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Abstract 
The inflation of Type I error rates is thought to be one of the causes of the replication crisis. 

Questionable research practices such as p-hacking are thought to inflate Type I error rates 

above their nominal level, leading to unexpectedly high levels of false positives in the 

literature and, consequently, unexpectedly low replication rates. In this article, I offer an 

alternative view. I argue that questionable and other research practices do not usually inflate 

relevant Type I error rates. I begin with an introduction to Type I error rates that distinguishes 

them from theoretical errors. I then illustrate my argument with respect to model 

misspecification, multiple testing, selective inference, forking paths, exploratory analyses, 

p-hacking, optional stopping, double dipping, and HARKing. In each case, I demonstrate 

that relevant Type I error rates are not usually inflated above their nominal level, and in the 

rare cases that they are, the inflation is easily identified and resolved. I conclude that the 

replication crisis may be explained, at least in part, by researchers’ misinterpretation of 

statistical errors and their underestimation of theoretical errors. 
Keywords: false positives; questionable research practices; replication crisis; significance testing; Type I error rate 

inflation 

 

 

 

During significance testing, a Type I error occurs when a researcher decides to reject a true 

null hypothesis (Neyman & Pearson, 1928, p. 177; Neyman & Pearson, 1933, p. 296). Type I 

errors are thought to play an important role in explaining the replication crisis in science. When 

the results of a study fail to replicate, the replication failure may be attributed to a Type I error in 

the original study. In other words, one of several reasons for a failed replication is that the null 

hypothesis is true and the original study’s significant result was a false positive (Nosek et al., 2022, 

p. 726). 

The replication “crisis” occurred because replication rates were lower than “expected or 

desired” (Nosek et al., 2022, p. 724; see also Munafò et al., 2017, p. 1; Open Science Collaboration, 

2015, p. 7). Unexpectedly low replication rates have been attributed to larger than expected Type 

I error rates which, in turn, have been attributed to the use of questionable research practices. For 

example, Simmons et al. (2011) argued that, “despite empirical psychologists’ nominal 
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endorsement of a low rate of false-positive findings (≤ .050), flexibility in data collection, analysis, 

and reporting dramatically increases actual false-positive rates” (p. 1359). Hence, questionable 

research practices are thought to inflate actual Type I error rates above the nominal conventional 

level of .050, leading to an unexpectedly high level of false positives in the literature and, 

consequently, unexpectedly low replication rates. 

In this article, I offer the alternative view that relevant Type I error rates are not usually 

inflated by questionable research practices (e.g., p-hacking) or other research practices (e.g., model 

misspecification, exploratory analyses). I agree that Type I errors can be responsible for some 

replication failures. However, I argue that Type I error rate inflation is relatively rare, and that 

when it does occur it is easily identified and resolved. I conclude that theoretical errors provide a 

better explanation of the replication crisis than Type I error inflation. 

I begin with an introduction to Type I error rates that distinguishes them from theoretical 

errors. I then consider a range of questionable and other research practices that are thought to 

inflate Type I error rates. In particular, I consider model misspecification, multiple testing, 

selective inference, forking paths, exploratory analyses, p-hacking, optional stopping, double 

dipping, and HARKing. I demonstrate that relevant Type I error rates are not usually inflated by 

these practices. I conclude by summarising my arguments, discussing the evidence for Type I error 

rate inflation, and considering some implications for our understanding of the replication crisis. 

 

Introduction to Type I Error Rates 
What is a Type I Error Rate? 

A Type I error rate is the frequency with which a researcher would decide to reject a true 

null hypothesis when they base their decision on the results of a significance test that is performed 

on a long run of random samples that are drawn from a null population in an imaginary situation 

in which random sampling error is the only source of error. There are four points to note about this 

definition. 

First, the word “population” refers to not only a population of research participants, but 

also a population of study-specific research methods and conditions. This population of 

participants, methods, and conditions is randomly sampled each time the significance test is 

conducted (Fisher, 1922, p. 313). 

Second, in scientific contexts, the population is not fully known. By definition, scientists 

do not fully understand the relevant and irrelevant aspects of the populations that they are studying. 

Indeed, it is for this reason that they are studying those populations! Consequently, scientists face 

a reference class problem (Venn, 1876) when attempting to specify the population to which their 

Type I error rate applies. They handle this problem by making theoretically informed guesses about 

the relevant and irrelevant aspects of the populations that are the subject of their statistical 

inferences. However, these guesses can be wrong! As Fisher (1956) explained, during significance 

testing, “the population in question is hypothetical,…it could be defined in many ways, and…the 

first to come to mind may be quite misleading” (p. 78). Hence, scientists must continually ask 

themselves: “of what population is this a random sample?” (Fisher, 1922, p. 313). 

Third, Type I error rates are based on an imaginary situation in which random sampling 

error is the only source of error that can affect a researcher’s decision to reject the null hypothesis. 

Of course, in the real world, many other sources of error can influence a researcher’s decision (e.g., 

errors in data collection and entry, errors in research methodology, and/or errors in theoretical 

interpretation). However, Type I error rates do not refer to any of these other sources of error. They 

only refer to errors based on random sampling error (Berk et al., 1995, p. 423; Fisher, 1956, p. 44; 
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Neyman & Pearson, 1928, p. 177, p. 232). Hence, we must imagine that if a null hypothesis was 

true (i.e., if all samples were drawn from the null population), and if random sampling error was 

the only source of decision-making error, then the Type I error rate would indicate the frequency 

with which a researcher would reject the null hypothesis in a long run of repeated random 

sampling. 

Finally, the idea of a frequency of decision-making errors during a long run of repeated 

random sampling from a null population is consistent with the Neyman-Pearson approach to 

hypothesis testing (Neyman & Pearson, 1928, 1933). However, a Type I error can also be 

conceptualised within the alternative Fisherian approach (Fisher, 1956, 1971). In this case, a Type 

I error probability (not rate) represents the epistemic probability (not aleatory probability) of 

making a Type I error in relation to a single decision (not a long run of decisions) to reject a null 

hypothesis based on a test statistic from the current sample (not a long run of samples; Rubin, 

2020b, 2021b). 

 

What is Type I Error Rate Inflation? 
Type I error rate inflation occurs when the actual Type I error rate is higher than the 

nominal Type I error rate. The nominal Type I error rate is the rate that is set by the researcher, 

and it is used to determine whether an observed p value is “significant” or “nonsignificant.” Hence, 

the nominal Type I error rate is also referred to as a significance threshold or alpha level. It is used 

to control the frequency of making a Type I error during a long run of repeated sampling. 

The actual Type I error rate can be higher than the nominal Type I error rate in the context 

of multiple testing. For example, imagine that a researcher aims to make a decision about a null 

hypothesis based on three tests of that hypothesis, each with an alpha level of .050. Further imagine 

that the researcher is prepared to accept a significant result on any of the three tests as sufficient 

grounds for rejecting the null hypothesis. In this case, the researcher’s actual (familywise) Type I 

error rate for their decision will be .143. Consequently, if they set the alpha level for their decision 

at .050, then their actual Type I error rate (.143) will be inflated above their nominal Type I error 

rate (.050). As I discuss later, this multiple testing problem underlies several of the research 

practices that are thought to inflate Type I error rates (selective inference, forking paths, 

exploratory analyses, p-hacking, optional stopping). 

Importantly, the word “actual” in the phrase “actual Type I error rate” does not imply that 

we are able to identify “real” false positive results in any given study. The probability of a “real” 

false positive result would refer to the conditional posterior probability that a null hypothesis is 

true given its rejection (i.e., Pr[H0 is true | reject H0). However, it is not possible to quantify this 

probability in scientific contexts (Meehl, 1997, p. 397; Neyman & Pearson, 1928, p. 176; Pollard 

& Richardson, 1987, p. 162). Instead, we must consider the hypothetical probability of rejecting a 

null hypothesis when it is true (i.e., Pr[reject H0 ; H0 is true]).1 It is this hypothetical probability, 

rather than the conditional posterior probability, that represents the actual Type I error rate. 

People sometimes confuse the actual Type I error rate with the conditional posterior 

probability (Mayo & Morey, 2017; Pollard & Richardson, 1987). For example, they might argue 

that, if you reject 200 null hypotheses using an alpha level of .050, and only 100 of those 

hypotheses are true, then you will end up with five actual Type I errors (i.e., 100 × .050). However, 

this scenario refers to the probability that a null hypothesis is true when it is rejected, Pr(H0 is true 

| reject H0), rather than the probability of rejecting a null hypothesis when it is true, Pr(reject H0 ; 

H0 is true). Confusing these two types of probability can be described as a Bayesian inversion 

fallacy (Gigerenzer, 2018; Greenland et al., 2016). During significance testing, the actual Type I 
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error rate does not refer to the probability or prevalence of true null hypotheses; it simply assumes 

that each null hypothesis is true and then represents the frequency with which each hypothesis 

would be rejected given random sampling error per se (Fisher, 1971, p. 17). Hence, to return to the 

previous example, a person who rejects 200 null hypotheses using an alpha level of .050 should 

expect to make 10 actual Type I errors (i.e., 200 × .050), not 5 (100 × .050), because they should 

assume (imagine) that all 200 hypotheses are true.2 

Finally, it should be noted that nominal Type I error rates tend to be based on a research 

field’s conventional alpha level (e.g., p ≤ .050). Nonetheless, individual researchers can choose 

alpha levels that are more or less stringent than the conventional level. Hence, Type I error rate 

inflation should be distinguished from merely unconventional alpha levels. In particular, Type I 

error rate inflation should be judged by comparing the actual Type I error rate for a statistical 

inference with the nominal Type I error rate for that inference (i.e., the alpha level) on the 

understanding that the nominal level may be set at a conventional or unconventional level. For 

example, although an actual Type I error rate of .100 may be higher than a field’s conventional 

alpha level of .050, it cannot be said to be “inflated” if the researcher has explicitly set their alpha 

level at the unconventional level of .100. If Type I error rate inflation was judged relative to the 

conventional alpha level, rather than the nominal alpha level, then any researcher who set their 

alpha level higher than the conventional level could be said to have an inflated Type I error rate! 

 

Type I Error Rates Do Not Refer to Theoretical Errors 
It is important to distinguish between statistical inferences and theoretical inferences 

because Type I error rates only refer to the former (e.g., Meehl, 1978, p. 824; Meehl, 1997, p. 401; 

see also Bolles, 1962; Chow, 1998; Cox, 1958, p. 357; Hager, 2013, p. 259; Neyman, 1950, p. 

290). During significance testing, a statistical inference refers to a statistical null hypothesis which 

states that samples are drawn from a study-specific null population in the context of random 

sampling error per se. Statistical inferences are always supported by inferential statistics, and they 

usually describe test results as being either “significant” or “nonsignificant.” For example, the 

following statement is a statistical inference: “Compared to male participants, female participants 

reported significantly more positive attitudes towards ice cream, t(326) = 2.62, p = .009.” In this 

example, the researcher has provisionally rejected the statistical null hypothesis that female 

participants do not report more positive attitudes toward ice cream than male participants. Their 

alpha level (e.g., .050) indicates the frequency with which they would make an error in rejecting 

this statistical null hypothesis in a long run of random sampling from the statistical null population. 

In contrast to statistical inferences, theoretical inferences refer to substantive hypotheses 

that generalise beyond the specifics of the current study. Consequently, they are not directly 

associated with study-specific Type I error rates. For example, a substantive inference might be 

that, “compared to men, women have more positive attitudes towards ice cream.” 

The distinction between statistical and theoretical inferences leads to a parallel distinction 

between statistical and theoretical errors. Statistical errors refer to Type I and Type II errors. In 

contrast, theoretical errors refer to a wide range of misinterpretations about (a) theory (e.g., 

misinterpreted theoretical rationales, hypotheses, and predictions), (b) methodology (e.g., 

misspecified participant populations, sampling procedures, testing conditions, stimuli, 

manipulations, measures, controls, etc.), (c) data (e.g., misspecified procedures for data selection, 

entry, coding, cleaning, aggregation, etc.), and (d) analyses (e.g., misspecified statistical models 

and assumptions, misinterpreted statistical results). 
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Theoretical errors may occur in the absence of statistical errors. In other words, researchers 

may make theoretical misinterpretations before and after correctly rejecting statistical null 

hypotheses. Meehl’s (1990, 1997) concept of crud provides a good example. Crud is a real but 

theoretically trivial effect (e.g., a methodological artefact). As Meehl (1990) explained, crud 

consists of “real differences, real correlations, real trends and patterns” (pp. 207-208, emphasis in 

original). Hence, crud “does not refer to statistical error, whether of the first or the second kind” 

(i.e., Type I or II errors; Meehl, 1997, p. 402). In particular, “we are not dealing here with some 

source of statistical error (the occurrence of random sampling fluctuations). That source of error 

is limited by the significance level we choose” (Meehl, 1990, p. 207). Nonetheless, researchers 

may make theoretical errors about crud by misinterpreting it as theoretically important effects. 

Such errors may be conceptualised as theoretical false positives (i.e., incorrectly accepting crud as 

being supportive of a substantive alternative hypothesis) rather than statistical false positives (i.e., 

incorrectly rejecting a statistical null hypothesis). 

Theoretical errors may also have a larger impact than statistical errors (Bolles, 1962, p. 

645; Cox, 1958, p. 357; Fisher, 1926, pp. 504-505; Greenland, 2017, p. 640). Hence, a researcher’s 

probability of incorrectly rejecting a substantive null hypothesis and incorrectly accepting a 

substantive alternative hypothesis may be greater than their alpha level because their decisions are 

influenced by numerous theoretical errors in addition to Type I errors. 

Researchers may also confuse statistical errors with theoretical errors and assume that their 

Type I error rate indicates the probability of incorrectly rejecting a substantive null hypothesis in 

the real world rather than a statistical null hypothesis in an imaginary long run of repeated 

sampling. Greenland (2017, 2023) described this confusion as “statistical reification.” He argued 

that researchers sometimes forget that their “statistical analyses are merely thought experiments” 

based on idealised assumptions that are unlikely to be true in the real world. The outcome of this 

confusion is “overconfident inference” (Greenland, 2017, p. 640; see also Brower, 1949, p. 327; 

Gigerenzer, 1993, p. 329). In particular, researchers may have unwarranted credulity in a 

significant result based on their incorrect belief that the Type I error rate covers one or more 

theoretical errors. 

Finally, unlike statistical errors, theoretical errors cannot be quantified. As Meehl (1997) 

explained, “it is tempting to conflate the inference relation between statistics and parameters with 

the relation between accepted parameter values and the substantive theory; and because the former 

is numerified (e.g., a Bayesian posterior, a confidence belt, a significance level), one tends to think 

the latter is numerified also, or (somehow) should be” (p. 397; emphasis in original). However, as 

Neyman and Pearson (1928) explained, “the sum total of the reasons which will weigh with the 

investigator in accepting or rejecting the hypothesis can very rarely be expressed in numerical 

terms. All that is possible for him is to balance the results of a mathematical summary, formed 

upon certain assumptions, against other less precise impressions based upon a priori or a posteriori 

considerations” (p. 176). 

 

The Impact of Various Research Practices on Type I Error Rates 
Model Misspecification 

Model misspecification does not inflate Type I error rates because a Type I error rate 

assumes that the associated null model is “true” or at least “adequate,” which means that it is 

correctly (adequately) specified, and the only source of influential error is random sampling error. 

To argue that modelling error inflates Type I error rates is to commit the Bayesian inversion fallacy 



Type I Error Rates are Not Usually Inflated          6 

and believe that Type I error rates are influenced by the probability of the correctness of the model 

to which they refer (Gigerenzer, 2018; Greenland et al., 2016; Pollard & Richardson, 1987). 

This is not to say that null models are always correctly specified. The point here is only 

that the frequentist concept of a Type I error rate assumes that they are. Of course, in reality, null 

models may be misspecified. In particular, (a) the statistical null model may not adequately 

represent the experimental null model, and/or (b) the experimental null model may not adequately 

represent the theoretical null model (Devezer & Buzbas, 2023; Spanos, 2006). These model 

misspecifications may then lead to serious inferential errors. However, these errors are theoretical 

rather than statistical. Hence, it is more appropriate to conceive model misspecification as inflating 

Type III errors, rather than Type I errors. As Dennis et al. (2019) explained, Type III errors occur 

when “neither the null nor the alternative hypothesis model adequately describes the data 

(Mosteller, 1948)” (p. 2). 

 

Multiple Testing 
The term multiple testing covers several types of testing situation. Here, I distinguish 

between (a) single tests of multiple individual hypotheses and (b) multiple tests of a single joint 

hypothesis. I argue that Type I error rate inflation never occurs in the first situation, and that it is 

not problematic in the second situation because it is easily identified and resolved. 

 

Single Tests of Multiple Individual Null Hypotheses 

Imagine that a researcher conducts a study in which they test for gender differences on 20 

different dependent variables that measure a variety of different attitudes (e.g., attitudes towards 

abortion, environmentalism, the death penalty, pizza, ice cream, and so on). In this case, the 

researcher is testing 20 different null hypotheses (i.e., H1, H2, H3,…H20). Further imagine that the 

researcher sets their alpha level at the conventional level of .050 for each statistical inference that 

they make about each null hypothesis. We can call this alpha level the individual alpha level (i.e., 

αIndividual = .050) because it refers to the frequency with which the researcher would incorrectly 

reject each individual null hypothesis. 

This type of testing situation represents single tests of multiple individual null hypotheses 

because none of the 20 hypotheses undergo more than one test. Consequently, there is no more 

than one opportunity to make a Type I error in relation to each individual null hypothesis. Single 

tests of multiple individual hypotheses represent the most common type of multiple testing 

(García-Pérez, 2023), and it has been repeatedly shown that this type of multiple testing does not 

result in Type I error rate inflation, regardless of how many tests are undertaken (Armstrong, 2014, 

p. 505; Cook & Farewell, 1996, pp. 96–97; Fisher, 1971, p. 206; García-Pérez, 2023, p. 15; 

Greenland, 2021, p. 5; Hewes, 2003, p. 450; Hurlbert & Lombardi, 2012, p. 30; Matsunaga, 2007, 

p. 255; Molloy et al., 2022, p. 2; Parker & Weir, 2020, p. 564; Parker & Weir, 2022, p. 2; Rothman, 

1990, p. 45; Rubin, 2017b, pp. 271–272; Rubin, 2020a, p. 380; Rubin, 2021a, 2021c, pp. 10978-

10983; Savitz & Olshan, 1995, p. 906; Senn, 2007, pp. 150-151; Sinclair et al., 2013, p. 19; Tukey, 

1953, p. 82; Turkheimer et al., 2004, p. 727; Veazie, 2006, p. 809; Wilson, 1962, p. 299). 

People sometimes doubt the absence of Type I error rate inflation during single tests of 

multiple individual null hypotheses, but it is easy to demonstrate: In general, the actual Type I 

error rate is computed using the formula 1 ₋ (1 ₋ α)k, where k is the number of tests that are used to 

make a decision about a specific null hypothesis. During single tests of multiple individual null 

hypotheses, k = 1 because only one test is used to make a decision about each null hypothesis. 
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Hence, the actual Type I error rate for each statistical inference is equal to 1 ₋ (1 ₋ αIndividual)1, which 

is equal to the nominal αIndividual (e.g., 1 ₋ (1 ₋ .050)1 = .050). 

 

Multiple Tests of a Single Joint Null Hypothesis 

Now imagine that the researcher groups some of the 20 dependent variables together for 

some reason. For example, they might consider attitudes about abortion, environmentalism, and 

the death penalty to be theoretically exchangeable in the context of a broader joint hypothesis about 

political orientation. In this case, the researcher might be prepared to accept a significant gender 

difference in relation to at least one of these three hypotheses in order to make a statistical 

inference that there is a significant gender difference in political orientation. Here, the three 

hypotheses (H1, H2, & H3) are treated as constituent null hypotheses that form part of a broader 

joint intersection null hypothesis about political orientation: “H1 and H2 and H3.” Note that the 

rejection of any one of the three constituent null hypotheses is sufficient to reject the entire 

intersection null hypothesis and make the statistical inference that, for example, “compared to male 

participants, female participants reported significantly more left-wing attitudes: abortion t(326) = 

2.54, p = .011; environmentalism t(326) = .030, p = .979; death penalty t(326) = 1.44, p = .150.” 

In this example, the test statistics refer to each of the tests of the three constituent hypotheses and, 

because at least one of the p values is significant at the conventional level (p = .011), the researcher 

can reject the entire joint null hypothesis about “left-wing attitudes.” 

During this union-intersection testing (e.g., Hochberg & Tamrane, 1987, p. 28; Kim et al., 

2004), the actual familywise Type I error rate for the joint null hypothesis is always larger than the 

nominal alpha level for each of the constituent hypotheses: αConstituent. For example, if αConstituent is 

set at .050, then the familywise error rate will be 1 ₋ (1 ₋ αConstituent)k, where k is the number of 

constituent null hypotheses that are included in the joint null hypothesis. Hence, in the present 

example, the familywise error rate will be 1.00 ₋ (1 ₋ .050)3 = .143. 

One concern here is that the Type I error rate for decisions about each of the constituent 

null hypotheses becomes inflated. However, this concern is unwarranted. αConstituent is the nominal 

alpha level for the per comparison Type I error rate, and this error rate does not become inflated 

during multiple tests of a single joint null hypothesis for the same reason that αIndividual does not 

become inflated during single tests of multiple individual null hypotheses (i.e., 1 ₋ [1 ₋ αConstituent]1 

= αConstituent; Rubin, 2021c, p. 10979; Tukey, 1953). 

Another concern is that the Type I error rate for the decision about the joint null hypothesis 

can become inflated. This concern is legitimate. In order to identify this Type I error rate inflation, 

we need to check whether the actual familywise Type I error rate for the joint null hypothesis is 

higher than the nominal familywise Type I error rate for the joint null hypothesis: αJoint. If both 

αConstituent and αJoint are set at the same level (e.g., the conventional level of .050), then the actual 

Type I error rate for the joint null hypothesis will be inflated above αJoint. However, researchers 

can avoid this inflation by adjusting αConstituent downwards until the familywise Type I error rate is 

at αJoint. For example, if k = 3 and both αConstituent and αJoint are originally set at .050, then a 

Bonferroni adjustment (i.e., α ÷ k) can be used to reduce αConstituent from .050 to .017 in order to 

maintain the familywise Type I error rate for the joint null hypothesis at the nominal αJoint of .050. 

What happens if researchers do not adjust αConstituent? In this case, there will be Type I error 

rate inflation. However, this inflation can be easily identified and resolved by readers. For 

example, reconsider the previous statistical inference: “Compared to male participants, female 

participants reported significantly more left-wing attitudes: abortion t(326) = 2.54, p = .011; 

environmentalism t(326) = .030, p = .979; death penalty t(326) = 1.44, p = .150.” Here, it is clear 
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that three test results are being used to make a single statistical inference (“significantly”) about a 

joint hypothesis that is broader than any of the three constituent hypotheses (i.e., “left-wing 

attitudes”). In the absence of any other information, we can assume that the tests use a conventional 

unadjusted αConstituent of .050. It is also clear that not all of the tests need to be significant to make 

the statistical inference (i.e., ps = .011, .979, & .150). Hence, the statistical inference is based on 

union-intersection testing. Finally, we can assume that αJoint has also been set at the conventional 

level of .050. Consequently, we can conclude that the actual familywise Type I error rate for this 

statistical inference is greater than a conventional αJoint of .050. In other words, there is Type I error 

rate inflation. However, the inflation is transparent, and so it can be the target of criticism by 

reviewers and readers. The inflation is also easily computed (.143). Finally, the inflation is easily 

resolved. For example, any reader can implement a Bonferroni adjustment to remove the Type I 

error rate inflation and conclude that, using a conventional αJoint of .050 and an adjusted αConstituent 

of .017, the researcher’s overall statistical inference would remain valid due to the p = .011 result. 

Is transparent reporting necessary to identify and resolve Type I error inflation in this 

situation? In particular, to determine k, do readers need to be aware of all of the other tests that a 

researcher conducted? No, they do not, because the researcher is obviously not using any other test 

results to make their statistical inference. More generally, k is the number of tests that are used to 

make a particular statistical inference, not the number of tests that a researcher happened to conduct 

in their study. As I discuss below, the number of tests that a researcher conducted in their study 

would only be relevant if researchers made a statistical inference about a joint studywise null 

hypothesis. 

 

Studywise Type I Error Rates 

Researchers are sometimes concerned about the probability of making at least one Type I 

error in their study. This concern about a studywise or experimentwise Type I error rate implies 

that they are making a statistical inference about a joint studywise null hypothesis that can be 

rejected by any single significant result in their study. In practice, however, it is not common for 

researchers to make this type of inference because joint studywise null hypotheses do not usually 

have a useful theoretical basis. Consequently, most researchers should not be concerned about 

their studywise Type I error rate because it relates to a joint null hypothesis that they are not testing. 

Instead, researchers should be concerned about the error rates for the individual and/or joint 

hypotheses about which they actually make statistical inferences (Rubin, 2021c, p. 10991). 

To illustrate, reconsider the previous example in which a researcher tested for gender 

differences on 20 different dependent variables that measured a wide range of attitudes. Recall that 

three of these attitudes could be grouped into a theoretically meaningful joint null hypothesis about 

political orientation (i.e., attitudes towards abortion, environmentalism, and the death penalty). 

However, the other attitudes had nothing to do with political orientation and so had no theoretical 

basis for being included in this joint null hypothesis (e.g., attitudes about pizza and ice cream). 

The same issue of theoretical relevance applies to the consideration of joint studywise null 

hypotheses. Hence, in the present example, the researcher may not have a good theoretical basis 

for considering all 20 null hypotheses as constituents of a single joint null hypothesis that can be 

rejected following at least one significant gender difference. If this is the case, then they should 

not make a statistical inference about this studywise null hypothesis, and they should not be 

concerned about its associated studywise Type I error rate. 

To be clear, I am not claiming that studywise error rates are always irrelevant. They are 

relevant whenever researchers make statistical inferences about associated joint studywise null 



Type I Error Rates are Not Usually Inflated          9 

hypotheses on the basis of union-intersection testing and, in this case, researchers should adjust 

their αConstituent in order to control their studywise error rate at αJoint. My point is that this situation 

is likely to be relatively rare because most studies include disparate hypotheses that do not form 

theoretically meaningful joint studywise null hypotheses (for similar views, see Bender & Lange, 

2001, p. 343; Hancock & Klockars, 1996, p. 270; Hewes, 2003, p. 450; Hochberg & Tamrane, 

1987, p. 7; Morgan, 2007, p. 34; Oberauer & Lewandowsky, 2019, p. 1609; Parker & Weir, 2020, 

p. 2; Perneger, 1998, p. 1236; Rothman et al., 2008, pp. 236-237; Rubin, 2017b, p. 271; Rubin, 

2020a, p. 382; Schulz & Grimes, 2005, p. 1592). In such cases, a statistical inference about a joint 

studywise null hypothesis would need to be relatively vague and atheoretical, along the lines of: 

“The study’s effect was significant.” It is not common for researchers to make this sort of abstract 

atheoretical statistical inference. Instead, researchers usually make smaller, theory-based statistical 

inferences that relate to substantive theoretical claims. Hence, as in the gender differences 

example, they might infer that, “compared to male participants, female participants reported 

significantly more left-wing attitudes: abortion t(326) = 2.54, p = .011; environmentalism t(326) = 

.030, p = .979; death penalty t(326) = 1.44, p = .150.” 

 

Summary 

Type I error rate inflation is neither common nor problematic during multiple testing. Type 

I error rates are not inflated during single tests of multiple individual null hypotheses, which is the 

most common form of multiple testing. Type I error rates have the potential to become inflated 

during multiple tests of a single joint null hypothesis. However, researchers can adjust αConstituent 

to avoid this inflation and, if they do not adjust αConstituent, the extent of the inflation will be readily 

apparent to others and easily addressed. Finally, multiple testing increases the studywise Type I 

error rate above αConstituent. However, researchers do not usually make statistical inferences about 

the associated joint studywise null hypotheses, and so this increase is usually irrelevant. 

Nonetheless, if it does become relevant, then it can be easily identified and resolved by adjusting 

αConstituent. 

 

Selective Inference 
Imagine that a researcher checks the effect sizes of 100 correlations between 200 different 

variables (e.g., x1–y1, x2–y2, x3–y3,…x100–y100) and then decides to perform a significance test on 

the correlation between variables x57 and y57 because it had the largest effect size (for a similar 

example, see Taylor & Tibshirani, 2015, p. 7629). If the researcher uses the significant x57–y57 

result to reject a joint null hypothesis that could be rejected by a significant result on any of the 

100 constituent correlations, then they would need to adjust their αConstituent downwards to prevent 

their familywise error rate from exceeding their αJoint. However, it is uncommon for researchers to 

make such a selective inference. Instead, researchers tend to make statistical inferences that are 

limited to their selected test and data rather than extended to unselected tests and data that they 

could have used (Birnbaum, 1962, pp. 278-279; Cox, 1958, p. 359-361; Cox & Mayo, 2010, p. 

296; Lehmann, 1993, pp. 1245-1246; Mayo, 2014, p. 232; Reid & Cox, 2015, p. 300). Hence, the 

researcher in the present example would be more likely to use the significant x57–y57 result to reject 

an individual null hypothesis about the relationship between x57 and y57 rather than a joint 

intersection null hypothesis about the relationships between x1–y1, x2–y2, x3–y3,…x100–y100. In the 

individual case, αConstituent and αJoint are irrelevant to the researcher’s inference, and an unadjusted 

αIndividual can be used without any concern about Type I error rate inflation. 
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People sometimes confuse individual and constituent null hypotheses in this situation. For 

example, it is true that αConstituent would need to be adjusted when using the significant x57–y57 

correlation to reject a joint null hypothesis that could be rejected by at least one significant result 

from among 100 potential correlations, because k = 100 for this selective inference. However, this 

point does not imply that αIndividual needs to be adjusted when using the significant x57–y57 result to 

reject the x57–y57 null hypothesis, because k = 1 for this individual inference. 

Part of the confusion here is that people assume that selective analyses always lead to 

selective inferences. On the contrary, selective analyses usually lead to inferences that are limited 

to the selection. For example, a researcher may select data and/or variables for analysis from a 

broader set. However, this act does not then obligate them to make a selective inference about a 

joint null hypothesis that refers to other data or variables from that set. Instead, it would be more 

usual for them to limit their inference to the data or variables that they have selected (i.e., an 

unconditional inference about the selected data rather than a conditional inference that is 

conditioned on the selection procedure). 

More generally, it is important to avoid confusion about the reference sets to which 

statistical inferences refer. As Neyman (1950) explained, “many errors in computing probabilities 

are committed because of losing sight of the set of objects to which a given probability is meant 

to refer” (p. 15). A Type I error rate is meant to refer to a decision about a specified statistical 

(individual or joint) null population and not to any broader population from which that null 

population may have been selected. Hence, the selection of a particular subset of data for testing 

from a more inclusive set because it looks promising will not inflate the Type I error rate for a 

statistical inference as long as that inference refers to a population based on that particular subset 

of data and not to a population based on the more inclusive set of data (for related discussions, see 

Kotzen, 2013, p. 167; Fisher, 1956, p. 88-89, p. 96; Rubin, 2021c, p. 10983). 

 

Forking Paths 
A forking path occurs during data analysis when a result from one sample of data inspires 

a researcher to conduct a specific test in a situation in which they would have conducted a different 

test if they had observed a different result using a different sample (Gelman & Loken, 2014). For 

example, a researcher might report that “this variable was included as a covariate in the analysis 

because it was significantly correlated with the outcome variable.” The implication here is that the 

variable would not have been included as a covariate if it had not been significantly correlated 

with the outcome variable in a different sample of data. Consequently, if the researcher makes a 

statistical inference about a joint null hypothesis that can be rejected following a significant result 

on at least one of the two tests (i.e., the test that includes the covariate and the test that does not), 

then their familywise Type I error rate will be greater than the αConstituent for each test (Rubin, 2020a, 

p. 380). Hence, the forking paths problem resolves to a case of multiple testing in which the 

“invisible multiplicity” is only apparent in a long run of repeated sampling (Gelman & Loken, 

2014, p. 460). 

The forking paths problem assumes that a researcher will make a statistical inference about 

a joint null hypothesis that comprises the two forking paths in their analysis (e.g., a test that 

includes a covariate and a test that does not). If the researcher makes this statistical inference, then 

they can adjust their αConstituent to retain their αJoint at the actual familywise error rate (i.e., αConstituent 

÷ 2; Rubin, 2017a, p. 324). However, it is more likely that the researcher would make a more 

limited statistical inference based on only one test in one of the two forking paths. In this case, the 

researcher’s inference would refer to an imaginary long run of repeated sampling that, for example, 
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always included the variable as a covariate and never excluded it. An unadjusted αIndividual would 

then be appropriate. Note that the Type I error rate is not inflated in either of these two situations. 

 

Exploratory Analyses 
An exploratory data analysis is one in which a study’s analytical approach is guided by 

idiosyncratic results in one sample of data that may not occur in other samples. Consequently, the 

tests that are undertaken in one instance of an exploratory analysis may be quite different to those 

that are undertaken in repetitions of that analysis. This issue leads to multiple tests of a joint 

studywise null hypothesis both within each repetition of the exploratory study and across the long 

run of its repetitions. In theory, the associated studywise error rate would then need to account for 

every null hypothesis that could possibly be tested during the exploratory analysis and its 

repetitions. This situation has led several people to conclude that the exploratory studywise error 

rate cannot be computed or controlled (e.g., Hochberg & Tamrane, 1987, p. 6; Nosek & Lakens, 

2014, p. 138; Wagenmakers, 2016). As Wagenmakers (2016) explained, “the problem is one of 

multiple comparisons with the number of comparisons unknown (De Groot, 1956/2014).” 

There are three problems with this line of reasoning. First, in practice, a researcher is least 

likely to make a statistical inference about a joint studywise null hypothesis during an exploratory 

analysis because, in this situation, they are least likely to have a satisfactory theoretical rationale 

for aggregating a potentially infinite number of result-contingent null hypotheses into a single joint 

studywise null hypothesis. 

Second, if a researcher does make a statistical inference about an exploratory joint 

studywise null hypothesis, then it would need to be relatively abstract and atheoretical (e.g., “the 

study’s effect was significant”). Again, it is not common for researchers to make this type of 

statistical inference. Instead, they are more likely to make theory-based statistical inferences that 

relate to substantive theoretical inferences. 

Finally, if a researcher was to make a statistical inference about an exploratory joint 

studywise null hypothesis, then they would need to tie it to specific statistical results. They could 

not simply report that, “based on an unknown number of unspecified tests that could have been 

conducted, the study’s effect was significant.” They would need to specify the tests (actual and 

potential) and results (p values) that form the basis for their statistical inference. Of course, they 

would only be able to specify a finite number of tests and, consequently, it would be possible for 

them to specify k and adjust αConstituent in order to prevent Type I error rate inflation. In other words, 

the act of specifying a statistical inference includes making known the statistical tests upon which 

it rests. It is worth noting that recent work on multiverse analyses and specification curve analyses 

demonstrates the feasibility of making known large numbers of diverse statistical tests during 

exploratory data analyses (Del Giudice & Gangestad, 2021; Simonsohn et al., 2020; Steegen et al., 

2016). 

In summary, in most cases, there is no need for researchers to be concerned about the 

inflation of an exploratory studywise Type I error rate because this error rate is irrelevant to the 

more limited and theoretically defined statistical inferences that they usually make. However, if 

researchers do proceed to make vague atheoretical statistical inferences about exploratory joint 

studywise hypotheses, then they will need to specify the tests involved, and so they will be able to 

specify k, adjust αConstituent, and control the associated studywise error rate at αJoint. 
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P-Hacking 
P-hacking is a questionable research practice that is intended to find and selectively report 

significant results. In their seminal article on “false positive psychology,” Simmons et al. (2011) 

proposed that p-hacking inflates Type I error rates due to multiple testing. As they explained, 

 

it is common (and accepted practice) for researchers to explore various analytic 

alternatives, to search for a combination that yields “statistical significance,” and to then 

report only what “worked.” The problem, of course, is that the likelihood of at least one 

(of many) analyses producing a falsely positive finding at the 5% level is necessarily 

greater than 5% (p. 1359). 

 

On this basis, Simmons et al. (2011) argued that “undisclosed flexibility in data collection and 

analysis allows presenting anything as significant” (p. 1359). 

A more formal analysis of Simmons et al.’s (2011) argument is as follows: If both αConstituent 

and αJoint are set at .050 during the union-intersection testing of an exploratory joint studywise null 

hypothesis, then the actual exploratory studywise error rate will exceed αJoint, and it will be easier 

to reject the exploratory joint studywise null hypothesis than it would be if the studywise error rate 

matched αJoint. Importantly, however, this situation does not allow researchers to present “anything 

as significant.” It only allows researchers to present the exploratory joint studywise alternative 

hypothesis as significant and, given its atheoretical rationale, this hypothesis will be abstract and 

scientifically useless, akin to: “the study’s effect was significant.” Again, researchers tend to make 

more theoretically informative statistical inferences based on (a) single tests of theory-based 

individual hypotheses and (b) multiple (union-intersection) tests of theory-based joint null 

hypotheses. Hence, I consider the implications of p-hacking in each of these two contexts below. 

 

P-Hacking During Single Tests of Multiple Individual Null Hypotheses 

As explained previously, the actual Type I error rate for a single test of an individual null 

hypothesis remains at αIndividual even if (a) multiple such tests are conducted side-by-side within the 

same study, and (b) some of the tests are conducted but not reported (for related discussions, see 

Rubin, 2017a, 2020a, 2021c). Simmons et al. (2011) are correct that familywise Type I error rates 

will be greater than αConstituent and greater than .050 when αConstituent is set at .050. However, neither 

of these points imply the inflation of Type I error rates for statistical inferences based on single 

tests of multiple individual null hypotheses. The argument that p-hacking causes Type I error rate 

inflation during single tests of multiple individual null hypotheses confuses statistical inferences 

about individual null hypotheses with statistical inferences about joint null hypotheses. 

To illustrate, consider Simmons et al.’s (2011) demonstration of the impact of p-hacking 

on Type I error rates. Simmons et al. performed multiple tests on a real data set until they found a 

significant result that supported the outlandish theoretical inference that listening to the Beatles’ 

song “When I’m Sixty-Four” makes people chronologically younger relative to listening to a 

control song (so-called “chronological rejuvenation”). The researchers then performed a series of 

simulations to compute the percentage of random samples in which there was at least one 

significant result in a family of, for example, “three t tests, one on each of two dependent variables 

and a third on the average of these two variables” (i.e., Situation A in Table 1 of Simmons et al., 

2011, p. 1361). Using an αConstituent of .050, an actual familywise Type I error rate of .095 was 

calculated. Note that, because the dependent variables were correlated with one another, this error 

rate is lower than the expected rate of .150 (Simmons et al., 2011, p. 1365, Note 3). Nonetheless, 
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it is higher than the αConstituent of .050. Consequently, the researchers concluded that “flexibility in 

analyzing two dependent variables (correlated at r = .50) nearly doubles the probability of 

obtaining a false-positive finding” (p. 1361). This conclusion is correct. However, the “false-

positive finding” in question relates to the incorrect rejection of a joint null hypothesis (i.e., that 

song condition has no effect on any of the three dependent variables), not an individual null 

hypothesis (e.g., that song condition has no effect on the first dependent variable), and the 

statistical inferences that are made in Simmons et al.’s demonstration are about individual null 

hypotheses, not joint null hypotheses. Hence, although Simmons et al.’s conclusion is correct, it is 

also irrelevant to the type of statistical inference that they consider. 

To illustrate further, consider this part of a larger example that Simmons et al. (2011, p. 

1364) used to demonstrate a fictitious researcher’s selective reporting. In the following extract, the 

bolded text refers to a statistical inference that the researcher decided to report because it referred 

to a significant result, and the nonbolded text refers to a statistical inference that the researcher 

decided not to report because it referred to a nonsignificant result: 

 

An ANCOVA revealed the predicted effect: According to their birth dates, people 

were nearly a year-and-a-half younger after listening to “When I’m Sixty-Four” 

(adjusted M = 20.1 years) rather than to “Kalimba” (adjusted M = 21.5 years), F(1, 

17) = 4.92, p = .040. Without controlling for father’s age, the age difference was smaller 

and did not reach significance (Ms = 20.3 and 21.2, respectively), F(1, 18) = 1.01, p = .33. 

 

Importantly, in the above extract, both of the researcher’s statistical inferences are based on single 

tests of individual null hypotheses, each underwritten by a separate statistical test and p value (i.e., 

k = 1 for each decision about each null hypothesis). Consequently, the actual Type I error rates for 

each statistical inference are consistent with a conventional αIndividual of .050. Furthermore, the fact 

that the second test is not reported has no impact on the actual Type I error rate of the first test, 

because the Type I error rate for the first statistical inference refers to an imaginary long run of 

random sampling in which father’s age is always included as a covariate in the test. 

Simmons et al.’s (2011) concern about Type I error rate inflation would only be warranted 

if their fictitious researcher made a statistical inference about a joint null hypothesis that referred 

to both the bolded and the nonbolded tests. Obviously, in the current example, the researcher does 

not report the nonbolded test, and so they do not make a statistical inference about an associated 

joint null hypothesis. However, even if the researcher reported both tests as indicated above, they 

would still not be making a statistical inference about a joint null hypothesis. They would be 

following the more common approach of making two statistical inferences about two individual 

null hypotheses. They would only make a statistical inference about a joint null hypothesis if they 

used two or more significance tests to make a single decision about a single (joint) null hypothesis. 

To illustrate, the following example represents a case of Type I error rate inflation during a 

statistical inference about a joint null hypothesis (assuming that αConstituent and αJoint are both set at 

.050): 

 

An ANCOVA found that type of song had a significant effect on birth date (father’s age 

included as a covariate, F(1, 17) = 4.92, p = .040; father’s age excluded as a covariate, F(1, 

18) = 1.01, p = .330. 
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Contrary to the present view, Nosek et al. (2018) argued that nontransparent selective 

reporting inflates the Type I error rate. Consequently, as they explained, “transparent reporting 

that 1 in 20 experiments or 1 in 20 analyses yielded a positive result will help researchers identify 

the one as a likely false positive” (p. 2603). However, like Simmons et al. (2011), this explanation 

confuses statistical inferences about individual hypotheses with statistical inferences about joint 

hypotheses. If researchers make a statistical inference based on a single test of an individual 

hypothesis, then their actual Type I error rate for this inference will be αIndividual regardless of 

whether they make 1, 20, or a million other statistical inferences and even if their statistical result 

for that inference is the only significant result that they obtain or report. On the other hand, if 

researchers make a statistical inference based on the union-intersection testing of a joint null 

hypothesis that includes 20 constituent experiments or analyses, then their actual familywise Type 

I error rate for that inference will be 1 ₋ (1 ₋ αConstituent)20. However, contrary to Nosek et al., this 

familywise error rate does not refer to a “likely false positive” in relation to any “one” experiment 

or analysis (i.e., a constituent hypothesis). It refers to an incorrect decision about a joint null 

hypothesis that is based on the entire family of 20 experiments or analyses. Again, (a) if researchers 

do not make a statistical inference about this joint null hypothesis, then there is no need for them 

to be concerned about its familywise error rate, (b) researchers do not usually make statistical 

inferences about joint null hypotheses unless they have some theoretical rationale for doing so, 

and (c) if researchers do make statistical inferences about joint null hypotheses, then they can 

adjust their αConstituent in order to control their αJoint at some specified level. 

 

P-Hacking During Union-Intersection Testing of a Joint Null Hypothesis 

Does p-hacking inflate the actual familywise Type I error rate when a researcher makes a 

statistical inference about a joint null hypothesis based on union-intersection testing? No, it does 

not, because the familywise error rate refers to the researcher’s specified statistical inference and 

not to any other statistical inference that the researcher made and then failed to report during their 

p-hacking. 

To illustrate, imagine that a researcher undertakes 20 union-intersection tests of a joint null 

hypothesis. They set αConstituent at .0025 in order to maintain αJoint at the conventional level of .050 

(i.e., .0025 × 20). Using this αConstituent, they find no significant result. However, they notice that 

the smallest of their 20 p values is .004. They decide not to report their first set of union-

intersection tests because it failed to reject the joint null hypothesis (i.e., they engage in selective 

reporting). Instead, they conduct a second set of union-intersection tests that includes 10 of the 

previous 20 null hypotheses, and they deliberately include the hypothesis that yielded the p = .004 

result in this family of constituent hypotheses. This time, they set αConstituent at .005, which 

continues to maintain αJoint at the conventional level of .050 (i.e., .005 × 10). Note that the 

researcher now knows that the p = .004 result will be significant using an αConstituent of .005, and so 

they know in advance that they are able to reject their new joint null hypothesis. Does this p-

hacking and selective reporting inflate the actual familywise Type I error rate above αJoint? No, it 

does not, because the nominal αJoint of .050 matches the actual familywise Type I error rate for the 

researcher’s specified statistical inference, which has a k of 10 and an αConstituent of .005. 

The fact that k was 20 for an unreported statistical inference does not affect the Type I error 

rate for the reported statistical inference, for which k is 10. More generally, the Type I error rate 

for a statistical inference about an individual or joint null hypothesis is not impacted by other 

statistical inferences that could, would, or should have been made about other individual or joint 

null hypotheses, and it is not impacted by other statistical inferences that were planned or actually 
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made and then either reported or not reported. Arguing that Type I error rates should be adjusted 

when making multiple statistical inferences confuses αConstituent with αIndividual and αJoint. It is 

necessary to adjust αConstituent when using multiple tests to make a single statistical inference about 

a single joint null hypothesis. However, there is no need to adjust either αIndividual or αJoint when 

making multiple statistical inferences about multiple individual or joint null hypotheses. 

Also, note that the researcher deliberately selected the reported set of union-intersection 

tests because they yielded a significant result. Again, however, this point does not alter the actual 

Type I error rate for their statistical inference. As Mayo (1996) explained, “hypotheses might be 

constructed to accord with evidence e in such a way that although a passing result is assured, the 

probability of an erroneous passing result is low” (p. 275; see also Rubin, 2017, p. 313). In the 

present case, the researcher has constructed a union-intersection test to ensure that the associated 

joint null hypothesis is rejected. Nonetheless, their αJoint of .050 matches the actual familywise 

error rate for this test, and so it provides a valid and conventionally low rate of erroneous rejection 

in a hypothetical long run of repeated random sampling. 

Finally, in reporting their test, the researcher is likely to provide a theoretical rationale for 

the inclusion and exclusion of the specific constituent hypotheses in their joint null hypothesis, 

and they may omit the fact the p = .004 result inspired their construction of this hypothesis. 

However, this situation is not necessarily problematic because a researcher’s personal motives and 

informal inspirations are not usually taken into account during the evaluation of scientific 

hypotheses (Mayo, 1996, p. 263; Reichenbach, 1938, p. 5; Popper, 2002 p. 7; Rubin, 2022, pp. 

541-542; Rubin & Donkin, 2022, p. 19). Instead, hypotheses tend to be judged on the basis of 

theoretical virtues (e.g., plausibility, precision, depth, breadth, coherence, parsimony, etc.; Kuhn, 

1977, p. 103; Mackonis, 2013; Popper, 1962, p. 232). Hence, in the present example, reviewers 

and other readers would be able to evaluate the quality of the researcher’s theoretical rationale for 

their joint null hypothesis, even if they are unaware of the researcher’s p-hacking (Rubin, 2017, p. 

314; Rubin, 2022, p. 539). If the theoretical rationale for including and excluding the various 

hypotheses in the joint hypothesis is cogently deduced from a well-established, coherent theory 

that explains a broad range of other effects in a relatively deep and efficient manner, then the 

researcher’s result should be given serious consideration. 

 

Summary 

In summary, it is true that p-hacking makes it easier to reject an exploratory joint studywise 

null hypothesis comprised of every null hypothesis that could possibly be tested in a study and its 

repetitions. However, researchers do not usually make statistical inferences about such hypotheses 

because they are not usually theoretically informative. For example, researchers do not usually 

claim that “the study’s effect was significant,” independent of any theoretical explanation. Instead, 

they tend to make statistical inferences about (a) single tests of theory-based individual hypotheses 

and (b) multiple (union-intersection) tests of theory-based joint null hypotheses. P-hacking does 

not usually inflate the relevant Type I error rates in either of these cases. 

 

P-Hacking Increases Theoretical Errors, Not Statistical Errors 

I am not denying that p-hacking occurs, and I am not arguing that it is always harmless. I 

am only arguing that it does not usually inflate relevant Type I error rates. P-hacking is problematic 

because it increases theoretical errors, rather than statistical errors, and it does so as a result of 

biased selective reporting (Rubin, 2020a, p. 383). 
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For example, in Simmons et al.’s (2011) scenario, the inference that listening to the song 

“When I’m Sixty-Four” makes people younger may represent a theoretical error rather than a 

statistical error. In particular, the p-hacked result may be a statistical true positive that has been 

misinterpreted as representing “chronological rejuvenation” when it actually represents Meehlian 

crud or some other real but misleading effect (Meehl, 1990, pp. 207-208). In this case, the problem 

is theoretical misinterpretation rather than Type I error rate inflation. 

Theoretical errors are more likely to occur when the overall pattern of theoretically-

relevant evidence is obscured due to biased selective reporting. Hence, it is important to identify 

and reduce biased reporting through the use of open science practices such as open data, open 

research materials, and robustness, multiverse, and specification curve analyses. For example, 

reporting all of the evidence for and against chronological rejuvenation would be likely to show 

that the p-hacked result is part of a tiny minority of confirmatory evidence compared to a vast 

majority of disconfirmatory evidence. 

Theoretical errors can also be reduced through a rigorous critical evaluation of relevant 

theory. For example, what larger theoretical framework explains “chronological rejuvenation”? 

What is the quality of that theory relative to other explanations for the results? How well does that 

theory justify the specific methodological and analytical decisions that the researcher made (e.g., 

including father’s age as a covariate)? And what other evidence is there for and against the theory 

in the current study aside from a single ANCOVA result? These theoretical issues were not 

considered in Simmons et al.’s (2011) scenario. However, in practice, they would operate as an 

important (not infallible) line of defence against theoretical errors by helping to (a) screen out low 

quality theories and (b) motivate and guide efforts to detect biased selective reporting (see also 

Simmons et al., 2011, p. 1363, Point 3; Rubin, 2017, p. 314; Syrjänen, 2023, p. 16). 

Neyman and Pearson (1928) cautioned that significance “tests should only be regarded as 

tools which must be used with discretion and understanding, and not as instruments which in 

themselves give the final verdict” (p. 232; see also Bolles, 1962, p. 645; Boring, 1919, pp. 337-

338; Chow, 1998, p. 169; Cox, 1958, p. 357; Hager, 2013, p. 261; Haig, 2018, p. 199; Lykken, 

1968, p. 158; McShane et al., 2023; Meehl, 1978, p. 824; Meehl, 1997, p. 401; Szollosi & Donkin, 

2021, p. 5). P-hacking is most problematic for those who ignore this advice and rely on p values 

as the sole arbiters of scientific decisions rather than as mere steppingstones on the way to making 

substantive theoretical inferences during a process of inference to the best explanation (Haig, 2009; 

Mackonis, 2013). 

 

Optional Stopping 
In the case of undisclosed optional stopping or data peeking, a researcher tests a hypothesis 

using a certain sample size and, if their test does not yield a significant result, they collect more 

data and retest that same hypothesis using a larger sample size. They then continue this process 

until they obtain a significant result, at which point they report their significant result and hide 

their nonsignificant results. 

Undisclosed optional stopping represents result-dependent multiple testing across a series 

of tests that have different sample sizes. A key concern here is that the αConstituent for each test needs 

to be adjusted to account for the union-intersection testing of a joint null hypothesis that will be 

rejected when one of the tests yields a significant result. Failure to adjust αConstituent will lead to 

inflation of the familywise error rate above αJoint. A further a concern is that, if the number of “stop-

and-tests” is not specified in advance, then the actual familywise Type I error rate will be 
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incalculable in repetitions of an exploratory optional stopping procedure. However, neither of 

these concerns is warranted. 

First, a researcher who engages in undisclosed optional stopping has no choice but to limit 

their statistical inference to their final reported sample size because, by definition, they do not refer 

to any of their previous tests that used different sample sizes. In this case, it is appropriate for the 

researcher to use an unadjusted αIndividual. Here, αIndividual refers to the frequency with which they 

would make an incorrect decision to reject the specified statistical null hypothesis during an 

imaginary long run of repeated random sampling in which samples are the same size as that used 

in the final reported test (e.g., N = 300; Fraser, 2019, p. 140; Reid, 1995, p. 138). This long run 

would not include any of the other unreported tests that yielded nonsignificant results (e.g., Ns = 

270, 280, & 290) or any of the tests that might have occurred had the current test not yielded a 

significant result (e.g., Ns = 310, 320, 330, etc.). Certainly, it is possible to make an inference 

about a joint null hypothesis that refers to other tests in the series (see below). However, this would 

represent a different statistical inference that is warranted by a different (familywise) Type I error 

rate. The current statistical inference is restricted to a reference set that excludes the unreported 

tests. As in the case of p-hacking, the fact that this inference is reported because it refers to a 

significant result does not alter the individual probability of that result. To illustrate, imagine that 

you throw a 20-sided dice, hoping to get an “8,” and you only throw the dice again if you fail to 

get an “8” on your previous throw. You finally get an “8” on your 20th throw. In this case, it would 

be correct to report that you had a .050 probability of getting an “8” on that particular throw even 

if you did not report your first 19 unsuccessful throws. This individual (marginal) probability is 

not invalidated by the fact that the familywise (union) probability of getting an “8” in at least one 

of the 20 throws is .642. Furthermore, given that your probability statement refers to a single throw, 

a repetition of the associated procedure would only entail a single throw, and not 20 throws. 

Second, if a researcher wanted to adjust their αConstituent to maintain their familywise Type 

I error rate at αJoint during the process of optional stopping, then they could do so without planning 

the number of stop-and-tests in advance. Again, relevant Type I error rates refer to reported 

statistical inferences and not to planned but unreported statistical inferences. Hence, for example, 

if a researcher planned to adjust their familywise Type I error rate for a series of five stop-and-

tests but ended up deviating from that plan and making a statistical inference about a series of only 

three stop-and-tests, then they should adjust their αConstituent based on k = 3 not k = 5. In this case, 

their actual familywise error rate for their specified (k = 3) statistical inference would match their 

αJoint for that inference. 

There may be a concern that the researcher has not reported their actual number of stop-

and-tests in the previous example. However, we should not be concerned about the overall number 

of tests that a researcher has happened to perform. We should be concerned about the number of 

tests that they are using to make a specific statistical inference (i.e., k) and, in the current case, that 

number is three, not five. 

Finally, as with p-hacking, there may also be a concern that a researcher’s selective 

reporting is hiding relevant disconfirming evidence (i.e., biased selective reporting). It is debatable 

whether the null results from prior stop-and-tests represent “disconfirming evidence” given that 

null results represent the absence of evidence rather than evidence of absence (Altman & Bland, 

1995). Nonetheless, even if null results are accepted as disconfirming evidence, the presence of 

this undisclosed evidence will not inflate the Type I error rate because, as discussed previously, 

hiding disconfirming evidence biases theoretical inferences, not statistical inferences. 

Furthermore, a significant result obtained via undisclosed optional stopping may either confirm or 
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disconfirm a directional hypothesis. Hence, if a researcher stops data collection when they obtain 

a significant result, regardless of whether that result confirms or disconfirms their hypothesis, then 

their optional stopping will not bias their theoretical inference about their directional hypothesis 

(Rubin, 2020a, p. 381). 

 

Double Dipping 
It has been proposed that the same data cannot be used to both generate and then test the 

same hypothesis (e.g., Nosek et al., 2018, p. 2600; Wagenmakers et al., 2012, p. 633). Engaging 

in this double dipping strategy is thought to inflate Type I error rates. For example, Wagenmakers 

et al. (2012) argued that, “if you carry out a hypothesis test on the very data that inspired that test 

in the first place then the statistics are invalid….[In particular,] whenever a researcher uses double-

dipping strategies, Type I error rates will be inflated and p values can no longer be trusted” (p. 

633). 

Contrary to this argument, carrying out a hypothesis test on the same data that inspired the 

test does not necessarily invalidate the statistics. For example, it is perfectly acceptable to use the 

result from one statistical test to create a statistical null hypothesis for a second test which is then 

tested using the same data as long as the second test’s result is independent from the first test’s 

result. The logical problem of circularity only occurs when the same result is used to both (a) 

support the theoretical rationale for a hypothesis and (b) claim additional support for that 

hypothesis (Devezer et al., 2021; Kriegeskorte et al., 2009, p. 535; Rubin & Donkin, 2022, pp. 5-

6; Spanos, 2010, p. 216; Worrall, 2010, p. 131). Furthermore, this problem of circularity represents 

a theoretical error, rather than a statistical error. Consequently, although double dipping may 

sometimes invalidate theoretical inferences, it does not inflate Type I error rates. 

 

HARKing 
Hypothesising after the results are known, or HARKing, refers to the questionable research 

practice of “presenting post hoc hypotheses in a research report as if they were, in fact, a priori 

hypotheses” (Kerr, 1998, p. 197). HARKing is thought to inflate Type I error rates (e.g., Bergkvist, 

2020; Stefan & Schönbrodt, 2023, p. 4). However, HARKing represents post hoc theorizing, and 

so it affects theoretical inferences rather than statistical inferences. Indeed, in his seminal article 

on the subject, Kerr (1998, p. 205) did not argue that HARKing inflates Type I error rates. Instead, 

his concern was that, when “a Type I error is followed by HARKing, then ‘theory’ is constructed 

to account for what is, in fact, an illusory effect” (p. 205). In other words, Kerr was not concerned 

that HARKing inflates Type I error rates, but that it may be used to “translate Type I errors into 

theory” (Kerr, 1998, p. 205). 

Kerr (1998) conceded that Type I errors can also be translated into theory following 

explicit, transparent, post hoc theorizing, rather than undisclosed HARKing. However, he believed 

that the translation is more problematic following HARKing because “an explicitly post hoc 

hypothesis implicitly acknowledges its dependence upon the result in hand as a cornerstone (or 

perhaps, the entirety) of its foundation, and thereby sensitizes the reader to the vulnerability of the 

hypothesis to the risks of an immediate Type I error” (Kerr, 1998, p. 205). Contrary to this 

reasoning, “the risks of an immediate Type I error” do not vary as a function of either the origin 

or quality of a hypothesis. To believe that they do is to commit the Bayesian inversion fallacy. 

Hence, there is no reason to believe that HARKing either inflates Type I error rates or that it 

exacerbates the costs of Type I errors. 
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Summary, Addendum, and Conclusion 
Summary 

The replication crisis has been partly explained in terms of Type I error rate inflation. In 

particular, it has been argued that questionable research practices inflate actual Type I error rates 

above their nominal levels, leading to an unexpectedly high level of false positives in the literature 

and, consequently, unexpectedly low replication rates. In the current article, I have offered the 

alternative view that questionable and other research practices do not usually inflate relevant Type 

I error rates. 

During significance testing, each statistical inference is assigned a nominal Type I error 

rate or alpha level. Type I error rate inflation occurs if the actual Type I error rate for that inference 

is higher than the nominal error rate. The actual Type I error rate can be calculated using the 

formula 1 ₋ (1 ₋ α)k, in which k is the number of significance tests that are used to make the 

statistical inference. I have argued that the actual Type I error rate is not usually inflated above the 

nominal rate and that, when it is, the inflation is transparent and easily resolved because k is known 

by readers. Indeed, k must be known by readers because the researcher must formally associate 

their statistical inference with one or more significance tests, and k is the number of those tests. A 

key point here is that k is not the number of tests that a researcher conducted, including those that 

they conducted and did not report. Instead, k is the number of tests that the researcher uses to make 

a statistical inference about a specified null hypothesis. 

It is true that some actual Type I error rates may be above a field’s conventional alpha 

level. However, this issue does not necessarily represent Type I error rate inflation. Type I error 

rate inflation only occurs when the actual Type I error rate for a specified statistical inference is 

higher than the nominal Type I error rate for that inference, regardless of whether that nominal 

rate is higher or lower than the conventional level. 

It is true that the Type I error rate for a researcher’s specified statistical inference about a 

particular individual or joint null hypothesis may be different to the Type I error rates for other 

statistical inferences that they could, would, or should have made about other individual or joint 

null hypotheses, or for other statistical inferences that they planned to make or actually made, and 

then either reported or failed to report. It is also true that different researchers may disagree about 

which are the most appropriate or theoretically relevant statistical inferences or alpha levels in any 

given research situation. However, none of these points imply that the actual Type I error rate for 

a researcher’s reported statistical inference is inflated above the alpha level that they have set for 

that particular inference. 

It is true that the actual familywise Type I error rate is always above αConstituent. However, 

researchers can adjust αConstituent to avoid Type I error rate inflation with respect to their statistical 

inferences about associated joint null hypotheses and, if they do not adjust αConstituent, then the 

extent of the inflation will be transparent to others and easily resolved. Hence, this potential issue 

is not problematic. 

It is also true that the studywise Type I error rate is always above αConstituent. However, 

researchers do not usually make statistical inferences about joint studywise null hypotheses, and 

so this point is usually irrelevant. Nonetheless, if a studywise error rate does become relevant, then 

it can be identified and controlled by adjusting αConstituent. This adjustment is even possible if 

researchers take the unusual step of making relatively vague and atheoretical statistical inferences 

about exploratory joint studywise null hypotheses (e.g., “the study’s effect was significant”) 

because, even in this case, they will need to specify the relevant statistical tests that they are using 

to make this inference. 
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Finally, it is true that a researcher’s probability of incorrectly rejecting a substantive null 

hypothesis and incorrectly accepting a substantive alternative hypothesis may be greater than their 

alpha level because this probability may be influenced by theoretical errors as well as Type I errors. 

However, these theoretical errors cannot be said to inflate Type I error rates because Type I error 

rates refer to random sampling error per se. They do not account for theoretical errors. 

Based on these points, I have argued that the following research practices do not usually 

inflate relevant Type I error rates: model misspecification, multiple testing, selective inference, 

forking paths, exploratory analyses, p-hacking, optional stopping, double dipping, and HARKing. 

Note that some of these research practices may involve dishonesty and the nondisclosure of 

potentially relevant information. None of the points that I have made condone these practices. 

They only support the argument that questionable and other research practices do not usually 

inflate relevant Type I error rates. 

 

Addendum 
What about the evidence of Type I error rate inflation? There are two problems with this 

evidence that threaten its validity. 

First, similar to Simmons et al.’s (2011) demonstration, evidence of Type I error inflation 

tends to confound statistical inferences about individual null hypotheses with statistical inferences 

about joint null hypotheses. For example, simulations of actual Type I error rates compute the 

familywise error rate for a joint null hypothesis and then apply that error rate to individual null 

hypotheses, claiming that, because the familywise error rate is, for example, .143, there is a .143 

chance of incorrectly rejecting each individual null hypothesis. Again, this reasoning is widely 

acknowledged to be incorrect (Armstrong, 2014, p. 505; Cook & Farewell, 1996, pp. 96–97; 

Fisher, 1971, p. 206; García-Pérez, 2023, p. 15; Greenland, 2021, p. 5; Hewes, 2003, p. 450; 

Hurlbert & Lombardi, 2012, p. 30; Matsunaga, 2007, p. 255; Molloy et al., 2022, p. 2; Parker & 

Weir, 2020, p. 564; Parker & Weir, 2022, p. 2; Rothman, 1990, p. 45; Rubin, 2017b, pp. 271–272; 

Rubin, 2020a, p. 380; Rubin, 2021a, 2021c, pp. 10978-10983; Savitz & Olshan, 1995, p. 906; 

Senn, 2007, pp. 150-151; Sinclair et al., 2013, p. 19; Tukey, 1953, p. 82; Turkheimer et al., 2004, 

p. 727; Veazie, 2006, p. 809; Wilson, 1962, p. 299). 

Second, evidence of Type I error rate inflation may also depend on a fallacious comparison 

between (a) the probability of rejecting a null hypothesis when it is true and (b) the probability of 

a null hypothesis being true when it is rejected (Pollard & Richardson, 1987). As discussed 

previously, the first probability is equivalent to a frequentist Type I error rate: Pr(reject H0 ; H0 is 

true). However, the second probability does not provide an appropriate benchmark against which 

to judge Type I error rate inflation because it represents a conditional posterior probability about 

the truth of the null hypothesis: Pr(H0 is true | reject H0). Hence, showing that Pr(H0 is true | reject 

H0) > Pr(reject H0 ; H0 is true) does not provide a valid demonstration of Type I error inflation. 

Instead, it demonstrates the Bayesian inversion fallacy because it confuses the unconditional 

probability of rejecting a true null hypothesis with the conditional probability that a null hypothesis 

is true given that it has been rejected (Gigerenzer, 2018; Greenland et al., 2016; Mayo & Morey, 

2017; Pollard & Richardson, 1987). 

 

Conclusion 
Type I error rate inflation may not be a major contributor to the replication crisis. Certainly, 

some failed replications may be due to Type I errors in original studies. However, actual Type I 

error rates are rarely inflated above their nominal levels, and so the level of Type I errors in a field 
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is liable to be around that field’s conventional nominal level (see also Neyman, 1977, p. 108). 

Hence, Type I error rate inflation cannot explain unexpectedly low replication rates. 

In contrast, theoretical errors may be higher than expected. In particular, unacknowledged 

misinterpretations of theory, methodology, data, and analyses may all inflate theoretical errors 

above their “nominal” expected level, resulting in incorrect theoretical inferences and 

unexpectedly low replication rates. For example, researchers may assume a higher degree of 

theoretical equivalence between an original study and a “direct” replication than is warranted. A 

failed replication may then represent the influence of an unrecognized “hidden moderator” that 

produces a true positive result in the original study and a true negative result in the replication 

study. Of course, scientists should attempt to specify and investigate such hidden moderators in 

future studies (Klein et al., 2018, p. 482). Nonetheless, ignoring hidden moderators does not 

mitigate their deleterious impact on replicability! 

In conclusion, the replication crisis may be explained, at least in part, by researchers’ 

underestimation of theoretical errors and their misinterpretation of statistical errors (i.e., statistical 

reification; Greenland, 2017, 2023; see also Brower, 1949; Gigerenzer, 1993). These two issues 

may combine to produce overconfident researchers who have unrealistically high expectations 

about replication rates during “direct” replications (Rubin, 2021, pp. 5828-5829). Accordingly, an 

appropriate response to the replication crisis is for researchers to adopt a more modest perspective 

that recognizes (a) the important role of scientific ignorance during theoretical inferences (e.g., 

Feynman, 1955; Firestein, 2012; Merton, 1987) and (b) the limited scope of Type I error rates 

during statistical inferences (e.g., Bolles, 1962; Cox, 1958; Fisher, 1926; Greenland, 2017). This 

more modest perspective may help to provide more realistic expectations about replication rates 

and a better appreciation of replication failures as a vital aspect of scientific progress (Barrett, 

2015; Redish et al., 2018; Rubin, 2021b). 

 

Endnotes 
1. The semicolon in “Pr(reject H0 ; H0 is true)” is used to indicate that “H0 is true” is a fixed 

assumption, rather than a random variable that can be true or false. Hence, Pr(reject H0 ; H0 is 

true) is an unconditional probability rather than a conditional probability. In contrast, the 

vertical bar in “Pr(H0 is true | reject H0)” is used to indicate a conditional probability (Mayo & 

Morey, 2017, Footnote 2; Wasserman, 2013). 

2. Fisher (1930, p. 530) explained that the Bayesian approach of “inverse probability” is 

applicable when “we know that the population from which our observations were drawn had 

itself been drawn at random from a super-population of known specification” (e.g., a 

superpopulation of 200 null populations of which 100 are known to be true and 100 are known 

to be false). Hence, as Cox (1958) explained, “if the population sampled has itself been selected 

by a random procedure with known prior probabilities, it seems to be generally agreed that 

inference should be made using Bayes’s theorem” (pp. 357-358). 
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