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ABSTRACT. The question of Absolute Generality is whether quantifiers are ever as
general as can be. Absolutists claim that quantifiers sometimes are absolutely gen-
eral, while Relativists claim that quantifiers are never absolutely general. Although
diverse philosophers have found the Relativist ethos compelling, it has been hard
to articulate a consistent thesis which says what the Relativist seems to want to
say. In this paper, I offer Relativists a way forward: I argue that what is needed to
successfully state Relativism is a way of generalizing that is non-quantificational.
After showing how to define such a device of generalization in terms of identity
between properties in a higher-order logical language, I use the device to articulate
a form of Relativism which I prove to be consistent and which I argue captures the
intuitive vision of the Relativist.

When theorizing about the world, we sometimes try to make claims about it that
are as general as can be. When the metaphysician says everything is self-identical,
it is not as though the range of their quantification is supposed to stop just short
of Australia, and fall silent on whether the kangaroos are self-identical, too. The
question of Absolute Generality is whether we in fact succeed in this ambition,
whether, as Studd (2019) puts it, we ever “use ... quantifiers to make claims that are
as general as can be” (p. 1).1 It has not always been clear, however, what exactly
this question is asking. All parties can agree that there are two answers, Relativism
and Absolutism:

Relativism: Quantifiers always fail to be absolutely general

1The history of the debate is interesting, if somewhat tortuous. Dummett (1978) is perhaps the first
to suggest that there might be something defective about absolutely general quantification, and the
theme is taken up in greater detail in Dummett (1981) and Dummett (1991). (What exactly Dummett
takes the deficiency to be is a subtle matter; see pp. 529ff. in his Dummett (1981), and Cartwright
(1994) and Linnebo (2018) for some discussion.) The idea emerges indepedently (so far as I can tell)
in Parsons (1974), also in the context of set theory; Glanzberg (2004) (and the sequels Glanzberg
(2006) and Glanzberg (2023)) are further developments of the Parsonian line. Dummett and Parsons
seem to advance Relativist positions. Important early skeptical responses to their arguments for
Relativism are, respectively, Cartwright (1994) and Boolos (1998). (Cartwright’s response is further
developed in Rayo and Williamson (2004), McGee (2004), Linnebo (2006), Rayo (2006) and Linnebo
and Florio (2021).) The challenges of formulating a coherent version of Relativism are briefly raised
and discussed in Lewis (1991) and McGee (2000), but the first, I believe, extended treatment of the
issue is due to Williamson (2003), and it is further discussed in Fine (2006), Lavine (2006), Button
(2010), and Warren (2017). Recent surveys of the topic are the introduction to Rayo and Uzquiano
(2006a) (a collection of 13 essays on the topic), the article Florio (2014) and the book Studd (2019),
which features a particularly well developed attempt to articulate what is at stake between Relativism
and Absolutism, and to defend Relativism.
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Absolutism: Quantifiers are sometimes absolutely general2

But these answers are no more clear than the question. They are templates or slo-
gans, awaiting specifications of what “quantifiers” are, what it is for quantifiers to
“always” be a certain way, and what it is for quantifiers to be “absolutely general”.

It is not uncommon in philosophy to have the positions in a debate character-
ized by slogans rather than precise statements; part of the philosopher’s work is
to turn the former into the latter. What is distressing about Absolute Generality
is that it has proved distressingly difficult to precisify the slogans in a way which
is both faithful to the motivations for the views and does not render Relativism
inconsistent or otherwise self-defeating. It would be extremely natural to try to
render Absolutism and Relativism in terms of quantification over quantifiers:

Relativism: No quantifier is absolutely general

Absolutism: Some quantifier is absolutely general

But, as we shall see, precisely because the Relativist calls into question the gen-
erality of quantifiers, this way of articulating the Relativist position will either be
self-defeating or fail to capture the intuitive spirit of the Relativist’s view. As a
result, some philosophers have been skeptical that there is any coherent way of ar-
ticulating Relativism—so that, no matter how we try to precisify our slogans, the
Absolutist will come out on top—or any coherent question of absolute generality
at all.3

My aim is to offer the debate a way forward: I will offer novel versions of Rel-
ativism (and its negation, Absolutism) stated with the resources of a higher-order
logical language. They key idea, I will argue, is that the Relativist needs to recog-
nize that there are ways of generalizing about quantifiers which are not themselves
quantificational or defined in terms of quantification. I will show how we can, with
the resources of higher-order identity, define such a way of generalizing. Turning
to non-quantificational way of generalizing, I argue, allows the Relativist to avoid
the pitfalls usually encountered. In particular, the Relativist can avoid the problem
of coherence: my statements of Relativism (and Absolutism) is provably consistent.

Other philosophers have suggested ways of articulating what is at stake between
the Absolutist and Relativist before, perhaps most prominently Fine (2006) and
Studd (2019). These proposals, however, have problems of their own (as I argue
elsewhere in my dissertation). For instance, they introduce special “modal” opera-
tors purpose-made for the Absolute Generality debate. Those already skeptical that
there is a non-trivial debate may well be skeptical that these special-purpose oper-
ators are of any more repute; Studd (2019) himself is unsure he grasps the modality
that Fine invokes (p. 147). A distinctive virtue of my proposal is that it will spell

2Here “quantifiers are sometimes F” and “quantifiers always fail to be F” are intended to be dual
constructions: the former is to be equivalent to “it’s not the case that quantifiers always fail to be F”
and the latter to “it’s not the case that quantifiers sometimes are F”.
3See, for instance, Lewis (1991), McGee (2000), Williamson (2003), and Button (2010).
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out Absolutism and Relativism using only the logical vocabulary of higher-order
languages. This ideology is not uncontroversial, but it is certainly not parochial:
philosophers of diverse stripes have defended the intelligibility of the higher-order
devices to which I appeal, and have applied them in many philosophical contexts
orthogonal to the Absolute Generality debate.4

The plan is as follows. In Section 1, I will introduce the Absolute Generality
debate; in Section 2, I will discuss difficulties in articulating Relativism; in Section 4,
I will introduce my key idea, non-quantificational generality, for how Relativism is
to be successfully articulated and explain in brief how it is to work. The remaining
sections develop these ideas from Section 4 in a formal setting, that of higher-order
logic.

1. THE IDEA OF RELATIVISM (AND ABSOLUTISM)

Philosophers sometimes say that absolutely general quantification is quantifi-
cation over “absolutely everything”, and then suggest that Relativism is the view
that we cannot quantify that way—i.e., that we cannot quantify over absolutely ev-
erything.5 Such formulations might seem to have the vice of not being particularly
informative—what is it to quantify over absolutely everything?—but the more se-
rious worry is that such formulations are just inconsistent or self-defeating. Lewis
puts it pithily: If the Relativist proclaims we never quantify over absolutely every-
thing, then it seems we may reply: “Lo, he violates his own stricture in the act of
proclaiming it!” (Lewis (1991), p. 68).6

4See the contributions in Jones and Fritz (2024).
5For such formulations, see Linnebo (2006), Lavine (2006), Williamson (2003), or Button (2010). Some
of these authors put Relativism this way only as part of an argument that such formulations do not
adequately capture Relativism.
6There is, however, a perfectly respectable way philosophers and logicians sometimes use the slogan
“absolutely general quantification is quantification over absolutely everything” which pertains to
the relationship between a quantifier-expression “∀”, for instance, in an object-language and our
meta-language quantifier “absolutely everything”. Philosophers sometimes say that a quantifier-
expression ∀ is absolutely general just in case “∀xFx” is true iff for absolutely every o, “Fx” is true
on a variable assignment mapping x to o. There are good questions about whether a quantifier-
expression “∀” could be absolutely general in this way. And there is a genuine puzzle about how
one could do something like standard model-theoretic semantics in such a way that ⌜∀⌝ would be
absolutely general in the meta-semantic sense: standard model theory requires that, to specify the
interpretation of a quantifier, we specify a set over which the quantifier is to “range”. Since, one might
have thought, there is no set comprising all sets, and hence no set comprising all things, we could
not specify a set over which an absolutely general ⌜∀⌝ is to range. As will become clear, however,
this is not the sense of absolute generality relevant to the debate I am interested in, although the two
issues are related. (This relation explains why much of the initial wave of work in the debate that
I am interested in—especially the famous Cartwright (1994)—does seem to deal with the sense of
absolutely general quantification I have mentioned in this footnote.)
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A better way of getting a sense of what Relativism is supposed to be is to exam-
ine the overall philosophical vision motivating self-described Relativists. Philoso-
phers have found diverse grounds for the rejection of absolutely general quantifi-
cation, but one strand of thought important to many concerns what Studd (2013)
calls a “trade off between ’generality’ and ’collectability”’ (p. 82).7

This trade off usually manifests in the realm of sets or similar entities. Classical
logic shows that there cannot be a set of all sets that do not contain themselves,
given the inconsistency of:

(Russell) ∃x∀y(y ∈ x ↔ y /∈ y)

Sometimes when a set fails to exist, this is because one of its would-be members
fails to exist: if Socrates fails to exist, then his singleton must also fail to exist. The
failure of there to be a Russell set r of all the non-self-containing sets—call them the
ss—is not like that. The ss exist; the problem, rather, is that they somehow are not
lassoed together into a single set. The inconsistency of (Russell) seems to reflect a
failure in collectability.

The Absolutist accepts that what seems to be the case is the case: since ∃ is as
general as can be, the fact that ¬∃x∀y(y ≺ ss → y ∈ x) means there is no sense in
which a set of the ss has any claim to existing. For the Relativist, by contrast, the
failure is merely apparent. Although the Relativist, of course, recognizes (Russell)
is inconsistent and so false, they will instead say that:

(Russell+) ∃′x∀y(y ∈ x ↔ y /∈ y)

Here, the initial quantifier, ∃′ and its dual ∀′ are distinct from our original ∀ and
∃. Putting things roughly, the Relativist recognizes that r does exist according to
∃ (¬∃x(x = r)), but asserts that it does exist according to some other quantifier ∃′.
The Relativist is keen to ensure that the s’s can be collected, and since ∃′x(x = r),
collectability is achieved.8

The achievement, though, comes at the price of generality lost. An absolutely
general universal quantifier, one would think, would be one such that it would
surpass in generality whatever other universal quantifier one might compare it
to. But ∀ plainly doesn’t meet this standard: all even numbers is not as general as all
numbers, because not every number is an even number. Likewise, ∀ is not as general
as ∀′, since r exists according to the latter but not the former. So ∀ is not absolutely

7Other motivations have to do with the alleged links between quantification and sortals, and general,
Carnapian worries about ontology. I myself am not convinced that all these motivations really lead
to one common philosophical ethos.
8Why is the Relativist so keen not to give up on collectability? The point is often put in terms of
explanation: consider all the sets which do not contain themselves—not under that description as it
were, but just those sets, the plurality of them. What stops there from being a set of them? What is the
difference between these sets, and, say, Earth, Mars, and Venus, a trio of which there is surely a set?
How precisely this explanatory challenge is supposed to work is an important question. A classic
discussion is Dummett (1991) (pp.315–316), other discussions include: Studd (2013) (pp. 698–701),
Fine (2006) (pp. 23–25), Linnebo (2010), Yablo (2004) (pp. 148–150), and Soysal (2020).
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general, according to the Relativist. And, of course, not just ∀—the Relativist is just
as keen to say that there should be, in some sense, a set of all (according to ∀′) the
sets which do not contain themselves; but this new Russell set for ∀′ itself can only
exist according to yet another quantifier ∀′′. And now we are off to the races: there
will be an ever-extending hierarchy of quantifiers, each more general than the last,
never reaching a maximum.

2. FILLING IN THE SLOGANS

This is the sort of philosophical vision that I aim to capture with the slogan:

Relativism: Quantifiers always fail to be absolutely general

The opposing vision, according to which the hierarchy hits some upper limit, is:

Absolutism: Quantifiers are sometimes absolutely general

These slogans involve three moving parts: they involve a notion of (i) of being
a “quantifier”; (ii) of what it is for quantifiers to always be a certain way; and
(iii) what it is for a quantifier to be absolutely general. This third notion might
seem itself to subdivide into two parts: it is natural to think that for a quantifier
to be “absolutely general” is for it to be completely general, that is, maximally
general by some ordering of generality—the question then is what (iiia) this notion
of maximality is and (iiib) what the relevant ordering of generality might be.

By “quantifiers”, I do not mean quantificational expressions but rather the sort of
thing those expressions mean. More or less following Frege, and modern linguis-
tics in the tradition of generalized quantifier theory, let us think of the meanings
of quantifier-expressions as being certain properties of properties: just as “Bessie is
kind” says that the property of being kind applies to Bessie, so “every cow is kind”
says that the property every cow—that is, the property of applying to all cows—
applies to the property of being kind.9

Quantifiers come in many varieties: there are existential and universal quanti-
fiers, of course, but also proportional quantifiers, like “most moose” or “all but
finitely many mice”. For any given kind of quantifier, we could debate between
versions of Relativism and Absolutism about quantifiers of that kind: are universal
quantifiers ever absolutely general? Are “most” quantifiers? In the set-theoretic
motivations for Relativism, though, it would seem to be universal and existential
quantifiers which feature most prominently, and so it is Absolutism and Relativism

9I use “property” where Frege would have used (the German equivalent of) “function” or “concept”;
my properties of properties are his second-level concepts. (See, for instance, Frege (1997b), Frege
(1997a), and the discussion in Klement (2024).) Linguists and logicians, by contrast, sometimes say
quantifiers are properties of sets (as, for instance, Peters and Westerståhl (2006), p. 12) or sets of
properties (as, for instance, Szabolcsi (2010), p. 7) or just sets of sets (as in Barwise and Cooper
(1981)). In these cases, the invocation of sets is a simplifying assumption, one which allows us to
ignore intensional aspects of language. Linguists also often distinguish between so-called “global”
and “local” quantifiers; I mean here to be speaking of the latter.
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about those kinds of quantification which I wish to articulate. (I tackle the other
cases elsewhere in my dissertation, building on the approach here.)

In fact, I will focus only on universal quantifiers, but only as a matter of conve-
nience. Existential and universal quantifiers occur naturally in pairs, each member
of the pair being definable in terms of the other and negation (given classical princi-
ples about duality). It is hard to see how one member of such a pair could be max-
imally general without its twin being maximally general also. Absolutism about
existential quantifiers, therefore, seems to stand or fall with Absolutism about the
universal, and so we may without loss of generality focus on the latter. It will be
helpful sometimes to say talk about existential quantifiers being absolutely general
or not, but this is to be understood as shorthand for claims about the universal
counterparts being absolutely general.10

Later in the paper, I will say more about universal quantifiers, and try to define
what it is to be one in logical terms. For now, we should turn our attention to
the parts of the slogans which are most problematic: “always” and “absolutely
general”.

The standard canons for translating these terms would dictate that we under-
stand them in terms of quantification over quantifiers. Just as “Even numbers are
always divisible by two” usually means that all even numbers are divisible by two,
so Relativism would be the view that every quantifier is not absolutely general.11 I
have already suggested, being “absolutely general” is a matter of being maximally
general along some ordering of generality; but maximality, also, is usually cashed
out with quantification: to be maximally tall is to be at least as tall as anything else.
For a universal quantifier Q to be absolutely general, then, is just for it to be at least
as general as every quantifier.

And so the standard canons would tell us that this is how Relativism and Abso-
lutism ought to be understood:

Q-Relativism: No quantifier is at least as general as every quantifier

Q-Absolutism: Some quantifier is at least as general as every quantifier

Is Q-Relativism a good way for a Relativist to regiment their view? Even with-
out pinning down precisely what ordering “at least as general as” is supposed to

10It is customary in the Absolute Generality literature to focus not on quantifiers (in the sense I un-
derstand them), but rather on domains of quantification. Thus Rayo and Uzquiano (2006b) frames
the question of Absolute Generality as one about whether there is “an all-inclusive domain of dis-
course” (p. 2). On the face of it, however, the debate about Absolute Generality would seem to
concern quantifiers, not domains. When trying to describe the Relativist’s position, we say things
like “The Relativist says that ∀ is not absolutely general because ∀′ is not a restriction of it”. This
is a statement about quantifiers; perhaps we could paraphrase the point in terms of domains, but
why should we? More importantly, though, I think that all reasonable ways of cashing out Domain
Relativism and Domain Absolutism are going to be close variants of the quantifier-first theses that I
will state, as I argue elsewhere in my dissertation.
11See Lewis (1975) for a view on which adverbs like “always” are in general quantificational.
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express, one may already feel some creeping queasiness about stating Relativism
in these terms. Doesn’t the Relativist claim that quantifiers are never maximally
general? Presumably, then, the Relativist will claim that no quantifier doesn’t gener-
alize over quantifiers in a maximal way, but rather is just another quantifier which
is surpassed in generality by another quantifier further up in the hierarchy.

Accordingly, Q-Relativism will seem a little parochial: so what if no quantifier is
at least as general as every quantifier, for some particular, parochial quantifiers no
quantifier and every quantifier? This is compatible with there being some more ex-
pansive quantifier over quantifiers Q such that “there is some quantifier which is
absolutely general” is true, when “some quantifier” expresses this more expansive
quantifier Q. By the Relativist’s own lights, Q-Relativism, the sentence “No quan-
tifier is at least as a general as every quantifier”, fails to say what the Relativist
wishes to say.

The Relativist might object that denying quantification can be maximally general
simpliciter doesn’t mean that it cannot be absolutely general over a limited range:
no matter what we think about sets, perhaps maximally general quantification over
donkeys (or quantifiers) is left unharmed. But there are more acute problems for
Q-Relativism. Consider the following property of properties Π:

being a property to which all universal quantifiers apply

It is plausible that Π itself is a quantifier. One way to informally argue this point is
to conceive of Π as the “conjunction” of all universal quantifiers, and then observe
that conjunctions of universal quantifiers seem themselves to be universal quan-
tifiers: if every cow and every cat are universal quantifiers, then so is every cow and
every cat.

If, however, Π is a universal quantifier, then it is hard to see how it could fail to be
absolutely general, since being an absolutely general is understood as being at least
as general as every quantifier. On any plausible understanding of this ordering of
generality, Π will be at least as general as every quantifier, just as every cow and cat
is at least as general as every cow on any plausible understanding, so

Π is the source of real trouble for the Relativist. Suppose some quantifier is
identical to Π; then Q-Relativism is simply false. For on that supposition, we can
infer from the truth:

• Π is a quantifier and is at least as general as every quantifier

That:

• Some quantifier is at least as general as every quantifier

Which is Q-Absolutism, Q-Relativism’s negation. In Section 8, when we have in-
troduced a suitable formal language, we will return to this argument and tighten it
up.12

12Parallel arguments are to be found in Fine (2006) and Linnebo and Florio (2021).
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If Q-Relativism is to be consistent, then the Relativist cannot accept that some
quantifier is identical to Π. This, however, is not a stable position for the Relativist
either. Perhaps Π is not in the range of the quantifier which “every quantifier” in
Q-Relativism designates. The Relativist spirit, nonetheless, would seem to suggest
that there ought to be a more expansive quantifier in whose range it does fall, just
as the Russell set r for a quantifier ∀ only existed by the lights of a more expansive
quantifier ∀′. If there is a more expansive sense of “every quantifier”, it would seem
that we are back to the problem of parochiality: Q-Relativism only gets at what the
Relativist would like it to if the quantifiers over quantifiers really say something
about quantifiers as a whole.

Not everything, at least, is doom and gloom for the Relativist—they at least can
make some good sense of what it is for one quantifier to be at least as general as an-
other. One might have worried that this notion, too, would require quantification
of some kind to be stated: ∀ is at least as general as ∀′ just in case everything which
∀ ranges over is something that ∀′ also ranges over.

Luckily, we can do better: say that ∀ is at least as general as ∀′ just when

∀′x∃y(y = x)

Where ∃ is the dual of ∀. It will sometimes be helpful to have a locution for the
converse relation: when ∀ is at least as general as ∀′, we can also say that ∀′ is a
restriction of ∀, and we can abbreviate this as ∀′ ⊆ ∀. This notion of restriction—
which only requires the two quantifiers we are comparing themselves—seems to
do the job we want. Every cow is a restriction of every ungulate, since every cow is
identical to some ungulate, for instance. Likewise, every set is identical to some+

set, where some+ ranges over the sets that every set does and also the Russell set for
every set.

3. INTERLUDE: ARTICULATING ABSOLUTISM?

Relativism, then, seems to be rather hard to state in a coherent way. One might
think that Absolutism is bound for a similar, ineffable fate. Yet many philosophers
have thought that Absolutism is on firmer ground than Relativism when it comes to
being articulable.13 This might seem surprising: given that Absolutism is supposed
to be the negation of Relativism, one would think that either both theses could be
articulated or neither could: given a statement of Absolutism, just throw a negation
in front of it to obtain a statement of Relativism.

The solution to this little puzzle turns on the important insight of Stalnaker
(1978): what proposition a sentence expresses depends on what facts obtain. Had
the word “water” meant gold and the rest of the English language been left undis-
turbed, “water is H20” would have expressed the proposition that gold is H20, not
the proposition it in fact expresses, that water is H20.

13See Williamson (2003) p. 433, and Studd (2019), Section 5.1. My conclusions in this section are
largely in line with theirs, with the exception of the final paragraph.
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Take for granted that there are propositions A and R which correspond to the
Absolutist and Relativist positions. The problem the Relativist faces is not one of
inexpressibility simpliciter, but inexpressibility by their own lights: if R were true,
it is not clear that we could use the words “No quantifier is at least as general as
every quantifier” to state that would-be truth, nor that we could use the words
“Some quantifier is at least as general as every quantifier” to state its negation. The
challenge for the Relativist is that their position undermines attempts to state it:
by denying the possibility of quantification that is as general as can be, they seem
to foreclose the possibility of stating a claim which would adequately capture that
denial.

The sense in which Absolutism is on sounder footing than the Relativist is that,
given Absolutism’s own truth, Absolutism is not so difficult to state. If “every
quantifier” really expressed an absolutely general quantifier—and if Absolutism is
true, what could stop it from expressing that?—it is difficult to see what more one
would want from the status of being absolutely general than whatever is expressed
by “being at least as general as every quantifier”, and so difficult to see what more
one could want in a statement of Absolutism than whatever is expressed by “some
quantifier is at least as general as every quantifier”.

But this may not mean that they are on ground that is sound simpliciter. From the
difficulties of articulating Relativism, one might draw the lesson that Relativism,
and Relativism alone, is a defective position. One might, however, draw the more
radical lesson that the very debate between Relativists and Absolutists itself is de-
fective, as Button (2010) does.14 Self-described Relativists and Absolutists presup-
pose there is sense to be made of of the notions of “absolutely general” quantifi-
cation and the like, but the difficulties in articulating Relativism, the thought goes,
reveal that there is no sense to be made of these notions. Genuine debates, one
might think, can be articulated in a neutral way. To answer this kind of skeptic is
as much the task of the Absolutist as it is of the Relativist.

4. BEYOND QUANTIFICATION

Suppose, then, we want an articulation of the Absolute Generality debate which
is acceptable to Relativist and Absolutist alike, and which could convince a skeptic
that there is sense to be made out of the debate’s proprietary notions. We will need
to augment the quantificational locutions of Q-Relativism and Q-Absolutism or
leave them behind altogether and generalize about quantifiers in some other way.

Some philosophers, such as Fine (2006) and Studd (2019), have thought the right
way to articulate Absolutism and Relativism is by appealing to special modal op-
erators. We need not run away from quantification, but we must augment it in

14Button (2010) sketches a position according to which “any putative doctrine whatsoever about “un-
restricted quantification” fails in its ambitions, whether that doctrine is [Absolutist] or [Relativist]”
(p 395).
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order to get at what is issue. These philosophers take seriously the "ability" in “col-
lectability”: the lesson of Russell’s paradox is that, given ∀, we can produce a new
quantifier ∀′ which is not a restriction of ∀, and so they introduce a new modal op-
erator ♢ (and its dual □) to latch on this sense of potentiality. The modal relativist’s
view is that, necessarily, any quantifier is such that, possibly, there is another which
is not a restriction of the first:

M-Relativism: Necessarily, for any quantifier X , there is possibly a quantifier Y such
that Y is not a restriction of X .

But M-Relativism falls victim to the same problem of Π. So long as truths of
logic are necessary in the relevant sense, it appears that we will have that Π will be
absolutely general in the relevant sense, since we will have:

Necessarily, every quantifier is a restriction of Π

Moreover, as I mentioned already, there is some worry about the intelligibility of
such operators.

Others philosophers, adopting a strategy that hearkens back to Russell, have
thought we should leave quantification behind and turn instead to schemas. Schemas
are a metalinguistic means of characterizing a usually infinite set of sentences in the
object-language. To take an example from set theory:

Separation: ∃y∀x(x ∈ y ↔ ϕ(y)) for any formula ⌜ϕ(y)⌝ of the language

In committing to the schema, we commit to every instance, and thereby attain a cer-
tain kind of generality—without, at least in the object language, recourse to quan-
tification.

On this model, to say that “quantifiers are always F” is actually not to say one
sentence, but rather to affirm a whole schema of instances. For ∀ to be maximally
general, then, will be for the following schema’s instances to be true:

If X is a quantifier, then X is at least as general as ∀

A problem with schemas, and a well known one at that, is that they cannot be
embedded in more complex constructions. What if we wished (as the Relativist
does) to deny, say, a particular quantifier ∀ is maximally general. If we express
∀’s maximal generality via schema, then we would need, in some sense, to negate
the schema—but what exactly does that mean? We cannot deny the schema in
the relevant sense by accepting the negation of each instance, since ∀ is at least as
general as itself. Do we say that some instance is negated? If so, which one—what
claim is our theory to include?15

And even if we overcome this problem, the Relativist still must say that quanti-
fier always fail to be absolutely general; this would seem to require that they must

15See Williamson (2003) for more criticism of schemas, and Lavine (2006) for a rejoinder on the
schematicist’s behalf. Studd (2019) responds to Lavine’s rejoinder.
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embed their denial of a schema—this is how they say of a particular quantifier fails
to be absolutely general—within another schema—this how they say that some-
thing is true of quantifiers in general. How might this be done?

The schematicist is right that we need a non-quantificational way of generalizing
if we are to articulate Relativism; but they err in absconding to the meta-language
to achieve this generality. What we need is a device of non-quantificational gen-
erality that lives in the object-language. One might think that there are no such
devices to be found: quantifiers are our mode of expressing generality in the object-
language, and our only mode—there is no way of saying that some feature F holds
of quantifiers in general which does not involve the resources of quantification.

Such a view, I think, underestimates the diversity of our philosophical resources.
Consider, for instance, the claim:

To be a whale is to be a swimming mammal

Following Dorr (2016), we might regiment this sentence using our higher-order
language, and in particular higher-order identity, as the following claim:

Whale = λx.Swimming(x) ∧ Mammal(x)

Where λx.Fx ∧Gx, for properties F and G, is the property of being F and G.

This claim seems to entail a certain kind of general connection between being a
whale and being a mammal, that being a mammal somehow is implied by being a
whale. In particular, given a very basic logic, it follows from this identity that we
should deem as true, for any constant c, the sentence “Whale(c) → Mammal(c)”. If
one regards schemas as conveying a generality of sorts, then, it appears, one should
think this identity does as well.16

Despite having such generalizing import, it is far from clear that this claim of
higher-order identity is any way grounded in, reducible to, or identical to a claim
of quantification. There are views on which claims of identity, including first-order
ones, are identical to claims of indiscernibility—for x and y to be identical is just
for them to share all their properties—but all I claim is that it is not unreasonable
to adopt a position which rejects such identification or reduction.

Quite a few of our philosophical idioms might be taken to both have generalizing
import and be non-quantificational. Claims of essence—for instance, that it is in
the essence of whales to be mammals—may have this sense, as well as claims of
“mereological” containment between properties—such as part of being a whale
is being a mammal. Let me call relations in this family entailments. To say that
something holds of F s in general, we say that being F entails being G.

16Other philosophers have also been attracted to the idea that there is some connection between such
identities and generality. Linnebo (2022), for instance, briefly suggests that such an identity might be
a ground or truthmaker for the universal claim ∀x(Whale(x) → Mammal(x)).
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Entailment relations, as I have said, seem to be non-quantificational ways of
generalizing. We generalize about whales as a whole by seeing what being a whale
entails. They also seem to be ways of generalizing that are, in an intuitive sense,
as general as can be. If it is in the essence of whales to be mammals, is there any
important sense in which there could be a whale which wasn’t a mammal? Or,
to generalize from the first example, consider the following entailment relation,
defined in terms of identity between properties. Say that F entails G just in case F
is identical to the property of being F and G; or, using the Dorr-like notation:

F = λx.Fx ∧Gx

Again, if to be F is just to be F and G, is there any important sense in which an
arbitrary F -thing might fail to be a G-thing?

If entailment relations have these two features of being (i) non-quantificational
and (ii) as general as can be, then they will allow us to state a form of Relativism
which is both (i) coherent in a way that Q-Relativism was not and (ii) faithful to
the intuitive spirit of the view. In particular, the proposal is that “quantifiers are
always F” is to be understood as the claim that being a quantifier entails being F . ∀
will be absolutely general just in case it is a quantifier and being a quantifier entails
being a restriction of ∀. And so Relativism and Absolutism will be the following
theses:

Entailment Relativism: Being a quantifier entails being an property of properties
such that being a quantifier does not entail being a restriction of it

Entailment Absolutism: Being a quantifier does not entail being an property of
properties such that being a quantifier does not entail being a restriction of
it

We can put this more lucidly by separating out from this the definition of “abso-
lutely general” that entailment gives. To be absolutely general is to be an property
of properties X such that being a quantifier entails being a restriction of X . Then
we have:

Entailment Relativism: Being a quantifier entails being not absolutely general

Entailment Absolutism: Being a quantifier does not entail being not absolutely
general

Because entailment gives us a way of generalizing about quantifiers in a maximally
general way, Entailment Relativism captures the intuitive ambition of Relativism
to say that quantifiers as a whole fail to be absolutely general. For the same reason,
one might suspect that Entailment Relativism is self-defeating, just as Q-Relativism
was when the quantifiers in it were understood as maximally general. Doesn’t the
Relativist wish to claim that one cannot generalize in a maximally general way?
And isn’t this what I say entailment allows us to do?
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Here we must keep in mind the distinction between entailment and quantifica-
tion. The Absolute Generality debate, as I understand it and think other philoso-
phers have understood it, concerns whether quantifiers ever attain maximal gener-
ality, not whether entailment or other devices of generality may have this status.
(In light of this, it might be better to say the debate is about “absolutely general
quantification” rather than “absolute generality”.) It does not contravene the spirit
of Relativism to maintain that we can generalize about quantifiers as a whole, so
long as we remember that to generalize about quantifiers as a whole is not neces-
sarily to quantify over quantifiers as a whole.17

All this, of course, is a little sketchy. The remainder of this paper attempts to
implement these informal thoughts in the more regimented setting of a particular
higher-order logical language. The technical work, while it raises interesting issues
on its own, serves mostly to support the philosophical vision laid out here. So that
we do not lose sight of how the technical work is supporting that vision, let me
give a road map of the sections to come.

First, I will introduce the higher-order logical language that we will use to reg-
iment all this talk of properties, identity between properties, and entailment (Sec-
tion 5. We’ll use that language to define a particular notion of entailment—in fact,
the one where F entails G just in case F = λx.Fx∧Gx. This entailment relation, as
one can see, is definable without special ideology purpose-made for the Absolute
Generality debate, but rather purely logic resources, along with property identity.
I will then argue that this relation can do all the work that I have said entailment
relations can do (Section 7).

To maintain that Entailment Relativism does not fall inconsistency like Q-Relativism,
we will have to maintain a firm line between quantification and entailment in my
sense. To ensure my chosen relation doesn’t illicitly inch across this boundary, I
will also give an account of what universal quantifiers are (Section 8). The idea
will be that to be a universal quantifier is just to have the right kind of logical be-
havior. This, too, will ultimately be understood in terms of entailment. With the
account of quantification in hand, I will be able to prove that my chosen notion of
entailment is not quantificational (Section 9). Indeed, we will be able to prove that
Relativism, on my construal, is a consistent position. By adopting turning to the
machinery of entailments, then, we may articulate a form of Relativism which is
provably consistent and which, arguably, captures the intuitive spirit of the view.

5. GOING HIGHER-ORDER

At this point, it will be helpful to introduce some formalism to regiment and
precisify our theorizing about quantifiers and entailment. If quantifiers are prop-
erties of properties, then this framework will have to be one for theorizing about

17The issue is delicate. I am motivated by the idea that the best considerations in favor of Relativism
rely on special features of quantifiers, as opposed to other ways of generalizing.
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properties and properties of them. We need to be careful here. The lesson of Rus-
sell’s paradox is that it is not long before naive property-talk spoils: consider the
property of being a property that doesn’t instantiate itself.

I will formalize property-talk by adopting a higher-order language.18 Many kinds
of language, formal and natural alike, have different syntactic categories to which
their expression belong. This is true no less of the first-order languages with which
logicians and philosophers often work; these languages have singular terms (con-
stants c and variables x), as well as sentences, and predicates which combine with
singular terms to form sentences. They also include sentential connectives and op-
erators, like ∧ and ¬. Higher-order languages, by contrast, are more liberal. They
may include higher-order predicates, which combine with predicates of the usual
kind to form sentences, just as predicates of the usual kind combine with singular
terms. A widely accepted hypothesis in linguistics, in fact, is that English itself is a
higher-order language of this kind.

There are other ways one might go—if one has a well enough worked out formal
first-order theory of properties, then that would do the job.19 Theorists so inclined
are welcome to translate my higher-order view into their own first-order theoretic
terms.

The higher-order language L that I will use is defined as follows. L has two
basic syntactic categories: type e, the type of singular terms, and type t, the type
of formulae. The rest we define recursively: when σ and τ are types and τ ̸= e,
then (σ → τ) is a type, the type of an expression which, when composed with an
expression of type σ, returns an expression of type τ . Thus e → t is a type: the type
of unary predicates which, when combined with a singular term, return a formula.
And t → t is a type: this is the type of sentential operators, such as □ from modal
logic, or ¬.

The terms at each type may be complex or simple. The simple terms are con-
stants and variables—we assume an infinite stock of variables at each type, and
sometimes use superscripts to indicate a variable’s type. Our simple terms will
include familiar logical constants:

• ∧, of type t → t → t20

• ∨, of type t → t → t

18See Fritz (2023), Chapter 1, for an argument for the conclusion that higher-order languages are our
best way of consistently theorizing in the way property-talk is supposed to allow us to do.
19That is not to say that there has not been much interesting work on developing consistent and
sufficiently strong first-order theories of properties: see especially Fine (2005) and Linnebo (2006)
for recent attempts. My own view is that the limitations these theories impose upon property-talk to
avoid paradox make them ill suited to serve as a metaphysical framework. (Both Fine’s and Linnebo’s
theories take place against a background of classical logic, but there is also a literature in developing
first-order theories of properties in the non-classical tradition as well: see for instance Field (2004).)
20Properly put, this should be (t → (t → t)). But I’ll drop parantheses in types when possible,
assuming a convention of associating types to the right.
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• ¬, of type t → t

In addition to these, I will also assume that, for each type σ, we have an identity-
expression =σ of type σ → σ → t, which indeed can be seen as a generalization
of identity on type e to higher types—for instance, =σ will have a higher-order
version of Leibniz’s Law that goes along with it.21

Complex terms can be made in two ways: application and λ-abstraction. Ap-
plication is the generalization to arbitrary types of the way the first-order logician
combines predicates and singular terms to form formulae: when A is an expression
of type σ (which we may notate as A : σ) and B : σ → τ , (BA) : τ .

λ-abstraction, as I’ve already indicated, is our device for creating terms for com-
plex properties. In natural languages like English, it is easy for us to form pred-
icates with complex internal structure. For instance, “is red and round” is a com-
plex predicate in some sense formed from “is red” and “is round”. In our formal
language, we accomplish a similar task with λ-abstraction: when we have some
formula A, in which a variable x may or may not be free, then λx.A is a complex
predicate which we might gloss in English as “being such that A”. Thus we may
write λx.Red(x) ∧ Round(x) as our formal gloss for “is red and round”. Though
I have emphasized λ-abstraction’s use in creating complex monadic predicates, λ-
abstraction may be used to create complex predicates of arbitrary type. In general,
when A : τ and x : σ is a variable (and τ ̸= e), λx.A is a term of type σ → τ .

As usual, I will be using the language of “propositions” and “properties” to gloss
higher-orderese (propositions are entities at type t, properties and relations entities
at type σ1 → (σ2 → . . . → (σn → t) . . . ), and so on).

With all this in place, we regiment some of what I have said about Entailment
and Relativism. For F to entail G—I will notate this as F ≤ G—is defined, in L like
so:

F = λx.Fx ∧Gx

Let me introduce a predicate Quant : ((e → t) → t) → t which is intended to ex-
press the property of being a quantifier. (In Section 8, we will also define this term
in terms of identity and the logical constants.) The property of being absolutely
general, then, is:

λX.Quant(X) ∧ (Quant ≤ (λY.Y ⊆ X))

Where Y ⊆ X , recall, means Y is a restriction of X . (In our formal language,
Y ⊆ X is defined as Y (λx.¬X(λy.y ̸= x)). Plug in ∀ and ∀′ for X and Y to see
how this corresponds to what was said before.) We can let AbsGen abbreviate this
expression.

Finally, then, we have that Relativism and Absolutism would be stated as:

HO Relativism: Quant ≤ λX.¬AbsGen

21See Dorr (2016) for more discussion and defense of the legitimacy of using such devices.
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HO Absolutism: Quant ≰ λX.¬AbsGen

Or, in more expansive form:

HO Relativism: Quant ≤ λX.¬(Quant(X) ∧ (Quant ≰ λY.Y ⊆ X))

HO Absolutism: Quant ≰ λX.¬(Quant(X) ∧ (Quant ≰ λY.Y ⊆ X))

6. INTERLUDE: HIGHER-ORDER LANGUAGES AND ABSOLUTISM

L contains no primitive quantifier symbols at all. This we can see as a matter of
philosophical hygiene: if Relativism and Absolutism are to be articulated without
recourse to quantification, let us use a language without quantification baked in.

It is sometimes claimed that to use higher-order languages is to give up on ab-
solutely general quantification or the spirit of Absolutism.22 That objection goes
something like this: using a typed language goes hand in hand with a view of
reality and its contents being somehow stratified in the same way as the typed
language in question. There will be the individuals, corresponding to type e, and
the properties, corresponding to type e → t, and so on. In this typed language,
however, any quantifier-expression is of type (σ → t) → t for some type σ, and
so the corresponding quantifier would only range over the entities at type σ. The
alleged problem is that a truly absolutely general quantifier would range over not
just some limited collection of entities, such as those at a particular type, but enti-
ties at all types. This raises a worry for my approach: if just using L already gives
up on the spirit of Absolutism, how can we hope to articulate a thesis which really
captures the spirit of the view?23

Just as a dialectical matter, it is worth noting that Williamson (2003), after ar-
guing at length of the horrors of Relativism, embraces higher-order languages and
Absolutism both. But we need not hide behind Williamson’s embrace of the higher-
order; we can meet the objection head-on. First: one may worry that the objec-
tion overgenerates. First-order languages also have numerous syntactic categories
(nominal terms, predicates, sentential connectives and operators), but include only
quantifiers over nominal terms. Doesn’t this use of numerous syntactic categories
go hand in hand with a view of reality and its contents being somehow stratified
in the same way as the syntactic categories in question? Won’t the nominal quan-
tifier fail to range over entities corresponding to terms, predicates and sentential
operators, and therefore fail to be truly absolutely general?

22See Linsky (1992), p. 262, for instance.
23See Krämer (2017), Florio and Jones (2019), and Florio and Jones (2023) for more discussion about
higher-order languages and absolute generality.
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If there is an objection that applies to higher-order languages alone, it will have
to be one based on something these languages do not share with first-order lan-
guages. The most natural diagnosis is that it is the presence of higher-order quanti-
fier expressions in the language that gets the objection going. Even with the objec-
tion thus modified, however, L seems to escape it: by design, L excludes quantifier-
expressions as a whole, and so higher-order quantifier expressions in particular.
There may be other good objections to the ideology of L, but the objection that it is
at odds with Absolutism is not one of them.

7. A THEORY OF HIGHER-ORDER IDENTITY

Our entailment relation, ≤, then, is defined as follows:

λXY.X = (λx.Xx ∧ Y x)

In other words, a property F entails a property G just when to be F is just to be
F and G. Of course, there is not really one category of “properties” in the higher-
order framework: for each type σ, roughly speaking, there is the type σ → t of
properties of entities of type σ. Accordingly, there is really a notion of entailment
≤σ→t for each type σ. 24

Now, this notion of entailment will be of some use only with a sufficiently coarse-
grained theory of higher-order identity. On theories of higher-order identity ac-
cording to which propositions and properties are structured like the sentences and
predicates we use to express them, it is doubtful whether we could find properties
F and G such that F entails G. On coarser-grained theories such as that accord-
ing to which, roughly, propositions and properties form Boolean algebras, ≤ will
be better behaved. So my starting point will be the development of a sufficiently
coarse-grained theory of higher-order identity. I should note, however, that there
are other candidate definitions of ≤ which would work just as well for my purposes
and would require a weaker background logic; I focus on the present definition and
logic because they are especially simple and helpful for conveying the general idea
of my approach.

A theory is just a set of formulae in a given language, and a theory is true just in
case every sentence, i.e., closed formula, in the theory is true. Take first the relatively
uncontroversial fragment of higher-order logic defined by the following schemas
and rule (here, ⊢ P just means P belongs to our theory):

24In fact, we will be able to generalize further the applicability of the idea of entailment later in this
section.
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PC ⊢ P where P is a substitution instance of a theorem of classical proposi-
tional logic

Id ⊢ a = a
LL ⊢ a = b → Fa → Fb
β ⊢ P [(λx.A)B] ↔ P [A[B/x]], where A[B/x] is the result of replacing every

occurence of x in A with B, so long as this can be done without any free
variable in B becoming bound25

η ⊢ A[λx.Fx] ↔ A[F ], where x is not free in F
MP If ⊢ P → Q and ⊢ P , then ⊢ Q

We can call this theory B (for “basic”) and write B ⊢ P when P is a formula
included in B (i.e., a theorem of B). Any theory which includes B and is closed
under Modus Ponens is a basic theory. Already from B, one can start making the
case that the notion of entailment I have chosen is a linking relation. For we can
prove the schema:

F ≤ G → Fc → Gc

For any F , G and c. For suppose F ≤ G and Fc. If F ≤ G, then F = λx.(Fx ∧Gx).
And if Fc, then (λX.Xc)F by β. So, by LL, we have (λX.Xc)(λx.Fx ∧ Gx). And
so, by appealing to β again, we derive Fc ∧Gc and so Gc.

The theory I want to adopt, however, is an extension of B, and is in particular to
be the least basic theory closed under the following rule:

Logical Equivalence: If B ⊢ P ↔ Q, then ⊢ λx1 . . . xn.P = λx1 . . . xn.Q

The resulting theory I will call C(B), the closure of B.26

The general ethos behind Logical Equivalence is something like logical equiv-
alence suffices for worldly identity. Consider, for instance, sentences A ∧ B and
B ∧ A, which are provably logically equivalent in B. One might think that these
sentences must express the same proposition: one might think they will be true
in all the same possible circumstances or worlds (in what scenario is the one true
but not the other?), and so one will want to commit to the propositional identity
A ∧B = B ∧A.

Logical Equivalence extends this general feeling that logical equivalence suffices
for identity from type t to higher types. Consider, for instance, the complex predi-
cates λpq.p ∧ q and λpq.q ∧ p. Just as one felt that there was no difference between
the conjunction of A and B in one order (say, A ∧ B) and conjoining them in the
other (B∧A), so one may feel that there is no difference in general between conjoin-
ing propositions in one order (λpq.p∧ q) and conjoining them in another (λpq.q∧p),
and so want to identify them—a claim of identity between properties. Or to put it
another way: just as one felt that A∧B and B∧A do not differ in what proposition

25Some philosophers will take issue with β. See Dorr (2016), Section 5 for discussion.
26This theory is a weakening of the theory Classicism of Bacon and Dorr (2024). Note that it is not
simply the fragment of Classicism which contains only sentences of L (Bacon and Dorr work in
L(∀))—that fragment is inconsistent with my version of Relativism, but C(B)) is consistent with it.
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they express, so one may feel that p ∧ q and q ∧ p are also somehow expressively
identical: propositions satisfying the one formula will also satisfy the other. Hence
we should identify the complex predicates λpq.p ∧ q and λpq.q ∧ p formed via λ-
abstraction from the properties.

Logical Equivalence ensures C(B) makes this identification: p ∧ q ↔ q ∧ p is a
theorem of B—here p and q are propositional variables—so that λpq.p∧q = λpq.q∧p
is one of C(B). In general, then, a provable equivalence P ↔ Q, with variables
x1, . . . , xn free in P and Q, will correspond to an identity between the complex
predicates formed from P and Q by λ-abstraction on these free variables.

The following theorems of C(B), which I will call the Boolean Identities, are the
result of “upgrading” familiar equivalences of propositional logic to higher-order
identities via the Logical Equivalence:

λpq.p ∧ q = λpq.q ∧ p λpq.p ∨ q = λpq.q ∨ p
λpqr.p ∧ (q ∨ r) = λpqr.(p ∧ q) ∨ (p ∧ r) λpqr.p ∨ (q ∧ r) = λpqr.(p ∨ q) ∧ (p ∨ r)

λpq.p ∧ (q ∨ ¬q) = λpq.p λpq.p ∨ (q ∧ ¬q) = λpq.p

The Boolean Identities, in some sense, imply that the propositions form a Boolean
algebra, and indeed that at each type other than e, the entities at that type form a
Boolean algebra. For each such type τ ̸= e, we can define a notion of conjunction,
disjunction, and negation ∧τ , ∨τ , and ¬τ by induction. Taking ∧t, ∨t and ¬t to be
∧, ∨, and ¬, we say:

• ¬σ→τ abbreviates λXσ→τzσ.¬τXz

• ∧σ→τ abbreviates λXσ→τY σ→τzσ.Xz ∧τ Y z

• ∨σ→τ abbreviates λXσ→τY σ→τzσ.Xz ∨τ Y z

(Often, I’ll omit the superscript.)

It is then easy to confirm that from the Boolean identities we can derive identities
parallel to them for each non-e types: for instance, we can derive λXσY σ.X =
λXσY σ.X ∧σ (X ∨ Y σ).

Using this notation, we can also rewrite ≤σ→t as:

λXY.X = (X ∧σ→t Y )

And so we can see that entailment can be generalized to an arbitrary type τ ̸= e.
We have:

≤τ := λXY.X = (X ∧τ Y )

The Boolean identities then imply that ≤τ will be a non-trivial relation for each
type τ . In a Boolean algebra with conjunction ⊓, disjunction ⊔ and complementa-
tion ·C , we can always define an ordering relation ⊑ by a ⊑ b just in case a ⊓ b = a.
On this ordering, a⊓ b is the greatest lower bound of a and b, and a⊔ b the greatest
upper bound. Entailment, as I have defined it, is no more than this ordering as
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applied to the Boolean algebra of properties of a given type. Hence we will have
that F ≤ F ∨σ→t G, and F ∧σ→t G ≤ F , for instance.

The parallel to Boolean algebra also suggests one last bit of ideology that will
be useful. Since the propositions are, intuitively speaking, a Boolean algebra, there
is an element ⊤ which is entailed by an arbitrary proposition. We can define ⊤ as
∧ = ∧, or by any other theorem of C(B). If there is any proposition that deserves
to be called a trivial proposition—that is, the proposition which is automatically
the case, true no matter the circumstances—it is ⊤. After all, every instance of the
following schema is a theorem of C(B):

p → ⊤

What goes for the propositions goes for other types as well; at each type we may
also define a special ⊤ element. In the case of type σ1 → σ2 → . . . → σn → t, that
element is none other than λxσ1 . . . xσn .⊤.

Let us fix some type σ. If there is any property of entities of type σ that deserves
to be called the trivial property—that is, the property that is trivially or automati-
cally had, had no matter the circumstances—it is λxσ.⊤. After all, every instance
of the following schema is a theorem of C(B):

Fy → (λx.⊤)y

As I have said, ≤ gives us what seems to be a maximally general way of generaliz-
ing over the F s, for any property F whatever. To generalize over the F ’s, we use
the operator λX.F ≤ X : G holds of the F s in general, just in case this operator
holds of G. And suppose, for instance, Quant ≤ F . Then to be a quantifier is just to
be a quantifier and additionally F . If Quant ≤ F , then to be a quantifier which is
not F , C(B) proves, is to be something which is both F and not F—that is, to be a
property of which a contradiction holds. What greater generality over quantifiers
could one wish for?

What if we wanted to generalize not just over quantifiers or whales, but things
in, well, general? We just consider the status of being a property entailed by λx.⊤,
λX.(λx.⊤ ≤ X). If we can gloss “F ≤ G” as “an arbitrary F -thing is G”, then we
can gloss “λx.⊤ ≤ F” as an arbitrary λx.⊤-thing is G. But if λx.⊤ really is in a
sense a trivial property, one that is automatically had, then this is to say that an
arbitrary thing, full stop, is G—that G holds in a general way not of just the F ’s,
but simply, well, in general.

The notion of being identical to the trivial proposition and the trivial properties
will play a starring role for us in what is to come, so it will be helpful to have some
(rather suggestive) notation for them. Following some recent literature in higher-
order metaphysics (which itself is following older literature in higher-order logic),
I will abbreviate λp.p = ⊤ as □, and let ♢ abbreviate λp.¬□¬p, as usual.27 The

27See especially Bacon (2018), Bacon and Dorr (2024), and the citations therein.
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reason is that, given the principles already laid down, □ acts like an S4 modality—
it satisfies □(p → q) → □p → □q, for instance, and □p → p, and so on. If □p, then I
will say that p is “broadly necessary”.28

In a similar manner, abbreviate λx1 . . . xn.P = λx1 . . . xn.⊤ by □x1...xnP , and
¬□x1,...,xn¬P by ♢x1...xnP .29 Modal logic also provides a helpful heuristic for rea-
soning with these operators: their inferential behavior is rather like that of ne-
cessitated universal quantifiers (□∀) and “possibilized” existential quantifiers (♢∃),
respectively—not like that of universal quantifiers and existential quantifiers.

If λX.□xXx—that is, λX.(λx.⊤ ≤ X)—can be seen as a necessitated universal
quantifier, so λX.(F ≤ X) can be seen as a necessitated F -restricted universal
quantifier, in view of the following theorem of C(B):

F ≤ G ↔ □x(Fx → Gx)

In Section 9, we’ll reprise this theme.

For now, though, let me note that C(B) actually lets us simply our statements of
Relativism and Absolutism. Given C(B), we can write:

HO Relativism: Quant ≤ λX.(Quant ≰ λY.Y ⊆ X)

HO Absolutism: Quant ≰ λX.(Quant ≰ λY.Y ⊆ X)

Which we can rewrite with our suggestive notation as follows:

HO Relativism: □X(Quant(X) → ♢Y (Quant(Y ) ∧ ¬Y ⊆ X)

HO Absolutism: ♢X(Quant(X) ∧□Y (Quant(Y ) → Y ⊆ X)

8. BEING A QUANTIFIER

HO Relativism, then, lives up to the ambition of generalizing over quantifiers in
a maximally general way. Again, however, we must check that the generalization
offered by entailment is not-quantificational. It is time, then, to develop an account
of what being a (universal) quantifier consists in. With this account in hand, I
will argue that entailment is not quantificational. The proposal is this: to be a
(universal) quantifier is just to have the right logical behavior, in a sense we will
make precise using the resources of C(B).

The idea that the logical constants are defined by their logical or inferential be-
havior is not a new one.30 Thus we find Prior in “The Runabout Inference-Ticket":

28Whether □ counts as a “genuine” modality in some sense or other is not a question I will pursue
here. See Bacon (2018) for an extended discussion of □ and its logic, and a defense of its status as a
genuine modality, all couched in a more Absolutist-friendly context.
29This is a variation of a notation due to Peter Fritz.
30Gentzen (1964) seems to have had such a view, for instance.
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For if we are asked what is the meaning of the word ‘and’, at least
in the purely conjunctive sense (as opposed to, e.g., its colloquial
use to mean ‘and then’), the answer is said to be completely given
by saying that (i) from any pair of statements P and Q we can infer
the statement formed by joining P to Q by ‘and’ (which statement
we hereafter describe as ‘the statement P-and-Q’), that (ii) from any
conjunctive statement P-and-Q we can infer P, and (iii) from P-and-
Q we can always infer Q. (Prior (1960), p. 38)

Prior is sketching a view on which the meaning of the word “and” is exhausted
by its inferential role.31 But there is a metaphysical thought in the vicinity, and that
is what I am after here. The thought is not about what it is for a word “R” to be
conjuctive, but what it is for a relation R of propositions to be conjunctive. To be a
conjunctive relation is just to satisfy the (metaphysical analogue) of ∧’s inferential
role, or to have the logical behavior of ∧.

Let us take for granted that logicians have isolated the logical behavior of ∧—
that is, the operation of conjunction, not the term—with any one of their standard
axiomatizations of the logic of conjunction; say with the schemas:

∧-Intro: A → B → (A ∧B)

∧-Elim1: A ∧B → A

∧-Elim2: A ∧B → B

Under what conditions could a relation R be said to have the logical behavior of ∧?
One might think it would suffice if every instance of the following schemas were
true:

R-Intro: A → B → RAB

R-Elim1: RAB → A

R-Elim2: RAB → B

But we might want a stronger condition on R. When we take a schema deemed
logically true or valid, such as:

A ∨ ¬A for all sentences A

It is natural to think that there is something common to all the instances of the
schema which underwrites their logical goodness; it is not as though it just so hap-
pens that each instance is a logical truth. According to an orthodox thought, this
common thing is the (logical) form of the sentence—that which remains when we
abstract from a particular instance of the schema.

We can operationalize the notion of form in the present setting, again, by appeal
to complex predicates formed via λ-abstraction: roughly, we replace constituent

31Prior of course raises the view only to raise trouble for it with his “tonk” operator.
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sentences by propositional variables and bind via λ. The form of A∨¬A is λp.p∨¬p;
of A → A it is λp.p → p; of A ∨ (A ∧B) ↔ A it is λpq.p ∨ (p ∧ q) ↔ p.

What is the good status that forms like λp.p → p have? A natural answer would
be that λp.p → p holds of an arbitrary proposition—that is, □p(p → p). Indeed, this
is something C(B) proves.

Just as with the schema A∨¬A, the good status of ∧-Intro and the Elim schemas,
we might think, is underwritten by a good status which their forms enjoy. Indeed,
all of the following are theorems of C(B):

⊤-∧-Intro: □p,q(p → q → (p ∧ q))

⊤-∧-Elim1: □p,q(p ∧ q → p)

⊤-∧-Elim2: □p,q(p ∧ q → q)

The sense in which ∧ satisfies the Intro and Elim axioms in not just that every
instance of them is true, but that the forms of the schemas hold of arbitrary propo-
sitions. If a relation R is to count as having the same logical behavior as ∧, then
R-Intro ought to hold with the same generality. We must have that p → q → Rpq
holds of arbitrary propositions p, q, in the sense that □p,q(p → q → Rpq), and like-
wise for the Elimination axiom schemas.

Let us say, then, that:

• R has the Intro Property just in case □p,q(p → q → Rpq)

• R has the Elim1 Property just in case □p,q(Rpq → p)

• R has the Elim1 Property just in case □p,q(Rpq → q)

To obtain terms standing for the properties, we need only λ-abstract on R.32

As for conjunctive operators, so for universal quantifiers. What universal quan-
tifiers are by nature is exhausted by (the metaphysical analogue) of their inferential
role; to be a universal quantifier is just to have the right logical behavior.

Again, let us take our cue from the logicians who have tried to axiomatize the
logic of universal quantification. I submit that the inferential role of universal quan-
tifiers is pretty well captured by the axiom schemas and rules for ∀ that we find in
so-called “free logic”, or at least one form of it:

32This definition of conjunction, and the one I am about to give for universal quantifiers, brings
together a few strands in recent work in higher-order metaphysics and logic. The idea that we should
see logical validities as underwritten by some kind of higher-order identities is one that I borrow from
Dorr (2014) and Goodman (2016). The idea that certain classes of logical operator can be defined by
their logical behavior is present in Bacon (2018), but is worked out in terms of quantification. The
contribution of the current section is to bring these two ideas together.
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Free Instantiation-∀ ∀x(∀yA → A(x/y))
K-∀ ∀x(A → B) → ∀xA → ∀xB
Vacuity-∀ A → ∀xA, where x is not free in A
Gen-∀ If ⊢ A, then ⊢ ∀xA

Classical quantification theory is usually characterized by the K and Vacuity ax-
iom schemas, along with the Gen Rule and a schema of Unrestricted Instantiation
(∀xA → A(c/x), for any A, c). In Free Logic, by contrast Unrestricted Instantiation
is abandoned in favor of free instantiation (∀x(∀yA → A(x/y)), for any A). This de-
parture from the classical theory is necessary if we are to have a notion of being a
universal quantifier that the Relativist can accept. If ∀ is a universal quantifier, then
the Relativist should not want to accept the instance of Unrestricted Instantiation
given by ∀x∃y(y = x) → ∃y(y = r), where r is the “Russell set” for ∀.

We are now able to give a definition of Quant, that is, to say what it is to be a
universal quantifier. Following the pattern with conjunction, say that O is a uni-
versal quantifier just in case it possess the following three properties, each one
derived from one of the above axiom schemas (we will return to the Gen Rule in a
moment).

• O has the Free Instantiation Property just in case

□RO(λx.O(λy.Rxy) → Rxx)

• O has the K Property just in case

□F,G(O(λx.Fx → Gx) → OF → OG)

• O has the Vacuity Property just in case

□p(p → O(λx.p))

As before, we obtain terms standing for the properties themselves by λ-abstracting
on O.

The way I have “translated” the Free Instantiation schema into the correspond-
ing property deserves some comment. One might have expected that O should
have this property just in case:

□FO(λx.O(F ) → Fx)

Where, instead of the two-place relation R, we have instead the one-place predicate
F . The version of the Free Instantiation property with F instead of R, though,
is inadequate; operators which are intuitively not universal quantifiers (such as
all but finitely many natural numbers, for instance) may possess the K and Vacuity
properties, as well as the weaker Instantiation property.33 This takes us, then, to
the aforementioned Rule of Generalization. Is there a metaphysical equivalent of

33The reason it is inadequate is that the Free Instantiation schema allows x to occur free in A. An
instance of the schema is:

∀x(∀y(y ̸= x) → x ̸= x)
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the rule of Generalization that an operator must satisfy if it is to be considered
a universal quantifier? I suggest not. This is because the Generalization rule is an
artifact of a particular convention governing the use of formulas with free variables
in specifying theories, not a manifestation of real pattern in the logical behavior of
quantifiers.

A theory, recall, is just a set of formulae. To accept a theory is to commit to
its sentences—the closed formulae—being true. While open formulae may belong
to a theory that one accepts, they themselves are in no way deemed true or false.
We include them only because when we characterize a theory as the least set of
formulae containing such and such axioms and closed under such and such rules,
it is often expedient to allow open formulae. It can make matters of axiomatization
easier—for instance, rather than having to lay down as a separate axiom ∀x(Fx →
Fx), we can simply say to include every formula of the form A → A in the theory,
and then demand that our theory be closed under the Generalization rule.

The Generalization rule is a manifestation of a particular convention we are
happy to adopt regarding open formulas and universally quantified sentences.
Conventions could be otherwise, and in fact have been: there are presentations
of quantified logics which eschew the Generalization rule in favor adding more ax-
ioms. Instead of the Generalization rule, one stipulates that any universal closure of
any axiom also belongs to the theory, where a universal closure of a formula is the
result of prefixing that formula by any string of universal quantifiers.34 It seems
hard to accuse such a logician of losing out on something important about the na-
ture of quantification; but, on this way of proceeding, Generalization has no role,
and hence the issue of the metaphysical equivalent of Generalization does not even
arise.

We may therefore take the conjunction of the Free Instantiation, K, and Vacuity
properties to be our account of Quant. That is, Quant is to be taken as an abbrevia-
tion for this monstrous λ term:

λO.□RO(λx.O(λy.Rxy) → Rxx)∧□F,G(O(λx.Fx → Gx) → OF → OG)∧□p(p → O(λx.p))

One interesting corollary of this definition of Quant is what I take to be a rather
natural account of what it is to be an absolutely general quantifier. Recall that
AbsGen, the property of being absolutely general, is defined from Quant and ≤ as
follows:

AbsGen(O) := Quant(O) ∧ Quant ≤ λX.X ⊆ O

We have, then, the following fact:

This would not seem to be an instance of the schema, if understood to require x not to be free in
A. There is a general issue here in the proper axiomatiziation of Free Logic. Leblanc (1995) at least
seems to claim, if I read him correctly, that one can derive, just using a version of Free Instantiation
in which x cannot occur free in A, the claim ∀x∃y(y = x). But the proof of his Lemma 10 would seem
to require the version of the schema in which x can occur in A free.
34This is the approach of Quine (1940).



26 ETHAN RUSSO

Lemma 8.1. C(B) proves: If O is a quantifier, then: O is an absolutely general quan-
tifier iff EO = (λx.x = x)

Where EO is the “existence property” for O: λx.¬O(λy.y ̸= x). (When O is ∀,
this may be written, given natural dualities, as λx.∃y(y = x)).) To exist according
to an absolutely general quantifier is to be self-identical—or, in view of the fact that
λx.(x = x) = λx.⊤, to be such that ⊤.

We can think of EO, when O is a quantifier, as O’s “domain of quantification”.
The domain of a quantifier is the collection of entities over which a quantifier
“ranges”; whether O(F ) is true or not depends only on the behavior of F upon the
entities in O’s domain. Although domains of quantification are often treated as col-
lections like sets or pluralities, it is perhaps more natural—as Stanley and Gendler
Szabó (2000) remind us—to treat them as properties or similar entities, in view of
the ways quantifiers interact with intensional phenomena like modalities or tem-
poral operators. And given that O’s domain is taken to be a property, it seems very
natural that that property would have to be EO. Presumably, an entity over which
O ranges ought to exist according to O; likewise, if an entity exists according to
O it seems that whether O applies to F or not will in part depend on whether F
holds of x. What the lemma says, then, is that an absolutely general quantifier, in
my sense, has as its domain the trivial property λx.x = x (i.e., λx.⊤). If there were
any domain that deserved to be called absolutely general, it would surely be this
one—what domain could be more comprehensive?—and so what quantifier could
be more deserving of being called absolutely general than one with such a domain?

Now, officially Quant is a term of type ((e → t) → t) → t. Sets are entities of
type e, and so Relativism, in the first place, is about whether quantifiers over those
sorts of entity are ever maximally general. The quantifiers involved in Relativism,
intuitively understood, are therefore entities of type (e → t) → t, and so Quant,
being a property of them, is thus of type ((e → t) → t) → t.

Clearly, however, the definition of Quant we have given can easily be generalized
to give a notion Quantσ of being a quantifier over entities of type σ for any type σ.
We may say Quantσ(O) just in case, now disambiguating the types of the various
variables:

• O has the σ-Free Instantiation Property just in case

□Rσ→σ→tO(λx.O(λy.Rxy) → Rxx)

• O has the σ-K Property just in case

□Fσ→t,Gσ→t(O(λx.Fx → Gx) → OF → OG)

• O has the σ-Vacuity Property just in case

□pt(p → O(λxσ.p))
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Quant as originally defined is just the special case when σ = e.

One way in which having definitions of being a quantifier at higher types is
helpful for present purposes is that it allows us to put on firmer formal footing
the informal arguments against Q-Relativism that were considered earlier. We can
regiment Q-Relativism and Q-Absolutism in higher-order formal language as fol-
lows:35

Q-Relativism: ∀X (Quante(X) → ∃Y (Quante(Y ) ∧ ¬Y ⊆ X))

Q-Absolutism: ∃X (Quante(X) ∧ ∀Y (Quante(Y ) → Y ⊆ X))

The intuitive problem for Q-Relativism came from Π, the property of being a
property to which every quantifier applies. We can now define Π, using λ notation,
as follows:

λF.∀X(Quante(X) → X(F ))

I argued that it was plausible before that Π itself was a quantifier, but with our
definition of Quant in hand, we can dispense with appeal to plausibility. C(B) in
fact proves: if Quant(e→t)→t(∀), then Quante(Π).

C(B) also proves:
∀X(Quante(X) → X ⊆ Π)

And so, granted the assumption ∃X(X = Π), we have an argument that Q-Relativism
is simply false.

Suppose, on the other hand, ¬∃X(X = Π). In this case, we can define a new
quantifier ∀+(e→t)→t which is strictly more general than ∀(e→t)→t. Set:

∀+(e→t)→t
:= λF e→t.∀F ∧ F (Π)

C(B) proves, again on the assumption Quant(e→t)→t(∀(e→t)→t), that Quant(e→t)→t(∀+(e→t)→t).
Since we assume ¬∃X(X = Π), we have then that ∀+ is at least as general as ∀, but
not vice versa. This yields the formal version of the problem of parochiality: why
do we care about a thesis stated in terms of ∀(e→t)→t, when that quantifier is sur-
passed in generality by another, ∀+?

9. THE VINDICATION OF RELATIVISM

The problem for the Relativist seemed to be there was no way of articulating
their position that was both (i) faithful to the spirit of the view and (ii) consis-
tent. We just saw how Q-Relativism foundered at the challenge of accomodating
(i) and (ii). Given maximally general quantification over quantifiers, Q-Relativism
is inconsistent; but without maximally general quantification over quantifiers, Q-
Relativism will fail to capture the spirit of the Relativist view.

Turning to my versions of Relativism and Absolutism:

35This would need to be a language that adds quantifiers for each type—not L.
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HO Relativism: Quante ≤ λX.(Quante ≰ λY.Y ⊆ X)

HO Absolutism: Quante ≰ λX.(Quante ≰ λY.Y ⊆ X)

We may ask how HO Relativism fares. If entailment gives us, as I have argued,
a maximally general way of generalizing about quantifiers, then HO Relativism
and HO Absolutism, I think, do capture the intuitive spirit of the Relativist and
Absolutist views.

It remains only to argue, then, that HO Relativism is consistent. Let me begin
with the headline: we can prove the consistency of both HO Relativism and HO
Absolutism, against the background of C(B):

Theorem 9.1.

• C(B) and is consistent with HO Absolutism:

Quante ≰ λX.(Quante ≰ λY.Y ⊆ X)

• C(B) and is consistent with HO Relativism:

Quante ≤ λX.(Quante ≰ λY.Y ⊆ X)

The proof of this theorem may be found here. 36)

I conclude that in HO Relativism, we have a vindication of intuitive idea of Rel-
ativism about quantification, expressed in a consistent way.

The reason that HO Relativism is consistent is that entailment will not, given
my definition of universal quantification, have the logical behavior of universal
quantifier—at least if we want to avoid some rather extreme and, to my mind,
implausible metaphysical positions.

Consider the following sentence, where ⊥ = ¬⊤:

□p(p = ⊤ ∨ p = ⊥)

Intuitively, this sentence says that (necessarily) there are only two propositions—⊤
and its negation. C(B) proves that λX.Quantσ ≤ X is a quantifier if and only if
(necessarily) there are only two propositions in this sense.

Lemma 9.2. C(B) proves:

Quant(σ→t)→t(λX.Quantσ ≤ X) ↔ □p(p = ⊤ ∨ p = ⊥)

It is not surely absurd to maintain there are only two propositions (Frege thought
so), but what is not surely absurd may still be probably absurd. Presumably we
think there are propositions which are metaphysically contingent: such a proposi-
tion will have to be distinct from ⊤ or ⊥. For ⊤, being expressed by tautologous

36Or at this link: https://tinyurl.com/QMTProof.

https://www.dropbox.com/scl/fi/bnav2sen348tx705r2mcp/Model-Theory.pdf?rlkey=e7yhb0lj4nmg9it35qhh0z7ok&st=0ex2gu0i&dl=0
https://tinyurl.com/QMTProof
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sentences, is presumably metaphysically necessary, and hence ⊥, being its nega-
tion, metaphysically impossible. λX.Quantσ ≤ X thus fails to be a quantifier, at
least on any plausible metaphysical view. We can thus vindicate the claim that
entailment gives a a non-quantificational form of generality. HO Relativism may
generalize over quantifiers by means of entailment, but it does not thereby quantify
over quantifiers.

The same goes for λX.□xXx in general:

Lemma 9.3. C(B) proves:

Quantσ(λX.□xσXx) ↔ □p(p = ⊤ ∨ p = ⊥)

But if λX.□xXx is not a universal quantifier, but rather only some device of
generalization, then what sort of device of generalization is it?

Earlier, I suggested that its logical behavior is like that of a necessitated universal
quantifier—of an operator like λX.□∀X—more than a bare universal quantifier. To
substantiate this, let me list some of the principles that we would expect a necessi-
tated universal quantifier to obey:

Lemma 9.4. C(B) proves: if Quant(∀), then:

Instantiation: ⊢ □∀x(□∀yA → A(x/y))

K: ⊢ □∀x(A → B) → □∀xA → □∀xB

Vacuity: ⊢ □∀x(λx.⊤)

4: ⊢ □∀xA → □□∀xA

Gen: If ⊢ A, then ⊢ □∀xA

And, indeed C(B) proves the result of substituting λX.□xXx for □∀x in any of
these claims. What suggests even more that λX.□xXx behaves like a necessitated
universal quantifier is the following theorem:

Lemma 9.5. C(B) proves: AbsGenσ(∀σ) iff λX.□xXx = λX.□∀σX

What this lemma says, one might suggest, is that not only does λX.□xXx act
like a necessitated universal quantifier; it would be identical to the necessitation of
the absolutely general universal quantifier if there were such a quantifier.

Now, if HO Relativism is right, then there is no absolutely general universal
quantifier. Even in this case, though, there may still be a way to regard λX.□xXx
as a necessitated universal quantifier, and an absolutely general one at that, even
in the absence of an absolutely general universal quantifier of which it is the neces-
sitation.
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If we think of necessitated universal quantification as a way of generalizing at
all, we tend to think of it in terms of the combination of universal quantification
with some kind of necessitation. But perhaps we need not think of it this way. Af-
ter all, in its beginnings in Aristotle’s modal syllogistic, formal modal logic was
not stated in terms of a sentential operator and separate quantificational compo-
nent, but rather a copula which fused the two. What I am suggesting is that we
see necessitated universal quantification (despite its name) as a self-standing form
of generalization, one that is accomplished usually by means of separate devices
of quantification and necessitation—and named for those separate devices—but
which can be accomplished even without them.

It is natural to wonder how we could understand being a necessitated-universal
operator (note the hyphen—this is my term for the members of this would-be prim-
itive class of generalizing devices) except as the result of joining together □ and
some universal quantifier? But here again we might appeal to the idea that kinds
of generalizing devices are defined by their logical behavior. Just as we defined
universal quantifiers as operators with a certain logical behavior, so, perhaps, the
necessitated-universal quantifiers can be seen as operators defined by their own
logical profile. An operator like λx.□xXx may thus come to be a necessitated-
universal operator not because there are □ and ∀ which come together to produce
it, but rather because it satisfies the right logical role. Unfortunately, so far as I
know, logicians since Aristotle have not been so interested in developing the logic
of operators which combine quantificational and modal force. (This is an interest-
ing question of pure logic in its own right, which I am addressing in other work.)
The principles I listed above, however, I think give a good start on an axiomatiza-
tion, but there is more work to be done.

Let me take it for granted, however, that we can understand the necessitated-
universal operators as a class of generalizing operators of their own, one defined by
fitting a certain logical profile (which at least includes the principles listed above),
and that a given operator, like λx.□xXx could be such an operator even if there
is no quantifier of which it could be the necessitation. In this case, there is a good
argument to be made that λx.□xXx is absolutely general among such operators.

All this, I think, provides more support for the claim that HO Relativism does
capture the intuitive spirit of Relativism. Suppose Abel the Absolutist and Riley the
Relativist are debating and explaining their views to each other. Able smugly says,
“I understand the intuitive picture, I understand what you are trying to say—you
say that no quantifier is absolutely general, where no quantifier is itself absolutely
general. You probably even want to say something stronger, that necessarily, no
quantifier is absolutely general, where no quantifier is itself absolutely general. Af-
ter all, there’s not a whiff of contingency about the considerations you adduce in
support of your view. Such a pity that by your own lights, you can’t say this!”

Riley, intrepid higher-order logician that she is, then responds: ”Dear Abel, I can
say exactly that. I do want to say necessarily every quantifier fails to be absolutely
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general, where my generalization is as general as possible. But I have no need for
an unrestricted universal quantifier to do it. Consider my claim (written with the
helpful abbreviations of AbsGen and □X ):

HO Relativism: □X(Quant(X) → ¬AbsGen(X))

This is how I say, after all, what I want to say: necessarily-for-any quantifier X ,
X fails to be absolutely general, where necessarily-for-any is a maximally general
necessitated-universal-quantifier. You might have thought that to express such a
thought, I would need both a necessity operator and a maximally general universal
quantifier; what we see now is that through λX.□xXx, I can capture the thought
without recourse to quantification.

“You and I agree, in fact,” Riley may continue to say, “that this is what I wish
to say: if you really do grasp an absolutely general quantifier with your term ⌜∀⌝,
then the sentence ⌜□∀X(Quant(X) → ¬AbsGen(X))⌝ will express the same propo-
sition, by your own lights, as the HO Relativist sentence I have written. This is
a consequence of our dear friend’s Lemma 9.5. But, if I am right, you do not so
express, and your sentence involving ∀ fails to get at what I mean. So let us debate
with my sentence instead, since it gets at what is at issue without prejudging that
issue.”

10. CONCLUSION

I have argued, then, for a construal of the debate about Absolute Generality
based on the tools of higher-order logic. Each of Absolutism and Relativism, on my
construal, is consistent, and each captures the intuitive spirits of those views. My
proposal is not totally neutral—it involves a controversial theory of higher-order
identity—but the tools used, at least, are not parochial to the Absolute Generality
debate. What allowed us to articulate a coherent form of Relativism was the key
idea that quantification is not the only way we can generalize. Once we recognize
Relativism about quantification is compatible with maximal generality obtained by
other means, we can use those means to devise reasonable forms of Relativism.

I have shown my version of Relativism to be consistent, but this is not yet to have
shown it to be plausible. Much of our theorizing, in mathematics and metaphysics,
seems to depend for its significance and import on being absolutely general; if we
can’t achieve that generality via quantification, how are we to achieve it? The re-
sults of the last section suggest a way forward: if we cannot have absolutely general
quantification, perhaps we can still have absolutely general “modalized” quantifi-
cation, and use these “modalized-quantifiers” to do our theorizing. When it comes
to mathematics and (certain parts of) metaphysics—in which our theories are, plau-
sibly, necessarily true if true at all— modalized-quantification may well be enough
for our purposes. Of course, we will likely want to do more than necessarily-
universally-quantify, but this may not be an obstacle either. In other work, I suggest
that we can define not just absolutely general necessitated-universal quantification,
but also absolutely general necessitated-existential quantification, and necessitated
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quantification of various other kinds, all with only the resources of L. It may seem
strange at first that we might be able to modally-quantify in an unrestricted way
without being able to quantify unrestrictedly, but in time, once we internalize the
idea that quantifiers are but one star in a vast galaxy of ways of generalizing, that
strangeness may yet fade.
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