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The collapse of supertasks
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Abstract A supertask consists in the performance of an infinite number of
actions in a finite time. I show that any attempt to carry out a supertask will
produce a divergence of the curvature of spacetime, resulting in the formation
of a black hole. I maintain that supertaks, contrarily to a popular view among
philosophers, are physically impossible. Supertasks, literally, collapse under
their own weight.
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Then it is again clear that nothing will remain, but it will be all gone...

Simplicius.

1 Introduction

In recent years there has been a populous literature on supertasks and the
strange consequences they have for classical and even quantum physics. A
supertask is an infinite sequence of actions that can be performed in a finite

interval of time. The term ‘supertask’ was introduced by Thomson in the 1950s
in a famous paper (Thomson 1954). The topic experienced a kind of revival
after Pérez Laraudogoitia proposed a new kind of “beautiful supertask” (Pérez
Laraudogoitia 1996). This turned the discussion from the logical possibility to
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the physical implications of supertasks. Some supertasks might, perhaps, be
logically possible. I am not concerned with this issue here. My aim is to show
that, contrary to a widespread opinion, no supertask can be accommodated
in the real universe. I shall show that this follows from some very elementary
features of general relativity: any attempt to implement a supertask will pro-
duce a black hole. The formation of the black hole will stop the execution of
the would-be supertask, and will kill or destroy the executant.

Some clarifications are in order first. Although my demonstration will be
quite general, I shall present a few examples of supertasks for pedagogical
reasons, and I shall divide supertasks in two classes. Then, I shall provide some
ontological background required by the subsequent discussion. A technical
detail goes to the Appendix.

2 Supertasks

I shall divide supertasks in two groups: class I and class II supertasks. Every
action in supertasks of the first class requires the same amount of energy.
Supertasks of class II, on the contrary, demand a decreasing amount of energy
in every step implemented. Let us review some examples.

Supertasks of class I are, for instance, Thomson’s famous lamp (Thompson
1954) and Pérez Laugdogoitia’s infinite particle collection (Pérez Laugdogoitia
1996, see also his 2011 review for additional examples and details). In the first
supertask, a lamp is just in one of two states: on and off. At t1 the lamp is off.
Then, at t2 = t1+∆t the lamp is on. At t3 = t2+

∆t
2
, it is off. At t4 = t3+

∆t
4
,

it is on. And so forth. After a finite time1 2∆t, an infinite number of actions
have been performed. Thomson’s argued that the state of the lamp at the end
of the supertask is indeterminate, implying a contradiction. After Benacerraf
(1962) criticisms, it is generally accepted that there is no logical contradiction
in the performance of this kind of supertasks. The main point is that a property
shared by partial sums of a series does not have to be necessarily shared by the
limit to which those partial sums tend. For instance, all partial sums involved
in the supertask’s infinite series are smaller than 1, but the limit is not; it is
1.

In Pérez Laugdogoitia’s “beautiful” supertask we are invited to consider
an infinite collection of point masses all of which are stationary. The point
masses are all of equal mass m and are placed along a line AB at positions
B, AB/2, AB/4, AB/8, and so on. The first particle at B is accelerated to
a velocity v towards A. According to the laws of Newtonian mechanics, when
the first particle collides with the second, it will come to rest and the second
particle will inherit its velocity v. This process will continue through an infi-
nite number of collisions, and after a time ∆t = AB/v, all collisions will finish
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since all particles were moving at the same velocity v. The supertask has been
completed. Nevertheless, no particle will emerge from A, since there is no last
particle in the sequence. Pérez Laugdogoitia argues that since all particles are
at rest after the supertask completion, the conservation of energy is violated.
Moreover, we are told that because of the laws of Newtonian mechanics are
time-reversal-invariant, an infinite system of stationary point masses placed
along AB will, at random, spontaneously start colliding with each other, re-
sulting in a particle moving away from B at an arbitrary speed. I shall argue
in Section 4 that these effects are just a consequence of the incompleteness of
Newtonian physics and are not possible in general relativity.

In both examples presented, the amount of energy exchanged in every step
of the implementation of the supertask is the same. In class II supertasks, this
amount can be progressively diminished. Here there are two examples.

In order to write all natural numbers in one minute one can draw a line
dividing an A4 sheet in two equal parts and write ‘1’ in the upper part. After
1/2 minutes, the lower part of the sheet is divided in two and the number ‘2’ is
written in the left part. Then, after 1/4 minutes, the remaining part is divided
into two, and ‘3’ is written in the upper part. We continue this way until after
a minute we have written the infinite natural numbers. Each number is smaller
so the work necessary to write it is also smaller. The size of the numbers can
be adjusted in order to avoid the necessity of increasing the speed of writing,
eluding in this way kinematic superluminal problems.

The other example is the classical Zeno’s dichotomy paradox: Achilles
wishes to move from A to B. To achieve this he must traverse half the distance
from A to B. To get from the midpoint of AB to B Achilles must traverse
half this distance, and so on and so forth. Never mind how many times he
performs one of these “traversing” tasks there is another one left for him to
do before he arrives at B. Notice that this will be only a supertask if Achilles
stops at the end of each step and starts again to move. Otherwise, if the divi-
sion is only made in our analysis of motion, there is just one task performed
in the physical world: moving from A to B. If, instead, there are infinite posts
between A and B, Achilles must complete infinite actions in a finite time. The
energy required to run through each interval can be considered proportional
to the distance traversed. Hence, this task can classify as of class II.

If we want now to proceed with a discussion of the physical possibility
of class I and II supertasks, we need to give a precise meaning to the word
‘action’ that appears in the definition of supertasks given in the Introduction.
To do that, I shall first to provide some basic ontological concepts.

3 Ontological background

An individual endowed with properties makes up a thing X (I follow Bunge’s
ontology). Things can be represented by pairs of the form:

X =< x, P (x) >,
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where P (x) is the collection of properties of the individual x. A thing is an
individual with material properties, i.e. properties that can change in some
respect. The most general property of a thing is energy. It is the property of
changeability (Bunge 1977). We say that a thing is material if it can change.
Concepts do not change, since they do not have energy. What changes is the
brain that produces concepts.

The state of a thing X is represented by a set of functions S(X) from a
domain of reference M (a set that can be numerable or non-denumerable2)
to the set of properties PX . Every function in S(X) represents a property in
PX . The set of the physically accessible states of a thing X is the lawful state

space of X : SL(X). The state of a thing is represented by a point in SL(X).
A change of a thing is represented by an ordered pair of states.

A legal statement is a restriction upon the state functions of a given class
of things. A natural law is a property of a class of material things represented
by an empirically corroborated legal statement.

The ontological history h(X) of a thing X is a subset of SL(X) defined by

h(X) = {〈t, F (t)〉|t ∈M}

where t is a real parameter on M , and F are the functions that represent the
properties of X .

If a thing is affected (acted upon) by other things we define:

h(Y/X): “history of the thing Y in presence of the thing X”.

Let h(X) and h(Y ) be the histories of the things X and Y , respectively.
Then

h(Y/X) = {〈t,H(t)〉| t ∈M},
where H 6= F is the total state function of Y as affected by the existence of
X , and F is the total state function of X in the absence of Y . The history of
Y in presence of X is different from the history of Y without X .

We now introduce the notion of action:

X ⊲ Y : “X acts on Y ”

X ⊲ Y
def
= h(Y/X) 6= h(Y )

An action modifies the state of a thing, and hence its history.
An event is the result of an action, and it is represented by an ordered pair

of states:

(s1, s2) ∈ EL(X) = SL(X)× SL(X)

The space EL(X) is called the event space of X .

2 In most physically interesting cases M is a space-time continuum. See Bunge (1977) and
Romero (2013a) for details.
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Any action that causes a change of state implies an exchange of energy.
Any change in the energy density of a physical system implies a change in the
geometry of the manifold that represents space-time, which is the ontological
composition of all events (changes). See Perez Bergliaffa et al. (1998) and
Romero (2013a) for an axiomatic theory of spacetime as a system of physical
events.

4 The collapse of class I supertasks

From the considerations outlined above it follows that there is no action with-
out energy. In general relativity energy and momentum of physical systems
determine through Einstein’s field equations (EFEs) the metric of spacetime,
and hence its curvature:

Rµν − 1

2
Rgµν =

8πG

c4
Tµν . (1)

Here, Tµν is the energy-momentum tensor, Rµν and R are the Ricci tensor
and the Ricci scalar, related to spacetime curvature3, and gµν is the spacetime
metric. The relation between coordinates xµ and the spacetime interval ds
between events arbitrarily proximate is ds2 = gµνdx

µdxν .
By definition, any supertask is performed in a finite region of spacetime.

We can express the volume of this region in an invariant way:

VST =

∫

ST

√−gdx4, (2)

where g ≡ det[gµν ] is the metric determinant and ST represents the spacetime
region where the supertask is carry out. The execution of a class I supertask
requires that each action must take place in an ever smaller region of spacetime,
i.e. VST → 0 as n → ∞, with n the number of steps in the supertask. At the
same time, the energy used in each step, ∆E, remains constant. Hence, the
energy density ρ→ ∞ as n→ ∞. The divergence of the energy density makes
the tt component of Tµν to diverge, and through EFEs, the curvature diverges
as well. The process, since the volume is decreasing, is identical to that of
gravitational collapse: the singularity (i.e. the divergence of the curvature) will
be covered by an event horizon according to the so-called Cosmic Censorship
Conjecture (CCC, see, e.g., Hawking & Ellis 1973). In other words, the attempt
to complete the supertask will lead to the formation of a black hole4.

3 Both the Ricci tensor and the Ricci scalar are zero in a flat spacetime since they are
formed with the second derivatives of the metric.

4 Some peculiar choices for Tµν might lead to a divergence of the curvature without the
occurrence of an event horizon, in violation of the CCC (e.g. Joshi 1993). Whether such
configurations of energy and momentum can be obtained in Nature is highly controversial.
In any case, the execution of the supertask is terminated not by the event horizon, but by
tidal forces associated with the increase of the curvature which necessarily follows from the
rise of the energy density.



6 Gustavo E. Romero

A black hole is a region of spacetime from where no time-like5 or null6

curve can emerge and reach the conformal future infinity7. In the interior of
the black hole the tidal forces increase without bounds, destroying any agent
responsible for the supertask. Strictly speaking, the supertask can never be
finished.

5 The collapse of quantum supertasks

A supertask enforcer can take refuge in class II supertaks, hoping that at
some point quantum effects might avoid the spacetime collapse. This hope,
like most, is futile.

Every supertask of class II will eventually reach a quantum regime. The
amount of energy involved in the performance of the supertask will be re-
stricted by Heisenberg’s inequality for energy8:

∆A

|d 〈A〉 /dt| ∆E ≥ 1

2
~, (3)

or

τA ∆E ≥ 1

2
~, (4)

where

τA =
∆A

|d 〈A〉 /dt| . (5)

In these equations, A is the quantum operator representing the property of
the system that is affected by the supertask. The mean value 〈A〉 is:

〈A〉 = 〈ψ |A|ψ〉 , (6)

with ψ the vector of the Hilbert space representing the dynamical state of
the system at a given time t. The mean root-square deviations of A and the
Hamiltonian H are ∆A = (A−〈A〉)|ψ〉 and ∆E = (H−〈H〉)|ψ〉, respectively.

As a supertask proceeds, τA → 0 and consequently, from (4), ∆E → ∞.
These increasingly stronger energy fluctuations will occur within a region of
size lA ∼ τAc, which is the largest region occupied by a coherent quantum
supertask. Then, the formation of a black hole is unavoidable. We can estimate
the magnitude of the energy fluctuations necessary for the collapse. From
equation (4), we get:

lA ∆E ≥ 1

2
~c. (7)

5 A time-like curve is a curve that can be followed by a massive system.
6 A null curve is a curve that can be followed by photons or other bosons moving at the

speed of light.
7 A region to which can evolve causal curves from a region located in the past of the black

hole.
8 See the Appendix.
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To trigger black hole formation, the length lA must equal the Schwarzschild ra-
dius of the equivalent mass corresponding to the energy ∆E: RS = 2GM/c2 =
2G∆E/c4. Then,

∆E2 ≈ 1

4

~

G
c5, (8)

which implies:
∆E ≈ 1015 erg. (9)

The quantum black hole will form when the timescale of the supertask be
τA ≈ 4.8× 10−43 s. This is an order of magnitude above the Planck time.9

Black hole formation will abort the implementation of any class II super-
task even before reaching the domain of quantum gravity.

6 Epilogue

I have shown that any attempt to carried out a supertask, in the long run, will
lead to such an increase of the energy density in a finite region of spacetime
that the formation of a black hole is unavoidable. This will avert the completion
of the supertask, even if it is conceivable to finish it in a Newtonian spacetime.

The friends of supertasks can claim that, at least in the case of quantum
supertasks, quantum gravity effects might prevent the collapse allowing the
supertask to be finished. This hope, I think, is vain. The only thing that
quantum gravity might preclude is the spacetime singularity inside the black
hole, not the black hole itself. Singularities are pathological manifestations
of the incompleteness of general relativity (see Romero 2013b), and not a
feature of the real world. Hence, any good theory of quantum gravity should
be free of spacetime singularities. The event horizons that characterize black
holes, however, occur far away from any singularity. Spacetime is well-behaved
in the horizon, and general relativity provides an adequate description of a
black hole, except from its innermost region. Black holes are predicted by
any gravitational theory that is consistent with the current knowledge of the
universe. Tidal forces, on the other hand, can destroy any physical system
capable of performing any task long before the system reaches the region
where the description provided by general relativity fails. Theories of quantum
gravity cannot give any harbourage to supertasks.

Should we conclude that supertasks are, at most, a logical game, with no
use at all in physical science? I think not. Supertasks have proved to be a pow-
erful tool to probe the limitations of classical Newtonian mechanics, and even
quantum mechanics on flat spacetime. The lack of back-reaction of spacetime
to the performance of supertasks inherent to classical and special-relativistic
mechanics leads to a number of results that point out the weakness of these
theories. Supertasks can produce Cauchy horizons in Newtonian spacetimes,
and massive violations of energy and momentum conservation laws. A better
understanding of some of our most cherished theories, of their frailty and bugs,

9 The Planck time is tP ≡

√

~G
c5

≈ 5.39106(32) × 10−44 s.
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is crucial to guide us towards the formulation of more comprehensive theories
of reality. Here, perhaps, supertasks might finally find their place in the world.

Appendix: Quantum indetermination theorems

The relation (4) given above is different from the usual inequality presented
in many textbooks:

∆E∆t ≥ ~

2
. (10)

This inequality cannot be derived from the framework of quantum mechan-
ics, since, as noted by Bunge (1967) and Perez Bergliaffa et al. (1993) among
others, there is no time operator in the theory. The inequalities between prop-
erties represented by non-commuting operators are derived using the Schwarz
inequality (Weyl 1928), i.e. if Â and B̂ are two operators representing the
quantum properties A and B such that

[Â, B̂] = i~ (11)

then, through (∆A)2(∆B)2 ≥ 1

2

∣

∣

∣

ÂB̂
∣

∣

∣

, we get

∆A∆B ≥ 1

2
~, (12)

where ∆ indicates the root-mean-square deviation of the corresponding op-
erators. In particular, since the position and momentum operators satisfy
[q̂i, p̂j] = i~δij , the usual relation ∆qr∆pr ≥ ~/2 obtains.

This procedure fails when applied to the Hamiltonian that represents the
energy of the system and time, since time is a parameter. In 1945, Mandelsh-
tam and Tamm obtained the correct form for an energy-time relation, where
the time involved was the timescale of an evolving operator. This relation is
given by inequality (4).
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