ∧ b ∧ c) � ((a ∧ b) ∨ c) = a ∧ b,
(ii) (a � (b ∧ c)) � ((a ∧ b) ∨ c)〉 = a � b,

(iii) (a ∧ c) ∨ (b ∧ c) = (a ∨ b) ∧ c ,
(iv) (a ∧ c) ∨ (b ∧ c) = (a ∨ b) ∧ c.
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978 Non-Involutive Twist-Structures

3 Non-involutive bilattices

According to the original definition of [9], a bilattice is a pre-bilattice which has an additional
unary operator (called negation) that satisfies the involutive and De Morgan identities (see below).
For a product bilattice, the existence of such an operator is equivalent to the requirement that the
underlying lattices L+ and L− be isomorphic. However, as shown in [10, Definition 3.1], even in
the absence of an isomorphism, a weaker notion of negation can be defined, as follows.

DEFINITION 3.1 (Non-involutive product bilattice).
Let L+ = 〈L+,≤+,∧+,∨+〉 and L− = 〈L−,≤−,∧−,∨−〉 be lattices, and let n : L+ → L− and
p : L− → L+ be maps satisfying the following properties:

(i) n, p are both meet-semilattice homomorphisms;
(ii) n, p preserve the lattice bounds of L+ and L− (if present);

(iii) n ◦ p, p ◦ n ≤ Id.

The non-involutive product bilattice is the algebra L+ �� L− = 〈L+ × L−,∧,∨,�,�,¬〉, where
〈L+ × L−,∧,∨,�,�〉 is the product pre-bilattice of Definition 2.2 and the negation is given by

¬〈a+, a−〉 = 〈p(a−), n(a+)〉.
Observe that, if L+=〈L+,∧+,∨+, 0+, 1+〉 and L−=〈L−,∧−,∨−, 0−, 1−〉 are bounded lattices,

then maps n, p satisfying Definition 3.1 can always be defined by letting n(a+) = 0− for all a+ �= 1+
and n(1+)=1−, p(a−)=0+ for all a− �=1− and p(1−)=1+. Thus, any bounded interlaced (product)
pre-bilattice can be endowed in a canonical way with a negation that turns it into a non-involutive
product bilattice. In case there exists an isomorphism ι : L+∼= L−, we can obtain the usual product
bilattice [5, Definition 3.10] by letting e.g. n = ι and p = ι−1.

We are going to prove that non-involutive product bilattices coincide with the class of algebras
defined by the following abstract presentation.

DEFINITION 3.2 (Non-involutive bilattice).
A non-involutive bilattice is an interlaced pre-bilattice B=〈B,∧,∨,�,�,¬〉endowedwithanegation
¬ satisfying the following identities:

(i) ¬(x � y) = ¬x � ¬y.
(ii) ¬⊥ = ⊥ ¬� = � ¬t = f ¬f = t (if bounds are present).

(iii) ¬¬x � x.
(iv) ¬(x ∧ y) ≡+ ¬(x � y) ¬(x ∧ y) ≡− ¬(x � y).

An (involutive) bilattice can thus be defined as a non-involutive bilattice that additionally satisfies
x � ¬¬x and ¬(x � y) = ¬x � ¬y (in which case, the usual De Morgan laws ¬(x ∧ y) = ¬x ∨ ¬y
and ¬(x ∨ y) = ¬x ∧ ¬y also hold).

LEMMA 3.3
Condition (iv) in Definition 3.2 can be equivalently replaced by the following quasiequations2:
x ≡+ y ⇒ ¬x ≡− ¬y and x ≡− y ⇒ ¬x ≡+ ¬y.

2Following standard usage, by quasiequation we mean a formula of (classical) first-order logic of type
(e1 & . . . & en) ⇒ e0, where the ei are equations in the algebraic language considered, & denotes first-order conjunction
and ⇒ first-order implication.
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Non-Involutive Twist-Structures 979

PROOF. Let 〈B,∧,∨,�,�,¬〉 be a non-involutive bilattice according to Definition 3.2, and assume
a ≡+ b, i.e. a ∧ b = a � b. Then,

¬a = ¬(a � (a � b)) lattice identities

= ¬(a � (a ∧ b)) a ∧ b = a � b

≡− ¬(a ∧ a ∧ b) ¬(x ∧ y) ≡− ¬(x � y)

= ¬(b ∧ a ∧ b) lattice identities

≡− ¬(b � (a ∧ b)) ¬(x ∧ y) ≡− ¬(x � y)

= ¬(b � (a � b)) a ∧ b = a � b

= ¬b lattice identities.

We conclude that ¬a ≡− ¬b as required. Similarly, using ¬(x ∧ y) ≡+ ¬(x � y) we have a ≡+ b
implies ¬a ≡− ¬b. This shows that every non-involutive bilattice satisfies x ≡+ y ⇒ ¬x ≡− ¬y
and x ≡− y ⇒ ¬x ≡+ ¬y. The converse is easy, because x ∧ y ≡+ x � y holds in any interlaced
bilattice [5, Proposition 3.4], so by applying the quasiequation x ≡+ y ⇒ ¬x ≡− ¬y we obtain
¬(x ∧ y) ≡− ¬(x � y). The proof of ¬(x ∧ y) ≡+ ¬(x � y) is similar. �

While Definition 3.2 ensures that the class of non-involutive bilattices is equationally definable
(a variety of algebras), Lemma 3.3 provides a presentation that is often the easier to work with. We
are now able to prove a representation theorem for non-involutive bilattices that is analogous to the
product representation of interlaced bilattices.

PROPOSITION 3.4
Every non-involutive product bilattice L+ �� L− = 〈L+ × L−,∧,∨,�,�,¬〉 is a non-involutive
bilattice.

PROOF. Since the negation-free reduct of L+ �� L− is an interlaced pre-bilattice, we only need to
show that properties (i–iv) of Definition 3.2 are satisfied, which is routine checking. Concerning (iv)
notice that, for verifying e.g. ¬(x∧ y) ≡+ ¬(x � y), it is sufficient to check that the first component
of the left-hand side is equal to the first component of right-hand side. �
THEOREM 3.5
Every non-involutive bilattice B = 〈B,∧,∨,�,�,¬〉 is isomorphic to the non-involutive product
bilattice of B+ = 〈B/≡+,∧,∨〉 and B− = 〈B/≡−,∨,∧〉, constructed according to Definition 3.1,
with the negation defined as ¬〈[a]+, [a]−〉= 〈 p([a]−), n([a]+)〉 for all a ∈ B. The isomorphism is
given by the map ι : B → B/≡+ × B/≡− defined as ι(a) = 〈[a]+, [a]−〉 for all a ∈ B.

PROOF. We know from Theorem 2.3 that 〈B/≡+,∧,∨〉 and 〈B/≡−,∨,∧〉 are lattices and that
the map ι is a pre-bilattice isomorphism. Define n : B/≡+→ B/≡− by n([a]+) = [¬a]− and
p : B/≡−→ B/≡+ by p([a]−) = [¬a]+. Lemma 3.3 guarantees that these maps are well-defined and
it is straightforward to check that they satisfy Definition 3.1. It remains to show that ι(¬a) = ¬ι(a).
This is immediate: ι(¬a) = 〈[¬a]+, [¬a]−〉 = 〈 p([a]−), n([a]+)〉 = ¬〈[a]+, [a]−〉 = ¬ι(a). �

As in the case of pre-bilattices, the correspondence between non-involutive bilattices and non-
involutive product bilattices (that we can view as quadruples 〈L+, L−, n, p〉) can be formulated as
a covariant categorical equivalence between two naturally associated algebraic categories (see [12]
for details). This connection can then be exploited to obtain further insight into the structure non-
involutive bilattices.
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980 Non-Involutive Twist-Structures

One can prove, e.g. that the congruence lattice Con(B+) of a non-involutive bilattice
B ∼= B+ �� B− is isomorphic (as a complete lattice) to a certain sub-lattice of Con(B+)×Con(B−),
where Con(B+) and Con(B−) denote the congruence lattices of B+ and B−, respectively; a result
that can be viewed as a generalization of [5, Proposition 3.8]. Let 〈θ+, θ−〉 ∈ Con(B+) × Con(B−)

be a pair of congruences which satisfy, for all a, b ∈ B,

if 〈[a]−, [b]−〉 ∈ θ−, then 〈p([a]−), p([b]−)〉 ∈ θ+ (1)

if 〈[a]+, [b]+〉 ∈ θ+, then 〈n([a]+), n([b]+)〉 ∈ θ−. (2)

Denote by Con∗(B+B−), ⊆ Con(B+) × Con(B−) the set of pairs of congruences which satisfy
(1) and (2), and notice that it is the universe of a complete lattice in which the meet is set-theoretic
intersection.

LEMMA 3.6
Let B be an interlaced pre-bilattice, θ ∈ Con(B) and a, b ∈ B. The following conditions are
equivalent:

(i) 〈a ∧ b, a � b〉 ∈ θ ;
(ii) 〈a ∧ c, b ∧ c〉 ∈ θ for some c ∈ B such that a � b � c;

(iii) 〈a ∧ c, b ∧ c〉 ∈ θ for all c ∈ B such that a � b � c.

PROOF. Obviously (iii) implies (ii). To show that (ii) implies (i), assume 〈a ∧ c, b ∧ c〉 ∈ θ for some
c with a � b � c. Then, on the one hand, we have 〈a∧ a∧ c, a∧ b∧ c〉 = 〈a∧ c, a∧ b∧ c〉 ∈ θ , and
on the other 〈a � (a∧ c), a � (b∧ c)〉 = 〈a∧ c, a � (b∧ c)〉 ∈ θ (the equality a � (a∧ c) = a∧ c
holds because, by the interlacing conditions, a � c implies a � a ∧ c). Thus, by symmetry and
transitivity of θ , we have 〈a∧b∧ c, a � (b∧ c)〉 ∈ θ . From this we obtain 〈(a∧b∧ c)� ((a∧b)∨ c),
(a � (b ∧ c)) � ((a ∧ b) ∨ c)〉 ∈ θ . The two equalities (a ∧ b ∧ c) � ((a ∧ b) ∨ c) = a ∧ b and
(a�(b∧c))�((a∧b)∨c)〉 = a � b, which hold by Corollary 1 (i and ii), imply that 〈a∧b, a�b〉 ∈ θ

as required. To conclude the proof it remains to show that (i) implies (iii). Assume 〈a∧b, a�b〉 ∈ θ .
Then 〈a ∧ (a ∧ b), a ∧ (a � b)〉 = 〈a ∧ b, a ∧ (a � b)〉 ∈ θ and 〈b ∧ (a ∧ b), b ∧ (a � b)〉 =
〈a∧b, b∧(a�b)〉 ∈ θ . By symmetry and transitivity of θ we thus have 〈a∧(a � b), b∧(a � b)〉 ∈ θ .
Now, for any c ∈ B such that a � b � c, we have a ∧ (a � b) ∧ c = a ∧ c and b ∧ (a � b) ∧ c =
b ∧ c (this can again be checked using the product representation of pre-bilattices). Thus, we have
〈a ∧ (a � b) ∧ c, b ∧ (a � b) ∧ c〉 = 〈a ∧ c, b ∧ c〉 ∈ θ as required. �

We omit the proof of the following lemma as it is entirely analogous to that of Lemma 3.6.

LEMMA 3.7
Let B be an interlaced pre-bilattice, θ ∈ Con(B) and a, b ∈ B. The following conditions are
equivalent:

(i) 〈a ∧ b, a � b〉 ∈ θ ;
(ii) 〈a ∨ c, b ∨ c〉 ∈ θ for some c ∈ B such that a � b � c;

(iii) 〈a ∨ c, b ∨ c〉 ∈ θ for all c ∈ B such that a � b � c.

PROPOSITION 3.8
The lattice Con(B) of any non-involutive bilattice B is isomorphic to Con∗(B+, B−).

PROOF. The isomorphism is given by the two maps L : Con(B) → Con∗(B+, B−) and
B : Con∗(B+, B−)→Con(B) defined as follows. For θ ∈ Con(B), let L(θ) = 〈θ+, θ−〉, where θ+ =
{〈[a]+, [b]+〉 ∈ B+×B+ : 〈a∧b, a�b〉 ∈ θ} and θ− = {〈[a]−, [b]−〉 ∈ B−×B− : 〈a∧b, a�b〉 ∈ θ}.

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/article/28/5/973/5173466 by U

niversidade Federal do R
io G

rande do N
orte user on 27 M

ay 2021



Non-Involutive Twist-Structures 981

For 〈θ+, θ−〉 ∈ Con∗(B+, B−), let B〈θ+, θ−〉 = {〈a, b〉∈B×B : 〈[a]+, [b]+〉∈ θ+, 〈[a]−, [b]−〉∈ θ−}.
To check that the map L is well defined, suppose [a]+ = [a′]+, [b]+ = [b′]+ (i.e. a ∧ a′ = a � a′
and b ∧ b′ = b � b′) and 〈[a]+, [b]+〉 ∈ θ+ (i.e. 〈a ∧ b, a � b〉 ∈ θ ). Let c = a � b � a′ � b′. By
Lemma 2, we have a ∧ c = a′ ∧ c, b ∧ c = b′ ∧ c and 〈a ∧ c, b ∧ c〉 ∈ θ . Thus, we immediately
obtain 〈a′ ∧ c, b′ ∧ c〉 = 〈a∧ c, b∧ c〉 ∈ θ , which again by Lemma 3.6 gives us 〈a′ ∧ b′, a′ � b′〉 ∈ θ

and so 〈[a′]+, [b′]+〉 ∈ θ+ as required. A similar reasoning (relying on Lemma 3.6) shows that
[a]− = [a′]−, [b]− = [b′]− and 〈[a]−, [b]−〉 ∈ θ− imply 〈[a′]−, [b′]−〉 ∈ θ−. So the map L is well
defined. It remains to show that L(θ) ∈ Con∗(B+, B−). We shall check compatibility of θ+ with ∨+
and leave the other cases to the reader. Assume 〈[a]+, [b]+〉, 〈[a′]+, [b′]+〉 ∈ θ+, which means that
〈a ∧ b, a � b〉, 〈a′ ∧ b′, a′ � b′〉 ∈ θ . Letting c = a � b � a′ � b′ and invoking Lemma 3.6, we have
〈a ∧ c, b ∧ c〉, 〈a′ ∧ c, b′ ∧ c〉 ∈ θ , from which we obtain 〈(a ∧ c) ∨ (a′ ∧ c), (b ∧ c) ∨ (b′ ∧ c)〉 ∈ θ .
Since (a∧ c)∨ (a′ ∧ c) = (a∨a′)∧ c and (b∧ c)∨ (b′ ∧ c) = (b∨b′)∧ c by Corollary 1 (iii and iv),
we can use Lemma 3.6 again to obtain 〈[a∨ a′]+, [b∨ b′]+〉 = 〈[a]+ ∨+ [a′]+, [b]+ ∨+ [b′]+〉 ∈ θ+.
To see that the pair L(θ) satisfies conditions (1) and (2) which define the sublattice Con∗(B+, B−),
assume for instance 〈[a]−, [b]−〉 ∈ θ−. By Lemma 3.6, this means that 〈a ∨ c, b ∨ c〉 ∈ θ for some
c ∈ B with a � b � c. Then 〈¬(a ∨ c),¬(b ∨ c)〉 ∈ θ as well. Now observe that a � c implies
¬(a ∨ c) = ¬a ∧ ¬c (invoking Corollary 4.3, we can easily check this in a product bilattice) and
similarly we have ¬(b ∨ c) = ¬b ∧ ¬c. Thus, we have 〈¬a ∧ ¬c,¬b ∧ ¬c〉 ∈ θ . Since a � b � c
implies ¬a�¬b � ¬c, we can use Lemma 3.6 once more to conclude that 〈¬a∧¬b,¬a �¬b〉 ∈ θ

and so 〈[¬a]+, [¬b]+〉 = 〈p[a]−, p[b]−〉 ∈ θ+. This establishes (1); the proof of (2) is similar.
The map B is obviously well-defined, and checking that B〈θ+, θ−〉 ∈ Con(B), is straightforward.

It is also easy to see that the maps L and B are mutually inverse. For example, θ = B(L(θ)) because
θ = {〈a, b〉 ∈ B × B : 〈a ∧ b, a � b〉, 〈a ∧ b, a � b〉 ∈ θ}. Also, L and B are monotone and order-
ref lecting, which implies that they are order isomorphisms between the lattice 〈Con(B),⊆〉 and the
lattice 〈Con∗(B+, B−),⊆〉. �

When the maps n and p are mutually inverse isomorphisms between B+ and B− (so B is
an involutive bilattice), then (1) and (2) imply that, for any 〈θ+, θ−〉 ∈ Con(B+) × Con(B−),
〈[a]+, [b]+〉 ∈ θ+ if and only if 〈n([a]+), n([b]+)〉 ∈ θ− and likewise 〈[a]−, [b]−〉 ∈ θ− if and
only if 〈 p([a]−), p([b]−)〉 ∈ θ+. Thus, we recover, as a corollary of Proposition 2, the isomorphism
〈Con(B),⊆〉 ∼= 〈Con(B+),⊆〉 that is proved in e.g. [5, Proposition 3.8].

4 Adding implications

In this section we generalize the construction of [4] in order to define implication connective(s) on
non-involutive bilattices.

Recall that an implicative lattice (also known in the literature as a Brouwerian lattice) is a lattice
L = 〈L,∧,∨,→〉 expanded with an extra binary operation → (called implication) which satisfies
the following residuation property: a ∧ b ≤ c if and only if b ≤ a → c, for all a, b, c ∈ L.
Implicative lattices are the algebraic counterpart of the negation-free fragment of intuitionistic logic,
and correspond precisely to the 0-free subreducts of Heyting algebras. This implies, in particular,
that any implicative lattice is distributive and has a top element, which we denote by 1. For our
purposes, it will also be useful to recall that implicative lattices form an equational class.3

3See e.g. [16, p. 55], but notice that implicative lattices are called relatively pseudo-complemented lattices in this book.
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982 Non-Involutive Twist-Structures

DEFINITION 4.1 (Non-involutive implicative product bilattice).
Let L+ = 〈L+,∧+,∨+,→+, 1+〉 and L− = 〈L−,∧−,∨−,→−, 1−〉 be implicative lattices and let
n : L+ → L− and p : L− → L+ be maps satisfying properties (i–iii) of Definition 3.1. The non-
involutive implicative product bilattice is the algebra L+ �� L− = 〈L+×L−,∧,∨,�,�,⊃, �⊂,¬〉,
whose {⊃, �⊂}-free reduct is the product bilattice of Definition 3.1 and the two implications are
given by

〈a+, a−〉 ⊃ 〈b+, b−〉 = 〈a+ →+ b+, n(a+) ∧− b−〉
〈a+, a−〉 �⊂ 〈b+, b−〉 = 〈 p(a−) ∧+ b+, a− →− b−〉.

Definition 4.1 generalizes both the construction given in [4] for the algebras there called
‘Brouwerian bilattices’ and that of nd-frames of [10, Definition 3.1]. In fact, any Brouwerian bilattice
can be seen as a non-involutive implicative product bilattice L �� L, where the maps n, p are both
the identity on L and the �⊂ operation is given by x �⊂ y = ¬(¬x ⊃ ¬y). The operation �⊂, though
not considered in [10], is definable in any nd-frame (for both underlying frames of an nd-frame are
completely distributive lattices in which the implications →+ and →− are the residua of the lattice
meets). As for involutive implicative bilattices, a strong implication connective can be defined by

x → y = (x ⊃ y) ∧ ¬(y �⊂ x).

One can compute that

〈a+, a−〉 → 〈b+, b−〉 =
〈
(a+ →+ b+) ∧+ p(b− →− a−), n(a+) ∧− b−

〉

which implies in particular that x → y = (x → y) ⊃ (x → y) holds if and only if x ≤ y.
As we have done in Section 3 for the implicationless algebras, we will provide an abstract

axiomatization for the class of products introduced in Definition 4.1. In order to do this we introduce
some further auxiliary notation. Let a = 〈a+, a−〉, b = 〈b+, b−〉 ∈ L+ �� L−. We write ε(a) as an
abbreviation for a ⊃ a. We further define

a �+ b if and only if a ⊃ b = ε(a ⊃ b)

a �− b if and only if ¬(a �⊂ b) = ε(¬(a �⊂ b)).

Doing the calculations, one can check that

a �+ b if and only if a+ ≤+ b+
a �− b if and only if a− ≤− b−.

It follows that �+ and �− are preorders, which induce the equivalence relations ≡+ and ≡−
that we have considered earlier. The intersection �+ ∩ �− is precisely the knowledge order of
L+ �� L− and the intersection �+ ∩ (�−)−1 is the truth order. We state below a few useful facts
for further reference.

Given 〈L+, L−, n, p〉 implicative lattices with maps which satisfy properties (i–iii) in Definition 3.1,
let us call a lattice filter F ⊆ L+ open when a+ ∈ F implies p(n(a+)) ∈ F for all a+ ∈ L+. Likewise
we say that a lattice filter G ⊆ L− is open when a− ∈ G implies n( p(a−)) ∈ G for all a− ∈ L−.

PROPOSITION 4.2
Let 〈L+, L−, n, p〉 be implicative lattices with maps n and p which satisfy properties (i–iii) in
Definition 3.1, and let a+, b+ ∈ L+. Then,

(i) n(a+) = 1− implies a+ = 1+,
(ii) n(a+ →+ b+) ≤− n(a+) →− n(b+),

(iii) if F ⊆ L+ is a non-empty (open) lattice filter, then so is p−1[F] ⊆ L−.

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/article/28/5/973/5173466 by U

niversidade Federal do R
io G

rande do N
orte user on 27 M

ay 2021



Non-Involutive Twist-Structures 983

PROOF.

(i) If n(a+) = 1−, then p(n(a+)) = 1+ because p preserves the bounds. But p(n(a+)) ≤+ a+
and so a+ = 1+.

(ii) By residuation, we have n(a+→+ b+)≤− n(a+)→− n(b+) iff n(a+ →+ b+)∧− n(a+)≤−
n(b+). Also, n(a+ →+ b+) ∧− n(a+) = n((a+ →+ b+) ∧+ a+) because n preserves
meets and (a+ →+ b+) ∧+ a+ = a+ ∧+ b+ which holds in any implicative lattice. Thus,
n(a+ →+ b+) ≤− n(a+) →− n(b+) is equivalent to n(a+ ∧+ b+) = n(a+) ∧− n(b+) ≤−
n(b+) which is certainly true.

(iii) If F is non-empty, then 1+ ∈ F and so 1− ∈ p−1[F] because p preserves the bounds. Suppose
a−, b− ∈ p−1[F], i.e. p(a−), p(b−) ∈ F. Then p(a−) ∧+ p(b−) = p(a− ∧− b−) ∈ F and so
a− ∧− b− ∈ p−1[F]. Also, if a− ∈ p−1[F] and a− ≤− b−, then p(a−) ∈ F and p(b−) ∈ F
as well since p is order-preserving. So b− ∈ p−1[F]. Finally, if F is open and a− ∈ p−1[F],
then p(a−) ∈ F and so p(n( p(a−))) ∈ F, which implies n( p(a−)) ∈ p−1[F]. �

Obviously the preceding proposition implies its dual stated below.

COROLLARY 4.3
Let 〈L+, L−, n, p〉 be implicative lattices with maps n and p which satisfy properties (i–iii) in
Definition 3.1, and let a−, b− ∈ L−. Then,

(i) p(a−) = 1+ implies a− = 1−,
(ii) p(a− →− b−) ≤+ p(a−) →+ p(b−),

(iii) if F ⊆ L− is a non-empty (open) lattice filter, then so is n−1[F] ⊆ L+.

From Proposition 4.2(iii) and Corollary 4.3(iii) it follows that the lattice of open filters of L+ is
isomorphic to the lattice of open filters of L−. This in turn implies that the congruences of L+
that are compatible with the maps n and p (in the sense explained below) also correspond to those
of L−. Let us say that θ+ ∈ Con(L+) is a pn-congruence if 〈a+, b+〉 ∈ θ+ implies 〈 p(n(a+)),
p(n(b+))〉 ∈ θ+ for all a+, b+ ∈ L+. Likewise we define an np-congruence as a congruence
θ− ∈ Con(L−) such that 〈a−, b−〉 ∈ θ− implies 〈n(p(a−)), n(p(b−))〉 ∈ θ− for all a−, b− ∈ L−.
Let us denote by Conpn (Connp(L−)) the set of pn-congruences of L+ (np-congruences of L−).
Both sets are closed under arbitrary intersections and thus form complete lattices ordered by
set-theoretic inclusion.

COROLLARY 4.4
Let 〈L+, L−, n, p〉 be implicative lattices with maps n and p which satisfy properties (i–iii) in
Definition 3.1. Then,

(i) the lattice of open filters of L+ and of L− are isomorphic (via the maps p−1 and n−1),
(ii) 〈Conpn(L+),⊆〉 is isomorphic (as a complete lattice) to 〈Connp(L−),⊆〉.

PROOF. (i) Follows from Proposition 4.2(iii) and Corollary 4.3(iii), as soon as one notices that F+ =
n−1[ p−1[F+]] and F− = p−1[n−1[F−]] for all open filters F+ ⊆ L+, F− ⊆ L−. (ii). We are
going to use the preceding item together with the following fact. It is well known that the lattice of
congruences of any implicative lattice is isomorphic to the lattice of its filters via the following maps.
To a congruence, say θ ∈ Con(L+), one associates the filter Fθ = 1+/θ , and to a filter F ⊆ L+ one
associates the congruence θF defined by 〈a+, b+〉 ∈ θF if and only if a+ →+ b+, b+ →+ a+ ∈ F.
We claim that these maps also establish an isomorphism between 〈Conpn(L+),⊆〉 and the lattice
of open filters of L+. For θ ∈ Conpn(L+), the filter Fθ is open because 〈a+, 1+〉 ∈ θ implies
〈 p(n(a+)), p(n(1+))〉 = 〈 p(n(a+)), 1+〉 ∈ θ . Conversely, suppose F is open and 〈a+, b+〉 ∈ θF , i.e.
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984 Non-Involutive Twist-Structures

a+→+ b+, b+→+ a+∈ F. Then p(n(a+ →+ b+))∈ F, which implies p(n(a+)) →+ p(n(b+)) ∈ F
because p(n(a+ →+ b+)) ≤+ p(n(a+)) →+ p(n(b+)). This last inequality holds because of (ii)
in Proposition 4.2 and Corollary 4.3. By symmetry we also have p(n(b+)) →+ p(n(a+)) ∈ F
which allows us to conclude that 〈p(n(a+)), p(n(b+))〉 ∈ θF as required. The same reasoning shows
that 〈Connp(L−),⊆〉 is isomorphic to the lattice of open filters of L−. Thus, by item (i) above, we
have an isomorphism 〈Conpn(L+),⊆〉 ∼= 〈Connp(L−),⊆〉. One can then check that to a congruence
θ+ ∈ Conpn(L+) corresponds the congruence θ− ∈ Connp(L−) defined by 〈a−, b−〉 ∈ θ− iff
〈 p(a− →− b−), 1+〉, 〈 p(b− →− a−), 1+〉 ∈ θ+. �

Recalling properties (1) and (2) from Section 3, we can notice that Con∗(L+, L−) ⊆
Conpn(L+) × Connp(L−). Thus, in case L+ and L− are implicative lattices, Corollary 4.4(ii) tells
us that each pair 〈θ+, θ−〉 ∈ Con∗(L+, L−) is determined by the first (or, equivalently, the second)
component. For example, θ+ is the unique congruence in Conpn(L+) satisfying 〈 p(a− →− b−), 1+〉,
〈 p(b− →− a−), 1+〉 ∈ θ+ iff 〈a−, b−〉 ∈ θ−. Thus, we also have isomorphisms Con∗(L+, L−) ∼=
Conpn(L+) ∼= Connp(L−).

DEFINITION 4.5
A non-involutive implicative bilattice is an algebra B = 〈B,∧,∨,�,�,⊃, �⊂,¬〉 satisfying the
following properties:

(i) the relations �+= {〈a, b〉 ∈ B× B : a ⊃ b = ε(a ⊃ b)} and
�−= {〈a, b〉∈B×B : ¬(a �⊂ b) = ε(¬(a �⊂ b))} are preorders (i.e. ref lexive and transitive),

(ii) ≤=�+ ∩ (�−)−1,
(iii) the equivalence relation ≡+ induced by �+ is compatible with the operations ∧,∨,⊃,
(iv) the equivalence relation ≡− induced by �− is compatible with the operations ∧,∨, �⊂,
(v) the quotients B+ = 〈B/≡+,∧,∨,⊃〉 and B− = 〈B/≡−,∨,∧, �⊂〉 are implicative lattices,4

(vi) x ≡+ y ⇒ ¬x ≡− ¬y and x ≡− y ⇒ ¬x ≡+ ¬y,
(vii) x �⊂ y ≡+ ¬x ∧ y and x ⊃ y ≡− ¬x ∨ y,

(viii) x �⊂ x ≡− ¬(x ⊃ x) and x ⊃ x ≡+ ¬(x �⊂ x),
(ix) ¬(x ∨ y) ≡+ ¬x ∧ ¬y and ¬(x ∧ y) ≡− ¬x ∨ ¬y,
(x) ¬¬x �+ x and ¬¬x �− x,

(xi) ¬⊥ = ⊥ ¬� = � ¬t = f ¬f = t (if any of those bounds is present) and
(xii) 〈B,∧,∨,�,�〉 is an interlaced pre-bilattice where the relations ≡+,≡− coincide with those

defined in Theorem 2.3.

It is easy to show (recalling Lemma 3.3) that any algebra satisfying all properties in Definition 4.5
also satisfies all items of Definition 3.2. Hence, as expected, any non-involutive implicative bilattice
has a non-involutive bilattice reduct. The reader might have noticed that some items in Definition 4.5
are redundant; our reason for having them is that they will make it easier to generalize the definition
to N4-like structures which lack some of the bilattice operations (see Section 6). It is easy to see
that all conditions in Definition 4.5 can be expressed as quasiequations; therefore, the class of non-
involutive implicative bilattices (from now on denoted NIB) is a quasivariety. In fact, the product
representation that we are going to prove next will allow us to verify that NIB is actually a variety.

4Notice that B− has ∨ as meet (whose residuum is �⊂) and ∧ as join.
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Non-Involutive Twist-Structures 985

Given our previous considerations, it is straightforward to check that any non-involutive implica-
tive product bilattice satisfies all the conditions in Definition 4.5, which gives us the following.

PROPOSITION 4.6
Every non-involutive implicative product bilattice is a non-involutive implicative bilattice.

Conversely, given a non-involutive implicative bilattice B, we can construct the product B+ �� B−
and show that the two algebras are isomorphic. As before, we define the maps p : B− → B+ and
n : B+ → B− by p([a]−) = [¬a]+ and n([a]+) = [¬a]−. Item (vi) of Definition 4.5 guarantees
that these maps are well-defined, while items (viii–xi) ensure that they satisfy properties (i–iii) of
Definition 3.1.

THEOREM 4.7
Let B = 〈B,∧,∨,�,�,⊃, �⊂,¬〉 be a non-involutive implicative bilattice. Then the map
ι : B → B+ �� B− given by ι(a) = ([a]+, [a]−) for all a ∈ B is an isomorphism.

PROOF. We already know that ι is a non-involutive bilattice isomorphism. It remains to show that
ι preserves the ⊃, �⊂ operations, that is ι(a ⊃ b) = ι(a) ⊃ ι(b) and ι(a �⊂ b) = ι(a) �⊂ ι(b).
As to the former, using Definition 4.5(vii), we have ι(a ⊃ b) = 〈[a ⊃ b]+, [a ⊃ b]−〉 =
〈[a]+ ⊃ [b]+, [¬a ∨ b]−〉 = 〈[a]+ ⊃ [b]+, [¬a]− ∨ [b]−〉 = 〈[a]+ ⊃ [b]+, n([a]+) ∨ [b]−〉 =
ι(a) ⊃ ι(b). As to the latter, using Definition 4.5(vii) again we get ι(a �⊂ b) = ([a �⊂ b]+,
[a �⊂ b]−) = ([¬a ∧ b]+, [a]− �⊂ [b]−) = ([¬a]+ ∧ [b]+, [a]− �⊂ [b]−) = ( p([a]−) ∧ [b]+,
[a]− �⊂ [b]−) = ι(a) �⊂ ι(b). �

It is easy to show that the lattice of congruences of a non-involutive implicative bilattice is
isomorphic (through the same maps defined earlier) to Con∗(B+, B−), defined as before as the set
of pairs of congruences (of implicative lattices) that satisfy (1) and (2) from Section 3.

THEOREM 4.8
The lattice Con(B) of any non-involutive implicative bilattice B is isomorphic to Con∗(B+, B−) and
also to each of Conpn(B+) and Connp(B−).

PROOF. For the first part of the statement it suffices to check that the isomorphism defined in the
proof of Proposition 3.8 preserves the implications, which is straightforward. The second part of the
statement follows from Corollary 4.4(ii). �

PROPOSITION 4.9
The class NIB of non-involutive implicative bilattices is a variety.

PROOF. We know that NIB is a quasivariety, so it remains to show that this class is closed under
homomorphic images. We will check this for product bilattices, which we can do without loss
of generality by Theorem 4.7. Let then B = B+ �� B− be a product bilattice and let C be a
homomorphic image of B via some homomorphism h : B → C. Denote by θ the kernel of h and
consider the congruences θ+ ⊆ B+ ×B+, θ− ⊆ B− ×B− defined according to Proposition 3.8. We
claim that C can be embedded into B+/θ+ �� B−/θ−, which implies (again by Theorem 4.7, plus
the fact that implicative lattices form a variety) that C ∈ IS(NIB) = NIB (this last equality obviously
holds because a quasivariety is closed under isomorphisms and subalgebras). To show this, consider

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/article/28/5/973/5173466 by U

niversidade Federal do R
io G

rande do N
orte user on 27 M

ay 2021



986 Non-Involutive Twist-Structures

the map ι : C → B+/θ+ �� B−/θ− given by ι(h(a)) = 〈[a]+/θ+, [a]−/θ−〉 for all a ∈ B, where
[a]+, [a]− denote the equivalence classes of a under ≡+ and ≡−, respectively. It is easy to check
that ι is well-defined. Let us show that ι preserves the meet with respect to the truth order:

ι(h(a) ∧C h(b)) = ι(h(a ∧B b))

= 〈[a ∧B b]+/θ+, [a ∧B b]−/θ−〉

= 〈([a]+ ∧B+ [b]+)/θ+, ([a]− ∨B− [b]−)/θ−〉

= 〈[a]+/θ+ ∧B+/θ+ [b]+/θ+, [a]−/θ− ∨B−/θ− [b]−/θ−〉

= 〈[a]+/θ+, [a]−/θ−〉 ∧B+/θ+��B−/θ− 〈[b]+/θ+, [b]−/θ−〉

= ι(h(a)) ∧B+/θ+��B−/θ− ι(h(b)).

Preservation of the other connectives can be easily proved in the same way. To prove injectivity of ι,
assume ι(h(a)) = ι(h(b)), i.e. 〈[a]+/θ+, [a]−/θ−〉 = 〈[b]+/θ+, [b]−/θ−〉. Then, by definition of θ+
and θ−, we have 〈a ∧ b, a � b〉, 〈a ∧ b, a � b〉 ∈ θ . Then 〈a � b, a � b〉 ∈ θ which implies (in any
lattice) 〈a, b〉 ∈ θ , i.e. h(a) = h(b) as required. �

In order to introduce and study a logic of non-involutive implicative bilattices, the notion of bifilter
(see e.g. [5, Section 3.3]) will be useful.

DEFINITION 4.10
A bifilter of a (non-involutive implicative) bilattice B is a non-empty set F ⊆ B that is upward closed
(in both lattice orders) and is furthermore closed under binary meets of both orders, that is a, b ∈ F
imply a ∧ b, a � b ∈ F. An open bifilter is a bifilter such that ¬¬a ∈ F whenever a ∈ F.

Bifilters are well known in the bilattice literature since the works of Arieli and Avron [2], whereas
the new notion of open bifilter clearly poses a non-trivial constraint only when the negation might
be non-involutive.

PROPOSITION 4.11
Any bifilter F of a (non-involutive implicative) bilattice B = B+ �� B− is of the form F = F+×B−
where F+ is a non-empty lattice filter of B+. Moreover, F is open if and only if F+ is such that
a+ ∈ F+ implies p(n(a+)) ∈ F+.

PROOF. The first part of the statement is well known [5, Proposition 3.18] and the second is an
immediate consequence of the first. �

Proposition 4.11 immediately implies that any B ∈ NIB has a minimal bifilter Fε = {1+} × B−,
which is also open and is given by Fε = {ε(a) : a ∈ B}, where ε(a) abbreviates a ⊃ a.

PROPOSITION 4.12
Let B ∈ NIB and F ⊆ B. The following are equivalent:

(i) F is an (open) bifilter.
(ii) F is non-empty and closed under (mp), i.e. a, a ⊃ b ∈ F imply b ∈ F (and ¬¬a ∈ F

whenever a ∈ F).
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Non-Involutive Twist-Structures 987

PROOF. (i)⇒(ii). To take advantage of the characterization of Proposition 6, we will assume that
B = B+ �� B− and so F = F+ × B− for some non-empty lattice filter F+ ⊆ B+. Then the result
easily follows from the fact that a lattice filter of an implicative lattice is closed under (mp) relative
to the Heyting implication of B+. (ii)⇒(i). Also assuming B = B+ �� B−, by (ii) we have that [F]+
is non-empty and is closed under (mp) relative to the Heyting implication of B+. Hence, [F]+ is a
lattice filter of B+ and the result follows again by Proposition 4.11. �

5 The logic of non-involutive implicative bilattices

Following [10], we can consider the logic �s defined by all matrices 〈B, Fε〉 where B ∈ NIB and
Fε = {ε(a) : a ∈ B}. Alternatively, one could consider the (weaker) logic �w defined by all
matrices 〈B, F〉 where B ∈ NIB and F is any bifilter. The two logics coincide if the negation is
involutive, but in general only the inclusion �w⊆�s holds. It is also an immediate consequence of
the definitions that the two logics share the same valid formulas and therefore only differ when it
comes to consequences of non-empty sets of formulas. In particular we have p �s ¬¬p which does
not hold in �w, although it is true that ∅ �w p implies ∅ �w ¬¬p. Another rule that is sound in �s but
not in �w is p ∧ ¬q � ¬(p ⊃ q), which is reminiscent of the stronger axiom ( p ∧ ¬q) ⊃ ¬(p ⊃ q)

that holds in involutive bilattice logic.
We now introduce a Hilbert calculus �NIB that we will prove to be complete with respect to the

above-defined semantic consequence �s and algebraizable in the sense of [3] with respect to the
class of non-involutive implicative bilattices.

DEFINITION 5.1
The logic �NIB is defined by the following axioms and rules.
Axioms for the {∧,∨,�,�,⊃}-fragment (corresponding to intuitionistic/implicative bilattice logic):

(⊃ 1) p ⊃ (q ⊃ p)

(⊃ 2) ( p ⊃ (q ⊃ r)) ⊃ (( p ⊃ q) ⊃ ( p ⊃ r))

(∧ ⊃) ( p ∧ q) ⊃ p ( p ∧ q) ⊃ q

(⊃ ∧) p ⊃ (q ⊃ ( p ∧ q))

(⊃ ∨) p ⊃ ( p ∨ q) q ⊃ ( p ∨ q)

(∨ ⊃) ( p ⊃ r) ⊃ ((q ⊃ r) ⊃ (( p ∨ q) ⊃ r))

(� ⊃) ( p � q) ⊃ p ( p � q) ⊃ q

(⊃ �) p ⊃ (q ⊃ ( p � q))

(⊃ �) p ⊃ ( p � q) q ⊃ ( p � q)

(� ⊃) ( p ⊃ r) ⊃ ((q ⊃ r) ⊃ (( p � q) ⊃ r))
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988 Non-Involutive Twist-Structures

Axioms for the {∧,∨,�,�, �⊂,¬}-fragment:

( �⊂ 1) ¬( p �⊂ (q �⊂ p))

( �⊂ 2) ¬(( p �⊂ (q �⊂ r)) �⊂ (( p �⊂ q) �⊂ ( p �⊂ r)))

(∨ �⊂) ¬(( p ∨ q) �⊂ p) ¬(( p ∨ q) �⊂ q)

( �⊂ ∨) ¬( p �⊂ (q �⊂ ( p ∨ q)))

( �⊂ ∧) ¬( p �⊂ ( p ∧ q)) ¬(q �⊂ ( p ∧ q))

(∧ �⊂) ¬(( p �⊂ r) �⊂ ((q �⊂ r) �⊂ (( p ∧ q) �⊂ r)))

(� �⊂) ¬(( p � q) �⊂ p) ¬(( p � q) �⊂ q)

( �⊂ �) ¬( p �⊂ (q �⊂ ( p � q)))

( �⊂ �) ¬( p �⊂ ( p � q)) ¬(q �⊂ ( p � q))

(� �⊂) ¬(( p �⊂ r) �⊂ ((q �⊂ r) �⊂ (( p � q) �⊂ r)))

Interaction axioms:

(A1) ¬( p �⊂ q) ⊃ (¬p ⊃ ¬q)

(A2) ¬((¬p ∨ q) �⊂ ( p ⊃ q))

(A3) ¬(( p ⊃ q) �⊂ (¬p ∨ q))

(A4) ( p �⊂ q) ⊃ (¬p ∧ q)

(A5) (¬p ∧ q) ⊃ ( p �⊂ q)

(A6) ¬¬p ⊃ ¬(q �⊂ ( p ⊃ q))

(A7) ¬¬( p ⊃ q) ⊃ ¬(¬p �⊂ ¬q)

(A8) ¬(( p �⊂ p) ⊃ ¬( p ⊃ p))

Non-involutive negation axioms:

(NI1) ¬( p ∨ q) ⊃ (¬p ∧ ¬q)

(NI2) (¬p ∧ ¬q) ⊃ ¬( p ∨ q)

(NI3) ¬(¬( p ∧ q) �⊂ (¬p ∨ ¬q))

(NI4) ¬((¬p ∨ ¬q) �⊂ ¬( p ∧ q))

(NI5) ¬¬p ⊃ p

(NI6) ¬(¬¬p �⊂ p)
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Non-Involutive Twist-Structures 989

Axioms for the constants (if present):

(⊃ t) p ⊃ t

(⊃ f) f ⊃ p

( �⊂ t) ¬(t �⊂ p)

( �⊂ f) ¬( p �⊂ f)

(⊃ �) p ⊃ �
(⊃ ⊥) ⊥ ⊃ p

( �⊂ �) ¬( p �⊂ �)

( �⊂ ⊥) ¬(⊥ �⊂ p)

The rules are modus ponens (mp) and double negation (dn):

(mp) p, p ⊃ q � q

(dn) p � ¬¬p.

LEMMA 5.2 (Soundness).
The class of matrices 〈B, Fε〉 where B ∈ NIB and Fε = {ε(a) : a ∈ B} is sound for the logic �NIB.

PROOF. A matter of routine checking, using the product representation of non-idempotent implica-
tive bilattices (Theorem 4.7 and Proposition 4.11). �

We state here the main result but we delay the proof until Section 7.

THEOREM 5.3
The logic �NIB is algebraizable with translations τ : Fm → Eq given by τ(p) = {p ≈ ε(p)} and
ρ : Eq → Fm given by ρ(x ≈ y) = {x ⊃ y, y ⊃ x,¬(x �⊂ y),¬(y �⊂ x)}. The equivalent algebraic
semantics of �NIB is the variety NIB of non-involutive implicative bilattices.

PROOF. See Corollaries 7.5 and 7.7. �
Theorem 5.3 implies, in particular, that the calculus �NIB is complete with respect to the intended

semantics for our logic, i.e. the class of matrices 〈B, Fε〉 with B ∈ NIB. Moreover, we can exploit the
algebraizability result to obtain a complete axiomatization for the other logic �w that we introduced
above as the logic of all matrices 〈B, F〉 where B ∈ NIB and F is an arbitrary bifilter.

LEMMA 5.4
Denote by �w the calculus having all theorems of �NIB as axioms and (mp) as the only rule of
inference. Then Alg∗(�w) = Alg(�w) = NIB.

PROOF. The equality Alg∗(�w) = Alg(�w) holds for all protoalgebraic logics [8, Proposition 3.2.]
and �w is protoalgebraic by [7, Theorem 1.1.3]. Moreover, since �w⊆ �NIB, by Theorem 5.3
we have NIB = Alg∗(�NIB) ⊆ Alg∗(�w). For the other inclusion, it suffices to show that the
Lindenbaum–Tarski algebra Fm∗ of �w belongs to NIB. This is so because V(Alg∗(�w)) = V(Fm∗)
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990 Non-Involutive Twist-Structures

by [8, Proposition 2.26], and so Fm∗ ∈ NIB implies Alg∗(�w) ⊆ V(Alg∗(�w)) =
V(Fm∗) ⊆ V(NIB) = NIB. We claim that Tarski congruence of �w is Ω = {〈φ, ψ〉 ∈ Fm × Fm :
∅ �w φ ↔ ψ} = {〈φ, ψ〉 ∈ Fm × Fm : ∅ �g φ ↔ ψ}, which is (by Theorem 5) the
Leibniz congruence of the matrix 〈Fm, Th(�g)〉. This last remark immediately implies that Ω

is a congruence of Fm, therefore it remains to check that it is the greatest logical congruence (i.e.
contained in the inter-derivability relation of �w). To this purpose, suppose θ is a logical congruence
of 〈Fm,�w〉 and 〈φ, ψ〉 ∈ θ . Then 〈φ ⊃ φ, φ ⊃ ψ〉 ∈ θ and also 〈¬(φ �⊂ φ),¬(φ �⊂ ψ)〉 ∈ θ .
This implies that φ ⊃ φ �w φ ⊃ ψ and ¬(φ �⊂ φ) �w ¬(φ �⊂ ψ). Both φ ⊃ φ and ¬(φ �⊂ φ)

are theorems of �NIB (and thus theorems of �w), so we have ∅ �w φ ⊃ ψ and ∅ �w ¬(φ �⊂ ψ).
In a similar way we obtain ∅ �w ψ ⊃ φ, ∅ �w ¬(ψ �⊂ φ), and so ∅ �w φ ↔ ψ . This means that
〈φ, ψ〉 ∈ Ω and so θ ⊆ Ω . Thus, the Lindenbaum–Tarski algebra Fm∗ of �w is Fm/Ω , which by
Theorem 5.3 belongs to NIB as claimed. �
LEMMA 5.5
Let B ∈ NIB and F ⊆ B. The following are equivalent:

(i) F is a logical filter of �w .
(ii) F is a bifilter.

PROOF. (i)⇒(ii). F is non-empty since it contains the interpretation of all theorems of �w. Moreover,
F is closed under (mp), so we can apply Proposition 4.12 to conclude that F is a bifilter.
(ii)⇒(i). Proposition 4.6 implies that F contains the interpretation of all axioms of �NIB, and closure
of F under (mp) follows from Proposition 4.12. �
THEOREM 5.6
The logic �w is axiomatized by the calculus �w having all theorems of �NIB as axioms and (mp) as
the only rule of inference.

PROOF. Soundness is easy. On the one hand, as we have observed earlier, �w and �s share the
same set of valid formulas. Therefore (by soundness of �NIB), any theorem of �NIB is valid in �w
too. On the other hand, any bifilter is closed under (mp) by Lemma 5.5. Thus, all matrices 〈B, F〉,
with B ∈ NIB and F a bifilter, are models of �w. For completeness, assume Γ ��w φ. Then there
is a reduced matrix 〈B, F〉 and a valuation h : Fm → B such that h(Γ ) ⊆ F and h(φ) /∈ F.
By Lemma 5.4, B ∈ NIB and by Lemma 5.5, F is a bifilter. Hence, Γ ��w φ as required. �

6 Starting from N4-lattices

In this section we generalize the non-involutive bilattice product construction, introducing a common
framework for bilattices, nd-frames and N4-lattices. We are going to work with the {∧,∨,⊃, �⊂,¬}-
fragment of the bilattice language (in general, we do not assume the presence of any constant), but
all the notation is consistent with the one used in the preceding sections. In particular, we write ε(a)

as an abbreviation for a ⊃ a, and a �+ b as an abbreviation for a ⊃ b = ε(a ⊃ b) and a �− b as an
abbreviation for ¬(a �⊂ b) = ε(¬(a �⊂ b)). As before, we also define x → y = (x ⊃ y) ∧ ¬(y �⊂ x)
and x ↔ y = {x ⊃ y, y ⊃ x,¬(x �⊂ y),¬(y �⊂ x)}.

DEFINITION 6.1
Let L+ �� L− be a non-involutive implicative product bilattice (Definition 4.1). A non-involutive
twist-structure over 〈L+, L−〉 is any {∧,∨,⊃, �⊂,¬}-subalgebra of L+ �� L− having the property
that π1(A) = L+ and π2(A) = L−.
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Non-Involutive Twist-Structures 991

DEFINITION 6.2
A non-involutive N4-lattice is an algebra A = 〈A,∧,∨,⊃, �⊂,¬〉, where 〈A,∧,∨〉 is a lattice (a
bounded lattice, in case the bounds f and t are present) and:

(i) the relations �+ and �− are preorders (i.e. ref lexive and transitive),
(ii) x ≤ y if and only if x �+ y and y �− x.

(iii) the equivalence relation ≡+ induced by �+ is compatible with the operations ∧,∨,⊃,
(iv) the equivalence relation ≡− induced by �− is compatible with the operations ∧,∨, �⊂,
(v) the quotients A+ = 〈A/≡+,∧,∨,⊃〉 and A− = 〈A/≡−,∨,∧, �⊂〉 are implicative lattices,

(vi) x ≡+ y ⇒ ¬x ≡− ¬y and x ≡− y ⇒ ¬x ≡+ ¬y,
(vii) x �⊂ y ≡+ ¬x ∧ y and x ⊃ y ≡− ¬x ∨ y,

(viii) x �⊂ x ≡− ¬(x ⊃ x) and x ⊃ x ≡+ ¬(x �⊂ x),
(ix) ¬(x ∨ y) ≡+ ¬x ∧ ¬y and ¬(x ∧ y) ≡− ¬x ∨ ¬y,
(x) ¬¬x �+ x and ¬¬x �− x and

(xi) ¬t = f ¬f = t (if the constants are present).

Non-involutive N4-lattices (NN4) are obviously a generalization of non-involutive implicative
bilattices. It is also easy to check that any N4-lattice [14, Definition 8.4.1] satisfies all items of
Definition 6.2 if we let x �⊂ y = ¬(¬x ⊃ ¬y). That is, non-involutive N4-lattices can also be seen as
a generalization of N4-lattices. Next we show the equivalence between Definitions 6.1 and 6.2. The
following proposition is straightforward.

PROPOSITION 6.3
Every non-involutive twist-structure is a non-involutive N4-lattice.

Let A ∈ NN4 and A+, A− be as in Definition 6.2(v). Observe that a �+ b implies [a]+ ⊃ [b]+ =
([a]+ ⊃ [b]+) ⊃ ([a]+ ⊃ [b]+) and so [a]+ ≤+ [b]+ in A+. Conversely, it is not difficult to show
that [a]+ ≤+ [b]+ implies a �+ b. Similarly we have a �− b iff [a]+ ≤− [b]− in A−.

As before, we define maps n : A+ → A− by n([a]+) = [¬a]− and p : A− → A+ by
p([a]−) = [¬a]+. Definition 6.2(vi) guarantees that these are well defined. Moreover we have
n([a ⊃ a]+) = [¬(a ⊃ a)]− = [a �⊂ a]− by item (viii), n([a∧b]+) = [¬(a∧b)]− = [¬a∨¬b]− =
[¬a]− ∨ [¬b]− = n([a]+) ∨ n([b]+) by item (ix) and p(n([a]+)) = [¬¬a]+ ≤+ [a]+ by item (x).
A similar argument shows that the map p also satisfies properties (i–iii) of Definition 3.1. Thus, we
have a non-involutive twist-structure A+ �� A−.

THEOREM 6.4
Let A = 〈A,∧,∨,⊃, �⊂,¬〉 be a non-involutive N4-lattice. Then the map ι : A → A+ �� A− given
by ι(a) = ([a]+, [a]−) for all a ∈ A is an embedding such that π1(ι[A]) = A+ and π2(ι[A]) = A−,
i.e A is isomorphic to a non-involutive twist-structure over 〈A+, A−〉.

PROOF. It is obvious that π1(ι[A]) = A+ and π2(ι[A]) = A−. Also, injectivity of ι is an immediate
consequence of Definition 6.2(ii). It remains to check that ι preserves the algebraic operations. The
case of ¬,∧ and ∨ is immediate. Let us check that ι(a ⊃ b) = ι(a) ⊃ ι(b) and ι(a �⊂ b) = ι(a) �⊂
ι(b). As to the former, using Definition 6.2(vii), we have ι(a ⊃ b) = 〈[a ⊃ b]+, [a ⊃ b]−〉 =
〈[a]+⊃ [b]+, [¬a∨b]−〉=〈[a]+⊃ [b]+, [¬a]−∨ [b]−〉=〈[a]+⊃ [b]+, n([a]+)∨ [b]−〉= ι(a)⊃ ι(b).
As to the latter, again by Definition 6.2(vii) we have ι(a �⊂ b) = ([a �⊂ b]+, [a �⊂ b]−) =
([¬a ∧ b]+, [a]− �⊂ [b]−) = ([¬a]+ ∧ [b]+, [a]− �⊂ [b]−) = (p([a]−) ∧ [b]+, [a]− �⊂ [b]−) =
ι(a) �⊂ ι(b) . �
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992 Non-Involutive Twist-Structures

Theorem 6.4 implies that we can view any non-involutive N4-lattice as a subalgebra of some
product L+ �� L−. We can use this fact to simplify our proofs and establish basic properties of non-
involutive N4-lattices. For example, we can say that the lattice reduct of a non-involutive N4-lattice
is distributive, because implicative lattices are distributive and therefore so must be their product
L+ �� L−. We list below other properties that can be easily checked in twist-structures.

PROPOSITION 6.5
Every non-involutive N4-lattice satisfies the following equations:

(i) (x ⊃ x) ⊃ y = y = (x �⊂ x) �⊂ y = ¬(x ⊃ x) �⊂ y
(ii) (x ∧ y) ⊃ z = x ⊃ (y ⊃ z) = y ⊃ (x ⊃ z) = (x ⊃ y) ⊃ (x ⊃ z)

(iii) (x ∨ y) �⊂ z = x �⊂ (y �⊂ z) = y �⊂ (x �⊂ z) = (x �⊂ y) �⊂ (x �⊂ z)
(iv) (x ∨ y) ⊃ z ≤ (x ⊃ z) ∧ (y ⊃ z) ≡+ (x ∨ y) ⊃ z
(v) (x ∧ y) �⊂ z ≡− (x �⊂ z) ∨ (y �⊂ z) ≤ (x ∧ y) �⊂ z

(vi) x ≤ (x → y) ⊃ y
(vii) x ⊃ x ≤ ¬¬(x ⊃ x)

(viii) ¬¬(x �⊂ x) ≤ x �⊂ x.

7 The logic of non-involutive N4-lattices

In this section we are going to introduce a logic that is algebraizable and has the class of non-
involutive N4-lattices as its equivalent algebraic semantics. As a corollary, we will obtain the above-
stated algebraizability of the logic of non-involutive implicative bilattices (Theorem 5.3).

The translations witnessing algebraizability are τ : Fm → Eq given by τ(p) = {p ≈ ε(p)} and
ρ : Eq → Fm given by ρ(x ≈ y) = {x ⊃ y, y ⊃ x,¬(x �⊂ y),¬(y �⊂ x)} or equivalently ρ(x ≈ y) =
{x → y, y → x}.

DEFINITION 7.1
The logic �NN4 is defined by all the axioms and rules from Definition 8 which do not mention the
knowledge connectives.5

REMARK 7.2
All rules of the {∧,∨,⊃}-fragment of intuitionistic logic are rules of �NN4 as well. Therefore,
all derivations of positive intuitionistic logic (or, indeed, of the {∧,∨,⊃}-fragment of Brouwerian
bilattice logic and N4-logic, see [4, 13]) can be reproduced in �NN4 as well. This fact will often be
used to shorten our proofs.

The following lemma lists a few useful properties of the �⊂-implication.

LEMMA 7.3
The following hold:

(i) ¬p,¬( p �⊂ q) �NN4 ¬q ( �⊂-mp)
(ii) ¬p �NN4 ¬(q �⊂ p)

(iii) ¬( p �⊂ q),¬(q �⊂ r) �NN4 ¬( p �⊂ r) ( �⊂-transitivity)
(iv) ¬( p �⊂ (q �⊂ r)) �NN4 ¬(q �⊂ ( p �⊂ r))

5We notice that axiom (A8) and all the (NI1–NI6) are not needed to show that the logic is algebraizable, so if we remove
them we obtain a logic which is still algebraizable, but with respect to some weaker structures than NN4.
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Non-Involutive Twist-Structures 993

(v) �NN4 ¬((p �⊂ q) �⊂ ((q �⊂ r) �⊂ (p �⊂ r)))
(vi) ¬(p �⊂ q),¬(p �⊂ r) �NN4 ¬(p �⊂ (q ∨ r)).

PROOF.

(i) By (A1) and (mp).
(ii) By ( �⊂ 1) and item (i) above ( �⊂-mp).

(iii) By item (ii) above we have ¬(q �⊂ r) �NN4 ¬( p �⊂ (q �⊂ r)). Hence, by ( �⊂ 2) and (mp) we
get ¬(q �⊂ r) �NN4 ¬((p �⊂ q) �⊂ ( p �⊂ r)), which gives us ¬( p �⊂ q),¬(q �⊂ r) �NN4
¬( p �⊂ r) by ( �⊂-mp).

(iv) From ( �⊂ 2) and ( �⊂-mp) we obtain ¬( p �⊂ (q �⊂ r)) �NN4 ¬(( p �⊂ q) �⊂ ( p �⊂ r)).
Since ¬(q �⊂ ( p �⊂ q)) is an instance of ( �⊂ 1), by �⊂-transitivity we have ¬(( p �⊂ q)

�⊂ ( p �⊂ r)) �NN4 ¬(q �⊂ ( p �⊂ r)). So by transitivity of �NN4 we get
¬( p �⊂ (q �⊂ r)) �NN4 ¬(q �⊂ ( p �⊂ r)) as required.

(v) From ¬((q �⊂ r) �⊂ ( p �⊂ (q �⊂ r))), which is an instance of ( �⊂ 1), and ( �⊂ 2) we obtain,
by �⊂-transitivity, that ¬((q �⊂ r) �⊂ (( p �⊂ q) �⊂ ( p �⊂ r))) is a theorem. Using item (iv)
above, we have then that ¬(( p �⊂ q) �⊂ ((q �⊂ r) �⊂ ( p �⊂ r))) is a theorem as well. (vi)
¬(q �⊂ (r �⊂ (q∨r))) is an instance of ( �⊂ ∨). Hence, by item (iii) above we have ¬( p �⊂ q)

�NN4 ¬( p �⊂ (r �⊂ (q ∨ r))). Since ¬(( p �⊂ (r �⊂ (q ∨ r))) �⊂ (( p �⊂ r) �⊂ ( p �⊂ (q ∨ r))))
is an instance of ( �⊂ 2), we have, by ( �⊂-mp), ¬( p �⊂ q) �NN4 ¬(( p �⊂ r) �⊂ ( p �⊂ (q∨ r))).
Then, using ( �⊂-mp) again, we have ¬( p �⊂ q),¬( p �⊂ r) �NN4 ¬( p �⊂ (q ∨ r)). �

THEOREM 7.4
The logic �NN4 is algebraizable with translations τ : Fm → Eq given by τ(p) = { p ≈ ε(p)} and
ρ : Eq → Fm given by ρ(x ≈ y) = {x ⊃ y, y ⊃ x,¬(x �⊂ y),¬( y �⊂ x)}.
PROOF. Recall that p ↔ q is a shorthand for the set { p ⊃ q, q ⊃ p,¬( p �⊂ q),¬(q �⊂ p)}. We
also write Γ � Δ to mean that Γ � δ for all δ ∈ Δ (beware: we depart here from the widespread
interpretation of Γ � Δ as Γ � δ for some δ ∈ Δ). By [3,Theorem 4.7], in order to prove the result
it is sufficient to check that the following conditions are met:

(i) �NN4 p ↔ p,
(ii) p ↔ q �NN4 q ↔ p,

(iii) p ↔ q, q ↔ r �NN4 p ↔ r,
(iv) p ↔ q �NN4 ¬p ↔ ¬q,
(v) p ↔ q, r ↔ s �NN4 ( p ∗ r) ↔ (q ∗ s) for all ∗ ∈ {∧,∨,⊃, �⊂} and

(vi) p ��NN4 p ↔ ( p ⊃ p).

(i) In light of Remark 7.2, we only need to prove that ¬(p �⊂ p) is a theorem of the logic. Notice
that ¬(( p �⊂ ((q �⊂ p) �⊂ p)) �⊂ (( p �⊂ (q �⊂ p)) �⊂ ( p �⊂ p))) is an instance of ( �⊂ 2) and both
¬( p �⊂ ((q �⊂ p) �⊂ p)) and ¬( p �⊂ (q �⊂ p)) are instances of ( �⊂ 1). Then the result is obtained by
applying ( �⊂-mp) twice. (ii) Immediate. (iii) By Remark 7.2 we have { p ↔ q, q ↔ r} �NN4 { p ⊃
r, r ⊃ p}. The remaining part follows by �⊂-transitivity that we proved in Lemma 7.3(iii). (iv) By (A1)
we have p ↔ q �NN4 {¬p ⊃ ¬q,¬q �⊂ ¬p}. To see that p ↔ q �NN4 {¬(¬p �⊂ ¬q),¬(¬q �⊂ ¬p)},
notice that by (dn), (A7) and (mp) we have ( p ⊃ q) �NN4 ¬¬( p ⊃ q) �NN4 ¬(¬p �⊂ ¬q).
(v) We need to consider each connective in {∧,∨,⊃, �⊂}. (∧) We have { p ↔ q, r ↔ s} �NN4
{( p ∧ r) ⊃ (q ∧ s), (q ∧ s) ⊃ ( p ∧ r)} by Remark 7.2. To complete the proof we are going
to show that {¬( p �⊂ q),¬(r �⊂ s)} �NN4 ¬(( p ∧ r) �⊂ (q ∧ s)). Both ¬(q �⊂ (q ∧ s)) and
¬(s �⊂ (q ∧ s)) are instances of ( �⊂ ∧). Hence, by �⊂-transitivity, we obtain {¬( p �⊂ q),¬(r �⊂ s)}
�NN4 {¬( p �⊂(q∧s)),¬(r �⊂ (q∧s))}. Since¬(( p �⊂ (q∧s)) �⊂ ((r �⊂ (q∧s)) �⊂ (( p∧r) �⊂ (q∧s))))
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994 Non-Involutive Twist-Structures

is an instance of (∧ �⊂), we can apply ( �⊂-mp) twice to obtain the required result. (∨). We have
{ p ↔ q, r ↔ s} �NN4 {( p∨ r) ⊃ (q∨ s), (q∨ s) ⊃ ( p∨ r)} by Remark 7.2. To finish the proof it is
enough to show that {¬( p �⊂ q),¬(r �⊂ s)} �NN4 ¬(( p∨r) �⊂ (q∨s)). Notice that¬(( p∨r) �⊂ p) and
¬(( p ∨ r) �⊂ r) are instances of (∨ �⊂). Hence, by �⊂-transitivity, we have {¬( p �⊂ q),¬(r �⊂ s)} �
NN4{¬(( p ∨ r) �⊂ q,¬(( p ∨ r) �⊂ s}. The result then follows by Lemma 7.3(vi). (⊃). We have
{ p ↔ q, r ↔ s} �NN4 {( p ⊃ r) ⊃ (q ⊃ s), (q ⊃ s) ⊃ ( p ⊃ r)} by Remark 7.2. To finish
the proof it is enough to show that { p ⊃ q,¬(r �⊂ s)} �NN4 ¬(( p ⊃ r) �⊂ (q ⊃ s)). We
have observed above, in the proof of item (iv), that p ⊃ q �NN4 ¬(¬p �⊂ ¬q). Hence, { p ⊃ q,
¬(r �⊂ s)} �NN4 {¬(¬p �⊂ ¬q),¬(r �⊂ s)}. Also, as shown in the proof of (∨), {¬(¬p �⊂ ¬q),
¬(r �⊂ s)} �NN4 ¬((¬p ∨ r) �⊂ (¬q ∨ s)). We have ¬((¬p ∨ r) �⊂ (¬q ∨ s)) �NN4 ¬((¬p ∨ r) �⊂
(q ⊃ s)) by (A2) and �⊂-transitivity and ¬((¬p ∨ r) �⊂ (q ⊃ s)) �NN4 ¬(( p ⊃ r) �⊂ (q ⊃ s))
by (A3) and �⊂-transitivity. Then using transitivity of �NN4 we obtain the desired result. ( �⊂). First
we show that {¬(q �⊂ p),¬(r �⊂ s)} �NN4 ¬(( p �⊂ r) �⊂ (q �⊂ s)). By Lemma 7.3(v) we have
�NN4 ¬((q �⊂ p) �⊂ (( p �⊂ r) �⊂ (q �⊂ r))), so by ( �⊂-mp) we obtain {¬(q �⊂ p),¬(r �⊂ s)} �NN4
¬(( p �⊂ r) �⊂ (q �⊂ r)). On the other hand, ¬((q �⊂ (r �⊂ s)) �⊂ ((q �⊂ r) �⊂ (q �⊂ s))) is an instance
of ( �⊂ 2) and we have ¬(r �⊂ s) �NN4 ¬(q �⊂ (r �⊂ s)) by Lemma 7.3(ii). Thus, by ( �⊂-mp) we get
¬(r �⊂ s) �NN4 ¬((q �⊂ r) �⊂ (q �⊂ s)). From this and {¬(q �⊂ p),¬(r �⊂ s)}
�NN4 ¬(( p �⊂ r) �⊂ (q �⊂ r)), using �⊂-transitivity, we have {¬(q �⊂ p),¬(r �⊂ s)} �NN4
¬(( p �⊂r) �⊂ (q �⊂ s)) as required. To complete the proof it is sufficient to show that { p ↔ q, r ↔ s}
�NN4 ( p �⊂ r) ⊃ (q �⊂ s). By item (iv) above, we have { p ↔ q, r ↔ s} �NN4 ¬p ↔ ¬q. Then, as
we have seen in the proof of (∧), we have { p ↔ q, r ↔ s} �NN4 (¬p ∧ r) ⊃ (¬q ∧ s). We have
�NN4 ( p �⊂ r) ⊃ (¬p ∧ r) by (A4) and �NN4 (¬q ∧ s) ⊃ (q �⊂ s) by (A5), so by transitivity of
⊃ (which we have by Remark 7.2) we conclude that { p ↔ q, r ↔ s} �NN4 ( p �⊂ r) ⊃ (q �⊂ s).
(vi) By Remark 7.2 we have p ��NN4 { p ⊃ (p ⊃ p), ( p ⊃ p) ⊃ p}. It remains to show that
p �NN4 {¬( p �⊂ (p ⊃ p)),¬(( p ⊃ p) �⊂ p)}. The formula ¬(( p ⊃ p) �⊂ p) is actually a theorem.
To see this, notice that ¬(( p ⊃ p) �⊂ (¬p ∨ p)) is an instance of (A3) and ¬((¬p ∨ p) �⊂ p) is an
instance of (∨ �⊂). Then the result follows by �⊂-transitivity. Finally, ¬¬p ⊃ ¬( p �⊂ ( p ⊃ p)) is an
instance of (A6), so by (dn) and (mp) we obtain p �NN4 ¬¬p �NN4 ¬( p �⊂ ( p ⊃ p)). �
COROLLARY 7.5
The logic �NIB is algebraizable with translations τ : Fm → Eq given by τ( p) = { p ≈ ε(p)} and
ρ : Eq → Fm given by ρ(x ≈ y) = {x ⊃ y, y ⊃ x,¬(x �⊂ y),¬( y �⊂ x)}.
PROOF. The logic �NIB is by definition an expansion of �NN4 that we have seen to be algebraizable.
Looking at the proof of Theorem 7.4, one sees that the only additional condition that needs to be
checked for �NIB is (v), i.e. that p ↔ q, r ↔ s �NN4 (p ∗ r) ↔ (q ∗ s) for all ∗ ∈ {�,�}. Let us con-
sider both cases. (�) The positive part, i.e. p ↔ q, r ↔ s �NN4 {( p � r) ⊃ (q�s), (q�s) ⊃ ( p � r)},
holds by Remark 7.2. To prove, e.g. that p ↔ q, r ↔ s �NN4 ¬(( p � r) �⊂ (q � s)), we reason as in
the proof of Theorem 7.4, case (∨). Since ¬(( p� r) �⊂ p) and ¬(( p� r) �⊂ r) are instances of (� �⊂),
we apply �⊂-transitivity to obtain {¬( p �⊂ q),¬(r �⊂ s)} �NN4 {¬(( p � r) �⊂ q,¬(( p � r) �⊂ s}. At
this point we cannot apply directly Lemma 7.3(vi), but we can mimic its proof (using axiom ( �⊂ �)

instead of ( �⊂ ∨)) to obtain {¬( p �⊂ q),¬(r �⊂ s)} �NN4 ¬(( p� r) �⊂ (q� s)). (�) The positive part,
i.e. p ↔ q, r ↔ s �NN4 {( p � r) ⊃ (q � s), (q � s) ⊃ ( p � r)}, holds by Remark 7.2. To prove, e.g.
that p ↔ q, r ↔ s �NN4 ¬(( p � r) �⊂ (q � s)), we reason as in the proof of Theorem 7.4, case (∧).
That is, we show that {¬( p �⊂ q),¬(r �⊂ s)} �NN4 ¬(( p � r) �⊂ (q � s)). Both ¬(q �⊂ (q � s)) and
¬(s �⊂ (q � s)) are instances of ( �⊂ �). Hence, by �⊂-transitivity, we obtain {¬( p �⊂ q),¬(r �⊂ s)}
�NN4 {¬(p �⊂ (q�s)),¬(r �⊂ (q�s))}. Since¬(( p �⊂ (q�s)) �⊂ ((r �⊂ (q�s)) �⊂ (( p�r) �⊂ (q�s))))
is an instance of (� �⊂), we can apply ( �⊂-mp) twice to obtain the required result. �
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Non-Involutive Twist-Structures 995

THEOREM 7.6
The equivalent algebraic semantics of �NN4 is the class NN4 of non-involutive N4-lattices.

PROOF. Taking advantage of Theorem 6.4, it is easy to check that any algebra A ∈ NN4 satisfies
all equations and quasiequations which correspond (via τ ) to the axioms and rules of �NN4 (see
[3, Theorem 2.17]). Conversely, we need to check that any algebra satisfying these equations and
quasiequations also satisfies all conditions of Definition 6.2. We omit the proof that the operations
∧ and ∨ satisfy all lattice equations, which is straightforward, and provide a sketch of the non-trivial
proofs of the other items.6 (i) Reflexivity of �+ and �− follows from the fact that p ⊃ p and
¬(p �⊂ p) are theorems of the logic—see the proof of Theorem 7.4(i). Transitivity follows from
(the translations of) axioms (⊃ 2) and ( �⊂ 2), see also Lemma 7.3(iii). (ii) Taking a ≤ b as an
abbreviation of a = a ∧ b, the ‘only if’ part can be proved using axioms (∧ ⊃) and ( �⊂ ∧). For
the converse one needs to show that a ⊃ b = ε(a ⊃ b) and ¬(b ⊃ a) = ε(¬(b ⊃ a)) imply
a ↔ (a ∧ b) = ε(a ↔ (a ∧ b)), i.e. a ⊃ (a ∧ b) = ε(a ⊃ (a ∧ b)), (a ∧ b) ⊃ a = ε((a ∧ b) ⊃ a),
¬(a �⊂ (a∧b)) = ε(¬(a �⊂ (a∧b))) and¬((a∧b) �⊂ a) = ε(¬((a∧b) �⊂ a)). The first, a ⊃ (a∧b) =
ε(a ⊃ (a ∧ b)), follows from p ⊃ q �NN4 p ⊃ ( p ∧ q) (see Remark 7.2). The second and third
follow from (∧ ⊃) and ( �⊂ ∧). For the last we need to show that ¬(q ⊃ p) �NN4 ¬(( p ∧ q) �⊂ p)

which can be obtained from (∧ �⊂) instantiated as ¬(( p �⊂ p) �⊂ ((q �⊂ p) �⊂ (( p ∧ q) �⊂ p)))

with two applications of ( �⊂-mp). (iii) and (iv) follow from the proof of Theorem 7.4(iv). (v) It is
easy to show that the translations of the first 12 axioms of �NN4 imply that the quotients A+ and
A− are implicative lattices. (vi) The first quasiequation can be shown as follows. If a ≡+ b, then
a ⊃ b = ε(a ⊃ b). Then ¬¬(a ⊃ b) = ε(¬¬(a ⊃ b)) as well by (dn). By axiom (A7) and (mp)
we have then ¬(¬a �⊂ ¬b) = ε(¬(¬a �⊂ ¬b)). By symmetry, from b ⊃ a = ε(b ⊃ a) we obtain
¬(¬b �⊂ ¬a) = ε(¬(¬b �⊂ ¬a)) and so ¬a ≡− ¬b as required. Analogously, using (A1), one can
show that a ≡− b ⇒ ¬a ≡+ ¬b. (vii) The first property follows from (A4) and (A5), the second
from (A2) and (A3). (viii) The first property follows from (A8), the second from Theorem 7.4(i) or
item (i) above. (ix) Both properties follow easily from axioms (NI1–NI4). (x) Follow from axioms
(NI5) and (NI6). �
COROLLARY 7.7
The equivalent algebraic semantics of �NIB is the class NIB of non-involutive implicative bilattices.

PROOF. Since the translations witnessing algebraizability of �NN4 and �NIB are the same,
Corollary 7.5 implies that every algebra B ∈ Alg(�NIB) has a {∧,∨,⊃, �⊂,¬}-reduct which is
a non-involutive N4-lattice. Moreover, B satisfies all the τ -translations of the additional axioms
of �NIB. Let us check that this implies B ∈ NIB, and thus Alg(�NIB) ⊆ NIB. As a non-
involutive N4-lattice, B can be viewed as a twist-structure (Theorem 6.4) and so we can assume
that B ⊆ B+ �� B−. Let a = 〈a+, a−〉, b = 〈b+, b−〉 ∈ B be arbitrary elements. By axiom
(⊃ �) we have ε(a ⊃ (b ⊃ (a � b))) = a ⊃ (b ⊃ (a � b)) = (a ∧ b) ⊃ (a � b), where the
latter equality holds by Proposition 6.5(ii). On the other hand, applying ⊃-transitivity to axioms
(⊃ ∧) and (� ⊃), we have �NIB ( p � q) ⊃ (q ⊃ (p ∧ q)). Thus, ε((a � b) ⊃ (b ⊃ (a ∧ b))) =
(a � b) ⊃ (b ⊃ (a ∧ b)) = b ⊃ ((a � b) ⊃ (a ∧ b)), the last equality holding by Proposition 6.5(ii).
Since by (� ⊃) we have ε((a � b) ⊃ b) = (a � b) ⊃ b, we obtain (again by ⊃-transitivity)
that ε((a � b) ⊃ (a ∧ b)) = (a � b) ⊃ (a ∧ b). It follows that π1(a � b) = π1(a ∧ b). In a
similar way, using ( �⊂ �), ( �⊂ ∨) and (� �⊂), we can show that π2(a � b) = π2(a ∨ b). Thus,

6We also omit the easy proof that t and f are actually the lattice bounds, in case the axioms (⊃ t)–(�⊂ f) are included in
the logic.
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996 Non-Involutive Twist-Structures

we have 〈a+, a−〉, �〈b+, b−〉 = 〈a+ ∧+ b+, a− ∧− b−〉. This (by Theorem 4.7) ensures that the
� operation satisfies all identities that hold in NIB. A similar reasoning can be used to show that
〈a+, a−〉, �〈b+, b−〉 = 〈a+∨+b+, a−∨−b−〉. By (∨⊃) and ( �⊂ �), we have π1(a∨b) ≤+ π1(a�b)

and by (⊃ ∨) and (� ⊃) we obtain π1(a � b) ≤+ π1(a ∨ b). Using ( �⊂ ∧) and (� �⊂) we obtain
π2(a � b) ≤+ π2(a∧ b). The other inequality, π2(a∧ b) ≤+ π2(a � b), is obtained using (∧ �⊂) and
( �⊂ �). It is equally easy to check that the axioms for the constants, in case they are present, ensure
that ⊥ = 〈0+, 0−〉 and � = 〈1+, 1−〉. Thus, using Theorem 4.7 we conclude that B is a bilattice.
To show that NIB ⊆ Alg(�NIB), let B ∈ NIB. Then the matrix 〈B, Fε〉, where Fε is the least open
bifilter of B, is a model of �NIB (Lemma 5.2). Moreover, we know by Theorem 7.6 that the matrix
〈B, Fε〉 is reduced, if we view B as a non-involutive N4-lattice. A fortiori, 〈B, Fε〉 must be reduced
if we view B as a bilattice, which means that B ∈ Alg(�NIB) as required. �

In analogy with the two consequence relations (�w and �s) associated to non-involutive bilattices,
we might define a second consequence relation �w

NN4 determined by all matrices 〈A, F〉 such that
A ∈ NN4 and F is an implicative filter of A, i.e. (cf. Proposition 4.12) a non-empty set closed
under (⊃-mp). Reproducing the proofs of Lemmas 5.4 and 5.5, it is not difficult to prove that �w

NN4
is axiomatized by calculus having all theorems of �NN4 as axioms and (mp) as the only rule of
inference.

To conclude the section, we are going to obtain a characterization of the congruences of a non-
involutive N4-lattice which is analogous to those of Proposition 3.8 and Theorem 4.8 (see also
[5, Proposition 3.8]). We could have proven this result directly, but we can now take advantage
of algebraizability of �NN4 (Theorems 7.4 and 7.6) to obtain a shorter proof.

Let us begin by noticing that the logical filters of a non-involutive N4-lattice A are in
correspondence with the open lattice filters of A+.

PROPOSITION 7.8
The lattice of �NN4-filters of any non-involutive N4-lattice A is isomorphic to the lattice of open
lattice filters of A+, where a filter F+ ⊆ A+ is open when [a]+ ∈ F+ implies [¬¬a]+ ∈ F+.
PROOF. Let F be a �NN4-filter and let us check that F+ = {[a]+ ∈ A+ : a ∈ F} is a lattice filter
of A+. Notice that [a]+ ∈ F+ implies a ∈ F, because the relation ≡+ is compatible with F in
the sense that a ∈ F and a ≡+ b imply b ∈ F. This holds because a ≡+ b implies a ⊃ b =
ε(a ⊃ b), so a ⊃ b ∈ F, and F is closed under (mp). Thus, F+ = G+ implies F = G. Using
this remark, in order to show that [a]+, [b]+ ∈ F+ implies [a]+ ∧+ [b]+ = [a ∧ b]+ ∈ F+, it is
sufficient to observe that, by (⊃ ∧) and (mp), we have that a, b ∈ F imply a ∧ b ∈ F. Similarly,
if [a]+ ∈ F+ and [a]+ ≤+ [b]+, then a ∈ F and, by (⊃ ∨) and (mp), a ∨ b ∈ F, which means
that [a ∨ b]+ = [a]+ ∨+ [b]+ = [b]+ ∈ F+ as required. Also, if [a]+ ∈ F+ (hence, a ∈ F), then
by (dn) we have ¬¬a ∈ F and so [¬¬a]+ ∈ F+. Conversely, if F+ is an open lattice filter, then
F∗+ = {a ∈ A : [a]+ ∈ F+} is a �NN4-filter. This is so because, for any axiom φ of �NN4 and any
homomorphism h : Fm → A, h(φ) = ε(h(φ)) and so [h(φ)]+ = 1+ ∈ F+. Moreover, F∗+ is closed
under (mp) because a, a ⊃ b ∈ F∗+ (i.e. [a]+, a ⊃ b]+ ∈ F+) imply [b]+ ∈ F+ and so b ∈ F∗+.
Similarly, a ∈ F∗+ means that [a]+ ∈ F+ and so we have [¬¬a]+ ∈ F+ and ¬¬a ∈ F∗+. So F∗+ is
closed under (dn) as well. It is also clear that F∗+ = G∗+ implies F+ = G+ and that (F∗+)+ = F and
(F+)∗ = F. �

THEOREM 7.9
For any non-involutive N4-lattice A, the lattice 〈ConNN4(A),⊆〉 is isomorphic to 〈Conpn(A+),⊆〉.
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Non-Involutive Twist-Structures 997

PROOF. By algebraizability of �NN4 and [3, Theorem 5.1], we have an isomorphism ConNN4(A) ∼=
F i�NN4(A), where ConNN4(A) denotes the lattice of NN4-congruences of A (i.e. all congruences
θ such that A/θ ∈ NN4) and F i�NN4(A) denotes the lattice of all �NN4-filters on A. By
Proposition 7.8, we have an isomorphism F i�NN4(A) ∼= F i¬¬(A+), where F i¬¬(A+) denotes
the lattice of all lattice filters of A+ which satisfy the property mentioned in Proposition 7.8.
Finally, the isomorphism F i¬¬(A+) ∼= Conpn(A+) follows from the proof of Corollary 4.4(ii).
It is then sufficient to compose these isomorphisms to obtain ConNN4(A) ∼= Conpn(A+). It may
be instructive to see how, given θ ∈ ConNN4(A), the congruence θ+ ∈ Conpn(A+) is defined
and vice versa. One has 〈[a]+, [b]+〉 ∈ θ+ iff 〈a ⊃ b, ε(a ⊃ b)〉, 〈b ⊃ a, ε(b ⊃ a)〉 ∈ θ .
Conversely, for η ∈ Conpn(A+), the congruence η∗ ∈ ConNN4(A) is defined by 〈a, b〉 ∈ η∗ iff
[a ⊃ b]+, [b ⊃ a]+, [¬(a �⊂ b)]+, [¬(b �⊂ a)]+ ∈ 1+/η. �
PROPOSITION 7.10
The class NN4 of non-involutive N4-lattices is a variety.

PROOF. Taking advantage of Theorem 7.9, we can reason as in the proof of Proposition 4.9 to show
that NN4 (or rather, using Theorem 6.4, that the corresponding class of twist-structures) is closed
under homomorphic images. Given A ∈ NN4 and a homomorphism h : A → B, we consider
θ = ker(h) and define congruences θ+ ⊆ A+ × A+, θ− ⊆ A− × A− defined to Theorem 7.9. That
is, we let 〈[a]+, [b]+〉 ∈ θ+ iff 〈a ⊃ b, ε(a ⊃ b)〉, 〈b ⊃ a, ε(b ⊃ a)〉 ∈ θ and 〈[a]−, [b]−〉 ∈ θ+
iff 〈¬(a �⊂ b), ε(¬(a �⊂ b))〉, 〈¬(b �⊂ a), ε(¬(b �⊂ a))〉 ∈ θ . We then define the map
ι : B → A+/θ+ �� A−/θ− given by ι(h(a)) = 〈[a]+/θ+, [a]−/θ−〉, where [a]+, [a]− denote the
equivalence classes of a ∈ A under ≡+ and ≡−, respectively. It is easy to check that ι is well
defined. Also, the proof that ι is a homomorphism is the same as for Proposition 4.9. To prove
injectivity of ι, assume ι(h(a)) = ι(h(b)), which by definition means that 〈a ⊃ b, ε(a ⊃ b)〉,
〈b ⊃ a, ε(b ⊃ a)〉, 〈¬(a �⊂ b), ε(¬(a �⊂ b))〉, 〈¬(b �⊂ a), ε(¬(b �⊂ a))〉 ∈ θ . Then we have
〈(a ⊃ b) ∧ ¬(b �⊂ a), ε(a ⊃ b) ∧ ε(¬(b �⊂ a))〉 = 〈a → b, ε(a ⊃ b) ∧ ε(¬(b �⊂ a))〉 ∈ θ and
〈(a → b) ⊃ b, (ε(a ⊃ b) ∧ ε(¬(b �⊂ a))) ⊃ b〉 = 〈(a → b) ⊃ b, b〉 ∈ θ , where the last equality
holds because the equation (ε(x) ∧ ε(y)) ⊃ z = z, as can be easily checked in a twist-structure, is
valid in NN4. At this point, using Proposition 6.5(vi), we obtain 〈a ∧ ((a → b) ⊃ b), a ∧ b〉 =
〈a, a∧ b〉 ∈ θ . A symmetrical reasoning shows that 〈b, a∧ b〉 ∈ θ and so 〈a, b〉 ∈ θ as required. This
shows that B is isomorphic to a subalgebra of some algebra in NN4, and therefore that B ∈ NN4 as
required. �

Thanks to the preceding proposition, we can sharpen the result of Theorem 10, for in a variety
congruences and relative congruences coincide.

COROLLARY 7.11
For any non-involutive N4-lattice A, the lattice 〈Con(A),⊆〉 is isomorphic to 〈Conpn(A+),⊆〉.

8 On the logic of nd-frames

In [10, Section 4] the logic of nd-frames is compared with the Arieli–Avron implicative bilattice
logic [2], and the authors observe that a large part of the Arieli–Avron logic is valid in nd-frames.

We may ask how large this shared part actually is, or in other words, what is a complete
axiomatization of the logic of nd-frames.

The question may be formulated more precisely as follows. Since in [10] only the ⊃ implication
is considered, let us call nd-bilattice any algebra which is the {�⊂}-free subreduct of a non-involutive
implicative bilattice. Denote by �nd the logic defined by the class of all matrices 〈B, Fε〉 such that
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998 Non-Involutive Twist-Structures

B is an nd-bilattice and Fε = {ε(a) : a ∈ B} is defined as before. All axioms mentioned in
[10, Theorem 4.2] are valid in �nd , but there is no guarantee that these provide a complete
axiomatization of the logic. In particular, some axioms of the Arieli–Avron logic which are not
sound in �nd can be reintroduced in a weakened form or through rules. For example, p ⊃ ¬¬p
is not sound but it is easy to check that the rule p � ¬¬p is. The same holds for the axiom
( p ∧ ¬q) ⊃ ¬( p ⊃ q) that is not sound in �nd while the rule p ∧ ¬q � ¬( p ⊃ q) is. Notice
also that the axiom ¬¬( p∧¬q) ⊃ ¬( p ⊃ q) is sound. The failure of the deduction theorem relative
to ⊃ (which the Arieli–Avron logic enjoyed) is obviously crucial here.

The logic �nd is certainly protoalgebraic, thanks to the ⊃ implication [7, Theorem 1.1.3], and it is
easy to show that it is truth-equational as well [15]. Thus, it is weakly algebraizable [7, Ch. 4].
However, we are going to prove that �nd is not equivalential [7, Ch. 3] and, a fortiori, not
algebraizable. In order to prove this result, we are going to take a look at reduced models of �nd . We
state the next lemma without proof, for although we will not need it in what follows, it gives some
insights on the counterexample presented in Proposition 7.14.

LEMMA 7.12
Let 〈B, F〉 be a model of �nd with B an nd-bilattice. Denote by Ω the Leibniz congruence of 〈B, F〉.
Then, for all a, b ∈ B, the following are equivalent:

(i) 〈a, b〉 ∈ Ω ,
(ii) {a ⊃ b, b ⊃ a} ∪ {¬(a ∧ c) ⊃ ¬(b ∧ c), ¬(a ∧ c) ⊃ ¬(b ∧ c) : c ∈ B} ⊆ F.

From the preceding lemma one easily obtains the following characterization.

PROPOSITION 7.13
Let B be an nd-bilattice and Fε = {ε(a) : a ∈ B}. The matrix 〈B, F〉 is a reduced model of �nd if and
only if the following condition is met: for all a, b ∈ B,

if a ≡+ b and ¬(a ∧ c) ≡+ ¬(b ∧ c) for all c ∈ B, then a = b.

The preceding proposition can give a hint on how to single out matrices that are not reduced. A
protoalgebraic logic is equivalential if and only if the class of its reduced matrix models is closed
under submatrices [7, Theorem 3.2.1]. Hence, if �nd is not equivalential, then it must be possible
to find some reduced matrix for �nd which has a submatrix that is not reduced. The following
proposition presents an example of this.

PROPOSITION 7.14
The logic �nd is not equivalential (hence, not algebraizable either).

PROOF. We are going to show that the class of reduced models of �nd is not closed under submodels,
hence, the result will follow by [7, Theorem 3.2.1]. Consider the product 2+ �� 4−, where 1+ =
〈{0+, 1+},∧+,∨+,→+〉 is the two-element Boolean algebra and 4− = 〈{0−, a, b, 1−},∧−,∨−〉 is
the distributive lattice which is the {∧,∨}-reduct of the four-element Boolean algebra. The map
n : 2+ → 4− is defined in the only possible way (both bounds have to be respected) and p : 4− → 2+
is defined by p(0−) = p(a) = p(b) = 0+ and p(1−) = 1+. It is clear that 2+ �� 4− is a subreduct of
a non-involutive implicative bilattice, namely of the very product 2+ �� 4−, where 4− is viewed as
a Boolean algebra. Also observe that the matrix 〈2+ �� 4−, Fε〉, where Fε = {1+} × {0−, a, b, 1−},
is reduced. On the other hand, the submatrix determined by the sub-universe {0+, 1+} × {0−, a, 1−},
whose filter is {1+}×{0−, a, 1−}, is not reduced. This is because, as is easy to check, the congruence
generated by {〈1+, a〉, 〈1+, 0+〉} is compatible with the filter. �
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This article is part of an upcoming Special Issue titled Volume II - New Advances in Logics of
Formal Inconsistency.
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