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Logical Concepts vs. Logical Operations:
Two Traditions of Logic Re-revisited

Tabea Rohr

1. Introduction

In his influential paper “Logic as Calculus and Logic as Lan-
guage” from 1967, van Heĳenoort points out that not all notions
of modern logic can be traced back to Frege, but that the Alge-
bra of Logic tradition is similarly important. Löwenheim’s (1915)
paper was written in the Boole-Schröder tradition and Löwen-
heim’s ideas could never have emerged out of the Frege-Russell
tradition. According to van Heĳenoort, Löwenheim’s 1915 paper
is a “cornerstone of modern logic” just like Frege’s Begriffsschrift
(van Heĳenoort 1967, 328–29).1

In order to distinguish these two traditions, van Heĳenoort
refers to a dispute between Frege and Schröder about who came
closer to realizing the Leibnizian project of a universal charac-
teristic. This project was described in an essay by Trendelenburg
(1856), which Frege and Schröder both knew. Trendelenburg
describes the two parts of the project as: (1.) Finding the ba-
sic concepts and developing a language (“lingua”) (1856, 48–49)
and (2.) developing a calculus to derive sentences from other
sentences expressed in this language (“calculus”) (1856, 54–55).

Frege writes that, unlike Schröder, he wanted to set up not only
a calculus, but also a language. Van Heĳenoort explains Frege’s
remark by claiming that Frege’s logic, in contrast to Schröder’s,
had quantifiers, and that it thus had a much greater expressiblity,

1The third cornerstone is Herbrand’s thesis from 1929, but I won’t focus on
that part of the history of logic here.

because it went beyond propositional logic (van Heĳenoort 1967,
324–25). In this sense, Schröder’s logic is only a calculus whereas
Frege’s is also a lingua (van Heĳenoort 1967, 325).

Peckhaus (2004a), however, challenges van Heĳenoort’s classi-
fication in his paper “Calculus ratiocinator versus characteristica
universalis? The two traditions in logic, revisited”. He points out
that Schröder also introduced quantifiers into his logic, indepen-
dently from Frege, in his Lectures on the Algebra of Logic in
the 1890s. Thus, Peckhaus concludes that “quantification theory
cannot be the criterion for distinguishing the two big traditions
in the history of logic” (2004a, 12).2

However, although Frege and Schröder each introduced some-
thing which is in some way a predecessor of the quantifiers we
use in modern logic, they did not identify their quantificational
signs as signs for the same thing. Schröder wrote a review of the
Begriffsschrift in 1880 and claimed that Frege’s notion of general-
ity can be adopted in Boolean logic “with minor modifications
or extensions” (1880, 91–92). The explanation Schröder gives
in that review shows, however, that Schröder did not under-
stand Frege’s quantifiers. His “modification” could only capture
what can be expressed with one quantifier.3 It now seems puz-
zling that Schröder did not even realize his mistake when he
introduced his own notion of generality in the 1890s.4 Frege
also never mentioned that Schröder invented something like his
quantifiers, even though he wrote a review of Schröder (1890)
(Frege 1895 [1984]), the first volume of Schröder’s Lectures on

2One has to mention, however, that van Heĳenoort (1967) seems to acknowl-
edge at least indirectly that Schröder did at some point introduce quantifiers
to his algebra of logic. He calls Löwenheim’s logic a “first order predicate
calculus” and points out that “Löwenheim uses Schröder’s logical notation”
(van Heĳenoort 1967, 327).

3Frege (1882 [1972]) explained this in his reaction to Schröder.
4Schröder (1891) first introduced quantification signs, but he had not yet

introduced a general notion of relation (“Relative”, as he calls them). Schröder
(1895) does that and thereby gets technically to the same level as Frege. Fur-
thermore, this paper has a focus on concept formation. What comes closes to
what Frege calls concepts are relatives. Thus, we will focus on Schröder (1895).
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the Algebra of Logic. It is thus very likely that Frege did read
Schröder (1895). Thus, it seems he did not recognize Schröder’s
quantifiers as comparable to his own.

In what follows, I will suggest a different way to demarcate
Frege’s logic from Schröder’s, which clarifies their different con-
ceptualizations of quantifiers. My suggestion is not limited to
quantifiers, but concerns all logical connectives (which are now
usually called “logical constants”).5

For Frege, logical connectives are concepts; for Schröder, they
are operations. In “Funktion und Begriff” Frege defines concepts
as functions whose values are truth-values and introduces all
logical connectives as names of functions, most of them as names
of concepts.6 Since logical connectives denote (logical) concepts,
it becomes evident that logical connectives can connect not only
non-logical concepts, but also logical connectives themselves. As
a result, with Frege’s logical notation one can express complete
sentences using logical signs only.

Schröder, however, did not have such a project; he thinks of
logical connectives as merely “operations”, which are to be con-
trasted with the non-logical “operanda” (1895, 3). In other words:
for Schröder, logical connective signs merely connect concepts,
which are external to his calculus, and do not express anything
themselves.

5I use “logical connective” instead of “logical constant” because this is a
more neutral name. The name “logical constant” already presupposes some
similarity with non-logical vocabulary, because there are also non-logical “con-
stants”. Anyway, the word doesn’t exactly capture either Frege’s or Schröder’s
perspective. For Frege the logical concepts are not merely connectives, because
they have a content of their own. For Schröder the connectives are not exactly
logical, because they are part of the “absolute algebra”. However, some vocab-
ulary is needed to compare Frege and Schröder and the different perspectives
will be worked out in what follows.

6Only the value range function and the designation function are not con-
cepts, because their values can be objects other than truth-values. I will speak
of “logical concepts”, though, because this stresses the similarity of the logical
connectives to what is connected. Furthermore these functions play no role in
the comparison to Schröder’s logic here.

Thus, Peckhaus is right, insofar as the existence of a highly de-
veloped quantification theory cannot be the criterion for distin-
guishing the two big traditions in the history of logic. However,
Peckhaus does not appreciate the fact that the conceptualization
of quantifiers, and logical connectives in general, is significantly
different in both traditions. So the basic difference is deeper. It
is found on a more elementary level.

One central aim of the paper is to show how central Frege’s
conceptual understanding of logical connectives, his consequent
distinction between concepts of different arities and his partic-
ular way of concept formation are for his project to show that
arithmetic is in fact a part of logic. Thereby it should be appre-
ciated the differences to the logic tradition Frege sets himself
against—the Algebra of Logic.

In Section 6, I will furthermore take my investigation of
Schröder into account in order to discuss whether these two
logic traditions have and can have a real metaperspective.

2. Frege’s Logical Concept Formation

In his Begriffsschrift of 1879 Frege distinguishes in § 9 between
function and argument. From 1884 on, he also distinguishes
between concept and object. A concept is unsaturated, i.e., it has
at least one argument place. An object, by contrast, is saturated.
This distinction is highly important for Frege: in Grundlagen der
Arithmetik from 1884 one of the three fundamental principles of
his inquiries is “never to lose sight of the distinction between
concept and object” (Frege 1884 [1953], x). Frege also starts to
distinguish between concepts of different order and arity, i.e.,
the kind and number of argument places.

Grundlagen der Arithmetik is also the publication where Frege
starts to reinterpret logical connectives as concepts: He calls exis-
tence a second-order concept and identity a relation (i.e., a binary
concept) (Frege 1884 [1953], §54, §65).
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This is of particular importance for his project to derive arith-
metic from logic. In the Grundlagen der Arithmetik Frege also
sketches his goal of expressing arithmetical sentences with logi-
cal signs only, in order to prove the logical nature of arithmetic.
Thus, unlike other logicians before him, Frege does not use logi-
cal signs merely to connect non-logical concepts. For Frege, log-
ical connectives are names of logical concepts, and logical sen-
tences can be expressed using these concepts alone. This will be
of particular importance for the following discussion. However,
it took Frege several years to do away with the seemingly natural
distinction between the logical connectives and the conceptual
content that they connect. In “Booles rechnende Logik und die
Begriffsschrift” from the early 1880s, he distinguishes between
the “logical cement” and the “building blocks” (Frege 1880-81
[1979], 13). He obviously did not yet perceive logical connectives
as concepts at that point, for otherwise this analogy would make
no sense, since the logical concepts would be both at the same
time: cement and building blocks.

Even though Frege started to call some logical connectives
concepts already in Grundlagen der Arithmetik, it took him until
1891 to reinterpret all logical connectives as concept names. In
Funktion und Begriff he was finally able to give a purely concep-
tual account of all logical connectives. He could only do this
with the help of his idea that sentences denote truth-values. He
was then able to define concepts as functions whose values are
truth-values. (Generality, for example, is from this point of view
a function which maps first-order concepts onto truth-values.)
Then, naturally, sentential connectives like the conditional and
negation, which were not yet perceived as concepts in the Grund-
lagen der Arithmetik, turn out to be functions which map (single
or pairs of) truth-values onto truth-values, and are thus also a
particular kind of concepts.

This reinterpretation of his logical signs in the 1890s also had
an impact on the technical realization of his concept script: Frege
had to apply the distinction between concepts of different order

and arity to the logical connectives themselves. Accordingly, he
had to rework his concept script of 1879. The result can be found
in Grundgesetze der Arithmetik. I won’t explain how Frege re-
worked every concept script sign here; instead, I will illustrate
what I mean using the example of the concavity.7

In the concept script of 1879 Frege introduces the concavity as
one sign. This sign can be used to express generality over non-
function arguments as well as over unary or binary functions
(which are conceived as arguments in this context):

a 5 (a), f
f(0), f

f(0, 1)

However, as soon as Frege takes logical signs to be names for
concepts, he is forced to distinguish three different concepts here,
because in the three contexts the concavity sign is used to denote
different kinds of concepts. Thus, instead of merely one con-
cavity sign used in three different ways, we find three concept
names in the Grundgesetze der Arithmetik, all of which contain the
concavity sign

First, there is the second-order concept under which all those
first-order concepts fall which are true for every object:

a
Φ(a)

In this formula “Φ” indicates the empty space for a first-order
concept.

Second, the sign which expresses generality over concepts (and
functions in general) denotes a third-order concept. This third-
order concept holds for all second-order concepts that hold for
all unary first-order concepts. Frege introduces a new sign to
indicate the empty space for such a second-order concept. This

7For a comprehensive explanation see Rohr (2020, chapter 1).
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is the letter � occurring in the following expression (Frege 2013,
§24):

f ��(f(�))

Finally, there is a third-order concept which holds for any second-
order concept that holds for all binary first-order concepts (Frege
2013, §24):

f ���(f(�, �))

Thus, from the one concavity sign of the concept script of 1879,
three distinct concept names emerge in the version of 1893.

The clear distinction of names of concepts of different order
and arity enables Frege to set up a new method of concept for-
mation.

The procedure can be generally explained as follows. Con-
cepts are connected by inserting (object- or concept-) names into
the empty spaces of a given concept. One can then obtain a new
concept by removing concept and object names from this com-
plex name. The procedure of inserting and removing can then
start again.

The distinctions between saturated and unsaturated expres-
sions and concepts of different order and arity are central to this
kind of concept formation, because they are needed to specify
which names can be inserted into an empty space in order to
obtain a well-formed expression.

The classical explanation of concept formation can be found in
Goldfarb (2001) and Ricketts (2010). However, they focus on the
case where we can assume a sentence of ordinary language as
given. When Frege realizes his logicist project, however, he does
not start with ordinary language sentences, but he only assumes
a few logical concepts (and functions) as given. The basic differ-
ence is that we always have to start with inserting and not with
removing concept names. The formation of new concepts from
given ones is explained in Grundgesetze der Arithmetik.

In §12 of his Grundgesetze der Arithmetik Frege indicates, for
example, how the name of the ternary first-order concept:

�

�

$

can be formed utilizing the concept name:

�

�

He writes,

One can insert insert into �

Δ

any proper name for “�”, even

for example Θ

Λ

. Thus we obtain

( Θ

Λ

)

Δ

.

wherein we can fuse the horizontals:

Θ

Λ

Δ

.

(Frege 2013, §12).

However, in Frege’s explanation, we have in the end a sentence,
not the corresponding ternary concept, because Θ, Λ, andΔ stand
for sentences. In order to indicate argument places Frege uses
small Greek letters, here �, � and $. Likewise in the beginning
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of Frege’s explanation there occurs a Δ. As a result we have
a unary instead of a binary concept. Thus, in order to explain
how the binary concept name of the implication can be used to
form a ternary concept, one needs to add two more steps: one
at the beginning, in which the name of a sentence is put into
an empty space, and one at the end, in which the three names
of sentences are taken out of the formula and leave three empty
spaces. Hence, a step-by-step explanation of the formation of the
ternary concept out of the binary according to the Grundgesetze
der Arithmetik would be as follows.

By filling the argument place, “�”, of

�

�

with a proper name, here Δ,8 we obtain the concept name:

�

Δ.

By filling in both argument places, “�” and “�”, with respectively
the two proper names Λ and Θ, we can also obtain:

Θ

Λ

This is a proper name. Thus, we can fill it into the argument
place indicated by “�” of the concept name

8Frege never discusses the justification for using such object names. One
has to build them from concept names. As Thiel (1975, 154) suggests, one
could build

a
a = a

as a name of the truth-value truth, which is an object name according to Frege’s
Grundgesetze der Arithmetik.

�

Δ

thereby obtaining (after the fusion of the horizontal):

Θ

Λ

Δ

Finally, one removes all three proper names, obtaining the
ternary concept name:

�

�

$

Here logical connectives were themselves connected in order to
form a new concept. This shows that there is no essential differ-
ence for Frege between connectives on the one hand and concepts
on the other hand, but connectives are (logical) concepts. Logical
concepts like the conditional can both connect other contents,
and be part of what is connected. The concept script signs are,
so to speak, not just part of the calculus to connect concepts, but
basic signs of the lingua which expresses concepts.

In the next two sections we will see that Frege’s way of perceiv-
ing logical connectives and of forming concepts is significantly
different from Schröder’s. In Schröder’s system, logical connec-
tives only ever connect antecedently given, non-logical concepts.
Section 3 describes the basic concepts of Schröder’s system. Sec-
tion 4 discusses how Schröder’s system differs from Frege’s. In
Section 5, we will see which consequences this has for the ex-
pressability of logic.
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3. Schröder’s Algebra of Relatives

In contrast to Frege, Schröder neither distinguishes between sat-
urated and unsaturated expressions, nor between concepts of
different order and arity.

However, at first glance there seems to be a distinction similar
to that of concept and object: In his Logik der Relative Schröder
introduces a distinction between elements on the one hand, and
relatives on the other. Elements are denoted by capital Latin let-
ters (1895, 4):

�, �, � . . .

and relatives are denoted by small Latin letters:

0, 1, 2 . . .

Relatives can occur alone or as part of so-called relative coeffi-
cients, which have one or more indices:

08 , 18 9 , 28 9: . . .

The indices 8 , 9 . . . are used like variables. They can be substi-
tuted by the elements (1895, 7). Thus, for example

0��

could be read, in modern terms, as “� is in 0-relation to �” or
“0(�, �)”. These expressions may take the value 0 or 1 (1895, 42).

However, for Schröder the elements are not a class of entities
sui generis, but are themselves relatives.

For Schröder, a class is simply the objects it contains. Thus,
he does not distinguish between a class containing only one
object and the object it contains. Hence, a relative which contains
only one element is identical with this relative.9 For that reason,
elements are (unary) relatives. In the next section, we will see

9This follows from his formula: 0 =
∑

ℎ: 0ℎ:(ℎ : :) (1895, 24). The signs
occurring in this formula will be explained in what follows.

how Schröder provides a unified interpretation of elements and
unary relatives with binary relatives.

Another consequence of this conception is that the empty class
becomes a very odd object within Schröder’s logic. In Logik der
Relative he presents the following formula:

0 =

According to Schröder, this is a “complete equation” (vollständige
Gleichung). On the right hand side of the equation is “literally
‘nothing’ ” (buchstäblich “nichts”), which is just what 0 stands for
(1895, 26).

In addition to the sign 0 Schröder introduces three more “con-
stant logical relatives” 1, 1′ and 0′. Schröder calls constant logical
relatives “modules”. (1895, 25–27)

The relative 1 is called the “domain of thought” (Denkbereich).
Schröder sometimes explicitly distinguishes between domains
of different arity10 written 11, 12, 13 etc. (1895, § 2) The unary
domain of thought, 11 (Denkbereich erster Ordnung), is the sum of
all elements, for example:

11 = � + � + � + �

The binary domain of thought, 12 (Denkbereich zweiter Ordnung),
is the sum of all pairs of elements. In modern terminology it is
the Cartesian product of 11 with itself. Thus, if for example

11 = � + �,

then
12 = � : � + � : � + � : � + � : �

10Schröder speaks in this context of the “order” (Ordnung). To avoid con-
fusions of order between Frege’s sense and Schröder’s, I will adopt Frege’s
usage here and will speak of arity. This also fits Schröder’s talk of “unary”
(uninäre), “binary” (binäre) and “ternary” (ternäre) relatives. See e.g., Schröder
(1895, 1–16).
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From this explanation, it should be clear that

� : �, � : �, . . .

denote ordered pairs. Schröder (1895, 10) calls them “pairs of
elements” (Elementenpaare) or “individual binary relatives” (in-
dividuelle binäre Relative).

Every relative is defined extensionally by the elements of the
domain which it contains. Schröder develops a graphical nota-
tion for representing relatives. His first example is the following
binary relative (1895, 44):

� � � �
�

�

�

�

Here the elements of the domain are A, B, C and D. The binary
relative represented by this matrix (call it A) would be written in
Schröder’s linear notation as follows:

A = � : � + � : � + � : � + � : � + � : � + � : � + � : � + � : �

Similarly, the domain 1 and the empty relation 0 can be repre-
sented as follows:

� � � �
�

�

�

�

module 1

� � � �
�

�

�

�

module 0

The constant unary relatives 1′ (“Einsap”) and 0′ ( “Nullap”)11 are
the relations to which belongs, respectively, every pair of iden-
tical elements and every pair of non-identical elements. Thus,
they can be represented as follows:

� � � �
�

�

�

�

module 1′

� � � �
�

�

�

�

module 0′

Schröder’s system also contains a number of symbols that are
recognizable predecessors of those in contemporary logical lan-
guages. Relatives can be connected by the following well-known
sentential connectives, which Schröder calls “operations” (1895,
18, 29):

1. the “identical sum”, written “+”, which is Schröder’s inclu-
sive disjunction

2. the “identical product”, written “·”, which is Schröder’s
conjunction12

3. the negation, written by a stroke above the negated relative
“0̄”

Schröder also uses the identity sign, which is generally used
like ordinary identity, but sometimes also as a biconditional.
Occasionally both interpretations have to be applied to a single
formula, as the following example shows (Schröder 1895, 119):

(0 = 1)(1 = 1) = (01 = 1)

11“Eins” and “Null” mean one and zero. “Ap” is an abbreviation of “Apos-
troph” (apostrophe).

12As usual in arithmetic, one can write “01” instead of “0 · 1”.
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Here the third identity sign from the left should be read as a
biconditional, because it holds between expressions which can
only take the values “1” and “0”. The other identity signs artic-
ulate identity between relatives. Since relatives can be different
from “1” and “0”, these identity signs cannot be read as bicon-
ditionals. In Frege’s concept script, we could not meaningfully
express such a formula. In modern logic, we would read it as a
metalogical statement: “0” is true and “1” is true if and only if
“0 and 1” is true. In Schröder’s system, the sentence can be read
in a similar way: If and only if “0 = 1” takes the value 1 and
“1 = 1” takes the value 1, then “01 = 1” takes the value 1.

There is also a sign which expresses that one relative is sub-
sumed under another one:13

The following formula thus expresses that all elements which
belong to 0 also belong to 1:

0 1

Furthermore, Schröder’s logic contains two predecessors of our
quantifiers:

1. the “product sign”, written “
∏

”, which corresponds to the
universal quantifier

2. the “sum sign”, written “
∑

”, which corresponds to the ex-
istential quantifier

Schröder, however, does not count them as “basic operations”
(1895, 29). When he explains formulas containing the product
and sum sign, he just talks of “identical sum” and “identical
product”.14 Thus, just as in arithmetic, Π andΣ are simply short-
hand for long iterations of the ordinary binary sum and product
signs.

13The “Subsumtionszeichen” is first introduced in Schröder (1873, 28–29).
14See e.g., Schröder (1891, 26) and Schröder (1895, 8).

Expressions containing the quantifiers are generally explained
as follows. In an expression like

∑

D

5 (D)

D takes all the values of the domain 1. 5 (D), according to Schröder
(1895, 35), is an expression which contains D as well as constant
relatives connected by the logical operations.

However,
∑

cannot always be accurately translated as an exis-
tential quantifier. Nor can it be always be verbally rendered by
“there is”.15 This can be seen in Schröder’s definitions for 11, 12,
1′ and 0′. The domain of thoughts is defined as the “identical
sum” of all elements or, in the binary domain of thoughts, of all
pairs of elements (1895, 8, 10):

11 =
∑

8

8

12 =
∑

8 9

(8 : 9)

The relative modules are defined as the identical sum of all iden-
tical (1′) or all non-identical (0′) pairs of elements (1895, 24–26):

1′ =
∑

8 9

(8 = 9)(8 : 9) =
∑

8

(8 : 8)

0′ =
∑

8 9

(8 ≠ 9)(8 : 9)

Here
∑

instead corresponds to the union of sets
⋃

. 11 is the
union of all elements, 12 is the union of all pairs of elements, 1′

is the union of all identical pairs of elements and 0′ is the union
of all non identical pairs of elements.

15This is also pointed out, and confirmed via several examples, in Badesa
(2004, chapter 2).
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In the beginning of this section we saw that Schröder dis-
tinguishes between relatives and relative coefficients. With this
knowledge about Schröder’s operations at hand, we can de-
fine relatives as identical sums of some elements of the domain
(Schröder 1895, 8). In modern terminology one would say that
relatives are classes. The identical sum and the identical product
connect relatives. If 0 and 1 are relatives, 0 + 1 is also a relative.

Relative coefficients can also be connected by these identical
operations. Recall that relative coefficients like 08 and 18 9 always
equate to 0 or 1, if we substitute the indices, 8 , 9 . . . , by elements.
Respectively, the same holds for the identical sum and the iden-
tical product of relative coefficients. 08 9 + 18 9 always equates to
0 or 1, when the indices are substituted by elements. (Whereas
0 + 1 can equate to 0 or 1, but also to any other relative).16 Rela-
tive coefficients thus come closer to what we call concepts in our
modern terminology.

The relationship between (binary) relatives and relative coef-
ficients (with two indices) is clarified in the following formula
(Schröder 1895, 22):17

0 =
∑

8 9

08 9(8 : 9)

The relative 08 9 coefficient takes the value 1 if the pair of elements
substituted for 8 and 9 belongs to 0, otherwise it takes the value
0. Thus, we gain the definition of 0 as a sum of element pairs.

There are also three additional operations which are only de-
fined between relative coefficients. These are called “relative”
operations, in contrast to the operations introduced above, which
Schröder calls “identical”. The relative operations can be defined
by means of the identical operations in the following way:18

16See also Badesa (2004, 37).
17The formulas for relatives of other arities would be defined analogously.
18The first three formulas can be found at Schröder (1895, 29) and the fourth

at Schröder (1895, 24).

1. the “relative sum”, written “
ˆ
”: (0

ˆ
1)8 9 =

∏

ℎ(08ℎ + 1ℎ 9)

2. the “relative product”, written “;”: (0 ; 1)8 9 =
∑

ℎ(08ℎ1ℎ 9)

3. the “converse”, written “0̆”: 0̆8 9 = 0 98 , a converse relative can
be defined by: 0̆ =

∑

8 9 0̆8 9(8 : 9)

Despite this possibility of defining the relative operations by
the identical ones,19 however, Schröder (1895, 29) calls all six
operations “basic”.

We now have the technical details to understand Schröder’s
unification of elements with binary relatives and of unary rel-
atives with binary relatives, which will be presented in the fol-
lowing section.

4. Unification of Elements and Relatives

We have now seen that Schröder’s logic contains expressions
which we can recognize as predecessors of our contemporary
quantifier and relation symbols. But for Schröder, the introduc-
tion of these expressions leads neither to a principled distinction
between elements and relations (which would correspond to
Frege’s distinction between concept and object) nor to a distinc-
tion between relatives of different arity (“Ordnung”).

In his introduction to Algebra und Logik der Relative Schröder
explains that his theory of relatives provides methods which
enable us to reinterpret relatives of a particular arity into relatives
of a different arity:

Finally, however, it should be pointed out in advance that the theory
of relatives will provide the possibility and a procedure, in order to
reinterpret expressions, as well as relations, formulas or sentences,

19Schröder does not introduce the equations on the right hand side as defi-
nitions, but just as true statements.
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of relatives of a particular arity from that shared domain into a
domain of different arity (Schröder 1895, 15–16).20

Later in the book, Schröder shows how an element can be per-
ceived as a binary relative (1895, 24):

8 =
∑

ℎ:

8ℎ:(ℎ : :)

In order to understand this equation we need the following for-
mulas (1895, 25):

8ℎ: = 1′8ℎ

1′8 9 = (8 = 9)

Thus,
8 =

∑

ℎ:

(8 = ℎ)(ℎ : :).

This means that the element 8 is identical with the sum of all
element pairs which have 8 as their first element. In the graph-
ical notation presented above elements are presented as binary
relatives with exactly one full row.21 The element �, for example,
would be presented as:

� � � �
�

�

�

�

C binary

20In the German original: “Endlich aber soll im voraus darauf hingewiesen
werden, dass die Theorie der Relative die Möglichkeit schaffen und ein Ver-
fahren aufstellen wird, um Ausdrücke, sowohl als Relationen, Formeln oder
Sätze, von Relativen einer bestimmten Ordnung aus diesem ihrem gemein-
samen Denkbereich umzudeuten in einen Denkbereich von anderer Ordnung.”

21Schröder himself uses this graphical explanation and uses the word “Voll-
reihe” (full row); see Schröder (1895, 140–42).

Thus, there is no sharp difference between elements and (binary)
relatives, since a sign for an element can always be reinterpreted
as a sign for a binary relative, using the formulas above. This
stands in sharp contrast to Frege’s clear distinction between con-
cepts of different order and arity. I will return to this important
difference later.

As explained earlier, a unary relative is defined as the sum
of the elements it contains. Since elements can be redefined as
binary relatives with exactly one full row and unary relatives are
sums of elements, unary relatives have to be redefined as binary
relatives where each row is either completely full or completely
empty. The full rows thereby correspond to the elements of the
unary relative.

Formally, Schröder’s (1895, 140) reinterpretation works as fol-
lows:

(0 ; 1)8 9 =
∑

ℎ

08ℎ1ℎ 9 =
∑

ℎ

08ℎ

He later writes explicitly (1895, 464):

08 = (0 ; 1)8 9

Thus:
08 =

∑

ℎ

08ℎ

The relative coefficient 08 has only one index, 08 9 has two. So, is
the relative 0 a sum of elements or of pairs of elements? Schröder
(1895, 141) explains that if one interprets 0 as binary, one can fill
up up all non-empty rows of 0, forming “full rows” in order
to attribute a meaning to 08 which is consistent with the binary
understanding of 0. This procedure of filling up the rows is
formally expressed by 0 ; 1 in the formula 08 = (0 ; 1)8 9 .

Thus, 08 = 1 if and only if for all 9, 08 9 = 1. This is expressed by
the formula

08 =
∑

ℎ

08ℎ
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If for example, in the unary interpretation of B8 , B = �+� holds
and our domain again contains �, �, � and � as the only ele-
ments, then the binary interpretation of the relative belonging to
the relative coefficient B8 would be given graphically represented
as follows:

� � � �
�

�

�

�

B8 binary

Note that Schröder’s formulas here are equations in the normal
object language. So we have binary relatives on both sides of the
equation 08 =

∑

ℎ 08ℎ . Otherwise, the equation would not be true.
We need, in Schröder’s own words, to “redefine” (“umdeuten”)
the relatives as relatives of higher arity (“Ordnung”).

It is noteworthy that Frege, in contrast to Schröder, does not
have to reinterpret the unary concept as a binary. With his con-
cept formation explained in Section 2 of this paper, Frege can
form a unary concept from a binary concept '(G, H) and the
second-order unary concept of existence (which is itself formed
from the second-order unary concept of generality and the unary
first-order concept of negation) by filling in the empty space of
the latter concept, existence, with the former one, '(G, H).

Schröder and Frege thus have two opposed strategies for han-
dling logical combinations of relatives of different arity: Frege
takes this difference as absolute and utilizes it for concept for-
mation in the way sketched above, while Schröder reinterprets
relatives of different arity into the same arity. If Schröder had not
done that, he would have had to define his logical operations for
every (combination of) arities. In what follows, we will see what

light this difference sheds on the fundamental preconditions of
Frege’s foundational project.

5. Concept Formation in Frege and Schröder

In the last section it was shown that Schröder tries to over-
come the absolute distinction between relatives of different arity.
Schröder preserves another distinction, however, which Frege
finally abolishes in 1891: the distinction between logical signs
and non-logical ones. For Schröder there are no such things as
logical concepts in the Fregean sense. The logical connectives
are operations. All concepts (which he calls “relatives”) must be
taken from outside. For him the lingua is not part of, but separate
from, his calculus.22 The same holds for Leibniz’s own attempts
for a universal characteristic. The idea that logical connectives
are themselves concepts was alien to Leibniz.

As we saw, relatives are sums of elements in Schröder’s logic.
Logical signs, on the other hand, are names of operations. The
signs for identical sum and identical product are signs for the
operations to build the union and the intersection of relatives.
Negation is the operation to build the complement to a relative.
Schröder never made any attempt to define these operations as
relatives.

Thus, we can sum up: for Frege the fundamental distinctions
are (1) the distinction between saturated and unsaturated expres-
sions and (2) the more fine-grained distinctions between unsat-
urated expressions according to the kind and number of their
empty spaces (that is, their order and arity). Schröder on the
other hand takes the difference between relatives and operations
as fundamental. He does not stress this distinction, because he
seemingly takes it for granted, but he does occasionally mention
it. His first book on logic from 1877 is called Operationskreis des

22In the foreword of the first volume of Vorlesung über die Algebra der Logik
(1890), Schröder sketches how such a language would look and says that it is
a task for philosophers to work this out.
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Logikkalkuls. In this book he introduces sum, product and nega-
tion as operations to calculate with concepts. In the introduction
to the first volume of his Vorlesung über die Algebra der Logik, he
explains that “our whole system of concepts” can be built if all
concepts are formed out of “basic concepts” by connecting them
with “basic operations” (1890, 93). Here he mentions that the
“concepts of these operations will be partly counted as basic
concepts in a certain sense.” However, he never really clarifies
what a “concept of an operation” is, and the word “concept”
does not play a central role in Schröder (1895). Thus the remark
only seems to show that Schröder was not really clear about the
relationship between the logical connectives and what they con-
nect. At the beginning of Algebra und Logik der Relative Schröder
talks of “operanda” and “operation” (1895, 3).

Relatives are not seen as unsaturated expressions. As we saw
above, one finds the expression 5 (D) in Schröder’s writings,
which is defined as “an expression which is built by opera-
tions. . . and contains D itself and some other relatives”. However,
Schröder does not distinguish clearly between the functional ex-
pression 5 ( ) and its argument D. He writes that “the function
5 (D) is itself a binary relative” (1895, 35), but he never explains
what 5 ( ) itself is. The saturated/unsaturated distinction is to-
tally alien to Schröder. And since it is totally alien for Schröder
to think of relatives as unsaturated expressions, they are for him
totally different from logical connectives.

This is important in order to understand the difference in pos-
sibilities for concept formation in Frege’s and Schröder’s systems,
especially in the possibility of purely logical concept formation.
Frege can build an infinite number of new concept names from
the logical vocabulary alone. For Frege logical connectives are
concepts and concepts can be formed by removing and insert-
ing concept names. This method of concept formation can be
iterated. Let for example '(G1 , G2) be a binary logical concept.
Then Frege can insert into the empty space marked by G2 the

object name '(0, 1) (which denotes a truth-value, which is a
particular kind of object). Thereby we gain '(G1 , '(0, 1)). In an-
other step we can think of 0 and 1 as substitutable. We then get
'(G1 , '(G2 , G3)), which is a ternary concept.23 In an analogous
way we can obtain '(G1 , '(G2 , '(G3 , G4))), and so on.

Schröder in contrast cannot form any concepts from his con-
nectives alone at all, because the connectives are for him not
concepts, but operations. And even if we presuppose some rela-
tives as given, the Fregean methods of concept formation are not
possible in Schröders algebra of logic. We cannot analogously
insert A�� into A8 9 to obtain A8A�� and then by removing �, � ob-
tain A8A9: . The first step would not work, because 8 and 9 can only
be substituted by elements such as �, �, � (1895, 7). The expres-
sion A��, however, does equate to either 0 or 1, which, as we saw
above, are “literally nothing” and the sum of all elements. In
either case we do not have an element. Thus, A8A�� is not a mean-
ingful expression. For the same reason A8A9: is not a meaningful
expression. If one substitutes 9 and : in A 9: by elements, one gets
an expression which equates to 1 or 0, which are no elements.
Thus, relative coefficients cannot fulfill the same task as indices.

Here again we see the difference in concept formation which
is deeply connected with the different understanding of logical
connectives. Schröder connects relatives by operations, Frege by
inserting concepts into others and removing them and, if neces-
sary, iterating this process. As we have just seen, the Fregean way
of concept formation is unavailable in Schröder. And of course
Schröder’s way of concept formation is unavailable in Frege as
well, because there are no operations in Frege’s logic.

We also have seen in the last section that Schröder reinterprets
concepts of different arity within one formula in such a way that
all relatives have the same arity. So even by logical operations
we cannot obtain relatives of other arities.

23Frege shows this with the example of the conditional in Grundgesetze der
Arithmetik, as we saw in Section 2 above.
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So unlike Frege, who can form infinitely many concepts from
a finite number of (logical) concepts, Schröder can only form a
finite number of new concepts out of a finite number of given
concepts. We even can quantify this more precisely. Let’s limit
the algebra of logic for a moment to the sentential connectives:
logical sum, logical product and negation. We can then obtain
only 22= new concepts from = given concepts, because there are
22= =-ary logical connectives in propositional logic.

The difference between Frege and Schröder in their attitudes
toward arities can be explained by a simple example. Let us
assume that we have two unary predicates, F(�) and G(�), or
in Schröder’s notation 08 and 18 . Frege can now define a binary
predicate in the following way:

(

�(�)

�(�)

)

= �(�, �)24

Here Frege gains a concept, which is of different arity from the
concepts used to define it.25 Thus, this new concept is not con-
tained in the 16 possibilities of connecting �(�) and �(�) (note
the difference from �(�)!) by propositional connectives.

Analogously we could make the following definition in
Schröder’s logic (for simplicity I now use a different connective):

28 9 = 081 9

However, in order to gain a binary relative 2 one must reinterpret
0 and 1 as binary relatives in the way sketched in the last section.
For example, let our elements again be �, �, �, and �, and let
0 = � + � and 1 = � + �. If we do not reinterpret 0 and 1 in a
binary way, we first get the result

24 indicates a definition in Frege’s notation (2013, §27).
25Though of course the concept �

�

is binary. In any case, Frege can

combine concepts of different order and arity.

2 = �

But we want to get the following result:

2 = (� : �) + (� : �) + (� : �) + (� : �)

We get the intended result in the following way. First we have to
reinterpret 08 and 1 9 as binary using the formulas presented in
the last section. We then get:

0 ; 1 = (� : �) + (� : �) + (� : �) + (� : �) +

(� : �) + (� : �) + (� : �) + (� : �)

1 ; 1 = (� : �) + (� : �) + (� : �) + (� : �) +

(� : �) + (� : �) + (� : �) + (� : �)

Since in our formula we have 1 9 and 9 is the second index in
the defined relative coefficient 08 9 , we need the converse of 1; 1,
which is the following:26

(

1 ; 1 = 1̆ ; 1 = (� : �) + (� : �) + (� : �) + (� : �) +

(� : �) + (� : �) + (� : �) + (� : �)

Graphically, this can be represented in the following way:

� � � �
�

�

�

�

0 ; 1

� � � �
�

�

�

� (

1 ; 1

26For the first part of the equation see Schröder (1895, 85).
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� � � �
�

�

�

�

2

In this graphical notation any instance of

28 9 = 081 9
(

= (0 ; 1)8 9(

(

1 ; 1)8 9
)

can be verified. For example, 0� = 1 (row � is full in 0) and
1̆� = 0 (column � is empty in 1̆) and also 2�� = 0 (the pair � : �
is not in 2). Thus, 1 · 0 = 0, which is correct according to the
Algebra of Logic.

In this presentation it is also obvious that the binary relative 2
is just one of the 22= (here = = 2) possible combinations of 0 and
1, which are here also interpreted as binary relatives. Despite
the occurrences of relative coefficients with different numbers of
coefficients, we never really step from the unary to the binary
in Schröder’s logic. We are limited to the 22= possibilities for
combining = concepts of the same arity.

Even if we add
∑

and
∏

to the connectives under considera-
tion, this does not change the result that Schröder cannot form
concepts of different arity from the concepts used to form it. In
a definition of the form:

(

a �(a, �)
)

= �(�)

Frege does form a unary concept utilizing a binary one (and two
unaries, since the concavity and negation are for Frege concepts
as well).

In formulas of the form:

08 =
∑

ℎ

18ℎ

especially in the particular case of this:

08 =
∑

ℎ

08ℎ

which is, as we have seen in the last section, according to
Schröder a true sentence in the algebra of logic, Schröder in-
terprets all involved concepts as binary. Schröder does not really
state something about the relationship between a binary and a
unary concept. The fact that 08 has one and 08 9 has two indices
does not mean that they are unary and binary concepts. The
superficial resemblance of relatives like 08 and 18 9 in Schröder’s
logic and concepts like �(�) and�(�, �) in Freges logic is no proof
of a deeper similarity of the way these notions are understood
by both logicians.

Schröder’s logic is, thus, completely unsuitable for Frege’s goal
of building purely logical concepts, a purpose which is crucial
for Frege in order to prove the logical nature of arithmetic. First,
for Schröder the connectives of his algebra of logic are not con-
cepts. Second, Schröder’s logic cannot be used to build an infinite
number of new concepts from a small number of given concepts,
because he cannot form concepts of different arity. But this is
exactly what Frege needs to do in order to form all arithmetical
concepts just from the small logical vocabulary of the Begriffss-
chrift.

Schröder has a completely different idea of what a lingua is.
For Schröder, the concepts of the lingua are not logical concepts—
because there are no such things for him—but concepts taken
from other branches of science.

One can contrast this with Frege’s understanding of the lingua
more explicitly. For Schröder, as for Leibniz, lingua and calculus
are two completely separate parts of the universal characteris-
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tic. For Frege, the signs of the calculus are also the signs of the
concepts of the lingua—at least in arithmetic.

The whole idea that arithmetic is indeed logic and that this
shows the analytic a priori character of arithmetic is completely
alien to Schröder. For Schröder, logic does not even have the
same status. For Frege, logic is the most general science, while for
Schröder it is embedded into absolute algebra (Peckhaus 2004b,
596–97). In summary, these both contemporaries have very dif-
ferent ideas of the nature and purpose of logic.

6. Metalogic in the Nineteenth Century?

In “Logic as Calculus and Logic as Language” van Heĳenoort
draws the attention to the fact that there existed another impor-
tant logic tradition in 19th and early 20th century besides the
Frege-Russell school, namely the Algebra of Logic. He pointed
out that Boole already had the idea of changing universes; an
idea central to modern model theory. Thus, it seems to be no
surprise that Löwenheim’s famous 1915 paper was written in
Schröder’s notation.27

However, in this last section, it will be argued in the light of
the preceding investigation that Schröder and even Löwenheim
lack a real metaperspective. More precisely, they cannot have
a metaperspective, because the lack of the modern distinction
between object- and metalanguage is central to the algebraic
logicians approach.

Van Heĳenoort (1967, 325) points out correctly that the relative
1 resembles the modern domain, because it contains all elements
and can be changed at will. However, we have seen that “1”, the
domain of thought, is not part of the metalanguage, but is itself
simply a relative, which is used within the calculus (Schröder
1895, 464):

08 = (0 ; 1)8 9

27Dreben and van Heĳenoort (1986) also set Löwenheim in the context of
Boole and Schröder and stress their importance for model theory.

Even stating which elements the universal class contains is some-
thing that is expressed within the calculus (1895, 5):

11 = � + � + � + � . . .

Similarly, there is no such a thing as an assignment function.
The assignment is rather expressed within the object language,
as can be demonstrated with the following formula (1895, 43):

0 = � : � + � : � + � : � + � : � + � : � + � : � + � : � + � : �

Thus, there is no separation between a formula and its interpre-
tation.

Schröder did not introduce the domain of thought in order
to interpret previously given formulas; he needs it in order to
set up his calculus in the first place. Relatives are extensionally
defined, and the universe of discourse is just another relative.
But since “1” is used within this calculus and the assignment is
also given within the calculus, there is no formal separation of
the object language and a metalanguage within which a model
can be specified. Moreover, this missing separation is not an
inessential feature of Schröder’s calculus; it is central to it. If
one tries to read all formulas in which “1”, “0”, an element, or
an element pair occur as being part of the metalanguage, most
formulas in Schröder’s work would be classified as belonging
to the metalanguage. But which (logical) language would this
metalanguage be the metalanguage of ?

As a consequence, one has to be very cautious in attributing
modern metalogical notions to the algebraic logicians. Goldfarb
claims that in the Algebra of Logic

the following sort of question is investigated: given an equation
between two expressions of the calculus, can that equation be satis-
fied in various domains—that is, are there relations on the domain
that make the equation true? This is like our notion of satisfiability
of logical formulas (Goldfarb 1979, 354).
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Indeed there are notions such as 0 and 1, that have different
meanings. Thus, one can think about such questions such as “If
0 = 0’, how many elements do we have?"28 Our notion of satisfia-
bility, however, requires a clear distinction between the formula
and its interpretation. Since we do not find this distinction in
Schröder,29 it would be a mistake to see our notion of satisfi-
ability as appearing in Schröder’s work. Thus, what algebraic
logicians do is only in a very weak sense of the word “like” our
notion of satisfiability.

As we have seen in the previous sections, even the question of
which arity a given relative has can only be answered by looking
at the formula to which it belongs.

Let us think about possible interpretations of the relatives
occurring in the following set of formulas:

1. 0 = � + �

2. 2 = � : � + � : � + � : � + � : �

3. 28 9 = 08 + 18

According to the first two formulas 0 and 1 are of different arity.
As we have seen in the last section, however, in the last formula
all relatives have to be interpreted as being of the same arity. If
we try to interpret 08 as being of higher arity, we have to use the
formula 08 = (0 ; 1)8 9 presented in Section 4. Since 0 is explicitly
given as a unary relative, however, 0 ; 1 is only a unary predicate
as well. Only if one already interprets the elements�, � as binary
relatives, 0 becomes binary as well. However, 2 then becomes a
sum of pairs of binary relatives. Thus, the third formula again
cannot be interpreted consistently. Thus, not all arbitrary sets of
formula can be interpreted consistently.

28Löwenheim (1915, 449) pointed out that this holds only if we have exactly
one element.

29Goldfarb notes that Schröder confuses set-theoretic and sentential inter-
pretations and that Löwenheim has no model-theoretic notion of logical con-
sequence.

The problem here is that formulas like the first and third
would usually not be considered object language formulas. But
Schröder has no other resources to express assignments for rel-
atives, the chosen domain, and so on.

In his book The Birth of Model Theory, Badesa points out explic-
itly that Schröder lacks our modern separation between object
and metalanguage:

[N]one of the distinctions that today separate syntax from semantics
are present in the logic of relatives. There is no precise notion of
formal language and, naturally enough, no distinction is made
between object language and metalanguage (Badesa 2004, 65).

In this book on Löwenheim’s proof of the so-called Löwenheim-
Skolem theorem, Badesa also argues that the same holds even
for Löwenheim. In his paper, Löwenheim shows how a count-
able model can be built for a formula which is known to be
satisfiable in an uncountable model. In order to do this, Löwen-
heim substitutes indices like 8, 9, : etc. by natural numbers 1, 2,
3 etc., in an iterative procedure. However, it is unclear whether
these numbers are—in modern terminology—just uninterpreted
symbols, which may denote different elements in different do-
mains, or if they are names of elements of a given domain. This
subtle point turns out to be highly important: If they are just
uninterpreted names, Löwenheim proved the weak version. If
these constant names are interpreted within the presupposed
uncountable model, in which the formula is satisfied by hypoth-
esis, Löwenheim proved the strong version of the Löwenheim-
Skolem-theorem.30 Löwenheim lacks the vocabulary in order to
clearly express this difference between both version, because he
expresses himself in Schröder’s algebra of logic. As we have
seen, the difference between a name and what it denotes cannot
be made clearly, because object and metalogic are not distin-
guished.

30Badesa (2004) argues that Löwenheim indeed proved the strong version
(with some minor mistakes), contradicting van Heĳenoort, who argues that
Löwenheim proved only the weak version.
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Furthermore, Löwenheim only proved the theorem for single
formulas. The reason for this might be that he, like Schröder,
was not always able to interpret an arbitrary set of formulas
consistently.

It was in Skolem’s work that the difference between the weak
and the strong version became clear. In Skolem (1920), he pub-
lished a proof for the strong version, and in Skolem (1923), he
also presented an alternative proof for the weak version. He
also was able to prove the theorem for sets of formulas, not just
single formulas. Skolem studied the Algebra of Logic, but was
also influenced by the Frege-Russell tradition31 and Dedekind’s
work.32 So he was not a full-blooded algebraic logician. Thus, it
seems that the history of the late nineteenth century and its in-
fluence on our modern concept of logic is still in need of further
clarification.

7. Summary

The results of this paper can be briefly summarized as follows:

1. For Frege logical signs are signs of concepts, while for
Schröder they are signs of operations.

2. Frege makes a sharp distinction between concepts of differ-
ent order and arity. Schröder, in contrast, expends a lot of
effort to unify relatives of different arity.

3. The number of concepts which can be formed in Schröder’s
logic depends on the number of concepts presupposed. In
Frege’s logic, the iterative method of concept formation al-
lows forming infinitely many concepts of different order and
arity just from the finite set of given logical concepts.

31He refers to Principia Mathematica several times in the writings around
1920.

32Skolem (1920) uses Dedekind’s chains (Ketten) to construct a countable
submodel.

4. Though Schröder’s logic was undoubtedly highly important
for the birth of model theory, there is no distinction between
meta- and object language.
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