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Abstract 
This paper proposes a new interpretation of mutual information (MI). We examine three extant 
interpretations of MI by reduction in doubt, by reduction in uncertainty, and by divergence. We 
argue that the first two are inconsistent with the epistemic value of information (EVI) assumed in 
many applications of MI: the greater is the amount of information we acquire, the better is our 
epistemic position, other things being equal. The third interpretation is consistent with EVI, but it 
is faced with the problem of measure sensitivity and fails to justify the use of MI in giving 
definitive answers to questions of information. We propose a fourth interpretation of MI by 
reduction in expected inaccuracy, where inaccuracy is measured by a strictly proper monotonic 
scoring rule. It is shown that the answers to questions of information given by MI are definitive 
whenever this interpretation is appropriate, and that it is appropriate in a wide range of 
applications with epistemic implications. 
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1. Introduction 
Mutual information (MI) is a powerful tool in many areas of research beyond communication 
theory to which Shannon ([1948]) introduced it originally.1 MI is formally straightforward. Let X 

																																																													
1 See (Cover and Thomas [2006], Ch. 1) for an overview of how information theory is used in 
different areas of research. 
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= {x1, …, xn} and Y = {y1, …, ym} be partitions (of propositions).2 Let P be a probability function. 
MI(X; Y) is defined as follows:3 
 

 MI(X;Y ) =def P(xi ∧ yj )log
P(xi ∧ yj )
P(xi )P(yj )j=1

m∑i=1

n∑      (1) 

 
It is easy to see that MI(X; Y) = MI(Y; X). Hence the term ‘mutual’ in the expression ‘mutual 
information’. 

There are two common interpretations of MI. One of them comes from the idea that 
information reduces doubt. According to this interpretation, the amount of information the 
proposition y provides on the proposition x is the amount of reduction in doubt about x due to y. 
MI, which is defined over the partitions X and Y, is then taken to be the expected amount (the 
weighted average over X × Y) of information that a member of Y provides on a member of X.4 
The other common interpretation of MI comes from the idea that information reduces uncertainty 
about X as to which of its members is true. According to this interpretation, the amount of 
information the proposition y provides on the partition X is the amount of reduction in 
uncertainty about X due to y. MI is then taken to be the expected amount (the weighted average 
over Y) of information that a member of Y provides on X.5,6 

Common as they are, we aim to show that the two interpretations are inadequate for many 
applications of MI. Consider: 
 

Epistemic Value of Information (EVI): The greater is the amount of information we 
acquire, the better is our epistemic position, other things being equal. 
 

																																																													
2 Mutual information is sometimes formulated in terms of variables. See (Cover and Thomas 
[2006]). But since variable talk can always be translated into partition talk (though infinite 
partitions are needed in cases involving continuous, as opposed to discrete, variables), and since 
variable talk seems rather forced in many contexts, we prefer to formulate mutual information in 
terms of partitions. 
3 We are assuming, as is standard in information theory, that the log base is 2. But nothing 
essential for our purposes hinges on this assumption. 
4 Fano ([1961], Ch. 2) explains MI along these lines (though he does not speak in terms of 
reduction in doubt). 
5 Cover and Thomas ([2006], Ch. 2) explain MI in terms of reduction in uncertainty. 
6 The terms ‘doubt’ and ‘uncertainty’ are standard but somewhat arbitrary. For example, some 
may say that y reduces ‘doubt’ as to which member of X is true. The important point is that on 
the first interpretation information is provided by a proposition y about a proposition x, whereas 
on the second interpretation information is provided by a proposition y about a partition X. 
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EVI is assumed in many applications of MI. The two common interpretations of MI, though, are 
inconsistent with EVI. This prompts us to seek an alternative interpretation of MI that is 
appropriate for those applications. 

A third extant interpretation of MI that is adopted in some contexts comes from the idea 
that information changes the distribution of probabilities. According to this interpretation, the 
amount of information the proposition y provides on the partition X is the amount of divergence 
between the original probability distribution over X and the updated (in light of y) probability 
distribution over X. Unlike the second interpretation by reduction in uncertainty, any change in 
the probability distribution over X counts as a gain in information even if there is no reduction in 
uncertainty. MI, which is defined over the partitions X and Y, is then taken to be the expected 
amount (the weighted average over Y) of information a member of Y provides on X.7  

The third interpretation fares better than the first two in that it is consistent with EVI. 
However, it is faced with the problem of measure sensitivity. MI is formally the expected 
amount of Kullback-Leibler Divergence (DKL), but there are many other formal measures of 
divergence by which MI is not the expected amount of divergence.8 If the amount of information 
is simply the amount of divergence between the prior and posterior probability distributions, then 
we can use any of those alternative measures. As a result, the answers given by DKL and MI to 
questions of information are not definitive. We will show that some important principles of 
information theory provable on MI fail to hold on some alternative measures of expected 
divergence. Such principles are then measure sensitive and cannot be regarded as uncontestable 
principles of information, according to the third interpretation.9 

We propose a fourth interpretation of MI by reduction in expected inaccuracy, where 
inaccuracy is measured by a strictly proper monotonic scoring rule. This interpretation is 
consistent with EVI because the greater is the amount of reduction in expected inaccuracy, the 
better is our epistemic position, other things being equal. Moreover, it is impervious to the 
problem of measure sensitivity because DKL, of which MI is the weighted average, is itself the 
weighted average of inaccuracy as measured by the logarithmic scoring rule (SRL), and SRL is 
																																																													
7 We noted above that Cover and Thomas ([2006], Ch. 2) interpret MI in terms of reduction in 
uncertainty. There we had in mind their main (or most common) interpretation of MI. It is worth 
noting, though, that Cover and Thomas ([2006], Ch. 2) sometimes interpret MI in terms of 
divergence. Perhaps they hold that there are no significant differences between the two 
interpretations. Our view, to be explained and defended below, is that, on the contrary, there are 
some significant differences between the two interpretations. 
8 We could also raise this point against the first two interpretations of MI; there are alternative 
measures of reduction in doubt by which MI is not the expected amount of reduction in doubt, 
and there are alternative measures of reduction in uncertainty by which MI is not the expected 
amount of reduction in uncertainty. We need not discuss this point, however, because the two 
interpretations are inconsistent with EVI. 
9 This is similar to the problem of measure sensitivity in Bayesian confirmation theory. See 
(Brossel [2013]; Fitelson [1999]) for helpful discussion. 
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the only scoring rule that is strictly proper and monotonic. This means that the answers to 
questions of information given by DKL and MI are definitive whenever the fourth interpretation is 
appropriate. We will show that this interpretation is appropriate in a wide range of applications 
with epistemic implications because it is appropriate to measure inaccuracy by a strictly proper 
monotonic scoring rule in those applications.10 
 
 

2. Formal Analyses of the Three Interpretations 
This section examines the three interpretations of MI by reduction in doubt (2.1), by reduction in 
uncertainty (2.2), and by divergence (2.3). It is shown that they arise, respectively, from three 
different ways of parsing MI(X; Y) formally. 
 

2.1 Reduction in doubt 
The first interpretation of MI relates information to doubt: information reduces doubt. This leads 
naturally to the suggestion that the amount of information the proposition y provides on the 
proposition x is the amount of reduction in doubt about x due to y. The reduction is then 
measured by pointwise mutual information (PMI) as follows:11 
 

 PMI(x;y) =def log
P(x ∧ y)
P(x)P(y)

= log P(x | y)
P(x)

      (2) 

 
Since PMI measures increase in the probability of x due to y, and increase in the probability is 
reduction in doubt, PMI can be considered a measure of the information that y provides on x as 
determined by reduction in doubt about x due to y. MI itself is the weighted average (over X × Y) 
of PMI: 
 

 MI(X;Y ) =def P(xi ∧ yj )log
P(xi ∧ yj )
P(xi )P(yj )j=1

m∑i=1

n∑  

      = P(xi ∧ yj )PMI(xi;yj )j=1

m∑i=1

n∑       (3) 

 

																																																													
10 It is interesting that MI can be naturally interpreted in (at least) four different ways: by 
reduction in doubt, by reduction in uncertainty, by divergence, and by reduction in expected 
inaccuracy. We leave it for future investigation whether there is some conceptual reason for this. 
11 PMI(x; y) is formally equivalent to the log-ratio measure of confirmation (Milne [1996]). It is 
also formally equivalent to Schupbach’s measure of coherence (Schupbach [2011]) in the special 
case where the set of propositions has exactly two members. The latter (Schupbach’s measure of 
coherence) is in turn ordinally equivalent to Shogenji’s measure of coherence (Shogenji [1999], 
[2001]) in the special case where the set of propositions has exactly two members. 
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So, according to this interpretation, MI actually measures the expected amount of information, 
while it is PMI defined over an ordered pair of propositions which measures the amount of 
information that one proposition (y) provides on another proposition (x). Taking PMI instead of 
MI to be a measure of information makes good sense because we receive information from a 
proposition, and not from a partition of propositions. 
 

2.2 Reduction in uncertainty 
The second interpretation of MI relates information to uncertainty: information reduces 
uncertainty as to which member of the partition is true. So, the amount of information is the 
amount of reduction in uncertainty. The most widely used measure of uncertainty is the entropy 
(H) defined over a partition as follows: 
 
 H(X) =def − P(xi )logP(xi )i=1

n∑        (4) 

 
The uncertainty (entropy) is minimal at H(X) = 0 when one member of the partition X receives 
the probability one, while the rest receive the probability zero. The uncertainty (entropy) 
increases as the probability distribution becomes less lopsided, and it reaches the maximum 
value at H(X) = log n when all members of X receive the same probability 1/n. Upon learning the 
truth of the proposition y, the uncertainty of X is measured by the conditional entropy H(X | y) 
defined as follows: 
 
 H(X | y) =def − P(xi | y)logP(xi | y)i=1

n∑       (5) 

 
So, we can measure reduction in uncertainty about X due to y by RH(X; y) as follows: 
 
 RH(X;y) =def H(X)−H(X | y)  

   = − P(xi )logP(xi )i=1

n∑ −− P(xi | y)logP(xi | y)i=1

n∑  

   = P(xi | y)logP(xi | y)i=1

n∑ − P(xi )logP(xi )i=1

n∑     (6) 

 
MI itself is the weighted average (over Y) of RH: 
 

          MI(X;Y ) =def P(xi ∧ yj )log
P(xi ∧ yj )
P(xi )P(yj )j=1

m∑i=1

n∑  

    = P(xi ∧ yj )log
P(xi | yj )
P(xi )j=1

m∑i=1

n∑  

    ∑ ∑= =
−∧= n

i

m

j ijiji xPyxPyxP
1 1

)](log)|()[log(  
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= P(yj ) P(xi | yj )logP(xi | yj )i=1

n∑j=1

m∑ − P(yj )j=1

m∑ P(xi )logP(xi )i=1

n∑  

       = P(yj ) − P(xi )logP(xi )i=1

n∑ −− P(xi | yj )logP(xi | yj )i=1

n∑⎡
⎣

⎤
⎦j=1

m∑  

   = P(yj )[H(X)j=1

m∑ −H(X | yj )]  

       = P(yj )RH(X;yj )j=1

m∑        (7) 

 
So, according to this interpretation, MI measures the expected amount of information, while it is 
RH defined over a partition and a proposition which measures the amount of information the 
proposition (y) provides on the partition (X). 
 

2.3 Divergence 
The third interpretation of MI relates information to divergence: information changes the 
probability distribution. So, the amount of information the proposition y provides on the partition 
X is measured by the amount of divergence between the two (the prior and the posterior) 
probability distributions over X due to y. One of the widely used measures of divergence between 
two probability distributions is Kullback-Leibler Divergence (DKL) defined over two probability 
distributions P and Q over the partition X as follows: 
 

DKL(P ||Q) =def P(xi )log
P(xi )
Q(xi )i=1

n∑        (8) 

 
When the two probability distributions P(xi) and Q(xi) are the posterior and the prior probability 
distributions, P(xi | y) and P(xi), respectively, DKL(P || Q) can be written as follows: 
 

 DKL(X;y) = P(xi | y)log
P(xi | y)
P(xi )i=1

n∑       (9) 

 
MI is then the weighted average (over Y) of DKL(X; y): 
 

          MI(X;Y ) =def P(xi ∧ yj )log
P(xi ∧ yj )
P(xi )P(yj )j=1

m∑i=1

n∑  
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       = P(yj )DKL(X;yj )j=1

m∑        (10) 

 
So, according to this interpretation, MI measures the expected amount of divergence, while it is 
DKL defined over two probability distributions P(xi | y) and P(xi) over X which measures the 
amount of information the proposition (y) provides on the partition (X). 
 
 

3. Inconsistency with EVI 
Consider the following general setting. You are about to conduct an experiment to test 
hypotheses x1, …, xn on a certain subject. The hypotheses are jointly exhaustive and pairwise 
incompatible, so that X = {x1, …, xn} is a partition. Ideally the experiment will settle the issue 
once and for all by eliminating all hypotheses except one, but that is highly unlikely with a single 
experiment. The best realistic scenario is that the experiment raises the probability of one 
hypothesis close to one while lowering the probabilities of the other hypotheses close to zero. It 
is conceivable that the experiment will actually make the probabilities of all hypotheses far from 
one. That depends on the outcome of the experiment, which we take to be the partition Y = {y1, 
…, ym}. Different outcomes of the experiment can affect the probability distribution over X 
differently, and we compare the epistemic value of the outcome on one hand, and the amount of 
information as measured by reduction in doubt (PMI) and by reduction in uncertainty (RH) on 
the other.12 The purpose is to show that the first two interpretations of MI are inconsistent with 
EVI. 
 In some cases there is no conflict between the two interpretations and EVI. Suppose, for 
example, X = {x1, …, x5} and the initial probability distribution is P(x1) = 0.6 and P(x2) = P(x3) = 
P(x4) = P(x5) = 0.1. Suppose further that the experimental outcome y1 would not change the 
probability distribution over X at all, that is, P(x1 | y1) = 0.6 while P(x2 | y1) = P(x3 | y1) = P(x4 | y1) 
= P(x5 | y1) = 0.1. Meanwhile, the outcome y2 would raise the probability of x1 to P(x1 | y2) = 0.9 
while lowering the probabilities of the other hypotheses to P(x2 | y2) = P(x3 | y2) = P(x4 | y2) = 
P(x5 | y2) = 0.025. The second outcome has considerable epistemic value. It is certainly more 
valuable, other things being equal, than the first outcome that does not change the probability 

																																																													
12 See (Crupi and Tentori [2014]) for a discussion of different ways one might measure the 
epistemic utility of an experiment.  
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distribution over X at all.13 The two interpretations of MI are not in conflict with this because 
PMI(x1; y1) = RH(X; y1) = 0, while both PMI(x1; y2) and RH(X; y2) are positive. 
 There are, however, many cases where the two interpretations of MI run counter to EVI. 
Suppose the experimental outcome y3 would reveal that x1 is no more probable than its 
competition, so that P(x1 | y3) = P(x2 | y3) = P(x3 | y3) = P(x4 | y3) = P(x5 | y3) = 0.2. In light of this 
outcome we would no longer regard x1 as the leading hypothesis on the subject. The outcome y3 
would have considerable epistemic value. It would certainly be more valuable than the outcome 
y1 that would not change the probability distribution at all. The trouble with the two 
interpretations is that both PMI(x1; y3) and RH(X; y3) are negative. PMI(x1; y3) is negative 
because P(x1 | y3) < P(x1) and hence x1 is more doubtful in light of y3 than before. RH(X; y3) is 
negative because y3 raises the uncertainty of X to the maximum by rendering all its members 
equi-probable. This means that if we use either PMI or RH to measure the amount of information, 
then the outcome y3 that would undercut the leading hypothesis is epistemically less valuable 
than the outcome y1 that would not change the probability distribution over X at all.14 This is 
untenable. Other things being equal, no sensible journal editor, for example, would find y3 (a 
paper featuring y3) less worthy of publication than y1 (a paper featuring y1). 

It is also worth noting that epistemic value does not accrue solely from change in the 
‘pattern’ of the probability distribution—getting more lopsided, closer to even, etc. A finding 
that keeps the pattern of the probability distribution exactly the same can be highly informative 
and epistemically valuable. Suppose the outcome y4 would reverse the probabilities of x1 and x2 
while the rest of the probability distribution would remain the same, so that P(x2 | y4) = 0.6 while 
P(x1 | y4) = P(x3 | y4) = P(x4 | y4) = P(x5 | y4) = 0.1. This means that x1 is replaced by x2 as the 
leading hypothesis on the subject. Clearly, the outcome y4 is of great epistemic value, though the 
pattern of the probability distribution remains the same: one of the five hypotheses receives the 
probability 0.6 while the rest receive the probability 0.1 each. Meanwhile, the degree of 
uncertainty depends only on the pattern of the probability distribution. As a result, RH(X; y4) is 
zero: y4 neither increases nor decreases the degree of uncertainty about X. Since a finding like y4 
that replaces the leading hypothesis is of great epistemic value, we cannot measure the epistemic 
value of a finding by reduction in uncertainty. 

To clarify our point, we do not deny that there are applications of MI in which EVI is 
absent or unimportant. The two interpretations of MI by reduction in doubt and by reduction in 
uncertainty may be appropriate in those applications. There are, however, many applications of 
																																																													
13 The first outcome may still be epistemically significant to some extent. In some cases where 
the evidence does not change the probability distribution over X, the evidence makes the 
probability distribution more stable in the face of potential future data (Joyce [2005]). However, 
it is part of our assumption (‘other things being equal’) that the different experimental outcomes 
do not affect the stability of the probability distribution differently. 
14 PMI yields the right result with respect to x2, x3, x4, and x5 in that each of PMI(x2; y3), PMI(x3; 
y3), PMI(x4; y3), and PMI(x5; y3) is positive whereas each of PMI(x2; y1), PMI(x3; y1), PMI(x4; y1), 
and PMI(x5; y1) equals 0. Our point is that PMI yields the wrong result with respect to x1. 
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MI—in communication theory, learning theory, economics, etc.—where EVI is important. Since 
the two interpretations of MI are inconsistent with EVI, they are inappropriate in those 
applications. 

The point that reduction in uncertainty is inadequate as a measure of epistemic value is 
not new. For example, Evans and Over ([1996]) raise it against Oaksford and Chater’s analysis 
of the Wason selection task (Oaksford and Chater [1994]). The task is commonly regarded as an 
indication of a shortcoming in human reasoning because a majority of participants select an 
observation (an experiment) that is apparently useless for answering the given question. 
Oaksford and Chater argue that the apparently useless selection is actually rational because the 
expected information gain from the observation is high under plausible assumptions. The trouble 
is that Oaksford and Chater interpret information gain in terms of reduction in uncertainty. Evans 
and Over raise the point (with a case similar to those used above) that we cannot measure the 
epistemic utility of an observation by reduction in uncertainty. 

Interestingly, Oaksford and Chater ([1996]) reply to Evans and Over by dropping the 
interpretation of MI by reduction in uncertainty in favor of the interpretation of MI by 
divergence. This interpretation is the focus of the next section. 
 
 

4. Problem of Measure Sensitivity 
The discussion in Section 3 indicates that any finding that changes the probability distribution is 
informative and epistemically valuable even if it casts doubt on the leading hypothesis and 
increases uncertainty. Once we recognize this point, it makes sense to measure the amount of 
information by divergence between the old and the updated probability distributions, but the 
divergence interpretation has its own problem. 

There are many formal measures of divergence that are adequate in the sense of meeting 
the basic constraint that the degree of divergence between P and Q should be zero (the minimum 
degree) in cases where P and Q are identical to each other and should be positive in all other 
cases. DKL meets this constraint, but so do many alternative measures of divergence.15 Consider, 
for example, Rectilinear Divergence (DRL) and Squared Euclidean Divergence (DSE): 
 

 DRL(P ||Q) =def P(xi )−Q(xi )i=1

n∑        (11) 

  

DSE(P ||Q) =def P(xi )−Q(xi )[ ]i=1

n∑
2
       (12) 

 

																																																													
15 See (Cha [2007]) for a comprehensive survey of divergence measures. We are using the term 
‘divergence’ broadly so that the class of divergence measures includes the class of so-called 
‘distance/similarity’ measures. 
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The two measures, DRL and DSE, are not ordinally equivalent to each other and neither of them is 
ordinally equivalent to DKL. Yet each of them, as with DKL, meets the basic constraint that the 
degree of divergence between P and Q should be zero in cases where P and Q are identical to 
each other and should be positive in all other cases. Indeed both of them are sensible measures of 
divergence, and have been in actual use for measuring divergence. 

This is problematic for the divergence interpretation of MI because we can construct 
alternative formulas for mutual information as expected divergence from alternative measures of 
divergence. First, let P be P(xi | y) and Q be P(xi), and rewrite DRL(P || Q) and DSE(P || Q) 
accordingly: 
 

DRL(X;y) =def P(xi | y)− P(xi )i=1

n∑        (13) 

 

DSE(X;y) =def P(xi | yj )− P(xi )⎡⎣ ⎤⎦i=1

n∑
2
      (14) 

 
Next, take the weighted averages (over Y) of DRL(X; y) and DSE(X; y): 
 

D*RL(X;Y ) =def P(yj ) P(xi | yj )− P(xi )i=1

n∑j=1

m∑      (15) 

 

D*SE(X;Y ) =def P(yj ) P(xi | yj )− P(xi )⎡⎣ ⎤⎦i=1

n∑
2

j=1

m∑      (16) 

 
The two measures of expected divergence, D*RL and D*SE, are not ordinally equivalent to each 
other, and more importantly, neither of them is ordinally equivalent to MI. (See Appendix A.1 
for proof.) Since DRL and DSE are sensible measures of divergence, D*RL and D*SE are sensible 
measures of expected divergence. If information is to be measured by divergence, as the third 
interpretation of MI suggests, then D*RL and D*SE are sensible alternatives to MI. 
 This is problematic because the availability of sensible alternative measures makes the 
answers to many questions of information ‘measure sensitive’. Suppose we are comparing the 
epistemic values of two experiments, E1 and E2, by MI as understood on the divergence 
interpretation. It is possible that E1 has a greater epistemic value than E2 by measure MI, but not 
by measure D*RL or by measure D*SE. Consequently, the answer given by MI cannot be 
considered definitive.        

The problem of measure sensitivity arises not only for evaluation in particular cases but 
also for general principles of information. Many important principles of information theory 
provable on MI fail to hold on D*RL or D*SE. Two such principles are: 
 

Symmetry (S): Let X = {x1, …, xn} and Y ={y1, …, ym} be partitions. Then MI(X; Y) = 
MI(Y; X). 
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Data-Processing Inequality (DPI): Let X = {x1, …, xn}, Y ={y1, …, ym}, and Z = {z1, …, 
zl} be partitions, and suppose Y screens off Z from X in that P(xi | yj ∧ zk) = P(xi | yj) for 
any i = 1, …, n, j = 1, …, m, and k = 1, …, l. Then (a) MI(X; Y) ≥ MI(X; Z) and (b) 
MI(Y; Z) ≥ MI(X; Z). 

 
These principles fail to hold if we replace MI with D*SE. (See Appendices A.2 and A.3 for 
proof.) DPI is especially important in that it is used in many areas of research beyond 
information theory, for example, philosophy of science (see Barrett and Sober [1992]; Sober 
[2008]; Sober and Barrett [1992]; Sober and Steel [2002], [2011], [2014]).16 

There are, in general, two possible responses to the problem of measure sensitivity. One 
is to eliminate all but one measure by additional constraints. In the present case this would mean 
that we seek plausible additional constraints on an adequate measure of divergence beyond the 
basic one, and show that all but DKL fail to meet these constraints. This is not a promising 
approach in the case of DKL. If anything, DRL and DSE look more natural than DKL as measures of 
divergence. For example, both DRL and DSE are symmetric while DKL is not.17 In other words, it 
is possible by measure DKL that P diverges from Q more than Q diverges from P. This is peculiar 
for a measure of divergence. Also, DKL is not ‘uniform’ in that not all differences between P(xi) 
and Q(xi) increase the degree to which P diverges from Q. Let X = {x1, x2} be a partition, and 
P(x1) = 0.8 while Q(x1) = 0.2. Then, DKL(P || Q) is given by: 
 

 DKL(P ||Q) = P(x1)log
P(x1)
Q(x1)

+ P(x2 )log
P(x2 )
Q(x2 )

 

         = (0.8)log 0.8
0.2

+ (0.2)log 0.2
0.8

	 	 	 	 	  (17) 

 
Since log x is negative for 0 < x < 1, the second addend in (17) is negative. This means that by 
DKL the difference between P(x2) and Q(x2) decreases the degree to which P diverges from Q. 
This is not a feature we naturally expect from a measure of divergence, for the difference 
between P(x2) and Q(x2) is a respect in which P diverges from Q. 

In raising these points, we are not questioning the use of DKL as a measure of divergence. 
DKL still meets the basic constraint. DKL(P || Q) in (17) is positive overall despite the negative 

																																																													
16 See, however, (Roche and Shogenji [2014]) for the result that a counterpart of DPI in 
confirmation theory (‘dwindling confirmation’) is not measure sensitive under a plausible 
constraint on an adequate measure of confirmation. 
17 As noted earlier, MI, which is the expected DKL divergence, is symmetric, but DKL itself is not 
symmetric. It is also worth noting that originally Kullback and Leibler ([1951]) do not put 
forward DKL(P || Q) as a divergence measure. They put it forward as an information measure. 
Their divergence measure is DKL(P || Q) + DKL(Q || P). The latter, which is due to Jeffreys 
([1946], [1948]), is symmetric. 
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second addend because this addend is more than offset by the positive first addend with a greater 
weight P(x1). Besides, the expected value of DKL, which is MI, has some nice features—such as 
symmetry, DPI, and additivity—that make DKL attractive.18 Our point here is that some features 
of DKL make it hard to argue that DKL is the only adequate measure of divergence, and that 
because of this the answers to questions of information given by MI cannot be considered 
definitive. 

We turn now to our preferred interpretation of MI. 
 
 

5. Reduction in Expected Inaccuracy 
This section describes a fourth interpretation of MI by reduction in expected inaccuracy. We 
begin with the notion of inaccuracy. If we assign any probability other than one to a true 
proposition, the assignment is inaccurate. The degree of inaccuracy is inversely related to the 
probability assigned because the higher is the probability, the closer it is to the most accurate 
value, which is one. Obviously, we can eliminate all inaccuracy by correctly guessing which 
member of the partition is true and assigning it the probability one. But it is unwise to simply 
guess which member of the partition is true. For example, when the partition has three or more 
members and they are equally probable, it is more likely that we guess incorrectly and end up 
assigning the probability one to a false member and the probability zero to the true member. The 
best we can do on the basis of available evidence is to minimize the expected inaccuracy. The 
fourth interpretation of MI proposes that we measure the amount of information the proposition y 
provides on the partition X by reduction in the expected inaccuracy of the probability distribution 
over X due to y. MI, which is defined over the partitions X and Y, is then taken to be the expected 
amount (the weighted average over Y) of information a member of Y provides on X. In other 
words, MI measures the expected reduction in the expected inaccuracy of the probability 
distribution. In the remainder of this section we present a formal analysis of MI in support of the 
fourth interpretation. 

We begin with a measure of inaccuracy. Let P be a probability distribution over X. The 
degree of inaccuracy of P depends on which member of X is true. A scoring rule SR(P; i) is a 
function that determines the degree of inaccuracy of P when the i-th member of X is true. There 
are many scoring rules (see Murphy and Winkler [1984]; Winkler [1967], [1969], [1971], 
[1994]; Winkler and Murphy [1968]) but MI is grounded in one particular rule called the 
logarithmic scoring rule (SRL): 
 

 SRL(P;i) =def log
1

P(xi )
= − logP(xi )        (18) 

 

																																																													
18 MI is additive in the sense that MI(X; Y × Z) = MI(X ; Z) + MI(X; Y | Z). 
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SRL is a decreasing function of P(xi), which makes good sense. When the probability P(xi) that is 
assigned to the true member xi of X is higher, the degree of inaccuracy is lower. On the 
logarithmic scoring rule (SRL) the expected inaccuracy (EIL) of the probability distribution over 
X is as follows: 
 

 EIL(X) =def P(xi )SRL(P;i)i=1

n∑ = − P(xi )logP(xi )i=1

n∑     (19) 

 
When we update the probability distribution over X upon learning y, the expected inaccuracy is 
also updated: 
 
 EIL(X | y) = − P(xi | y)logP(xi | y)i=1

n∑       (20) 

 
EIL(X) and EIL(X | y) are identical, respectively, to H(X) and H(X | y) discussed earlier in 
Subsection 2.2, but we now regard them as measures of expected inaccuracy. 
 Reinterpretation would be pointless if we measured reduction in expected inaccuracy by 
EIL(X | y) – EIL(X), as we measured reduction in uncertainty by RH(X; y) = H(X | y) – H(X) in 
Subsection 2.2. We pointed out in Section 3 that a finding with great epistemic value often 
increases uncertainty, and the negative value of RH(X; y) in such a case is inconsistent with EVI 
which is assumed in many applications of MI. Since EIL(X | y) – EIL(X) is mathematically no 
different from RH(X; y) = H(X | y) – H(X), it takes a negative value when a finding with great 
epistemic value increases uncertainty, which is inconsistent with EVI. However, the fourth 
interpretation does not use EIL(X | y) – EIL(X) to measure reduction in expected inaccuracy. That 
is the difference in substance from the uncertainty interpretation. 

The reason for not using EIL(X | y) – EIL(X) is that once y is given, EIL(X) is no longer an 
appropriate measure of the expected inaccuracy of the old probability distribution. The 
appropriate measure of the expected inaccuracy of the old probability distribution is given by: 
 
 EIL(X;y) = − P(xi | y)logP(xi )i=1

n∑        (21) 

 
If xi turns out to be true, the degree of inaccuracy is – log P(xi) instead of – log P(xi | y) because 
EIL(X; y) measures the expected inaccuracy of the old probability distribution. However, the 
weight assigned to – log P(xi) for calculating the weighted average is P(xi | y) instead of P(xi). 
This is because we have already updated the probability to P(xi | y) in light of y. EIL(X; y) 
measures the expected inaccuracy of the old distribution in retrospect after learning y. 
 We measure reduction in expected inaccuracy (REIL) due to y by comparing the expected 
inaccuracy EIL(X; y) of the old distribution as evaluated in retrospect after learning y, and the 
expected inaccuracy EIL(X | y) of the new probability distribution: 
 
 REIL(X;y) =def EIL (X;y)− EIL(X | y)  
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      = − P(xi | y)logP(xi )i=1

n∑ −− P(xi | y)logP(xi | y)i=1

n∑           

      ∑∑ ==
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11

)(log)|()|(log)|(    (22) 

 
Note that REIL(X; y) is formally equivalent to DKL: 
 

REIL(X;y) = P(xi | y)logP(xi | y)i=1

n∑ − P(xi | y)logP(xi )i=1

n∑  

      = P(xi | y)[logP(xi | y)i=1

n∑ − logP(xi )]  

      = P(xi | y)log
P(xi | y)
P(xi )i=1

n∑  

      = DKL(X;y)         (23) 
 
Recall that DKL is a measure of divergence that takes the value zero when the two distributions 
are identical, and is positive in all other cases. So is REIL. There is no reduction in the expected 
inaccuracy when y does not change the probability distribution over X, but there is reduction in 
the expected inaccuracy if y changes the probability distribution over X regardless of the 
direction of change. So, updating the probability distribution in light of a new finding always 
reduces the expected inaccuracy and is epistemically valuable. 

We noted in Section 4 that DKL has some peculiar features. First, DKL is not symmetric; it 
is possible by measure DKL that P diverges from Q more than Q diverges from P. Second, DKL is 
not uniform; not all differences between P(xi) and Q(xi) increase the degree to which P diverges 
from Q on DKL. REIL(X; y) is formally equivalent to DKL and thus has those same features, but 
here they are not peculiar. First, there is no obvious reason why a measure of reduction in 
expected inaccuracy (as opposed to a measure of divergence) should be symmetric. Second, 
when P(xi | y) < P(xi), y increases inaccuracy if xi is true. It makes sense, then, that 

P(xi | y)log
P(xi | y)
P(xi )

 is negative when P(xi | y) < P(xi) and xi is true. Not all differences between 

P(xi | y) and P(xi) serve to increase the reduction in expected inaccuracy. 
To complete the fourth interpretation by reduction in expected inaccuracy, MI is the 

weighted average (over Y) of the reduction in the expected inaccuracy of the probability 
distribution over the partition X due to a member of the partition Y: 
 

 MI(X;Y ) =def P(xi ∧ yj )log
P(xi ∧ yj )
P(xi )P(yj )j=1

m∑i=1

n∑  

            ∑ ∑= =
= m

j

n

i
i

ji
jij xP

yxP
yxPyP

1 1 )(
)|(

log)|()(  

            = P(yj ) P(xi | yj )[logP(xi | yj )− logP(xi )]i=1

n∑j=1

m∑  
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            = P(yj )[EIL (X;yj )− EIL(X | yj )j=1

m∑ ]  

            = P(yj )REIL (X;yj )j=1

m∑        (24) 

 
So, MI measures the expected amount of information, while it is REIL defined over a proposition 
and a partition which measures the amount of information the proposition y provides on the 
partition X, where the amount of information is measured by the reduction in expected 
inaccuracy.19 
 
 

6. Resolution of the Problem of Measure Sensitivity 
Recall our point in Section 4 that the interpretation of MI by divergence gives rise to the problem 
of measure sensitivity: there are many sensible measures of divergence other than DKL, and if we 
start from a different measure, we obtain a different measure of expected divergence than MI. As 
a result, the answers to questions of information (as divergence) given by MI cannot be 
considered definitive. We proposed the fourth interpretation of MI in response to this problem: 
DKL measures more specifically reduction in expected inaccuracy. Our response is not complete, 
though, for there are many measures of inaccuracy other than the logarithmic scoring rule (SRL), 
from which DKL is derived, and if we start from a different measure, we obtain a different 
measure of expected information—expected reduction in expected inaccuracy—than MI. In this 
section we complete our response by specifying the sense of inaccuracy that is uniquely captured 
by SRL. 
 

6.1 Alternative measures of inaccuracy 
Scoring rules are measures of inaccuracy for a probability distribution P over a partition of 
propositions. One common feature of scoring rules is that they are exclusively ‘truth directed’ in 
the sense that they measure the inaccuracy of P solely by the truth and falsity of the propositions 
in the partition. So, once we identify the true member xi of the partition, we can calculate the 
degree of inaccuracy SR(P; i) for any P. Given their exclusive truth-directedness, a simple and 
sensible approach is to measure the inaccuracy of P by two probabilities: P(xi) assigned to the 
true member, and 1 – P(xi) assigned to the rest of the partition. Since 1 – P(xi) is a function of 
P(xi), this means that the inaccuracy of P is determined by P(xi) alone. Scoring rules of this kind 

																																																													
19 See (Crupi and Tentori [2014]); Grunwald and Dawid [2004]; Winkler and Murphy [1968]) 
among others for observations of the connection between scoring rules and measures of 
information. 
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are called ‘local scoring rules’.20 Since inaccuracy decreases as P(xi) gets closer to one, an 
adequate local scoring rule should be a monotonic function of P(xi): 
 

Monotonicity (M): Let SR be a scoring rule. Let X = {x1, x2, …, xn} be a partition and P 
and Q be probability distributions over X. Suppose xi is true and P(xi) > Q(xi). Then SR(P; 
i) < SR(Q; i). 

 
This requirement is equivalent to the requirement that an adequate scoring rule should be local, 
on the assumption that SR(P; i) is exclusively truth-directed and thus is a decreasing function of 
P(xi) and an increasing function of P(xj) for any j ≠ i (see Fallis [2007] for proof). 

The logarithmic scoring rule SRL(P; i) = – log P(xi), from which DKL and MI are 
constructed, meets M. There are, however, many other functions of P(xi) such as SRC, SRSC, and 
SRR below that meet M:21 
 

SRC(P;i) =def 1− P(xi )         (25)
 SRSC(P;i) =def 1− P(xi )[ ]2         (26)
 

SRR(P;i) =def
1

P(xi )
         (27) 

 
If we start from any of these alternative measures of inaccuracy, we obtain a measure of 
reduction in expected inaccuracy different than DKL(X; y). 

We can construct measure REI(X; y) of reduction in expected inaccuracy from any 
scoring rule SR(P; i) in the same way we derived DKL(X; y) from SRL in Section 5. First, after 
updating the probability distribution from P to Py, the inaccuracy of the updated probability 
distribution Py is SR(Py; i), where Py(x) = P(x | y). The expected inaccuracy EI(X | y) of Py is then 
the weighted average of SR(Py; i), where the weights are the probabilities P(xi | y): 
 

 ∑ =
= n

i yi iPSRyxPyXEI
1

);()|()|(        (28) 

 
Meanwhile, the expected inaccuracy EI(X; y) of the old probability distribution P (as evaluated 
in retrospect after learning y) is the weighted average of SR(P; i), where the weights are the 
updated probabilities P(xi | y): 
 

																																																													
20 There are also ‘global scoring rules’ on which inaccuracy is not determined by P(xi) alone. We 
will discuss global scoring rules in the next section.  
21 The subscripts in ‘SRC’, ‘SRSC’, and ‘SRR’ stand for ‘Complement’, ‘Squared Complement’, 
and ‘Reciprocal’. 
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Putting (28) and (29) together, we can measure the reduction in the expected inaccuracy of the 
probability distribution due to y as follows: 
 

 ∑∑ ==
−= n
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n
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Since we are measuring information by reduction in the expected inaccuracy and a scoring rule is 
a measure of inaccuracy, we can plug in any scoring rule SR into (30) to obtain a measure of 
information. We obtained DKL in Section 5 by starting from the logarithmic scoring rule SRL.  
 Finally, the expected amount of information REI(X; Y) that a member of Y provides on X 
is the weighted average of REI(X; y) over Y, just as MI(X; Y) is the weighted average of 
DKL(X; y) over Y. Some of these alternative measures of expected information REI(X; Y) 
constructed from different decreasing functions of P(xi) are clearly inadequate. For example, 
REIR(X; Y) constructed from SRR(P; i) = 1/P(xi) is a constant function: REIR(X; Y) = 0 for any X 
and Y, and for any probability distribution defined over X and Y. So, REIR(X; Y) should be 
rejected since a constant function does not measure anything. There are, however, many 
alternative measures that are not so obviously inadequate, including REIC(X; Y) and REISC(X; Y) 
constructed from SRC(P; i) = 1 – P(xi) and SRSC(P; i) = [1 – P(xi)]2, respectively. Our challenge 
is to specify the distinctive sense of inaccuracy captured by SRL that points to the type of 
applications in which the answers given by DKL and MI are definitive. 
 

6.2 Resolution by strict propriety 
An answer to our challenge is found in the extant literature on scoring rules. It is known that the 
logarithmic scoring rule SRL is the only local scoring rule that meets the following constraint 
(see Bernardo 1970 for proof).22 
 

Strict Propriety (SP): Let SR be a scoring rule. Let X = {x1, x2, …, xn} be a partition. Let 

P and Q be probability distributions over X. Then ∑∑ ==
≤ n

i i
n

i i iQSRxPiPSRxP
11

);()();()(   

where the two are equal to each other if and only if P(xi) = Q(xi) for each i. 
 
SRL is thus the only strictly proper monotonic scoring rule. Consequently, the answers to 
questions of information (as reduction in expected inaccuracy) given by DKL and MI are 
definitive when the application calls for a strictly proper monotonic scoring rule as a measure of 

																																																													
22 There is a technical requirement that a scoring rule is a ‘smooth’ function; all scoring rules we 
are considering are smooth functions. 
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inaccuracy. In the remainder of this subsection we examine the role of SP in the measurement of 
inaccuracy. 
 SP is widely considered a condition of adequacy for a scoring rule, and there is a 
compelling reason for that: a strictly proper scoring rule gives forecasters an incentive to 
announce, honestly, the probability distribution they believe in. The importance of the incentive 
is easy to see in cases where a scoring rule is in violation of SP. Take SRC for example. Let X = 
{x1, x2} be a partition, and suppose your personal probabilities are P(x1) = 0.8 and P(x2) = 0.2. If 
you honestly announce your personal probabilities as your forecast, then the expected inaccuracy 
of the announced probabilities, as measured by SRC, is: 
 

P(xi )SRCi=1

2∑ (P;i) = P(x1) 1− P(x1)( ) + P(x2 ) 1− P(x2 )( )
= 0.8(1− 0.8)+ 0.2(1− 0.2)
= 0.32

     (31) 

 
However, by announcing the probabilities Q(x1) = 1 and Q(x2) = 0, instead of P(x1) = 0.8 and 
P(x2) = 0.2, you can reduce the expected inaccuracy, as measured by SRC: 
 

P(xi )SRCi=1

2∑ (Q;i) = P(x1) 1−Q(x1)( ) + P(x2 ) 1−Q(x2 )( )
= 0.8(1−1)+ 0.2(1− 0)
= 0.2

    (32) 

 
As a result, SRC encourages forecasters to announce, dishonestly, the probability distribution Q 
instead of the personal probability distribution P. This occurs because SRC is in violation of SP: 

there is some probability distribution Q whose expected inaccuracy P(xi )SRC (Q;i)i=1

n∑  is 

smaller than P(xi )SRC (P;i)i=1

n∑ . 

In contrast, when a scoring rule meets SP, the expected inaccuracy of one’s own 
probability distribution P (where P gives the weights for averaging) is smaller than the expected 
inaccuracy of any other probability distribution Q (where P still gives the weights for averaging 
because P is one’s own probability distribution). This gives forecasters an incentive to be always 
honest and announce the probability distribution they believe in. 

An incentive to honesty is a compelling reason for adopting a strictly proper scoring rule 
in many contexts, but there is also an epistemic reason for adopting SP that is directly relevant to 
our present concern.23 Recall the observation that prompted our search for a new interpretation of 
MI. The doubt and uncertainty interpretations of MI are inconsistent with EVI which is assumed 
in many applications of MI, because any finding that changes the probability distribution is 
																																																													
23 We thank an anonymous referee of this journal for pointing this out. See (Joyce [2009]) for 
further discussion of SP and for further references. 
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informative and epistemically valuable even if it does not reduce doubt or uncertainty. It turns 
out that a scoring rule that is in violation of SP is inconsistent with EVI for the same reason. 
Suppose finding y changes the probability distribution over X from P to Py. This means that y is 
informative and epistemically valuable. So, if we are to measure the amount of information by 
reduction in expected inaccuracy, then reduction in expected inaccuracy REI(X; y) should be 
positive whenever Py is different from P. However, that is not true if the scoring rule is not 
strictly proper. If the scoring rule is not strictly proper, there are cases in which the expected 

inaccuracy of the updated distribution ∑ =
= n

i yi iPSRyxPyXEI
1

);()|()|(  is not smaller than the 

expected inaccuracy of the old distribution ∑ =
= n

i i iPSRyxPyXEI
1

);()|();( . In other words, if 

the scoring rule is not strictly proper, some finding that changes the probability distribution is 
judged uninformative and devoid of epistemic value. So, in applications in which EVI is 
assumed, we should use a strictly proper scoring rule in constructing a measure of information. 
 

6.3 Range of applications 
Our resolution of the problem of measure sensitivity also reveals that the use of MI is 
inappropriate in some applications. Scoring rules are exclusively truth directed in the sense that 
they measure the inaccuracy of P solely by the truth and falsity of the propositions in the 
partition. The use of a scoring rule is therefore inappropriate if we are interested in a kind of 
inaccuracy that goes beyond the truth and falsity of the propositions. 

Here is one example. Let X = {x1, x2, x3, x4} be a partition of propositions, where x1, x2, 
and x3 are that JFK died in 1963, 1962, 1961, respectively, while x4 is the ‘catch-all’ hypothesis 
that JFK died in some other year. Suppose P(x3) = 0.7 and P(x1) = P(x2) = P(x4) = 0.1 initially, 
but the probability distribution is updated in light of y to P(x2 | y) = 0.7 and P(x1 | y) = P(x3 | y) = 
P(x4 | y) = 0.1. In other words, the distribution remains the same except that x2 now receives the 
only high probability 0.7 instead of x3. This change makes no difference for the purpose of an 
exclusively truth-directed evaluation of inaccuracy because x2 and x3 are both false. However, 
there is a sense in which (given that JFK actually died in 1963) the updated distribution is less 
inaccurate than the initial distribution because the year 1962 that is falsely asserted in proposition 
x2 with the updated probability of P(x2 | y) = 0.7 is closer to the true year of JFK’s death than is 
the year 1961 that is falsely asserted in proposition x3 with the initial probability of P(x3) = 0.7. If 
the different proximities to the truth among the false members of the partition are important, then 
it is not appropriate to use a scoring rule because a scoring rule is an exclusively truth-directed 
measure of inaccuracy. 

This means that even in applications where EVI is important and thus it is appropriate to 
measure information by reduction in expected inaccuracy, we should still avoid using SRL—or 
any scoring rule—if the kind of inaccuracy of interest goes beyond the truth and falsity of the 
propositions. Consequently, the use of DKL and MI is also inappropriate since they are 
constructed from a scoring rule that only takes into account the truth and falsity of the 
propositions. 
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7. Global Scoring Rules 
In this section we take up a class of scoring rules that are not monotonic. Let us assume that EVI 
is important, and that the kind of inaccuracy of interest does not go beyond the truth and falsity 
of the propositions over which the probabilities are distributed. This means that it is appropriate 
to use a scoring rule, and the scoring rule should be strictly proper. SRL is the only scoring rule 
that is both strictly proper and monotonic but it is not the only scoring rule that is strictly proper. 
Some scoring rules are strictly proper but not monotonic. Here we have in mind ‘global scoring 
rules’. Although monotonicity is a sensible condition, there may be some applications where the 
use of a global scoring rule is not problematic and thus SRL—and DKL and MI constructed from 
SRL—is not the only measure that is appropriate. We now examine the extent of such cases. 

To understand the idea of global scoring rules it is helpful to compare them with their 
respective local counterparts. Take SRSC(P; i) = [1 – P(xi)]2 from Section 6.1 which is a local 
scoring rule. Since it is a local scoring rule, the degree of inaccuracy SRSC(P; i) decreases as the 
probability of the true member P(xi) gets closer to one. According to its global counterpart 
SRB(P; i) the degree of inaccuracy decreases not only as P(xi) gets closer to one, but also as the 
probability of any false member P(xj) gets closer to zero, as follows:24 
 
 ∑ ≠

−+−=
ij ji xPxPiP 22

defB )](0[)](1[);(SR      (33) 

 
We can apply the same idea to construct a global scoring rule from any local scoring rule, but 
SRB is notable because it is strictly proper.25 

Since SRB is non-monotonic, it is possible that P(xi) < Q(xi) and yet SRB(P; i) < SRB(Q; i). 
This is easy to see by an example. Let X = {x1, x2, x3} be a partition, and x1 be the true member. 
Suppose P(x1) = 0.38 and P(x2) = P(x3) = 0.31, while Q(x1) = 0.4, Q(x2) = 0.05, and Q(x3) = 0.55. 
Although Q(x1) = 0.4 is closer to one than is P(x1) = 0.38, the degree of inaccuracy for Q is 
greater than the degree of inaccuracy for P: 
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24 The subscript in ‘SRB’ stands for ‘Brier’ since an equivalent measure was introduced by Brier 
([1950]). Common names for SRB are ‘the Brier scoring rule’ and ‘the quadratic scoring rule’.  
25 There are other global scoring rules, such as the spherical rule, that are also strictly proper, but 
SRB is the most prominent among them. 
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      665.0=          (35) 
 
We want to underscore the point here that this rather surprising result is not due to the proximity 
of the propositional contents discussed earlier. Once we identify the true member xi of the 
partition, we can calculate SRB(P; i) and SRB(Q; i) regardless of the proximities of the 
propositional contents among x1, x2, and x3.26 Global scoring rules are exclusively truth directed 
just as local scoring rules are.  
 Since SRB is non-monotonic, it is not ordinally equivalent to SRL which is monotonic. 
Further, the measure of reduction in expected inaccuracy REIB(X; y) constructed from SRB by 
the recipe in Section 6.1 is not ordinally equivalent to DKL(X; y); and its weighted average 
REIB(X; Y) over Y is not ordinally equivalent to MI(X; Y), either. For example, REIB(X; Y) is not 
symmetric and DPI does not hold on REIB(X; Y). (See Appendix B.1 and B.2 for proof.) It is 
therefore important to be aware of cases where we can use a global scoring rule and thus the 
answers to questions of information given by DKL(X; y) and MI(X; Y) are not definitive. 

Such cases are limited in our view, but it may look otherwise by the following line of 
reasoning. A local scoring rule is appropriate for measuring the inaccuracy of a probability 
assigned to a single proposition, but for measuring the inaccuracy of a probability distribution 
over a partition, we must use a global scoring rule to take into account the entire probability 
distribution. It looks like a local scoring rule conflates two kinds of inaccuracy—the inaccuracy 
of a probability assigned to a single proposition and the inaccuracy of a probability distribution 
over a partition.27 

There is, of course, no such conflation. As we saw earlier, the idea of a local scoring rule 
is to measure the inaccuracy of a probability distribution P by P(xi) which is the probability 
assigned to the true member of the partition. It does not ignore the rest of the partition, however, 
because 1 – P(xi) which is the probability assigned to the rest of the partition is a function of 
P(xi). The distinctive feature of a global scoring rule is not that it takes into account the rest of 
the partition, but its sensitivity to the way 1 – P(xi) is distributed among the false members. As 
we can see from the equations (34) and (35) above, SRB is non-monotonic because even if P(xi) 
< Q(xi) and thus 1 – P(xi) > 1 – Q(xi), it is still possible that SRB(P; i) < SRB(Q; i) because of the 
way 1 – P(xi) and 1 – Q(xi) are distributed, respectively, among the false members of the 
partition. 

																																																													
26 Note also that in the JFK case above, which we used for illustrating different proximities 
among the propositional contents, there would be no reduction in expected inaccuracy if we used 
SRB for measuring inaccuracy. 
27 The expression ‘local scoring rules’ is sometimes used in reference to rules that measure the 
inaccuracy of a probability assigned to a single proposition (see, for example, Leitgeb and 
Pettigrew [2010]). This alternative terminology is consistent with the view that it is a mistake to 
measure the inaccuracy of a probability distribution over a partition solely by the probability 
assigned to the true member of the partition. 
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Once we are clear about the distinctive feature of a global scoring rule, we see that the 
use of a global scoring rule such as SRB is not problematic in special cases where the partition is 
binary. This is not because monotonicity is unimportant for binary partitions, but because even a 
global scoring rule is monotonic for binary partitions. Let X = {x1, x2} be a partition, and x1 be 
the true member. Since the entire probability distribution, P(x1) and P(x2) = 1 – P(x1), is 
determined by P(x1), the inaccuracy of P over X only depends on P(x1) by any scoring rule. For 
example, SRB(P; 1) is the following function of P(x1): 
 
 2

2
2

1B )](0[)](1[)1;(SR xPxPP −+−=   

      2
1

2
1 )]](1[0[)](1[ xPxP −−+−=   

      2)](1[ 2
1 ×−= xP         (36) 

 
Since SRB is a global scoring rule, it is possible in general that P(xi) < Q(xi) and yet SRB(P; i) < 
SRB(Q; i), but there is no such possibility in special cases where the partition is binary. 
 So, SRL is not the only scoring rule appropriate for measuring the inaccuracy of a 
probability distribution in special cases where the partition is binary. As a result, the answers 
given to questions of information by DKL and MI are not definitive in those special cases even if 
EVI is important and thus information is to be measured by reduction in expected inaccuracy. Of 
course, if we use a global rule such as SRB as our measure of inaccuracy, we may have 
difficulties in the future when we want to expand the application beyond binary cases, but that 
may not be an important consideration in some contexts. 
 It may be suggested that the use of a global scoring rule beyond binary cases is not 
problematic in cases where monotonicity is not essential, or that the use of a global scoring rule 
may even be required in some cases where the distribution of probabilities among the false 
members is important. We do not rule out those possibilities. We are doubtful, though, that there 
are many such cases.28 We take it to be the default position that P is less accurate than Q if P(xi) 
for the true proposition is higher than Q(xi), and thus 1 – P(xi) for the rest of the partition is lower 
than 1 – Q(xi). SRL is the only appropriate scoring rule beyond binary cases in the absence of 
some special reason. 
 
 
																																																													
28 The way 1 – P(xi) is distributed among the false members can make P misleading (Fallis 
[2007]). Suppose two distributions P and Q assign the same probability to the true member, but 
P assigns most of the remaining probability to one particular false member thereby making it the 
leading hypothesis (the member of X with the highest probability), whereas Q distributes the 
remaining probability evenly among the false members so that the true member is the leading 
hypothesis. We grant that P is misleading while Q is not, but we need not attribute the difference 
to different degrees of inaccuracy. Even if two probability distributions are inaccurate to the 
same degree, it might be that one of them is misleading while the other is not. 
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8. Conclusion 
We examined four interpretations of MI in order to justify its use in applications where EVI 
(Epistemic Value of Information) is assumed. Two common interpretations of MI by reduction in 
doubt and reduction in uncertainty turned out to be inconsistent with EVI. The third 
interpretation of MI by divergence is consistent with EVI, but is faced with the problem of 
measure sensitivity: there are many sensible measures of divergence, and so the answers to 
questions of information (as divergence) given by MI are not definitive. We proposed a fourth 
interpretation of MI by reduction in expected inaccuracy to resolve the problem. More 
specifically, it was shown that the answers to questions of information (as reduction in expected 
inaccuracy) given by MI are definitive when inaccuracy is exclusively truth directed and a 
strictly proper monotonic scoring rule is appropriate. Our resolution of the problem of measure 
sensitivity revealed that MI is not appropriate in applications where inaccuracy is not exclusively 
truth directed. It is a question for further inquiry whether there is an alternative measure of 
information that is appropriate in such applications. 
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Appendix A 
 

A.1 Ordinal inequivalence 
Let X = {x, ¬x}, Y = {y, ¬y}, and Z = {z, ¬z} be partitions. Consider the following probability 
distribution: 
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x y z P 
T T T 15

74  

T T F 1
1188  

T F T 1
22  

T F F 1
999  

F T T 17235
76516  

F T F 994
13959  

F F T 13
47  

F F F 91391
516483  

 
It can be readily verified that on this distribution: 
	

D*RL(Y ;X) = D*RL(X;Y ) > D*RL(Z;X) 	
D*SE(Y ;X) > D*SE(X;Y ) > D*SE(Z;X)  
MI(Z;X) >MI(Y ;X) =MI(X;Y )   

 
So, D*RL and D*SE are not ordinally equivalent to each other, and neither of them is ordinally 
equivalent to MI. QED 
 

A.2 S (Symmetry) 
First, we have: 
 

D*RL(X;Y ) = P(yj ) P(xi | yj )− P(xi )i=1

n∑j=1

m∑
= P(xi ∧ y)− P(xi )P(yj )i=1

n∑j=1

m∑
= P(xi ) P(yj | xi )− P(yj )j=1

m∑i=1

n∑
= D*RL(Y ;X)

 

 
Meanwhile, since D*SE(Y; X) > D*SE(X; Y) on the probability distribution given above in A.1, it 
follows that D*SE is not symmetric. Thus, S carries over to D*RL but not to D*SE. QED 
 

A.3 DPI (Data-Processing Inequality) 
Let X = {x1, x2}, Y = {y1, y2, y3}, and Z = {z1, z2} be partitions. Consider the following probability 
distribution: 
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x1 y1 y2 y3 z1 P 
T T F F T 297

800  

T T F F F 99
500  

T F T F T 49
79200  

T F T F F 3
2000  

T F F T T 1
1584  

T F F T F 3
2000  

F T F F T 3
800  

F T F F F 1
500  

F F T F T 49
800  

F F T F F 297
2000  

F F F T T 1
16  

F F F T F 297
2000  

 
It can be readily verified that on this probability distribution: 
 

P(x1 | y1 ∧ z1) =
99
100 = P(x1 | y1) P(x1 | y1 ∧ z2 ) =

99
100 = P(x1 | y1)

P(x1 | y2 ∧ z1) =
1
100 = P(x1 | y2 ) P(x1 | y2 ∧ z2 ) =

1
100 = P(x1 | y2 )

P(x1 | y3 ∧ z1) =
1
100 = P(x1 | y3) P(x1 | y3 ∧ z2 ) =

1
100 = P(x1 | y3)

P(x2 | y1 ∧ z1) =
1
100 = P(x2 | y1) P(x2 | y1 ∧ z2 ) =

1
100 = P(x2 | y1)

P(x2 | y2 ∧ z1) =
99
100 = P(x2 | y2 ) P(x2 | y2 ∧ z2 ) =

99
100 = P(x2 | y2 )

P(x2 | y3 ∧ z1) =
99
100 = P(x2 | y3) P(x2 | y3 ∧ z2 ) =

99
100 = P(x2 | y3)

  

 
0.046 ≈ D*SE(Y ;Z ) < D*SE(X;Z ) ≈ 0.059  

 
It follows that (b) in DPI does not carry over to D*SE. So DPI does not carry over to D*SE. QED 
 
 

Appendix B 
 

B.1 S (Symmetry) 
REIB(Y; X) > REIB(X; Y) on the probability distribution given above in A.1. Thus S fails to carry 
over to REIB. QED 
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B.2 DPI (Data-Processing Inequality) 
It can be readily verified that on the probability distribution given above in A.3: 
 

0.046 ≈ REIB(Y ;Z ) < REIB(X;Z ) ≈ 0.059
  

It follows that (b) in DPI does not hold if we replace MI by REIB. So, DPI fails to carry over to 
REIB. QED 
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