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Abstract 

Gelman and Loken (2013, 2014) proposed that when researchers base their statistical analyses on the 

idiosyncratic characteristics of a specific sample (e.g., a nonlinear transformation of a variable 

because it is skewed), they open up alternative analysis paths in potential replications of their study 

that are based on different samples (i.e., no transformation of the variable because it is not skewed).  

These alternative analysis paths count as additional (multiple) tests and, consequently, they increase 

the probability of making a Type I error during hypothesis testing.  The present article considers this 

forking paths problem and evaluates four potential solutions that might be used in psychology and 

other fields: (a) adjusting the prespecified alpha level, (b) preregistration, (c) sensitivity analyses, 

and (d) abandoning the Neyman-Pearson approach.  It is concluded that although preregistration and 

sensitivity analyses are effective solutions to p-hacking, they are ineffective against result-neutral 

forking paths, such as those caused by transforming data.  Conversely, although adjusting the alpha 

level cannot address p-hacking, it can be effective for result-neutral forking paths.  Finally, 

abandoning the Neyman-Pearson approach represents a further solution to the forking paths problem. 
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Imagine that a researcher predicts that men have higher self-esteem than women.  Following data 

collection, the researcher observes that self-esteem scores in the sample are negatively skewed and, 

therefore, not ideal for a parametric test.  Consequently, the researcher decides to log10 transform the self-

esteem scores in order to produce a more normal distribution.  Although this transformation makes the self-

esteem scores more suitable for a t test, it also causes a statistical problem that increases the probability of 

incorrectly rejecting the null hypothesis that there is no gender difference in self-esteem (i.e., making a 

Type I error). 

This example represents part of a broader problem that Gelman and Loken (2013, 2014) have 

described as the garden of forking paths.  Forking paths represent tests that are based on different analytical 

approaches, such as transforming or not transforming self-esteem scores.  In the above example, the 

researcher followed only one analysis path (transform the scores) because it was considered to be the best 

(most valid) path to take.  Nonetheless, the fact that a second potential analysis path exists (do not transform 

the scores) increases the probability of making a false positive (Type I) error during hypothesis testing. 

In their articles on this subject, Gelman and Loken (2013, 2014) provided some useful illustrations 

of the forking paths problem using examples from several published research articles.  However, they did 

not provide an in-depth discussion of potential solutions to the problem.  In the present article, I explain the 

forking paths problem and then critically evaluate four potential solutions that might be used in psychology 

and other fields: (a) adjusting the alpha level, (b) preregistration, (c) sensitivity analyses, and (d) 

abandoning the Neyman-Pearson approach.  I explain why preregistration and sensitivity analyses are 

ineffective solutions and why adjusting the alpha level and abandoning the Neyman-Pearson approach are 

more effective solutions. 

 

What is a Forking Path? 

According to Gelman and Loken (2014), a forking path occurs when researchers compute “a single 

test based on the data, but in an environment where a different test would have been performed given 

different data” (p. 460).  More formally, a forking path is an “if…then” decision rule that is used to 

determine the type of test to be undertaken.  The criteria for implementing this rule are idiosyncratic aspects 

of the sample.  Hence, a sample-contingent analysis rule might take the form:  “If certain values of data 

exceed threshold X, then conduct Test X.  Otherwise, conduct Test Y.”  As a more concrete example, a 

forking path might take the form:  “If self-esteem scores have ±2.0 skewness, then log10 transform them.  

Otherwise, leave the scores nontransformed.” 

Sample-contingent analysis rules result in different analyses for different samples given that, by 

definition, different samples vary in their idiosyncratic characteristics.  For example, self-esteem scores 

may be skewed beyond a certain level in some samples but not in others, leading to tests that operate on 

transformed data in some samples and tests that operate on nontransformed data in others.  This issue is 

exacerbated for smaller samples because smaller samples are less representative of the population and, 

consequently, more likely to contain idiosyncratic characteristics (Gelman & Loken, 2013). 

Forking paths are not limited to nonlinear transformations.  They can refer to any sample-contingent 

basis for determining different analyses.  A nonexhaustive list of forking paths includes: 

1. only excluding participants if their data exceeds a threshold criterion value relative to other participants 

in the sample (e.g., ±3.0 SDs from the sample mean); 

2. only excluding variables (e.g., scale items) if they exceed a threshold criterion value relative to other 

variables in the sample (e.g., exploratory factor analyses and/or internal reliability analyses); 

3. only undertaking a nonlinear transformation if the data fails to conform to a certain threshold 

distribution in the sample (e.g., ±2.0 skewness); 

4. only conducting a particular statistical test if data meet a sample-specific criterion (e.g., heterogeneity 

of variance); 

5. only including variables as covariates in an analysis if they are empirically associated with predictor or 

outcome variables in the sample; 

6. only testing an interaction effect if a relevant main effect is nonsignificant in the sample; and 

7. only testing simple main effects if a relevant interaction effect is significant in the sample. 
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Figure 1 provides an example of how three of these forking paths can result in eight potential tests.  

The green boxes in Figure 1 represent the analysis that a researcher actually conducted in their study.  The 

blue boxes represent other potential analysis paths that the researcher did not follow but that could be 

followed in any subsequent replications of the same study. 

 

 
Figure 1.  An illustration of three forking paths in which decisions about removing items, transforming scores, and 

including covariates are based on the idiosyncrasies of a specific sample of data.  

 

Why are Forking Paths Problematic? 

Forking paths are problematic because they increase the number of potential tests in a study’s 

analysis protocol and, consequently, they increase the probability of making a Type I error.  To explain, it 

is necessary to take a step back and consider the Neyman and Pearson (1933) approach to null hypothesis 

significance testing.1  According to this approach, in order to determine if a p value is significant or 

nonsignificant, its value needs to be judged against a prespecified threshold value (e.g., .05).  This alpha 

level refers to the probability of making a Type I error in a long run of exact replications of that study, with 

each replication randomly sampling data from the same population.  Following this interpretation, if a p 

value falls below the prespecified alpha level (i.e., p < .05) then, assuming that the null hypothesis is true, 

a maximum of 5% of samples in the long run of exact replications will yield a result as extreme or more 

extreme as that observed in the original study.  Importantly, the decision about whether or not to classify a 

result as being “significant” does not apply to the single result from the original study but rather to the series 

of results from the long run of exact replications of that study.  These exact replications do not need to be 

actually conducted in order to decide whether or not a result is significant.  However, they do need to be 

taken into account when specifying the probability of making a Type I error regarding this decision. 

Forking paths are problematic for the Neyman-Pearson approach because they imply that different 

tests will be conducted in different exact replications of the same study.  For example, if a researcher 

transforms self-esteem scores because they are skewed in their original study, then they are making an 

implicit commitment to follow the same conditional rule in subsequent replications based on different 

samples (i.e., transform self-esteem scores when they are skewed but not when they are not skewed).  In 

the context of each specific sample, this is a reasonable and justifiable rule to follow.  Nonetheless, in the 

context of a long run of exact replications based on different samples, this conditional rule results in two 
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different tests: one based on transformed scores and the other based on nontransformed scores.  Hence, this 

conditional rule represents a forking path in the analysis protocol because it leads to different tests in 

different replications of the same study. 

The occurrence of different tests in different replications increases the probability of making a Type 

I error due to multiple testing (de Groot, 2014; Frane, 2015; Szucs, 2016).  Note that this multiple testing 

problem occurs even if a researcher has conducted only a single test in their original study.  If the choice of 

that test is determined by the idiosyncrasies of the sample, then the test may change from one sample to the 

next in the long run, and it will count as two potential tests in the analysis protocol for exact replications of 

that study.2  For example, in Figure 1, the researcher followed only one analysis path.  Nevertheless, the 

three sample-contingent analysis decisions in their analysis protocol result in eight potential tests in 

replications of the study, and these multiple tests increase the probability of making a Type I error from 

5.00% to 33.66% in a long run of exact replications of that study.  

In summary, the forking paths problem is a special case of the more general multiple testing 

problem.  However, a defining feature of the forking paths problem is that multiple tests do not need to be 

performed in the original study in order to be problematic.  Instead, their potential presence in subsequent 

replications of the original study leads to an “invisible multiplicity” (Gelman & Loken, 2014, p. 460) that 

nonetheless increases the probability of making a Type I error.  In Gelman and Loken’s words, 

 

because the justification for p values lies in what would have happened across multiple data sets, it 

is relevant to consider whether any choices in analysis and interpretation are data dependent and 

would have been different given other possible data.  If so, even in settings where a single analysis 

has been carried out on the given data, the issue of multiple comparisons emerges because different 

choices about combining variables, inclusion and exclusion of cases, transformations of variables, 

tests for interactions in the absence of main effects, and many other steps in the analysis could well 

have occurred with different data (p. 460). 

 

Solutions to the Forking Paths Problem 

The forking paths problem represents a common and serious threat to the validity of the Neyman-

Pearson approach to null hypothesis significance testing because it increases the chances of making a Type 

I error.  Indeed, the forking paths problem may be a contributor to the current replication crisis in 

psychology (Gelman & Loken, 2013, 2014; Open Science Collaboration, 2015).  Consequently, it is 

important to consider methods for diminishing or avoiding this problem.  Below, I consider four potential 

solutions to the forking paths problem: (a) adjusting the prespecified alpha level, (b) preregistration, (c) 

sensitivity analyses, and (d) abandoning the Neyman-Pearson approach. 

 

Adjusting the Alpha Level 

A well-recognised solution to the general problem of multiple testing is to adjust the prespecified 

alpha level in order to account for the increased probability of making a Type I error (e.g., Frane, 2015; 

Matsunaga, 2007; Rubin, 2017).  For example, if a researcher undertakes two tests of the same hypothesis, 

then they can use a Bonferroni adjustment to reduce the prespecified alpha level from .050 to .025 in order 

to maintain the actual alpha level for their hypothesis at .050.  Hence, in theory, it is possible for researchers 

to adjust their prespecified alpha level in order to compensate for the increased Type I error probability that 

results from potential multiple testing in the long run based on forking paths. 

One problem with the alpha adjustment solution is that it increases the Type II error probability – 

the probability of incorrectly accepting the null hypothesis (Matsunaga, 2007; Weber, 2007).  However, 

there are several different approaches to adjusting the alpha level (e.g., Matsunaga, 2007; Shaffer, 1995), 

and they vary in the degree to which they (a) compensate for the increased Type I error probability and (b) 

increase the Type II error probability.  Hence, researchers can choose approaches that do not have a large 

impact on the Type II error probability if this is a concern. 

A potentially bigger problem for the alpha adjustment solution is that, in non-preregistered research 

studies, it is not possible to exhaustively identify all of the tests that could have been undertaken.  The 
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forking paths problem implies that some of these potential tests may be conducted in some samples in the 

long run of exact replications.  Consequently, the forking paths problem leads to an indeterminate number 

of potential tests in the long run, and this makes it impossible to calculate the extent to which the 

prespecified alpha level needs to be adjusted (e.g., de Groot, 2014; Forstmeier, Wagenmakers, & Parker, 

2016; Gelman & Loken 2013, 2014). 

However, indeterminate potential testing is only problematic for certain types of forking path.  

Below, I consider result-neutral forking paths and two types of result-biased forking paths – fishing and p-

hacking.  I show how the alpha adjustment solution is tenable for result-neutral forking paths, potentially 

unnecessary for fishing, and untenable for p-hacking. 

 

Result-neutral forking paths.  Forking paths can be based on either result-biased analysis rules 

or result-neutral analysis rules.  Result-biased analysis rules specify an iterative form of testing that 

continues until a significant result is obtained.  Consequently, result-biased forking paths produce an 

indeterminate number of potential tests in the long run because it is unclear how many tests will need to be 

conducted in subsequent samples in order to obtain a significant result. 

In contrast, result-neutral analysis rules specify a noniterative form of testing that is based on 

logical and/or conventional analytical principles.  Consequently, result-neutral forking paths generate a 

fixed and knowable number of potential tests in the long run.  For example, the analysis rule “if self-esteem 

scores have ±2.0 skewness, then log10 transform them” generates only two potential tests in the long run: 

one in which scores are transformed and one in which they are not transformed. 

The alpha adjustment solution cannot be applied to result-biased forking paths because they 

produce an indeterminate number of potential tests in the long run.  However, it can be applied to result-

neutral forking paths because they produce a fixed and knowable number of potential tests in the long run.  

For example, the prespecified alpha level can be lowered to compensate for the two tests that are implied 

in the long run when a researcher log10 transforms their self-esteem data (Rubin, 2017).  

It may be objected that even result-neutral analysis rules can produce an indeterminate number of 

potential tests in the long run because there are many potential variations to the specifications of each rule, 

and each variation produces more potential tests.  For example, the threshold value for the analysis rule 

“exclude self-esteem data that exceeds ±3.0 SDs from the sample mean” has the potential to be varied from 

±3.0 SDs to ±2.5 SDs, ±2.0 SDs, or any other value.  However, these potential variations do not affect the 

Type I error probability for the original ±3.0 SDs test because they do not represent exact replications of 

that test.  If a researcher actually used a threshold value of ±3.0 SDs in their original test, then a potential 

variation of that test that used a threshold value of ±2.5 SDs would represent an inexact replication of the 

original test, and so it would not count as part of the long run of exact replications of that test.  Consequently, 

potential variations of actual analysis rules do not inflate the Type I error probability associated with those 

rules.  If this was not the case, then even preregistered analysis rules would be susceptible to Type I error 

inflation because a large number of potential variations to those rules remains possible outside of the 

preregistered testing protocol (e.g., Silberzahn et al., 2017). 

It might also be objected that researchers may not report some actual analysis rules.  For example, 

researchers might report that they excluded outliers using the ±3.0 SDs rule but fail to report that they also 

tried excluding outliers using a ±2.5 SDs rule in order to see how this alternative test affected their results.  

However, this approach would represent a result-biased analysis rule (p-hacking) rather than a result-neutral 

analysis rule.  I discuss result-biased rules below. 

In summary, the alpha adjustment solution is tenable for result-neutral forking paths, such as 

nonlinear transformations or outlier exclusions, because they produce a fixed and knowable number of 

potential tests in the long run.  In contrast, result-biased forking paths produce an indeterminate number of 

potential tests in the long run and, consequently, the alpha adjustment solution is not possible for this type 

of forking path.  However, although alpha adjustment is not possible for result-biased forking paths, it may 

not always be necessary.  In particular, alpha adjustment can be unnecessary in the case of fishing. 
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Fishing.  Fishing involves testing many different hypotheses in an effort to find a significant result.  

This result-biased analysis strategy produces an indeterminate number of potential tests in the long run of 

exact replications because it is unclear how many different hypotheses the researcher would need to test in 

future samples in order to obtain a significant result.  Hence, it is not possible to compute an alpha 

adjustment to compensate for fishing (e.g., de Groot, 2014; Forstmeier, Wagenmakers, & Parker, 2016; 

Gelman & Loken 2013, 2014).  But does fishing always require an alpha adjustment?  The answer depends 

on how researchers operationalize the familywise error rate. 

The familywise error rate is the probability of making at least one Type I error in a series (or 

“family”) of statistical tests.  There are two ways of operationalizing the familywise error rate.  The first 

way is in terms of multiple tests of several different hypotheses (e.g., all of the hypotheses in a study; de 

Groot, 2014).  In this case, the familywise error rate refers to the probability of making a Type I error when 

testing a joint null hypothesis that any of the hypothesised effects is zero.  The theoretical implications of 

rejecting this joint null hypothesis are unclear when its constituent individual hypotheses are derived from 

different theories (Rubin, 2017).  It is more meaningful to test a joint hypothesis when its constituent 

hypotheses are derived from the same theory because, in this case, its rejection can be taken as providing 

support for the theory (Hewes, 2003).  However, even under these circumstances, it is only necessary to 

adjust the alpha level for each constituent hypothesis if a significant result (i.e., p < αadjusted) for any one of 

the constituent hypotheses is regarded as being sufficient to reject the joint null hypothesis as a whole 

(Matsunaga, 2007; Rubin, 2017; Weber, 2007).3  Although this approach may be appropriate in some fields, 

psychology researchers do not normally investigate theories (i.e., collections of hypotheses) in this way.  

Instead, they usually test theories on a hypothesis-by-hypothesis basis in order to understand which 

hypotheses have been confirmed and which have been disconfirmed and may need revising or rejecting 

(Lakatos, 1976).  Hence, even when it is theoretically-meaningful to test a joint null hypothesis, most 

psychology researchers are likely to test each individual hypothesis separately, at its own individual 

unadjusted alpha level, rather than jointly at an adjusted alpha level. 

The second way of operationalizing the familywise error rate is in relation to multiple tests of the 

same individual hypothesis (Matsunaga, 2007; Rubin, 2017).  In this case, an alpha adjustment is only 

required to correct for the inflated error rate caused by multiple tests of that hypothesis; not multiple tests 

of a joint hypothesis that comprises several different hypotheses. 

The way in which the familywise error rate is operationalized has important implications for alpha 

adjustment in the context of fishing.  If familywise error refers to several different hypotheses, then alpha 

adjustment is necessary in order to compensate for the potential testing of different hypotheses that results 

from fishing.  However, it is not possible to make this adjustment because the number of potential tests is 

unknown.  Consequently, the alpha adjustment solution fails in this case (de Groot, 2014; Gelman & Loken, 

2013, 2014).  In contrast, if familywise error is limited to tests of the same individual hypothesis 

(Matsunaga, 2007; Rubin, 2017), then alpha adjustment is not necessary to compensate for potential tests 

of different hypotheses in the long run.  Consequently, alpha adjustment is not necessary in the context of 

fishing. 

To illustrate, consider a researcher who follows the fishing strategy by testing Hypothesis 1 first 

and then only proceeding to test Hypotheses 2 to X (some undetermined number) if they find no significant 

result in relation to Hypothesis 1.  If familywise error refers to several different hypotheses (i.e., Hypotheses 

1 to X), then this result-biased analysis strategy represents a problematic forking path in the long run of 

exact replications because, although Hypotheses 2 to X may not be tested in the original study, one or more 

of them may be tested in subsequent studies that yield nonsignificant results for Hypothesis 1.  

Consequently, the familywise error rate is inflated to an unknown extent, and it cannot be adjusted 

appropriately.  In contrast, if the familywise error rate is limited to multiple tests of the same individual 

hypothesis, then the probability of making a Type I error for Hypothesis 1 is unrelated to the probability of 

making Type I errors for any of Hypotheses 2 to X (Matsunaga, 2007).  In this case, each hypothesis is 

tested at its own individual alpha level rather than in relation to a joint null hypothesis.  Consequently, 

although one or more of Hypotheses 2 to X may be tested in the long run, this analytical variability does 

not inflate the Type I error probability of the test of Hypothesis 1. 
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In summary, if the familywise error rate is limited to multiple tests of the same individual 

hypothesis, then neither the actual testing nor the potential testing of different hypotheses inflates the Type 

I error probabilities of each individual hypothesis.  Consequently, no alpha adjustment is required is 

required for fishing.  Alpha adjustment is only required for actual or potential multiple tests of the same 

individual hypothesis.4 

 

p-hacking.  Fishing involves the actual and potential testing of several different hypotheses with 

the aim of finding a significant result.  In contrast, p-hacking involves the actual and potential testing of the 

same individual hypothesis with the aim of finding a significant result (Simmons, Nelson, & Simonsohn, 

2011).  For example, a researcher might investigate the hypothesis that men have higher self-esteem than 

women by conducting tests with and without outliers, with and without various transformations, and with 

and without various covariates.  They might find a significant result only when they log10 transform the 

data and exclude outliers at 2.5 SDs, and so they might only report that result and conceal their other 

nonsignificant results. 

Like fishing, p-hacking is based on a result-biased analysis rule in which an iterative testing 

procedure only ceases once the desired result has been obtained.  Consequently, like fishing, p-hacking 

leads to an indeterminate number of potential tests in the long run of exact replications.  However, unlike 

fishing, p-hacking involves conducting multiple tests of the same individual hypothesis, rather than 

different hypotheses that comprise a joint hypothesis.  Consequently, even when familywise error rate is 

operationalized in terms of the same individual hypothesis, p-hacking results in an indeterminate number 

of potential tests in the long run of exact replications and an unknown inflation of the Type I error.  

Consequently, the alpha adjustment solution fails in the presence of p-hacking.5 

 

Summary. In summary, the alpha adjustment solution is tenable for result-neutral forking paths 

(e.g., “exclude self-esteem data if it exceeds ±3.0 SDs from the sample mean”).  Furthermore, if familywise 

error is limited to the same individual hypothesis, then alpha adjustment is not necessary for result-biased 

forking paths that refer to different hypotheses, such as fishing.  However, the alpha adjustment solution is 

not tenable for result-biased forking paths that refer to the same hypothesis, such as p-hacking. 

 

Preregistration 

Gelman and Loken (2013, 2014) suggested preregistration as a potential solution to the forking 

paths problem (e.g., Nosek, Ebersole, DeHaven, & Mellor, 2017; Nosek & Lakens, 2014; Wagenmakers, 

Wetzels, Borsboom, van der Maas, & Kievit, 2012).  However, this potential solution suffers from a major 

drawback.  Specifically, if any part of a preregistered protocol describes sample-contingent “if…then” rules 

for analyses, then it will succumb to the same forking paths problem as non-preregistered research.  For 

example, a preregistered protocol might specify:  “If outcome scores are skewed ≥ ±2.0, then log10 transform 

them.  Otherwise, leave them nontransformed.”  Despite being preregistered, this analysis rule represents a 

forking path that leads to multiple testing in the long run and increases the Type I error probability.  Hence, 

preregistration per se does not mitigate against the forking paths problem. 

Notably, advocates of preregistration encourage the explicit identification of sample-contingent 

analysis rules in analysis protocols.  For example, in their discussion of a template for preregistered research 

in social psychology, van't Veer and Giner-Sorolla (2016) suggested that researchers specify contingencies 

for (a) handling outliers, (b) removing items that reduce reliability, (c) transforming variables to achieve 

more normal distributions, and (d) statistical corrections for heterogeneity of variance.  Similarly, 

Chambers, Feredoes, Muthukumaraswamy, and Etchells (2014) stated that: 

 

pre-registration does not require every step of an analysis to be specified or “hardwired”; instead, 

in such cases where the analysis decision is contingent on some aspect of the data itself then the 

pre-registration only requires the decision tree to be specified (e.g. “If A is observed then we will 

adopt analysis A1 but if B is observed then we will adopt analysis B1”) (p. 12, my emphasis). 
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However, merely describing forking paths in a decision tree does not do anything to reduce their 

impact on the Type I error probability (Frane, 2015), and it is this issue that needs to be addressed in order 

to solve the forking paths problem. 

Most recently, Nosek et al. (2017) summarised four strategies that are intended to address sample-

contingent analyses in the preregistration paradigm.  The first two strategies blind researchers to the 

substantive research results.  In the first strategy, researchers first preregister their approach to data 

exclusions, transformations, model assumptions, etc.  They then undertake their preliminary preregistered 

analyses on the data without proceeding to undertake more theoretically-substantive analyses.  This 

preliminary data analysis stage allows researchers to select the most appropriate testing approach for their 

data.  The researchers then specify this testing approach in a second preregistered analysis protocol that 

also includes more theoretically-substantive analyses.  This two-stage sequential preregistration approach 

allows researchers to make decisions about data exclusions, transformations, model assumptions, etc. on 

the basis of their observed data without being influenced by their more substantive research results. 

The second strategy is to blind researchers to the identity of different variables (e.g., hide variable 

names) but to allow researchers to observe the distributional characteristics of those variables (e.g., outliers, 

skewness).  Again, this approach allows researchers to make decisions about outliers, transformations, 

modelling assumptions, etc. on the basis of their data without allowing them to know how those decisions 

impact on their more substantive research results.  

Both of the above blinding strategies preclude result-biased forking paths such as p-hacking.  

However, neither strategy mitigates against result-neutral forking paths (e.g., exclude self-esteem data if it 

exceeds ±3.0 SDs from the sample mean).  In other words, although both strategies prevent analyses from 

being influenced by the research results, neither strategy prevents analyses from being influenced by the 

idiosyncrasies of the data.  Concealing substantive research results from researchers when they make data-

contingent analysis decisions about how to handle outliers, non-normal distributions, and modelling 

assumptions does not prevent these decisions from creating forking paths in the long run of exact 

replications.  Hence, although these blinding approaches are effective against p-hacking, they are 

ineffective against other, result-neutral forking paths. 

Nosek et al.’s (2017) third and fourth strategies consist of documenting all of the potential forking 

paths that may result in a sample-contingent analysis, either by preregistering a decision tree for that 

analysis (see also Chambers et al., 2014) or by referring to a more general set of standard operating 

procedures.  Again, however, merely identifying and recording forking paths in either preregistered or 

postregistered documents does not reduce their impact on Type I error probabilities (Frane, 2015).  Instead, 

researchers need to adjust their prespecified alpha level in order to reduce the probability of making a Type 

I error in the long run. 

In order to eliminate forking paths and, consequently, the need to adjust the alpha level, a 

preregistered analysis protocol must contain a precise description of an analysis that is to be followed 

regardless of the idiosyncratic characteristics of the observed sample of data.  The difficulty with this 

approach is that any inferential benefits that are gained by eliminating forking paths must be offset against 

the inferential costs that are associated with an often poor quality analytical approach.  In particular, if 

preregistered analysis protocols prevent researchers from adapting their analyses to the specific 

characteristics of their data, then researchers will be unable to (a) clean the data (e.g., Osborne, 2012), (b) 

improve the reliability and validity of their measurements (e.g., Schmidt & Hunter, 1999), (c) adjust their 

statistical tests in order to meet test assumptions (e.g., Erceg-Hurn & Mirosevich, 2008), and (d) control for 

relevant covariates (e.g., Bernerth & Aguinis, 2016).  Hence, an effective preregistration solution is caught 

between two equally problematic threats to statistical inference:  Allowing sample-contingent analysis rules 

in preregistered research protocols creates forking paths, but disallowing them reduces the quality of the 

data analyses. 

In summary, although preregistration represents a tenable solution to result-biased forking paths, 

such as p-hacking, it fails to mitigate against the impact of result-neutral forking paths, such as excluding 

outliers.  
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Sensitivity Analyses 

A third solution to the forking paths issue is to undertake sensitivity analyses (e.g., Thabane et al., 

2013; Wasserstein & Lazar, 2016; Wigboldus & Dotsch, 2016).  This approach requires researchers to be 

cognizant of the various forking paths that they take during their analyses and, at each fork, to investigate 

potential discrepancies in their results if they take the alternative path.  So, for example, if the data indicate 

that it is appropriate to transform scores, then researchers should report the results of tests that are conducted 

when scores are (a) transformed and (b) not transformed.  This approach allows researchers and their 

audience to understand the variability in their results across different analytical approaches. 

Like preregistration, sensitivity analyses provide an effective solution to the p-hacking problem.  

In particular, they can be used to reveal disconfirming results that would otherwise remain undisclosed.  

However, sensitivity analyses are not an effective solution to the result-neutral forking paths for three 

reasons. 

First, like preregistration, sensitivity analyses per se do not lower the prespecified alpha level.  

Consequently, any result that is classed as “significant” in a sensitivity analysis may be reclassified as 

“nonsignificant” after an appropriate alpha adjustment has been implemented.  For example, a sensitivity 

analysis of a test with α = .05 may return significant results of p = .003 when scores are transformed and p 

= .030 when scores are not transformed.  Based on these consistently-significant results, the researcher 

might conclude that their results are robust to variations in their analytical approach.  However, the second 

of these results would be reclassed as being nonsignificant if the alpha level was adjusted to .025 in order 

to account for multiple testing.  Hence, consistency across results cannot be established using sensitivity 

analyses per se. 

Second, exploring an alternative analytical path in a sample whose characteristics do not warrant 

that analytical path will result in a suboptimal test, and any results from that test will need to be interpreted 

with caution.  Returning to the previous example, if data are skewed, then only the test that is conducted on 

the transformed data is valid, and the results of the test that is conducted on the nontransformed data must 

be interpreted with caution. 

Finally, but most importantly, sensitivity analyses only reveal the influence of different analytical 

approaches in the original study and not in the long run of exact replications of that study.  Consequently, 

they do not provide any indication of the potential variability in results in the long run. 

In summary, although sensitivity analyses can be used to identify and deter p-hacking, they do not 

provide an effective solution to result-neutral forking paths because (a) they do not compensate the alpha 

level for the multiple testing that is associated with forking paths, (b) they include suboptimal tests, and (c) 

they only reveal variability in results in an original study and not in the long run of exact replications of 

that study. 

 

Abandon the Neyman-Pearson Approach 

The final solution to the forking paths problem is to abandon the Neyman-Pearson approach to null 

hypothesis significance testing.  Abandoning the Neyman-Pearson approach solves the forking paths 

problem because forking paths are only meaningful in the context of a long run of exact replications and, 

in the absence of the Neyman-Pearson approach, researchers do not need to interpret their results in this 

context.  All that matters are the actual tests that are conducted on the original sample of data, not the 

potential tests that might be conducted on subsequent samples of data.  But, if the Neyman-Pearson 

approach is abandoned, then what is left?  I briefly consider two potential alternatives. 

The first alternative is to continue to use p values but to interpret them in the manner advocated by 

Fisher (1937, 1955, 1956) rather than Neyman and Pearson (1933).  The Fisherian and neo-Fisherian 

approaches interpret p values in relation to the current sample of data rather than a long run of exact 

replications (Fisher, 1955; Haig, 2016; Hubbard & Bayarri, 2003; Hurlbert & Lombardi, 2009; Schneider, 

2015).  Consequently, Fisherian p values are more suitable for context-dependent studies that have less 

potential for exact replication, such as those conducted in psychology and the social sciences.  Critically, 

from a Fisherian perspective, the multiple testing issue only needs to be considered in relation to tests that 
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are actually performed on the current data rather than tests that have the potential to be performed in a series 

of exact replications.  Hence, forking paths are not problematic in the Fisherian paradigm. 

Unlike the Neyman-Pearson approach, Fisherian p values are interpreted on a sliding scale of 

probability in which the smaller the p value, the less likely it is that the observed data would occur if the 

null hypothesis was true (Amrhein, Korner-Nievergelt, & Roth, 2017; Biau, Jolles, & Porcher, 2010; 

Bradley & Brand, 2016; Falissard, 2012; Haig, 2016; Hubbard & Bayarri, 2003; Wasserstein & Lazar, 

2016).  Hence, from a Fisherian perspective, p = .0004 indicates stronger evidence against the null 

hypothesis than p = .04 (Hubbard & Lindsay, 2008). 

Despite this sliding scale interpretation, Fisher (1926) suggested that p < .05 may sometimes be a 

useful threshold for determining the significance of a result.  However, he stressed that researchers need to 

make context-based interpretations of specific p values.  As he pointed out, “no scientific worker has a 

fixed level of significance at which from year to year, and in all circumstances, he rejects hypotheses; he 

rather gives his mind to each particular case in the light of his evidence and his ideas” (Fisher, 1956, p. 42).  

This context-based approach provides a more nuanced and sophisticated approach to significance testing, 

in which researchers interpret the meaning of p values based on a range of background factors including (a) 

the size of the p value, (b) the number of tests that have been used to assess the null hypothesis, (c) the 

theoretical plausibility of the explanation, (d) prior evidence for the effect, (e) the effect size, (f) the 

variability of the effect, (g) the quality of the research methodology (e.g., sample size, measurement 

precision, construct validity, etc.), (h) the results of sensitivity analyses, and (i) the results of tests of 

alternative explanations for the effect (e.g., Amrhein et al., 2017; Wasserstein & Lazar 2016).  For example, 

researchers should interpret a p value of .025 differently when it is used to infer the existence of 

extrasensory perception compared to when it is used to infer the existence of ethnic prejudice. 

The second alternative to the Neyman-Pearson approach is more radical in that it involves 

abandoning p values altogether.  The Bayesian approach replaces p values with Bayes factors that integrate 

information about the prior probability of a hypothesis based on prior theory and evidence with information 

about the posterior probability of the hypothesis based on the sampled data.  Like the Fisherian approach, 

the Bayesian approach operates on a sliding scale of probability.  For example, Jeffreys (1961) suggested 

the following scale for interpreting Bayes factors: “barely worth mentioning,” “substantial,” “strong,” “very 

strong,” and “decisive.” 

As with the Fisherian approach, the Bayesian approach only relates to the current sample of data; 

it is not concerned with a long run of exact replications.  Consequently, it is not susceptible to the forking 

paths problem (Dienes, 2011; see also Bender & Lange, 2001).  As Wagenmakers et al. (2014, in de Groot, 

2014) explained, “what is relevant for Bayesian reasoning is not the number of tests that were executed or 

planned, but rather the prior belief in a particular hypothesis [Scott & Berger, 2010; Stephens & Balding, 

2009]” (p. 194). 

 

Conclusions 

The forking paths problem represents a serious threat to the Neyman-Pearson approach of null 

hypothesis significance testing.  Specifically, it can increase the probability of making a Type I error across 

the long run of exact replications.  The present article explored four potential solutions to this problem. 

Preregistration and sensitivity analyses provide effective solutions to result-biased forking paths 

such as p-hacking.  However, they do not mitigate against result-neutral forking paths.  If a preregistered 

analysis protocol includes a result-neutral analysis rule such as “exclude data if it exceeds ±3 SDs from the 

sample mean,” then it will be just as susceptible to the forking paths problem as non-preregistered research.  

Similarly, although sensitivity analyses may be used to uncover or deter p-hacking, this approach does not 

reduce the inflated Type I error probability that results from multiple testing in the long run. 

The two best solutions to forking paths relate to the prespecified alpha level.  The first solution is 

to adjust the alpha level in order to compensate for the inflated risk of making a Type I error.  This solution 

can be used for result-neutral forking paths (e.g., “exclude data if it exceeds ±3 SDs from the sample mean”) 

because they produce a fixed and knowable number of potential tests in the long run.  Alpha adjustment is 

not possible for fishing when familywise error refers to different hypotheses.  However,  it is not necessary 
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when familywise error refers to the same hypothesis.  Finally, alpha adjustment is not possible in the context 

of p-hacking under any circumstances. 

The second solution is to abandon the Neyman-Pearson approach and, consequently, to abandon 

concerns about the alpha level of a long run of exact replications.  Two suitable alternative statistical 

approaches are the Fisherian and Bayesian approaches. 
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Endnotes 
1. The typical method of conducting null hypothesis significance tests often represents a hybrid of the 

Neyman-Pearson and Fisherian approaches (Amrhein et al., 2017; Biau et al., 2010; Bradley & Brand, 

2016; Hubbard & Bayarri, 2003; Schneider, 2015).  I discuss the Fisherian approach later on in this 

article.  Hence, to avoid any confusion, I refer to the typical method of null hypothesis significance 

testing as the Neyman-Pearson approach. 

2. Given that larger samples are more representative of the populations from which they are drawn, the 

characteristics of larger samples are more likely to reflect the characteristics of their population.  Hence, 

if self-esteem scores are skewed beyond some threshold criterion in the first sample that is drawn from 

a population, then they are likely to be skewed beyond that criterion in most other large samples from 

that population.  Consequently, if researchers use large samples, then their analytical path in exact 

replications is likely to be the same as that taken in the original study (e.g., self-esteem scores are 

skewed, and so they are transformed).  However, even when using large samples, it remains possible 

that, in at least one case during a long run of exact replications, the relevant characteristic in the sample 

will be decisively different from that in the population and therefore require an alternative analysis.  

Based on the Neyman-Pearson approach, this single alternative analysis will then count as an additional 

test in the analysis protocol, and it will increase the probability of making a Type I error.  In other 

words, although researchers may almost always turn left down a particular forking path, the fact that a 

right turn is possible must be taken into consideration when interpreting decisions based on null 

hypothesis significance tests. 

3. Based on the multiplication rule for independent events, the familywise error rate is computed using 

the formula: 1 – (1 – α)k, where α is the prespecified alpha level and k is the number of tests in the 

family.  In order to compute the probability of incorrectly rejecting a joint null hypothesis, this formula 

multiplies the probability of incorrectly rejecting each constituent null hypothesis by the number of 

hypotheses in the family.  However, this computation is only necessary if researchers intend to reject 

the joint null hypothesis on the basis of a significant result (i.e., p < αadjusted) in relation to any one of 

the constituent null hypotheses (i.e., logical disjunction; Weber, 2007). 

4. My definition of fishing includes the strategy of testing for interaction effects when main effects are 

nonsignificant.  Contrary to Gelman and Loken (2013, 2014), this strategy involves the testing of 

different hypotheses, rather than the same hypothesis, because different theoretical rationales are 

required in order to explain main effects and interactions (Matsunaga, 2007).  For example, the 

hypothesis that men have higher self-esteem than women (i.e., a main effect of gender on self-esteem) 

will have a different theoretical explanation to the hypothesis that this gender difference is stronger 

among young people than among older people (i.e., an interaction between gender and age in predicting 

self-esteem). 

5. It is important to note that even if alpha adjustment was possible to compensate for multiple testing 

based on p-hacking, p-hacking would remain an invalid and unethical form of data analysis because it 

precludes reported falsification. 
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